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1

Introduction

In this chapter we give a brief introduction to the systems that we analysed in this thesis.
We start with a description of colloids and nanoparticles and the interactions that drive
them to form ordered structures. This is followed by an overview of recent developments
in the synthesis of particles with anisotropic interactions. Our exposition continues with
a more in-depth discussion of the three specific systems studied in this thesis: particles
at an interface, crystal structures that form by self-assembly, and charged colloids in an
electrolyte.
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1.1 Colloids and Nanoparticles

In this thesis we studied systems consisting of colloids. A particle is referred to as a colloid
when one of its dimensions is between 1 nm and 1 µm [1]. The word colloid was introduced
circa 1860 by Thomas Graham, who analysed the process of dialysis. He found that for
certain aqueous suspensions a sticky substance consisting of - what he concluded to be -
small particles formed on one side of a semipermeable parchment membrane [2]. Graham
coined the term colloid after the Greek word for glue κóλλα to describe his finding.
Colloids are an integral part of our daily lives: paints, toothpaste, butter, lipstick, etc.
all contain these particles. A few other examples of colloids are fat droplets and protein
clusters suspended in a water-like medium (milk), soot particles suspended in air (smoke),
air bubbles suspended in soapy water (foam), and small silica spheres stacked in a regular
arrangement (opals). Besides the length scale of the constituent particles, there is another
property that these systems have in common: the colloids are larger than the solvent
molecules, but small enough for Brownian motion to determine their dynamics. In the
case of a colloidal solid, such as an opal, the dynamics refers to the lattice vibrations.

Brownian motion is the random motion of a suspended particle that is caused by col-
lisions with solvent molecules. The change of the particle’s (angular) momentum induced
by these collisions averages out for sufficiently large objects on the time scale that is rele-
vant to their motion, resulting in movement according to the laws of classical mechanics
only. Colloids are so small that the impact of solvent molecules strongly influences their
trajectory, which, as a consequence of the molecular bombardment, contains a random
component. The discovery of this random motion is credited to the botanist Robert
Brown, who in 1827 reported on his study of the “particles contained in the pollen of
plants” [3]. He also extended his observation to inorganic substances, even going as far as
pulverizing a piece of the Sphinx and suspending the powder in water [4]. However, there
are records that predate Brown’s publication, such as the work of the Dutch physician
Jan Ingenhousz, which was published in 1785, see Refs. [5, 6] for details. Arguably, the
first time ‘Brownian’ motion was mentioned is in De Rerum Natura (Book II, verse 112
- 141) by the Roman philosopher Lucretius, who described the behaviour of dust parti-
cles in air and used their erratic motion to justify the existence of atoms [7]. With this
historical hindsight it seems fitting that the theoretical description of Brownian motion
by Albert Einstein and William Sutherland in terms of the interaction between molecules
and larger objects [8, 9] and the subsequent experimental verification by Jean Baptiste
Perrin [10, 11] led to the widespread acceptance of the atomistic view of matter in the
early 20th century.

Returning to colloids after this brief excursion into Brownian motion, we modify the
definition of Ref. [1] to be more representative of the particles we are interested in. In
this thesis a colloid is considered a small particle, which is roughly 1 nm to 5 µm in size
and which experiences Brownian motion when suspended in an appropriate medium. The
definition of a nanoparticle overlaps with that of a colloid: it is a microscopic object that
has at least one dimension smaller than 100 nm [12]. As such, many colloids are nanopar-
ticles, although for colloids smaller than 100 nm the term nanoparticle is preferred. The
distinction is made because nanoparticles often have properties that differ substantially
from the corresponding bulk material due to their small size. For instance, gold particles
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dispersed in water appear red to purple, depending on their diameter [13]. The terms
nanocrystal, nanocolloid, and colloidal nanoparticle are also used in literature. Note that
the length-scale requirement in the definitions of Refs. [1, 12] allows colloids and nano-
particles to be macroscopic in two directions, for example, graphene sheets [14]. We are,
however, not interested in such objects and we therefore consider a nanoparticle to be a
colloid according to our definition with dimensions smaller than roughly 100 nm. Colloids
and nanoparticles form a subset of what is referred to as mesoscopic matter [15], i.e., mat-
ter that has a length scale between that of atoms and macroscopic particles, which behave
according to the laws of classical mechanics. For completeness, we mention the term soft
matter that often comes up in reference to colloidal systems. Soft matter describes the
property of certain materials to easily deform under external influences, such as thermal
fluctuations, stress, shear, electric fields, or gravity [16]. Many colloidal systems have this
‘soft’ quality, e.g., foams and gels.

1.2 Structure and Interactions
The spatial organization of colloids and nanoparticles and their orientation in a phase
determines the bulk properties of a material. An important advantage of this mesoscopic
matter over atomic and simple molecular systems is the far greater level of structural com-
plexity that can be achieved. In addition to the gas, liquid, glass, and solid phase found
for atomic systems, colloids can form isotropic, nematic, smectic and biaxial phases [17–
24], to name but a few. To exploit the unusual properties of these phases in new materials
is of primary importance to materials science. Consequently, there have been many stud-
ies which focussed on controlling the formation of colloidal structures by using a wide
range of colloidal building blocks [25–33]. However, only in the last decade has the syn-
thesis and functionalization of (inorganic) nanoparticles reached the point where large
samples of sufficient quality could be produced to perform structure-formation experi-
ments [32, 34–53]. The recent success in achieving hierarchical organization of inorganic
nanocrystals [54] has paved the way to design structures with even greater complexity.
Here the connection with the richness of biological materials can be made, since in nature
hierarchical structures are ubiquitous [55–63].

Typically, the organization of particles into a specific structure is accomplished by
suspending the colloids/nanoparticles in a liquid. By imposing the volume fraction the
particles can be guided into a desired state. Under these conditions there are two factors
that contribute to the formation of a phase: the interaction of the particles with the
medium, which induces Brownian motion, and the interactions between the particles
themselves. Brownian motion allows the particles to explore phase space efficiently and
the particle interactions determine the structure that this exploration results in. The
process of particles achieving a desired phase/structure is called self-assembly when the
particles (reversibly) organize in a specific way as a consequence of the particle-particle
interactions [64]. The exploration of phase space and the particle-particle interactions
that effect self-assembly give rise to a strong relation between the organization of colloids
and nanoparticles into structures and the way in which molecular systems form phases.
Not only can colloids be used to go beyond molecular matter in the structural complexity
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that may be achieved, but these particles also allow us to understand processes that play a
role in molecular systems [65, 66]. The use of ‘colloidal molecules’ has the advantage that
the time and length scales on which self-assembly occurs are experimentally accessible
by conventional optical techniques, such as ordinary light microscopy or confocal [67, 68]
microscopy. This offers a tremendous opportunity to learn by analogy about dynamical
processes, such as melting, nucleation, and defect formation, in molecular and atomic
systems, where it is often not possible to perform a real-time analysis.

There is a large variety of particle-particle interactions that drive colloid and nanopar-
ticle self-assembly [69]: hard-core repulsions, van-der-Waals (vdW) attractions, electric
and magnetic interactions, steric repulsion, solvophobic interactions, etc. Typically, these
interactions are combined to yield inter-particle forces that are weak compared to those
between atoms, which explains why colloidal materials are often soft. Many of the tradi-
tionally studied systems have roughly isotropic interactions, i.e., uniform in all directions.
For example, particles that are (almost) hard spheres have been synthesized [70–73].
These and other hard-sphere-like particles can self-assemble into a myriad of structures
depending on the size ratio or level of polydispersity and the volume fraction that is used
in experiments [40, 49, 74, 75]. By considering systems with soft (short- and long-range)
interactions many more structures can be formed [76, 77]. However, the level of complex-
ity that may be achieved for isotropic interactions pales in comparison to the possibilities
that anisotropic interactions have to offer. In this thesis we examined the influence of such
anisotropy on colloid and nanoparticle structures as well as the behaviour of individual
particles. We mainly focussed on the shape-anisotropic and charge-patterned particles
that have recently become experimentally available.

1.3 Anisotropic Particles
Simple shape-anisotropic particles such as plate- [79] and rod-like [24, 80, 81] particles
have been available for a long time. However, recent advances in particle synthesis have
yielded a huge variety of new colloid and nanoparticle building blocks [82, 83]. In partic-
ular, the number of convex shape-anisotropic particles has grown tremendously over the
past years, there are for example, cubes [84–86], superballs [87, 88], octahedra [89, 90],
tetrahedra [91, 92], and many more [33, 93–96]. Perhaps the most remarkable advance-
ment is the synthesis of nonconvex (irregular) particles, e.g., dumbbells [97], colloidal
clusters [29, 98], branched colloids and nanocrystals such as octapods [54, 78, 99–101]
and tetrapods [102, 103], nanostars [104–106], and colloidal caps [107–109]. Figure 1.1
shows an octapod-shaped nanocrystal.

Examples of the boom in the synthesis of particles with short- and long-range anisotropic
interactions can be found in Refs. [110–116], which describe the preparation of so-called
Janus particles. A Janus particle [117–119] consists of two opposing parts (usually hemi-
spheres) with different properties for the charge, contact angle, chemical functionality, etc.
Even more complex forms of electric and/or solvophobic patterning have recently become
available [32]. DNA-functionalization has also been employed to modify the strength and
directionality of the inter-particle forces [38, 39, 46], as well as, bifunctional linkers and
key-lock principles [48, 83].
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20 nm

Figure 1.1: A high-resolution tomographical reconstruction of an eight-fold branched
nanocrystal with octahedral symmetry [54]. This particle, which is referred to as an octa-
pod, consists of a CdSe octahedral core on which eight CdS pods are grown. The synthesis of
these octapods is described in detail in Refs. [54, 78].

In this thesis we restricted ourselves to study three topics, for which shape and/or
interaction anisotropy plays an important role and for which the development of the
aforementioned particles has had a strong impact on the research that is carried out into
these topics. (i) The adsorption of single particles at a liquid-liquid interface. (ii) Crystal-
structure prediction for colloidal systems and the related phase behaviour. (iii) The ion
distribution around particles suspended in a dielectric medium. In the following sections
we give an introduction to these topics.

1.4 Interfaces and Adsorption

The behaviour of small particles adsorbed to a liquid-liquid interface is not only of fun-
damental importance to our understanding of phase transitions and critical phenomena
in 2D fluids [120–122], but also has great potential for use in industry, e.g., the encap-
sulation of drugs in small emulsion droplets for biomedical applications [123] and the
stabilization of foams and Pickering emulsions [124–127], which are relevant to the food
industry [128]. The properties of the 2D structures that form when particles are in contact
with an interface have therefore received tremendous interest from the materials science
community [26, 129–136]. Although many of these properties have been elucidated, little
is known about the mechanisms which underlie the dynamics of adsorption. This is per-
haps most clearly illustrated by a very recent experimental study [137] in which it was
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shown that the dynamics of adsorption is logarithmic in nature, rather than exponential
as was widely believed to be the case [138, 139].

In this thesis we aimed to address some of the longstanding questions concerning
the dynamics of interfacial adsorption using a theoretical approximation to describe the
complex physics that occur at an interface. We followed the approach outlined by Pawel
Pieranski, who analysed the unusual strength of adsorption - binding to the interface
with several thousand times the thermal energy is not uncommon - that was observed for
colloids at an interface [129]. Pieranski described the adsorption of spherical colloids in
terms of a free energy that is based on the surface-tension properties and contact areas of
the three materials in the system: the colloid and the two liquids that form the interface.
For a spherical particle of radius a this free energy FP is a simple analytic function of the
height h at which it is adsorbed to a flat interface (h = 0):

FP(h) = πγ (h− a cos θ)2 , (1.1)

with γ the surface tension of the interface and θ the contact angle, which is determined
by the surface tensions of the three materials according to Young’s equation [140]. At
the equilibrium height h = a cos θ the free energy assumes its minimum, set to FP = 0
here. Since this free-energy approach was first formulated by Pieranski in 1980, the
method has been successfully applied to gauge the adsorption behaviour for a variety
of systems [141–148] and has also been extended to give a more accurate description of
interfacial phenomenology [149–157].

The introduction of shape-anisotropy and contact-angle patterning introduces an ori-
entational dependence into the free energy. Unfortunately, it proves difficult, if not im-
possible, to derive analytical expressions for the contact areas that contribute to the free
energy as a function of the adsorption height and particle orientation, even for simple
anisotropic shapes [147]. This is one of the reasons why only a few studies have been
carried out that take such an orientational dependence into account [143, 144, 147, 148]
compared to the far greater number that only consider one or two suitably chosen orien-
tations of the anisotropic particle [141, 142, 145, 149, 150, 156, 158–161].

We developed a numerical method by which we can easily approximate the relevant
areas for shape-anisotropic convex particles with homogeneous surface properties, regard-
less of the particle’s orientation, to overcome the problems posed by anisotropy-induced
orientational dependence. This method is based on approximating the particle’s surface
by triangles and we therefore refer to it as a triangular-tessellation-based technique [147].
Using our technique we analysed the free energy of adsorption for three colloidal shapes:
ellipsoids, spherocylinders, and cylinders.

We were interested in these particles since experimental studies [26, 27, 134, 155, 162,
163] found that under certain conditions (typically high particle concentrations) rod-like
particles did not lie along the interface as is expected, but were instead oriented perpen-
dicular to it. As an initial step towards understanding these results we considered the
possibility of obtaining such unusual orientations for single particles. The insights gained
for these ‘ultra low concentrations’ may prove useful in interpreting the experimental ob-
servations at higher concentrations. We found that single ellipsoids and spherocylinders
were always oriented along the interface in their equilibrium configuration within the con-
fines of our model. However, there could also be a (meta)stable minimum in the free
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energy of a cylindrical particle associated with perpendicular adsorption. On the basis
of our results we concluded that the perpendicular orientations observed in the current
experimental studies were probably induced by many-body effects, but that for cylin-
ders it may be possible to prepare systems with the perpendicular orientation for greater
dilutions.

t

Figure 1.2: Snapshots of an ellipsoidal colloid (black silhouette) adsorbing to a flat interface
(grey line) for various times during the adsorption process. The first snapshot shows the colloid’s
orientation at its initial contact with the interface and the final snapshot shows its equilibrium
position, see Chapter 3 for more information.

To further gauge the effect that shape-anisotropy has on the adsorption of particles,
we introduced a simple approximation for the dynamics of this process in the overdamped
regime of fluid friction. Using this model we were able to obtain the trajectory through
phase space from the time of the particle’s initial contact with the interface to the time it
reached the equilibrium position or became trapped in a metastable minimum. Figure 1.2
shows an example of such a trajectory. We found that the metastable minimum for
cylindrical colloids is attractive to a surprisingly large range of initial-contact orientations.
Although colloid adsorption was typically very strong, we also found that there may
be situations where adsorption does not occur at all and a particle passes through the
interface unhindered. This exotic behaviour was observed for short cylinders and large
values of the contact angle.

Finally, we extend our numerical scheme to handle nonconvex contact-angle-patterned
particles. We studied a system of truncated cubes, of which the facets have different
surface properties, to show that our method can be applied to such patterned particles.
This is also experimentally relevant, because the adsorption of these particles has recently
been investigated [164]. We showed that within the confines of our model the equilibrium
orientations of these truncated cubes fall into three distinct categories, depending on the
details of the contact-angle pattern. We also showed that the extended method can be
applied to nonconvex particles by considering an octapod-shaped particle. As a small
aside we commented on the application of the triangular-tessellation-based algorithm to
gain a better understanding of confocal image data and to gauge the quality of particle-
tracking algorithms.

1.5 Crystal-Structure Prediction
The development of new materials through the organization of colloids and nanoparticles is
one of the key problems facing the materials science community. Although there has been
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a tremendous increase in the ability to control the ways in which colloids and nanoparticles
self-assemble, there are still many unanswered questions with regards to determining the
specific particle properties that result in a desired structure. In particular, predicting
crystal structures based solely on knowledge of the interactions between particles has
proven very challenging. This problem has therefore received a lot of attention over the
past few decades [165], but truly general and effective algorithms have yet to be developed.

The synthesis of convex faceted particles (such as cubes, octahedra, and tetrahedra)
has sparked a strong interest in the type of crystals these particles can form [166–174].
However, the structures that arise from the self-assembly of irregular nonconvex solids
have hardly been investigated in experiments and simulations. For the latter, this can
be explained by the fact that the overlap algorithm for such particles is often difficult to
implement. Only recently the first attempts were made to study nonconvex colloid systems
using simulations, namely for superdisks [175] and bowls [176]. Commonly used techniques
to predict crystal structures rely on stimulated annealing [177, 178], make use of genetic
algorithms [179, 180], or employ Monte Carlo (MC) basin-hopping methods [181]. When
the free energy has a large entropic contribution, e.g., for hard particles, crystal-structure
prediction becomes more complicated. However, it is still possible to obtain candidate
structures using an ergodicity search algorithm [182] or the metadynamics method of
Ref. [183]. A recently introduced alternative to these techniques, the floppy-box Monte
Carlo (FBMC) method of Laura Filion et al. [75], also allows for the prediction of crystal
structures for hard particles.

Our interest in the prediction of crystal structures for highly anisotropic particles
stemmed not only from a materials science perspective, but also from a more mathemat-
ical perspective. In discrete geometry, number theory, and computer science there are
many fundamental questions to be answered, which require the analysis of dense (reg-
ular/crystalline) packings. A particularly famous problem is Kepler’s conjecture [184],
which states that for equally sized spheres the face-centred-cubic and hexagonal-close-
packing structures have the greatest average density of all space-filling arrangements.
This conjecture was only recently ‘proven’ [184–186] and the proof has had wide-spread
implications, among which is the possibility to construct an upper bound to the packing
fraction of the densest packing for nonspherical particles [167]. There are also many con-
jectures concerning the packing of shape-anisotropic objects that have yet to be proven,
such as Ulam’s conjecture [187], which states that all (nonspherical) convex particles
can achieve a monodisperse space-filling packing which is denser than that of spheres.
These mathematical considerations are not just of a fundamental nature, they also have a
bearing on materials science, since the densest-packed structures are thermodynamically
stable at infinite pressure. These structures can therefore be used as a starting point for
computer simulations of the phase behaviour at finite pressures by melting [170–172].

In this thesis we combined the FBMC method with an overlap routine based on trian-
gular tessellation to determine the densest-packed regular structures for highly irregular
(nonconvex) objects. Using this combined technique, we analysed a huge set of 142 convex
polyhedra and 17 irregular nonconvex shapes to quantify the properties of their densest
regular packings, see Fig. 1.3 for an example. Our investigation allowed us to extend the
verification of Ulam’s conjecture to the entire set of convex particles we considered and
to improve upon the densest-known packing fraction for several particle species. We also
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(a) (b)

Figure 1.3: The densest-known regular structures for two nonconvex particles predicted by our
algorithm, which combines the floppy-box Monte Carlo (FBMC) technique with a triangular-
tessellation-based overlap routine, see Chapter 6 for more information. (a) Piece of the predicted
crystal for great stellated dodecahedra, which has a dimer lattice structure as indicated by the
use of red and blue. (b) The densest-known crystal structure for tetrapods, again a dimer lattice.

proved that we have discovered the densest-packed configurations for rhombicuboctahedra
and rhombic enneacontrahedra.

To address the application of the FBMC technique to the wide variety of nanoparticle
and colloid shapes that have become available, we investigated a family of truncated
cubes, which interpolates between a cube and an octahedron. We obtained a stunning
richness in the crystal phases that form: relatively large structural differences occurred
for relatively small variations of the level of truncation. The phase behaviour of octahedra
was analysed by melting the densest-packed crystal to obtain the equation of state and
by performing free-energy calculations [171]. We found three phases: a liquid, a body-
centred-cubic rotator phase, and a crystal phase. Our calculations showed that there is a
first-order phase transition between the liquid and crystal phase. The rotator phase was
shown to be metastable with respect to this transition.

Finally, we used our triangular-tessellation-based overlap routine to investigate the
experimentally observed hierarchical self-assembly of octapods into interlocking chains
and superstructures [54]. We also performed a Hamaker-de-Boer-type [69] theoretical
calculation of the van-der-Waals (vdW) interaction between octapods. By combining
our simulation results with the results of the theoretical calculation we were able to
propose a self-assembly mechanism that can explain the experimental observations, see
Fig. 1.4. This mechanism is based on anisotropic hard-particle and vdW forces only. The
directionality of the vdW forces could be solely attributed to the peculiar shape of the
octapods and the strength of the vdW interaction could be influenced by changing the
polarity of the suspending medium, which proved important to guiding the hierarchical
self-assembly of the octapods.

1.6 Charged Particles in Electrolytes
In many colloidal suspensions electrostatic interactions play an important role [21, 66,
76, 77, 131, 132, 188–191] and it is therefore important to characterise the nature of
such electrostatic interactions using theory and simulations. However, even for systems
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Figure 1.4: A sketch of the proposed mechanism for the hierarchical self-assembly of octapod-
shaped nanocrystals, also see Chapter 7. Initially, linear chains with an interlocking nature
are formed (solid arrows). The bottom-left inset shows a tomographical reconstruction of one
of the interlocking chains found in experiments [54]. When the chains are of sufficient length
they aggregate sideways (dashed arrows) to form a three-dimensional (3D) superstructure. The
top-right inset shows a Scanning Electron Microscopy (SEM) image of these chain clusters [54].

containing only homogeneously charged colloids studying the physical properties by theory
or by simulations is difficult due to the long range of the Coulomb interactions. These long-
range interactions coupled with the presence of mobile ions that screen the colloid’s bare
charge present a complex many-body problem, which cannot be easily unravelled to yield
effective colloid-colloid interactions. For anisotropic charge distributions the complexity
of the problem increases significantly.

Several theoretical models were formulated over the years to describe the electric
double layer around a charged particle and the phenomenon of screening. One of the first
is a linear screening theory developed by Boris Derjaguin, Lev Landau, Evert Verwey, and
Theo Overbeek, the so-called DLVO theory [192, 193]. This approximation is applicable
in a limited parameter range, mostly for monovalent ions, high-polarity solvents, low
surface charge, and high ionic strength. To extend the parameter regime for which theory
gives an accurate description of experimental systems the nonlinear Poisson-Boltzmann
(PB) theory [194, 195] was developed, which is based on a mean-field approximation
that ignores ion-ion correlations. PB theory can be applied at high temperatures, high
dielectric constants, low ion valence, and low salt concentrations. Strong-Coupling (SC)
theory [196–198] was introduced to study charged particles in the regime where ion-ion
correlations become important.

The simulation studies of charged particles in an electrolyte can roughly be divided
into two categories: ones that take the ions into account explicitly (e.g., Refs. [199–204])
and ones that coarse grain the system to consider only effective colloid-colloid interac-
tions (e.g., using a DLVO approximation [77, 205–208]). The former have the advantage
that very accurate results can be obtained when ion-ion correlations or the ion’s size
is important. However, the use of explicit ions is computationally expensive and the
system sizes that can be studied are therefore limited. The latter have the advantage
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Figure 1.5: A contour plot of the azimuthally averaged ion excess (ρ+ − ρ−) in terms of
the Bjerrum length λB for the ionic screening of a dipole (left) and of a hemispherical charge
distribution (right), respectively. See Chapter 8 for more information. Each contour plot is
bisected by a vertical black line. The Monte Carlo (MC) simulation results are given to the left
of this line and the Poisson-Boltzmann (PB) theory results to the right. The radius of the colloid
is indicated by the inner black circle. The charge distribution inside the colloid is represented by
a red (and blue) semicircle. For this choice of parameters there is good correspondence between
the MC and PB results.

that large systems containing many colloids can be studied to determine the phase be-
haviour of the colloids. However, the usefulness of these simulations is limited by the
quality of the coarse-graining approximation. Establishing effective interaction poten-
tials for charged particles in an electrolyte is a good example of the synergy that can be
achieved between simulations and theory. Theory is used to derive simple pair potentials
for effective-interaction simulations and the validity of this theoretical approximation can
be determined using explicit-ion simulations.

In this thesis we used explicit-ion Monte Carlo (MC) simulations to probe the range
for which the nonlinear PB theory of Refs. [209–212] accurately describes the double
layer around a charged colloid with a Janus-type charge pattern, see Fig. 1.5 for an exam-
ple. This PB theory used Fourier-Legendre mode expansion to decompose the complex
three-dimensional (3D) PB equation into relatively simple, coupled PB equations for the
monopole, dipole, and higher-order contributions to the charge density. The ion profile
that was established using MC averaging was decomposed in a similar way and this al-
lowed us to compare the two results on a mode-by-mode basis. We introduced a set of
parameters, which map out parameter space for charged Janus particles, to make the
connection between our results and the field-theoretical studies that probed the applica-
bility of DH, PB, and SC theory for homogeneously charged flat surfaces [213, 214]. Our
results for spherical geometries and charge-patterned particles predict a range of validity
for PB theory that is remarkably similar to the one given in Refs. [213, 214]. We are
therefore confident that in this range we can construct effective pair potentials according
to the methods of Ref. [212], which can be used in future simulation studies of the phase
behaviour of charged Janus colloids.
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1.7 Thesis Outline
The three topics analysed in this thesis are divided over 7 chapters and 2 appendices. The
first three chapters describe our investigation of the adsorption of anisotropic colloids at
a liquid-liquid interface. Chapter 2 introduces the numerical triangular-tessellation-based
approach to determine the free energy of adsorption and demonstrates its effectiveness.
In Chapter 3 we consider the dynamics of adsorption by applying a simple model for
particle motion to our free-energy result. Finally, in Chapter 4 we extend the triangular-
tessellation-based technique to handle nonconvex and contact-angle-patterned particles.
We also show preliminary results for the adsorption of patterned truncated cubes. In
Chapters 5 - 7 we present results obtained by our crystal-structure-prediction algorithm
for irregular (nonconvex) faceted particles and we study the phase behaviour of octahedra
and octapods. The method of floppy-box Monte Carlo (FBMC) is described in detail in
Chapter 5. We apply this technique to determine the densest-known regular structure
for a large set of polyhedra and a family of truncated cubes in Chapter 6. Here we also
consider the phase behaviour of hard octahedra. In Chapter 7 we conclude this topic
with an analysis of the hierarchical self-assembly of octapods into 3D superstructures
using a combination of theory and simulations. We discuss our findings for particles with
a Janus-type charge patterning in Chapter 8. Here we compare the results obtained by
MC simulations and by nonlinear mode-expanded PB theory to determine the latter’s
range of validity.



2

Triangular Tessellation and the
Free Energy of Adsorption

In this chapter we introduce the numerical technique of triangular tessellation to deter-
mine the surface areas and contact-line length that are associated with a plane-particle
intersection. Even for simple particles establishing analytic expressions for these values is
a daunting challenge due to the complex geometry that is involved. Our method allows us
to establish the values quickly and with a high level of precision for in principle arbitrary
shapes. To demonstrate the uses of our method we consider the adsorption of a single
anisotropic colloidal particle at a flat liquid-liquid interface. We formulate a simple free-
energy model for this system and determine the positional and orientational dependence
of the free energy for three species of particle: ellipsoids, cylinders, and spherocylinders.
We establish that for ellipsoids and spherocylinders there is one minimum in the free
energy, corresponding to the equilibrium configuration within the confines of our model,
and that for cylinders there can be a metastable minimum as well. Finally, we consider
our triangular-tessellation technique’s ability to determine plane-particle cross sections.
This may be of use to help understand image data obtained by confocal microscopy and
to verify the quality of tracking algorithms.
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2.1 Introduction

Small particles at liquid-liquid interfaces are of scientific interest, but can also be exploited
for industrial applications. The two-dimensional (2D) particle structures [26, 129–135]
that form at an interface may for example be utilized for the encapsulation of drugs
in emulsion droplets for biomedical applications [123], in the stabilization of foams and
emulsions [124–127], which are relevant to the food industry [128], and in many more
applications [215]. The range of sizes, shapes, and material properties with which col-
loids can be endowed [82, 83], makes them the ideal constituents for such self-assembled
macroscopic 2D structures at an interface. A more fundamental impetus to study colloid
adsorption, is based on gaining a better understanding of phase transitions and critical
phenomena of 2D systems, by modelling these using nanoparticles at an interface [120–
122]. Finally, the study of anisotropic colloids adsorbed to an air-water interface can also
be relevant to biology [216].

Many theoretical investigations of colloids at an interface are based on studies into
the behaviour of a single particle. The stability of an adsorbed particle and the manner
in which it attaches to the interface gives insight into the way particles behave at higher
(2D) concentrations. The adsorption of colloids at an interface and the high level of
stability this process exhibits were already considered in 1988 by Pawel Pieranski [129],
who studied the free energy of adsorption for spheres based on surface-tension arguments.
This ground breaking work was built upon to encompass effects, such as line tension [150,
155], capillary rise [149, 153, 154, 156, 157], interfacial deformation due to gravity on the
particle [153], surface heterogeneities [145, 146], and electrostatic effects [151–153]. The
influence of particle shape on colloid adsorption has also been considered for, for instance,
ellipsoids [143, 144, 150, 156], other rod-like [143, 155] and platelet-like [150, 156] particles,
as well as more complex shapes [163, 217]. Despite this tremendous effort, there are still
many unanswered questions concerning the adsorption of a single particle at an interface.

To the best of our knowledge only two theoretical studies were undertaken into the
effects of anisotropic particles adsorbed to the interface as a function of the particle’s
orientation [143, 144] prior to our investigation. Other studies were limited to several
highly symmetric particle orientations, namely parallel or perpendicular to the interfacial
normal [145, 149, 150, 156, 158–161], which were also found in experimental systems [26,
27, 134, 155, 162, 163]. However, the insights gained by the theoretical investigation
of these two orientations cannot be used to analyse the mechanisms by which colloids
end up in the parallel or perpendicular orientation, or why these particular orientations
are preferred over others. One of the reasons why only a few studies considered the
orientational dependence for anisotropic colloids adsorbed at an interface is the complex
geometry that is involved. Recently, we overcame this problem by using the triangular-
tessellation technique to numerically determine the free energy of adsorption as a function
of the particle’s position and orientation [147].

In this chapter we examine the adsorption of homogeneous uniaxial convex colloids
at liquid-liquid interfaces. In Section 2.2.1 we formulate a set of equations that specify
the free energy of adsorption, in the approximation outlined by Pieranski. Determin-
ing this free energy proves to be technically difficult for all but the most basic shapes.
Therefore, we introduce a numerical method in Section 2.2.2, which we refer to as the
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triangular-tessellation technique, to compute the free energy of adsorption. The accu-
racy of this technique is verified by comparing the numerical results with results obtained
by a semianalytic approach for ellipsoids, cylinders, and spherocylinders in Section 2.3.
These semianalytic results are derived by methods similar to those used in Refs. [143, 144]
and are presented in Appendix A. We also investigate the properties of our model and
recover the expected equilibrium orientations for ellipsoids and cylinders in Section 2.3.
Finally, we consider the application of the triangular-tessellation technique to a seemingly
unrelated field, namely that of 2D confocal microscopy in Section 2.4.

2.2 Theory and Methods
In this section we describe the theoretical model we used to study the adsorption of a single
anisotropic colloid at a liquid-liquid interface. We also introduce the numerical technique
of triangular-tessellation by which the orientational dependence of colloid adsorption may
be investigated.

2.2.1 The Free Energy of Adsorption
We consider a planar liquid-liquid interface separating two homogeneous halfspaces, M1
and M2, and a solid uniaxial convex colloid adsorbed at this interface, with a the length
of its rotational symmetry semiaxis, b the length of the perpendicular semiaxis, and
m ≡ a/b its aspect ratio. The normal of the interface is parallel to the z-axis of a
Cartesian coordinate frame. The depth z gives the position of the interface with respect
to the particle’s centre, at which the origin of the system is located, and is measured
along the z-axis, see Fig. 2.1. The polar angle φ ∈ [0, π/2] measures the angle between
the colloid’s rotational symmetry axis and interfacial normal. For convenience we assume
that this axis is located in the xz-plane.

In the spirit of Pieranski’s approximation [129] we consider only surface-area and
contact-line contributions to the free energy of adsorption. There are four surface areas
that contribute to this free energy: (i) the surface area of the colloid above the interface
S1, (ii) the surface area of the colloid below the interface S2, (iii) the surface area excluded
from the interface by the presence of the colloid S12, and (iv) the total surface area of
the interface (without adsorption) A. The contact line has length L and the total surface
area of the colloid is S = S1 + S2. For a specific configuration, characterised by z and φ,
the free energy of adsorption can be written as

V (z, φ) = γ12(A− S12) + γ1cS1 + γ2cS2 + τL, (2.1)

where γ12 is theM1-M2 interfacial surface tension, γ1c is theM1-colloid surface tension, γ2c
is theM2-colloid surface tension, and τ is the line tension [150, 161]. We have dropped the
z and φ dependence of S1(z, φ), S2(z, φ), S12(z, φ), and L(z, φ) to simplify the notation.

It is convenient to define the free energy of adsorption with respect to a reference
state, in this case the particle being completely immersed in M1. This free energy

F (z, φ) = (γ1c − γ2c)(S1 − S)− γ12S12 + τL, (2.2)
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Figure 2.1: A side and top view of an ellipsoidal colloid at a liquid-liquid interface, which
indicate the parameters used in our model. (a) The xz-plane cross section of the colloid and
interface. The interface (solid line) located at depth z, measured from the centre of the colloid
(marked by a dot), dividing medium 1 (M1) and medium 2 (M2). The polar angle φmeasures the
angle between the interfacial normal and the colloid’s rotational symmetry axis. The interface
has total area A with corresponding interfacial tension γ12. The surface area of the colloid
above the interface is denoted by S1, with γ1c the M1-colloid surface tension, and the surface
area of the colloid below the interface is denoted by S2, with γ2c the M2-colloid surface tension.
The presence of the adsorbed colloid causes an area S12 to be excluded from the interface, as
indicated by the dashed curve. (b) The excluded surface area - the region enclosed by the dashed
curve, which itself represents the contact line. The contact line has length L and corresponding
line tension τ . The projected outline of the colloid (solid ellipse) is also shown.
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is obtained by subtracting γ12A + γ1cS from V (z, φ), such that F (z, φ) it is zero when
the colloid is completely immersed in M1. Only systems with γ12 6= 0 are considered
and we write γ12 cos θ = γ1c − γ2c, where the contact angle θ is introduced via Young’s
equation [140]. Using this definition Eq. (2.2) reads

F (z, φ) = γ12[(S1 − S) cos θ − S12] + τL. (2.3)

The contact angle θ is a quantity, which depends only on the physical properties of the
three components present at the interface, whereas the polar angle φ is a degree of freedom
of the particle.

Dividing the free energy of adsorption by γ12S and introducing z = z∗
√
a2 + 2b2, the

following reduced free energy of adsorption is derived

f(z∗, φ) = F (z, φ)
γ12S

= cos θ(r1 − 1)− r12 + τ ∗l, (2.4)

where r1 ≡ S1/S and r12 ≡ S12/S are surface area ratios,

τ ∗ ≡ τ

γ12
√
S
, (2.5)

is the reduced line tension, and l ≡ L/
√
S is a reduced contact-line length. The value√

a2 + 2b2 is the length of the semidiagonal of a rectangular beam with sides 2a× 2b× 2b,
this normalization ensures that −1 ≤ z∗ ≤ 1 for all uniaxial rotationally symmetric convex
shapes at any angle φ with respect to the interface. Two inequalities - 0 ≤ r1(z∗, φ) ≤ 1
and 0 ≤ r12(z∗, φ) < 1 - hold for any value of z∗ and φ. The reduced free energy of
adsorption f(z∗, φ) is independent of the size of the colloid, but implicitly depends on the
shape of the particle.

Before we present our numerical technique, we first introduce quantities that prove
useful to describe our results. The location of a minimum in the free energy of adsorption
in Eq. (2.4) is denoted by (z∗ad, φad) and is referred to as an adsorption configuration.
The corresponding free energy is fad ≡ f(z∗ad, φad). There may be multiple minima, in
which case there can be metastable adsorption configurations. For a given φ, z∗det(φ) is
defined as the positive value of z∗ for which the interface just touches the particle. The
colloid is detached from the interface when z∗ < −z∗det(φ) or z∗ > z∗det(φ). The quantity
z∗min(φ) is defined as the value of z∗ for which f(z∗, φ) assumes its minimum for a given
φ. The corresponding free energy of adsorption is denoted by fmin(φ) ≡ f(z∗min(φ), φ). It
is a priori not excluded that for a given φ the equi-φ-curve has two or more (metastable)
minima. Often we will write z∗det and z∗min for z∗det(φ) and z∗min(φ) respectively, taking the
polar-angle dependence to be implicit.

2.2.2 The Triangular-Tessellation Technique
Determining the dependence of S1, S12, and L on z and φ, or equivalently r1, r12, and l on
z∗ and φ, is highly nontrivial in general, and deriving analytic expressions is impractical, if
not impossible, for all but the simplest of particle shapes and orientations, see Appendix A.
To analyse colloids adsorbed at an interface the following numerical technique is employed.
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The surface of the colloid under consideration is bijectively parametrized by two angles,
namely α1 ∈ [0, 2π] (azimuthal) and α2 ∈ [0, π] (polar). A parametrization can, for
instance, take the form

P (α1, α2) =

 r(α1, α2) cosα1 sinα2
r(α1, α2) sinα1 sinα2
r(α1, α2) cosα2

 , (2.6)

where r(α1, α2) is some suitable radial function, but many other forms are imaginable.
The strip [0, 2π] × [0, π] is divided into triangles, the vertices of which are mapped onto
the surface of the particle by means of the parametrization P (α1, α2), see Fig. 2.2. A
mapped triangle is formed between these vertices. The object, on which the strip’s triangle
mesh is mapped, is referred to as being tessellated with triangles. The above method of
modelling a 2D or 3D object by triangles (more generally polygons) is well known in
computer science [218–220] and has been successfully applied to various surface-tension
related problems in physics [221–223]. The surface area of the colloid is now approximated
by summing the surface areas of the mapped triangles. Suppose that the vertices of a
mapped triangle are given by x, y, and z, then its surface area is given by a simple cross-
product |(z− x) × (y− x)|/2. This procedure can yield in principle arbitrary precision
by sufficiently refining the triangular mesh. It should be noted that depending on the
parametrization some triangles have a vanishingly small or zero contribution to the surface
area. For example, in the case of a sphere several vertices coincide at the poles resulting
in degenerate triangles, see Fig. 2.2. This mapping is not bijective, but only on a set of
which the image has measure zero. Such zero-measure sets may be ignored, but some
care should be taken that they do not introduce an unacceptable amount of noise in the
numerical approximation.

The method described above can be amended in the following manner to enable cal-
culation of S1, S2, S12, and L. Suppose that the tessellated object is intersected by
a plane, then some of the triangles which comprise the object lie above it and others
below it. Let ∆↑ denote the set of triangles which lie strictly above the interface, ∆↓
the set of triangles which lie strictly below the interface, and ∆p the set of triangles
which intersect the interface or touch it. The surface of the colloid is approximated by
S̃ = ∑

i ∆s
↑,i + ∑

j ∆s
↓,j + ∑

k ∆s
p,k, where the tilde indicates that this is an approxima-

tion, i, j, and k are indices, and ∆s
∗,i it the surface area of the i-th triangle ∆∗,i ∈ ∆∗.

Each intersected triangle ∆p,i is divided into three subtriangles ∆r,i, ∆s,i, and ∆t,i in the
manner indicated in Fig. 2.3. Two of these lie on one side of the plane, and one on the
other. Applying this technique to all triangles in ∆p a set of partitioned triangles ∆̃p is
obtained, of which the members only have some vertices in common with the plane and
do not intersect it. Let ∆̃p,↑ and ∆̃p,↓ be the sets of triangles in ∆̃p which lie above and
below the interface respectively, and let ∆̃↑ = ∆↑ ∪ ∆̃p,↑ and ∆̃↓ = ∆↓ ∪ ∆̃p,↓. Using these
sets the surface areas S1 and S2 are approximated in the following way

S̃1 =
∑
i

∆̃s
↑,i, (2.7)

S̃2 =
∑
i

∆̃s
↓,i. (2.8)
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Figure 2.2: Example of a parametrization P (α1, α2) used to tessellate an object with triangles.
The parametrization maps the vertices of triangles in the strip (α1, α2) ∈ [0, 2π]× [0, π] to points
on a sphere. In between these points ‘mapped triangles’ are formed corresponding to the original
triangles in the strip. The points at the poles are degenerate, all vertices with α2 = 0 and α2 = π
coincide at the north and south pole, respectively. Only the front half of the sphere is tessellated
for clarity.

Note that by virtue of this triangular-tessellation technique the equality S̃ = S̃1 + S̃2 still
holds, which can be used as a consistency check.

From the set of triangles ∆̃p the points where the plane intersects the original tessel-
lation are extracted. These points form a 2D data set that approximates colloid-interface
cross section, i.e., the shape of the surface excluded from the interface, see Fig. 2.4. From
this collection of points S12 and L can be computed. Typically the boundary consists of
several hundred grid points, depending on the size of the triangular mesh. The approx-
imate surface area S̃12 is obtained by means of trapezoidal integration, which is applied
to the points above and below the x-axis after sorting these by increasing x-coordinate.
Because we assume that the colloid is convex, this procedure may be applied, i.e., the
plane-particle intersection is a connected convex set. However, for nonconvex colloids the
surface excluded from the interface can consist of two or more disjoint nonconvex pieces.
Such complex sets require a more general algorithm to calculate the surface area, see
Chapter 4. A straightforward implementation of the sorting algorithm can introduce sig-
nificant numerical noise into the value of S̃12, as illustrated in Fig. 2.4a. This problem can
easily be overcome by constructing the convex hull of the data set, Fig. 2.4b. Considering
the convex hull does come at the price of reducing the number of data points, however,
for several hundred grid points the loss of precision is negligible. The convex hull of the
boundary points is also used to determine L̃, the approximate length of the contact line.
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∆ r,i

∆ t,i

∆ s,i

∆ p,i

Figure 2.3: An example of the subdivision applied to a triangle that intersects the interface
(dashed line). The triangle ∆p,i can be cut into three pieces, ∆r,i, ∆s,i, and ∆t,i as indicated
above. In this case, the first piece lies above the interface and the second and third piece below
it. The two new vertices (thick dots) are formed by the subdivision. These are located at the
interface.

(b)(a)

Figure 2.4: A sketch of the procedure used to determine the area S12 of the surface excluded
from the interface by the presence of the particle. (a) The boundary points of the intersection
of a colloidal cylinder with a planar interface - obtained using the triangular-tessellation tech-
nique, together with its actual outline (full curve). The inset shows the error introduced by not
constructing a convex hull. (b) Only those points which are in the convex hull of the original
set. The surface area S12 is computed using trapezoidal integration as shown for the area above
the x-axis. From the convex hull the length of the contact line L can also be determined.
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Figure 2.5: Impression of the various colloidal shapes considered in this chapter. The top
row represents oblate particles (a < b,m < 1), the bottom row prolate particles (a > b,m > 1).
Note the difference in shape between oblate and prolate spherocylinders.

2.3 Interfacial Adsorption of Anisotropic Colloids
In this section we discuss the free energy of adsorption for several particle shapes, namely
ellipsoids, cylinders, and spherocylinders, as shown in Fig. 2.5. We focus on these three
types of particle, as they are frequently used to model experimentally available colloidal
platelet- and rod-like colloids in theoretical work and computer simulations [224–227]. In
addition, these particle shapes can smoothly transition from prolate (m > 1) to oblate
(m ≤ 1) aspect ratios, and they have relatively simple parametrizations. For a prolate
spherocylinder the length of the long semiaxis a includes the hemispherical caps. The
semiaxis b includes the rounded side of an oblate spherocylinder. We refer to Section 4.6
for a more in-depth analysis of spherical colloids.

Our investigation limited itself to two aspect ratiosm = 1/4 andm = 4. We considered
cos θ = −1/2 and several values of τ ∗, where we chose cos θ < 0 such that the particle
prefers M1. The line tension can be both positive and negative [228] and it is currently
believed that |τ | ≈ 10−11 N/m gives the most reasonable values [228, 229]. However, we
often used values outside this range to better illustrate the effects of line tension and make
visual comparison to the results of Ref. [143] possible. The value of the contact angle is
experimentally reasonable [230].

For the triangular tessellation we employed equidistant meshes with 200×200 to 400×
400 vertices, which were mapped onto the shapes of interest using various parametrizations
resulting in a heterogeneous tessellation. For future reference we denote a N ×N -vertex
grid as a N2-vertex grid, with N the number of vertices. Our choice for the numerical ap-
proximation yielded fractional uncertainties in the range 10−3 to 10−5 for the surface areas
and contact-line length when compared to the semianalytic results given in Appendix A.
The term semianalytic implies that one dimensional integrals need to be numerically eval-
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uated to obtain a value. More than 5,000 nonequidistant grid points were used to ensure
convergence of the numerical integration to within a fractional deviation of 10−6 (the
magnitude was determined using grid reduction). Higher accuracy triangular-tessellation
results were obtained using meshes of 1,0002 vertices, although in most cases these results
were indistinguishable from the 4002-vertex or the semianalytic results. We are therefore
confident that the numerical scheme is sufficiently stable to be applied to shapes for which
we have not performed semianalytic verification.

2.3.1 Ellipsoids
We calculated the free energy of adsorption f(z∗, φ) for an ellipsoid with aspect ratio
m = 4. Figure 2.6a shows f(z∗, φ) in a 3D representation as a function of the depth z∗
and the polar angle φ for τ ∗ = 0. In Figs. 2.6(b-f) we give φ-sections of the free-energy
landscape for several values of τ ∗. The triangular-tessellation and semianalytic results
agree within the line width of the curves, i.e., the relative uncertainty is lower than 10−3

for all grid points.
For this ellipsoid we found that for τ ∗ < 0 there is a single minimum in all φ-sections

of the free-energy landscape. This single minimum, located in the range z∗ ∈ [−z∗det, z
∗
det],

became more shallow with increasing τ ∗ and eventually shifted to a desorbed state with
z∗ < −z∗det and fmin(φ) = 0. That is, the particle preferred to be detached from the
interface and moved freely in M1. For certain τ ∗ > 0 a φ-section had two minima, for
example, when τ ∗ = 0.05 and φ = π/2, see Fig. 2.6f. The absolute minimum was given
by the detached state with z∗ < −z∗det, and a metastable minimum may be observed for
z∗ ∈ [−z∗det, z

∗
det]. For sufficiently positive τ ∗ the presence of this local minimum appeared

to be dependent on the value of φ. For τ ∗ = 0.025, for instance, we found a local minimum
with z∗ ∈ [−z∗det, z

∗
det] when φ & 0.3π, but this minimum was not present for the φ . 0.3π

sections, see Figs. 2.6(b-f).
The presence of a local metastable minimum with z∗ ∈ [−z∗det, z

∗
det] seemed to be related

to the appearance of adsorption barriers in the free energy for sufficiently positive τ ∗. The
colloid has to cross such a barrier to adsorb at the interface from a completely immersed
state. This behaviour is most clearly visible in Fig. 2.6f for φ = π/2 and τ ∗ = 0.025.
The height of the barriers varied with the value of the polar angle and they became more
pronounced with increasing τ ∗. These barriers are quite intriguing, since they can prevent
a particle from reaching its lowest free-energy state, when it is initially introduced in its
least favoured medium. The above results agree with the findings in Ref. [144] and are
similar to observations of Ref. [143], where the formation of barriers was also observed.
There are, however, several differences between our results and those of Ref. [143], i.e.,
the expressions in Appendix A and in Ref. [143] do not agree completely. Apart from
minor typographical errors, there is a problem with the definition of subdomains on which
the equations are defined, as well as the way in which quantities are reduced. Because of
notational differences these problems are not immediately obvious, but when comparing
the numerical results it is clear that the adsorption barriers induced by the line tension are
far less pronounced in our case. We believe that the way in which τ is made dimensionfree
in Ref. [143] violates scale invariance, but from the description given this is impossible to
determine. Despite the discrepancies with previously established results, we are confident
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Figure 2.6: The free energy of adsorption f(z∗, φ) for an ellipsoid with aspect ratio m = 4
and for cos θ = −1/2. (a) 3D representation of the free-energy landscape, i.e., f(z∗, φ) as a
function of the depth z∗ and the polar angle φ for τ∗ = 0. (b - f) Several φ-sections of this free
energy for φ = 0, π/8, π/4, 3π/8, and π/2 respectively, which show τ∗ = −0.1, −0.05, −0.025,
0, 0.025, 0.05, and 0.1. The central dotted line in each graph corresponds to a section of the
landscape in (a): τ∗ = 0. Note the appearance of free-energy barriers for τ∗ > 0, which must
be crossed for the particle to adsorb at the interface. When τ∗ > 0.05 the free energy does not
have a minimum in the adsorbed state.
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Figure 2.7: The minimum free energy of adsorption fmin(φ) for ellipsoids with aspect ratio
m = 4 (a), m = 1/4 (b), cos θ = −1/2, and several values of the line tension τ∗. The thick
line indicates fmin(φ) ≡ 0, which is the value of the minimum for τ∗ � 0. We also show
the metastable part, i.e., secondary minima with fmin(φ) > 0 for completeness. For m = 4 and
τ∗ = 0.1 (a) there is no local minimum in the free energy for z∗ ∈ [−z∗det, z

∗
det], in correspondence

with the results of Fig. 2.6.

that our results are correct, since we used two independent methods to obtain the same
results within numerical uncertainty.

Another way of visualizing the important features of the free-energy landscape is by
using fmin(φ) curves. We determined for which z∗ ≡ z∗min the free energy of adsorp-
tion f(z∗, φ) is minimal as a function of φ. Figure 2.7 shows the associated free energy
fmin(φ) ≡ f(z∗min, φ) for ellipsoids with m = 4, m = 1/4, cos θ = −1/2, and several τ ∗
corresponding to the choices in Fig. 2.6. For certain τ ∗ > 0 parts of the fmin(φ) curve
became metastable with respect to the desorbed state. This local minimum did not ap-
pear for all values of φ, which is in agreement with the observations in Fig. 2.6(d-f). For
τ ∗ � 0 the configuration where the colloid is immersed in medium M2, was also found to
be metastable, since the particle was prevented from moving into the preferred medium
by the formation of a barrier at z∗ ≈ z∗det, also see Fig. 2.6.

The absolute minimum in the free energy of adsorption is located somewhere on the
(stable) fmin(φ) curve, per definition. When m = 4 the equilibrium configuration was
achieved for φad = π/2 and when m = 1/4 for φad = 0 (τ ∗ ≤ 0). This observation proved
to hold in general for ellipsoids: φad is determined solely by the aspect ratio and assumes
values φad = 0 for m < 1 and φad = π/2 for m > 1. When m = 1 the particle is a sphere
and the problem is ill defined. We verified this property for ellipsoids with m ∈ [0.05, 20].
We found that fmin(φ) is strictly monotonic for τ ∗ ≤ 0, thereby also showing that there
is only a single minimum in the free energy.
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Figure 2.8: The fmin(φ) curves for a spherocylinder with aspect ratio m = 4 (a), m = 1/4
(b), cos θ = −1/2, and several values of the line tension τ∗. The thick line indicates fmin(φ) ≡ 0,
which is the stable minimum for τ∗ � 0. Note that in both graphs there is only one φad per
minimum curve.

2.3.2 Cylinders and Spherocylinders
We show fmin(φ) for spherocylinders in Fig. 2.8 for m = 4 (a), m = 1/4 (b), cos θ =
−1/2, and several values of τ ∗. There is only one minimum per fmin(φ) and the curves
behave monotonically. Further investigation revealed that for spherocylinders φad is also
completely determined by the aspect ratio m, i.e., φad = 0 for m < 1 and φad = π/2 for
m > 1, when τ ∗ ≤ 0. For τ ∗ > 0 adsorption barriers were observed.

Figure 2.9 shows fmin(φ) for cylinders with m = 4 (a) and m = 1/4 (b), cos θ = −1/2,
and several values of τ ∗. The results for cylindrical particles were qualitatively different
to those of the ellipsoid and spherocylinder. (i) We found two minima in a single fmin(φ)
curve. For m = 4 the absolute minimum had a polar angle φad = π/2, which corresponds
to the particle lying flat on the interface. The metastable minimum was achieved for
φad = 0 and corresponded to the particle being oriented perpendicular to the interface with
one of its disk-shaped caps flush with the interface, but otherwise completely immersed in
M1. The free-energy reduction obtained by excluding a disk from the interface proved to
be sufficient to generate a local metastable minimum. This result is similar to that derived
in Ref. [155], where the possible stability of such a configuration was shown. However,
our result confirms that it is a truly metastable configuration, since a barrier has to be
crossed to reach the equilibrium configuration, also see Chapter 3. (ii) We observed a
kink in some of the fmin(φ) curves, see Fig. 2.9b. This feature appeared to be related to
the sharp transition between the shaft and caps of the cylinder, which gives rise to ridges
in the free-energy landscape, also see Chapter 3.

Similar to the results for ellipsoids and spherocylinders we found that for these cylin-
drical particles adsorption barriers were formed when τ ∗ > 0 and that for τ ∗ > 0.1 there
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Figure 2.9: The minimum curves fmin(φ) for cos θ = −1/2 and several values of τ∗ for a
cylinder with m = 4 (a), and m = 1/4 (b). The thick line indicates fmin(φ) ≡ 0, which is
the stable minimum for τ∗ � 0. Note the appearance of a secondary minimum at φ = 0 (a)
in fmin(φ). The kink in the minimum free-energy curves (b) is caused by the sharp transition
between the shaft and caps of the cylinder.

was only one minimum in the free energy with z∗min < −z∗det. It was shown that this holds
for other aspect ratios as well. Cylinders with aspect ratio m = 4 were also studied in
Ref. [143], however, there is no correspondence with our results. The equations presented
in Ref. [143] do not appear to sample all possible orientations of the cylinder with re-
spect to the interface. Again our results were verified using the semianalytic results in
Appendix A.

Summarizing, we showed that our triangular-tessellation technique can be applied to
determine the free-energy of adsorption for anisotropic colloidal particles at a flat liquid-
liquid interface using Pieranski’s model [129]. We verified that in this approximation there
is only one minimum in the free energy for ellipsoids and spherocylinders and negative
line-tension values. The orientation of the particles in equilibrium is solely determined
by their aspect ratio. For positive values of the line tension we found that adsorption
to the interface can be prevented by the formation of adsorption barriers in the free
energy. We also showed that there can be two minima in the free energy of a prolate
cylindrical particle, one corresponding to the expected flat adsorption of the particle to
the interface and one corresponding to a metastable perpendicular adsorption. To what
extent these results may be recovered for more complex models of colloid adsorption and
in experiments is left for future research.
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2.4 Triangular Tessellation and Confocal Microscopy

Before we come to the conclusion, we briefly go into another application of the triangular-
tessellation technique, which is not related to the prediction of adsorption phenomenology.
As explained in Section 2.2.2 the area excluded from the interface, i.e., the part where the
colloid penetrates the interface, can be easily determined using triangular tessellation. In
this section we discuss how this property may be of use to understand confocal microscopy
data and test the quality of particle tracking algorithms.

The confocal microscope was developed to improve the image quality that could be
obtained by using traditional wide-field microscopy [231]. Wide-field illumination of a
sample results in a relatively high level of light emerging from objects above and below
the focal plane, either through scattering or fluorescence, depending on the technique used.
Such stray light lowers the signal-to-noise ratio of the light coming from the focal plane,
thereby obscuring important details in the sample. The confocal microscope reduces the
amount of unwanted light by illuminating only a small (diffraction limited) point in the
sample and rejecting out-of-focus light coming from that point using a pinhole [68]. Only
a single point is therefore imaged, but a two-dimensional (2D) picture may be formed
by scanning a plane. The improvement in resolution achieved by a confocal setup over
a traditional wide-field microscope is roughly a factor of three: for a typical sample the
resolution can be 200 nm in the direction of the focal plane and 600 nm in the direction
perpendicular to it [67, 68].

The 2D image that results from scanning gives an impression of the shape of the
object in the focal plane, when an object is sufficiently large compared to the resolution
of the microscope. That is to say, the 2D image gives the cross section of the focal plane
with the object, convolved with the adjacent planes according to the microscope’s point-
spread function. Most of light intensity in the confocal image will come from a small
region around the focal plane and for a large object the image thus roughly reveals the
shape of the plane-particle cross section. By taking several 2D image slices of an object,
its shape can be reconstructed [68]. However, this assumes that the object is stationary
during the time it takes to obtain several 2D planes. When the time-dependent interaction
of several particles is studied this type of 3D reconstruction may not be possible on the
time scale of the particles’ motion. Any information on the orientation and position of
the particles must therefore be inferred from a 2D image. For many of the complex shape-
anisotropic particles that have recently become available [24, 82, 83], it is difficult to a
priori understand what a sample might look like based only on a 2D confocal image.

Our triangular-tessellation technique’s ability to determine the shape of the cross
section of a plane and a particle of known shape, see Fig. 2.10 for an example, can be
of use in this regard. Calculating what a confocal slice through a particle would look
like given the shape and composition of the particle and its position and orientation
with respect to the focal plane is quite complicated, since it requires knowledge of the
point-spread function and the environment around the particle, which is generally not
available. However, our technique offers a simple and efficient way of determining plane-
particle cross sections and these give a rough idea of what positions and orientations may
correspond to the objects that appear in a 2D image. This may prove useful to interpret
2D confocal data of complex objects.
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Figure 2.10: Several plane-bullet cross sections for various plane heights and bullet orienta-
tions. The bullet consists of a cylinder of height 4 and width 1, capped on one end with a
hemisphere of radius 1; its total length is therefore 5. The centre of rotation is located at the
centre of the cylindrical shaft. (left) A representation of the orientation of the bullet (black sil-
houette), which is intersected by several planes - represented by thin horizontal lines. The angle
φ is given in the bottom-right corner. (right) The cross sections (black silhouette) corresponding
to the plane height and orientation choices shown to the left. In the top-right corner the height
of the plane with respect to the bullet’s centre of rotation is given. The projection of the centre
of rotation of the bullet is always in the middle of the white squares.
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For studies of suspended colloids it is often necessary to use 2D confocal image data
to quantify properties of the system, e.g., to determine the velocity profile of charged
colloids driven by an electric field in an electrophoresis measurement. This quantification
typically requires knowledge of the position (and orientation) of the particles in the system.
Tracking algorithms [232, 233] can be applied to extract the relevant coordinates from 2D
confocal data. However, for highly anisotropic particles the particle location predicted by
a tracking algorithm may deviate substantially from the actual position of the particle’s
centre of mass.

The triangular-tessellation technique may be used in the following way to probe the
quality of the results obtained by employing a particular tracking algorithm. First, we
generate a configuration of particles that is representative of the system of interest. For
this configuration we can determine the cross sections of a (focal) plane with the particles.
By adding Gaussian noise to these cross sections we obtain pseudo confocal-image data.
Subsequently, the tracking algorithm is applied to this pseudo data to determine the
positions of the particles. Finally, we compare the predicted positions to the actual
positions of the particles. This allows us to estimate the level of uncertainty that is to be
expected based on using the tracked coordinates.

2.5 Conclusion and Outlook
In this chapter we introduced the numerical technique of triangular tessellation to deter-
mine the surface areas and contact-line length that are associated with a plane-particle
intersection. Our technique allows us to establish these values quickly and with a high
level of precision for in principle arbitrary shapes. It therefore has a tremendous advan-
tage over traditionally used semianalytic methods, for which the complex geometry of the
problem makes it difficult, if not impossible, to derive manageable expressions for even
the simplest of particle shapes.

To demonstrate our method we considered the adsorption of a single anisotropic col-
loidal particle at a flat liquid-liquid interface. We describe the behaviour of the particle
at the interface by a simple free-energy model that is based on surface- and line-tension
contributions, in the spirit of the work of Pieranski [129]. Using our triangular-tessellation
technique we determined the positional and orientational dependence of the free energy
for three species of particle: ellipsoids, cylinders, and spherocylinders. For ellipsoids and
spherocylinders we established that there is only one minimum in the free energy for nega-
tive line-tension values, in agreement with the result of Ref. [144]. We also improved upon
the results of Ref. [143] and we showed that there can be two minima in the free energy
of a prolate cylindrical particle: one corresponding to the expected flat adsorption of the
particle to the interface and one corresponding to a metastable perpendicular adsorption.
Moreover, we re-examined the formation of adsorption barriers for these particles and
their dependence on the orientation of the particle. To what extent these results may be
recovered for more complex models of colloid adsorption and in experiments is left for
future research.

We also commented on another possible application of the triangular-tessellation tech-
nique. Its ability to quickly determine the cross section between a plane and a particle,
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may prove useful to gain insight into the cross-sectional objects that appear in 2D confocal-
microscopy images. In addition the technique, by the procedure outlined in this chapter,
offers the possibility to verify the quality of particle tracking algorithms.

In conclusion, the applications of the triangular-tessellation technique presented here
are myriad and will undoubtedly be further extended in the foreseeable future.
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Adsorption Trajectories for a
Colloidal Particle at an Interface

We apply the triangular-tessellation technique presented in Chapter 2 to calculate the
free energy associated with the adsorption of a single anisotropic colloidal particle at a
flat liquid-liquid interface. Using this free energy and simple dynamics we analyse the
process of a particle attaching to the interface and relaxing to its equilibrium position
and orientation. When there are metastable adsorption configurations, we show that the
orientation of a colloid at its initial contact with the interface has a strong influence on
its final orientation. Our result is a first step towards understanding the time-dependent
behaviour of anisotropic colloids and nanoparticles in contact with an interface.
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3.1 Introduction

As discussed in Chapters 1 and 2 the adsorption of colloidal (nano)particles at liquid-
liquid interfaces is not only of scientific interest, but also relevant for industry. The
tunability and variety of colloidal particles currently available [82, 83], coupled with our
still limited knowledge on the process of colloid adsorption [137], leaves the study of
interfacial phenomenology an open field. To better understand the complex behaviour
that is observed when colloidal particles are brought into contact with an interface [26,
27, 134, 155, 162, 163], we developed the triangular-tessellation technique to numerically
determine the surface areas and contact-line length required to obtain the free energy of
adsorption for a single particle, also see Chapter 2 and Ref. [147]. Our free-energy model
is based on surface-tension and line-tension arguments and is similar to the one used by
Pawel Pieranski in his ground breaking study of colloid adsorption [129].

In this chapter we use this free energy to perform an initial investigation of the time
dependence of the adsorption process. That is, the way in which a colloid moves through
the interface from the time it makes initial contact with the interface to the time it
reaches its equilibrium configuration. In Section 3.2 we consider a simple model for this
process based on flow-line dynamics. In Section 3.3 we study three systems which allow
us to showcase the complexity that anisotropy can introduce into adsorption process. We
discuss the adsorption of an ellipsoidal particle in Section 3.3.1 with the intent to use
this system as a basis for comparison. In Section 3.3.2 we examine the behaviour of a
cylindrical particle. For these particles there is a metastable minimum in the free energy,
which results in a dependence of the adsorption orientation on the orientation of the
colloid at its initial contact with the interface. In Section 3.3.3 we study a cylindrical
colloid with aspect ratio 1, for which we observe unusual adsorption behaviour. Finally,
we discuss the properties of our model and its shortcomings in Section 3.4.

3.2 Theoretical Considerations

Many of the terms and notations used in this chapter are introduced in Chapter 2. We refer
the reader to that chapter for a detailed overview of these notations and the triangular-
tessellation technique by which the reduced free energy of adsorption f(z∗, φ) can be
determined as a function of the adsorption depth z∗ and the polar angle φ the colloid
makes with the interfacial normal. In the following section we assume the reader is
familiar with our model and we build upon it to study the adsorption process.

3.2.1 Adsorption Trajectories and Separatrices

The free energy of adsorption acts as a potential energy for the colloid, which can be
differentiated with respect to its macroscopic coordinates, to obtain a force. The micro-
scopic coordinates of the fluid and the internal ones of the colloidal particle have been
integrated out to yield the tension terms. We can therefore define a reduced vector field
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of adsorption force by determining negative gradient of the free energy

F(z∗, φ∗) = −∇f ∗(z∗, φ∗) ≡ −
(
ẑ∗ ∂

∂z∗
+ φ̂∗ ∂

∂φ∗

)
f ∗(z∗, φ∗), (3.1)

with ẑ∗ and φ̂∗ unit vectors, πφ∗ ≡ φ, and f ∗(z∗, φ∗) ≡ f(z∗, φ). We use the vector field
F and the free energy f to study four features that give insight into the adsorption of
colloids at a liquid-liquid interface: (i) flow lines, (ii) minima and maxima, (iii) saddle
points, and (iv) separatrices. A flow line, η(t) = (z∗(t), φ∗(t)), is defined as a solution to
the differential equation

η̇(t) ≡ ∂η(t)
∂t

= F(η(t)), (3.2)

where the dot denotes a time derivative and t the ‘time’, and the solution is fixed by
imposing the initial configuration η(t = 0). We refer to these flow lines as adsorption
trajectories to stress their relation with the physical path followed by a particle adsorbing
to the interface. Each minimum in the free energy is surrounded by a region in parameter
space to which that particular minimum is attractive. All flow lines which originate from
points in this region reach the local minimum for t → ∞. The dividing line between
two attractive regions is referred to as the separatrix. This separatrix can contain (local)
maxima and saddle points.

3.2.2 The Time Dependence of Colloid Motion
It is desirable to review the concept of ‘time’ as introduced by solving the differential
equation η̇(t) = F(η(t)). The variable t in this equation is mathematically only a dummy
variable to the parametrization. This variable is however related to physical time. In the
Langevin equation for a sphere in a homogeneous medium [234, 235], the time to travel
over a short distance ∆l is equal to Mξ∆l/|A|, where M is the mass, ξ−1 the Brownian
time, and A is the force. We have an analogous situation for our parametrization, the
value 1/|F| can be considered a measure for the time that it takes to move along a flow
line through a specific point. Note that 1/|F| diverges for extrema in the free energy,
which is in accordance with the particle being stationary there.

We determine the flow lines for the free energy using a linear differential solver. The
time dependence is introduced as follows. The time step ∆ti, required to traverse a
distance ∆li is defined as ∆ti = ∆li/|Fi|, with |Fi| the size of the force at the point from
which the step is taken. By taking i = 1, . . . , n steps along the flow line we obtain a
series of ∆ti. The time t(n) required to arrive at point n along the flow line is given by

t(n) =
n−1∑
i=1

∆ti. (3.3)

In the limit of an infinitesimally small step size, the solution to the vector field with
the initial condition η(0) and the proper time dependence are obtained. We analyse the
relation between the reduced time t and the actual time tr in more detail in Section 3.4.
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Figure 3.1: (a) The adsorption trajectories η(t) for an ellipsoidal particle with aspect ratio
m = 6 for cos θ = −0.5 and τ∗ = −0.1. The arrow heads indicate the direction of colloid
motion through (z∗, φ)-space, the dot marks the location of the minimum, i.e., the adsorption
configuration, and the thick grey lines the ±z∗det(φ) curves. (b) The ±z∗det(φ) curves are indicated
in grey (thick, solid), the z∗min(φ) curve in red (thick, dots), the φmin(z∗) curve in green (thick,
dash-dot), and the attractor A(z∗, φ) in blue (thin, solid). The location of the minimum is again
marked by a dot. The symbols M1 and M2 indicate the respective media.

3.3 Anisotropy and Interfacial Adsorption
In this section we consider the adsorption of three anisotropic particles, an ellipsoid and
two cylinders with different aspect ratios. All data were produced using the triangular-
tessellation technique for 5002-vertex grids, see Chapter 2 and Ref. [147]. The value
of f ∗(z∗, φ∗) was calculated for 250 nonequidistant grid points in z∗ ∈ [−z∗det, z

∗
det] and

φ∗ ∈ [0, 0.5], respectively. We verified that there is a relative uncertainty in our results of
less than 10−4 per data point. The free energy on this grid was interpolated with a 3rd
order polynomial to allow the flow lines to be determined using a linear differential solver.
To ensure convergence we reduced the step size until the difference in length between two
successive flow lines divided by the average total length is less than 10−4.

3.3.1 Adsorption of Ellipsoidal Particles
Figure 3.1a shows adsorption trajectories η(t) for an ellipsoidal particle with aspect ratio
m = 6, a contact angle cos θ = −0.5, and a reduced line tension τ ∗ = −0.1. We chose
these values for cos θ and τ ∗ respectively, because the features in the free energy are
more pronounced and the flow lines can therefore be more easily observed. Qualitatively
similar result are expected for all τ ∗ < 0; for τ ∗ > 0 there may be adsorption barriers,
which would strongly influence the shape of the adsorption trajectories. In Fig. 3.1b the
±z∗det(φ), z∗min(φ), φmin(z∗), and attractor A(z∗, φ) curves for this free energy are given.
The location of the minimum is indicated with a dot. The term attractor is introduced
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Figure 3.2: The process of adsorption to a liquid-liquid interface for an ellipsoidal colloid with
m = 6, cos θ = −0.5, and τ∗ = −0.1. (a) Several snapshots of the motion of the colloid through
the interface along a flow line (b). An xz-view of the colloid is represented by a black silhouette
and the interface is indicated by a thin grey line. The time is given in the top-left corner of each
snapshot. The numbers at the bottom right of the interfacial line, correspond to the numbers in
(b). The top medium corresponds to M1 and the bottom to M2, respectively. (b) The flow line
for which the snapshots are taken is indicated by an arrowed black curve. We also show ±z∗det(φ)
(thick grey curves), the free-energy minimum (black dot), and the (z∗, φ) values for which the
snapshots are taken (numbered black squares). The location of the two media is indicated by
the symbols M1 and M2.

here to describe a feature in the vector field of adsorption force to which the flow lines are
attracted, as can be seen in Fig. 3.1a. Mathematical analysis showed that for points on
the attractor one of the eigenvectors of the Hessian matrix [(∇∇T)f ] is in the direction
of the gradient, with a positive eigenvalue, and the other is perpendicular to it, with a
negative eigenvalue. By analysing the free energy using our adsorption trajectories we
concluded that the single minimum with (z∗ad, φad) ≈ (−0.0368, 0.5π) is attractive to the
entire region between the ±z∗det(φ) curves. This was to be expected on the basis of our
observations in Chapter 2 and Ref. [147].

The flow lines in Fig. 3.1a give a rather abstract picture of the colloid motion through
the interface. To more intuitively illustrate the behaviour of the particle, we have included
Fig. 3.2, which shows several snapshots of the motion of the colloid according to the
adsorption trajectory with η(0) ≈ (0.930, 0.0965π). From Fig. 3.2a it becomes clear that
the initial vertical movement of the colloid through the interface is quite fast compared
to the rotational movement of colloid towards its equilibrium orientation that follows.
This speed difference can be explained by the difference in the gradient of the free energy
between points (0−7) and (8−15) in Fig. 3.2b. In part this difference is also caused by our
implicit choice for the ratio the translational and rotational friction coefficients. The final
part of the movement, achieving the equilibrium position, is exponentially asymptotic.
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However, the colloid movement is only asymptotic when it is very close to its adsorption
configuration, we have therefore taken the last snapshot at the onset of this regime.
Additional representations of the movement along the adsorption trajectories shown in
Fig. 3.1a are given in Ref. [148], which links to an electronic repository that contains
movies of the adsorption process.

3.3.2 Trajectories for Cylindrical Colloids

Figure 3.3 shows the adsorption trajectories for a cylindrical colloid with m = 6, cos θ =
−0.5, and τ ∗ = −0.1. The free-energy landscape of a cylinder is very different to that
of the ellipsoid. For cylinders there are two minima in the free energy at (z∗ad, φad) ≈
(−0.079, 0.5π) with fad ≈ −0.397 and at (z∗ad, φad) ≈ (−0.962, 0.0) with fad ≈ −0.090,
respectively. The minimum with φad = 0.5π is the absolute minimum, the one with
φad = 0.0 is metastable. The latter corresponds to a configuration where one of the caps
of the cylinder is flush with the interface and the rest of the colloid is immersed in the
favoured medium (M1 in this case). The kinks in the adsorption trajectories of Fig. 3.3a
are directly related to ridges in the free-energy landscape which are caused by the sharp
transition between the shaft and caps of the cylinder. These ridges are indicated by the
±z∗dsc(φ) curves in Fig. 3.3b, where ‘dsc’ stands for discontinuity (in F).

In Fig. 3.3c we show the separatrix S(z∗, φ) between the two minima and the three
attractors Ai(z∗, φ), i = 1, 2, 3, which we find for this free energy of adsorption. There is a
saddle point on the separatrix, where S(z∗, φ) meets with two of the attractors, A1 and A2.
The separatrix forms the divide between the regions to which the respective minima are
attractive. Remarkably, the metastable minimum is attractive to a large (z∗, φ)-domain
even for an aspect ratio as large as m = 6. A particle attaching to the interface from M1
with φ . 0.224π will move into the metastable minimum. For attachment from M2 we
found that the metastable minimum is attractive to contact orientations with φ . 0.014π.
Assuming a homogeneous orientational distribution at contact, the probability of reaching
to the metastable configuration from the energetically unfavourable medium is quite low
(∼ 0.001), however, from the preferred medium M1 it is quite high (∼ 0.240).

The appearance of a third attractor A3, see Fig. 3.3c, is somewhat surprising. The first
and second attractor are merely the split form of a similar feature to the one found for
the ellipsoid in Section 3.3.1. This ‘main attractor’ is split, because there are two minima,
which causes the separatrix to intersect it. The third attractor, leading to the absolute
minimum of the free-energy landscape, is caused by a subtle interplay between the right-
most ridge, z∗dsc(φ), and the φmin(z∗) curve and terminates exactly where φmin(z∗) has a
kink. The third attractor strongly influences the behaviour of the adsorption trajectories
around it, see Fig. 3.3a and Ref. [148].

For the cylindrical colloid we again expect qualitatively similar results for τ ∗ < 0; for
τ ∗ > 0 there may be adsorption barriers, which would strongly influence the shape of
the adsorption trajectories. However, the presence of a secondary minimum introduces
a strong dependence of the colloid’s behaviour on the value of the contact angle. That
is, the position of the separatrix varies significantly with cos θ. We come back to this in
Section 3.3.3, when we discuss cylindrical particles with aspect ratio m = 1.
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Figure 3.3: Properties of the free-energy landscape for a cylinder with m = 6, cos θ = −0.5,
and τ∗ = −0.1. (a) Several adsorption trajectories η(t) (arrowed black curves) are shown, as well
as the location of the free-energy minima (dots), the saddle point (diamond), and the media M1
and M2, respectively. Thick grey curves indicate ±z∗det(φ). (b) The vector-field discontinuities
z∗dsc(φ) are shown in purple (dots). The z∗min(φ) curve is represented in red (dashed) and φmin(z∗)
in green (dash-dot). (c) The attractors Ai(z∗, φ) and the separatrix S(z∗, φ).
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Figure 3.4: The process of adsorption for a cylindrical colloid with m = 6, cos θ = −0.5,
and τ∗ = −0.1, for which the adsorption becomes arrested in the metastable configuration.
(a) Several snapshots of the colloid adsorbing to the interface. An xz-view of the colloid is
represented by a black silhouette and the interface is indicated by a thin grey line. The reduced
time is given in the top-left corner (first two rows) and the bottom-left corner (last two rows).
The numbers at the bottom right of the interfacial line, correspond to the numbers in (b). The
top medium corresponds to M1 and the bottom to M2, respectively. (b) The flow line for which
the snapshots are taken is indicated by an arrowed black curve. We also show ±z∗det(φ) (thick
grey curves), the free-energy minima (black dots), the saddle point (black diamond), and the
(z∗, φ) values for which the snapshots are taken (numbered black squares).
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In Fig. 3.4 we consider colloid movement along a flow line with η(0) ≈ (0.979, 0.014π)
that is attracted to the metastable minimum. The cylinder first moves almost vertically
through the interface (frame 1 − 8), before it tilts slightly (frame 9 − 11). However,
when it touches the interface with the edge of one of its caps (frame 12), it experiences
the discontinuity in F and changes its direction of motion: it is energetically favourable
to move into the metastable minimum by tilting back to the vertical orientation (frame
13− 15). Finally, the colloid relaxes to its perpendicular adsorption orientation with one
of its caps flush with the interface. The trajectory between points 12 and 15 could only be
determined with a precision of ∼ 10−2. This is due to the close proximity of the φmin(z∗),
z∗min(φ), and −z∗dsc(φ) curves, see Fig. 3.3b. Consequently, the time dependence of this
part of the motion has significant uncertainty, which we estimate to be at most 15%.

Additional representations of the movement along the adsorption trajectories shown
in Fig. 3.3a are given in Ref. [148].

3.3.3 Special Configurations for Short Cylinders
In this section we study the behaviour of a short cylindrical colloid with aspect ratio
m = 1 adsorbed at an interface and the dependence of this behaviour on the contact
angle. Figure 3.5 shows the minima, saddle points, and separatrices for 11 values of cos θ
to illustrate this dependence.

The free energy we found for this short cylinder has the following properties. For
cos θ = 0 there is a single minimum at (z∗ad, φad) ≈ (0.000, 0.271π) and for cos θ = −1
there is no minimum. When −1 < cos θ < 0 there are two minima. One of these is
located at (z∗ad, φad) ≈ (−0.571, 0.0), which corresponds to one of the cylinder’s caps
being flush with the interface and the rest of the particle immersed in medium M1. The
location of the other minimum changes with the value of cos θ. The minimum with
(z∗ad, φad) ≈ (−0.571, 0.0) is stable when cos θ . −0.23 and metastable for cos θ & −0.23.
The separatrices move from the lower-left corner towards the centre of the adsorption
region - the region enclosed by the ±z∗det(φ) curves - upon decreasing cos θ. This implies
that the perpendicular adsorption orientation becomes more stable and simultaneously
becomes less accessible.

For sufficiently low values of cos θ the separatrix splits into two pieces, see Fig. 3.5b.
The transition between a one- and two-separatrix regime occurs for cos θ ≈ −0.705.
The process is as follows. For decreasing cos θ the position of the saddle point moves
closer to the boundary of the adsorption region. Around cos θ = −0.705 the saddle
point makes contact with the boundary and is degenerate. A normal saddle point has
two attractive and two repulsive directions, whereas the degenerate saddle point has two
repulsive directions, but only one attractive direction. With even lower values of cos θ the
saddle point transforms into two degenerate saddle points at the boundary. Both of these
have only one attractive and one repulsive direction. In the region between separatrices the
particle most efficiently lowers its free energy by moving from the unfavoured mediumM2
directly into M1. When the colloid is in M1, it does not adsorb if it touches the interface
with an orientation that falls between the two φ values corresponding to the saddle points,
because this would increase its free energy. This is a remarkable and counter-intuitive
result, since it implies that adsorption does not necessarily occur, despite the presence of
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Figure 3.5: Properties of the free-energy landscape of a cylinder with aspect ratio m = 1
for τ∗ = 0 and several contact angles. The labelling is as follows: (a) cos θ = 0.0 (0),
−0.1 (1), −0.2 (2), −0.4 (3), and −0.6 (4); (b) cos θ = −0.7 (5), −0.72 (6), −0.74 (7), and
−0.78 (8); and (c) cos θ = −0.8 (9), −0.9 (10), and −0.95 (11). Minima are given by thick dots,
saddle points by diamonds, separatrices by black (patterned) curves, and the ±z∗det(φ) curves
by thick grey curves. The minima and saddle points are numbered according to value of cos θ.
In (a) the patterning of the separatrices is (1) solid, (2) dashed, (3) dots, (4) dash-dot; for (0)
there is no separatrix. The curves (6-8) in (b) are disjoint, there is one curve for (5). (d) The
location of the minima from (c,d) in the top-left corner of the adsorption region.
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free-energy minima, which are typically quite deep. Binding to the interface with several
hundred or even thousand times the thermal energy is not uncommon for colloids [129].

To illustrate the different adsorption possibilities for this particle, we included Fig. 3.6,
which shows snapshots of the movement of the colloid through the interface for three
different orientations at contact (cos θ = −0.95). The first trajectory, Fig. 3.6a, shows the
colloid adsorbing to the metastable minimum at (z∗ad, φad) ≈ (−0.567, 0.5π). In its final
configuration (frame 7), the colloid only barely penetrates the interface and its rotationally
symmetry axis is perpendicular to the interfacial normal. Figure 3.6b shows the adsorption
to the primary minimum at (z∗ad, φad) = (−0.571, 0.0), for which the rotational symmetry
axis is parallel to the interfacial normal. In Fig. 3.6c snapshots of the movement through
the inter-separatrix domain are shown. The colloid moves through the interface and slows
down when it approaches the boundary of the adsorption region, since the gradient tends
to zero here. The final configuration shows the cylinder touching the interface in a single
point, it is essentially detached. Additional representations are given in Ref. [148].

Summarizing, we showed that we can analyse the time dependence of the process of
adsorption for an anisotropic colloid attaching to a liquid-liquid interface and relaxing to
its equilibrium position. Our simple description used the free energy as a potential of
force and dynamics based the associated vector field of adsorption force. The adsorption
of cylindrical colloids revealed a strong dependence of the adsorption orientation on the
particle’s orientation at contact. Moreover, we found that for certain systems the colloid
can even pass through the interface without becoming trapped in a free-energy minimum.

3.4 Discussion
In Section 3.3 we showed that the time-dependent behaviour of an anisotropic colloid in
contact with a liquid-liquid interface can be very rich depending on the specifics of the
system. In this section we analyse the relation between the behaviour described by our
flow-line model and the behaviour that may be encountered in experiments.

3.4.1 Flow Lines and the Langevin Equation
For a particle dispersed in a liquid medium undergoing a force the dynamics is governed by
a solution to the Langevin equation [234, 235]. We consider a particle undergoing a force
according to the derivative of the unreduced free energy of adsorption F with respect to
the particle’s macroscopic coordinates. When we neglect inertia, the random force term,
and limit ourselves to studying the time dependence of the position z and orientation φ,
the Langevin equation may be rewritten to the following equations of motion (EOMs):

λ
∂z(tr)
∂tr

= − ∂

∂z
F (z(tr), φ(tr)); (3.4)

µ
∂φ(tr)
∂tr

= − ∂

∂φ
F (z(tr), φ(tr)), (3.5)

with tr is the ‘real’ unreduced time. The prefactors λ and µ represent the translational
and rotational friction coefficients, respectively. These coefficients account for the size
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Figure 3.6: The adsorption process predicted by our model for three initial configurations of
a cylindrical colloid with m = 1 for cos θ = −0.95, and τ∗ = 0.0. (a-c) Snapshots of the motion
of through the interface along three adsorption trajectories in (d). An xz-view of the colloid is
represented by a black silhouette and the interface is indicated by a grey line. The white line on
the silhouette is used to indicate the cylinder’s rotational symmetry axis. The reduced time is
given in the top-left corner (first four) and the bottom-left corner (last four). The numbers at
the bottom/top right of the interfacial line, correspond to the numbers in (d). The top medium
corresponds to M1 and the bottom to M2, respectively. (d) The three flow lines η(t) (arrowed
black lines) corresponding to the snapshots in (a-c), as indicated near the number 7 square/dots.
The separatrices S(z∗, φ) are given by thin yellow curves, the ±z∗det(φ) by thick grey curves, the
location of the minima by thick dots, and the media by M1 and M2, respectively.
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and shape of the particle, as well as for the positional z and orientational φ dependencies
of the system, such as the presence of the interface and the difference in viscosity between
the two media.

We can recover Eq. (3.2) from Eqs. (3.4) and (3.5) as follows. We assume that λ and
µ are independent of the shape. We also assume that λ and µ are independent of z and
φ and coupled according to

µ = a2 + 2b2

π2 λ. (3.6)

By writing tr = κt, with

κ = a2 + 2b2

γ12S
λ, (3.7)

we can recover the relation
η̇(t) ≡ ∂η(t)

∂t
= F(η(t)). (3.8)

It is apparent that our description of the system’s time dependence on the basis of
simple flow lines constitutes a drastic reduction of the physics that underlie the movement
of particles in a liquid. However, as a first step towards understanding the behaviour of
particles attaching to an interface, the approach we used in this chapter is not entirely
unreasonable. By gaining insight into the behaviour of the system in our approximation,
we can more easily probe the effect of adding new components to the model to better
account for the physics of experimental systems. In the next section we discuss some of
the shortcomings of our model give suggestions for improvement in future studies.

3.4.2 Suggestions for Improvement
A more accurate model for particles at an interface should include interfacial deformation.
Our model assumes a flat undeformed interface for which the angle between the colloid
and the interface is not necessarily same as the contact angle. Allowing the three-phase
contact line to undulate and achieve the correct (contact) angle along the entire contact
line changes the free energy of adsorption significantly even for very simple systems [149,
153, 157, 159], also see Chapter 4. The effect is expected to be far more pronounced when
the colloids are anisotropic, especially when there are sharp features on their surface. This
has been studied in literature for a limited number of particles and configurations [135,
156, 158, 236–239]. However, the currently available semianalytic techniques cannot give
the full positional and orientational dependence of the free energy. Numerical tools such
as Surface Evolver [221–223] may be applied, but at the time this research was carried
out [147, 148], we found that determining the free-energy landscape was not possible
within a reasonable time frame.

The model for the motion of the colloid through the interface should be also be re-
considered. Neglecting the anisotropy of the particle and the difference in the viscosity of
the media for the friction, as is done for the flow-line-based time dependence, constitutes
an oversimplification of the experimental reality. An improved model should at the very
least take these effects into account. With future studies in mind, we feel compelled to
draw attention to the recent experimental study of Ref. [137]. In Ref. [137] an unexpect-
edly slow relaxation towards the adsorption equilibrium was observed for microspheres
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at a water/oil interface. The relaxation appeared logarithmic in time and seemed to be
described well by a model that accounts for hopping of the contact line over nanoscale
surface heterogeneities. This result could have strong implications for the appropriateness
of traditionally used models for the process of adsorption, e.g., Refs. [138, 139].

There also exists an alternative approach to obtaining the behaviour of particles at
an interface. In Ref. [240] the adsorption of ellipsoidal particles was studied using molec-
ular dynamics simulations according to the lattice-Boltzmann method. Note that the
adsorption trajectories reported in Ref. [240] are similar to the ones found in this thesis.
The simulation-based approach of [240] shows great promise for the analysis of systems,
for which traditional theoretical techniques encounter great difficulties in giving an ac-
curate description. However, a drawback of these models is that it is difficult to specify
measurable properties such the contact angle.

3.5 Conclusion and Outlook
In this chapter we employed the triangular-tessellation technique introduced in Chapter 2
and Ref. [147] to determine the free energy of adsorption for anisotropic colloids at a flat
liquid-liquid interface. We used this free energy to construct a vector field of adsorption
force and its associated flow lines. These flow lines gave insight into the stability of the
minima in the free energy and the time dependence of the adsorption process according
to our simple model.

The adsorption of cylindrical colloids revealed a strong dependence of the adsorption
orientation on the particle’s orientation at contact. For long cylinders we showed that the
metastable minimum in the free energy, for which the cylinder is oriented perpendicular to
the interface, could be attractive to an unexpectedly large range of initial-contact orien-
tations. Even more remarkably, we found that for short cylinders and for an appropriate
choice of the contact angle the colloid could pass through the interface without adsorbing
to it. This constituted the first time that this phenomenon was observed theoretically. It
was hitherto believed that the enormous strength with which colloids bind to the inter-
face is a guarantee that adsorption occurs in the absence of any barriers, caused by, e.g.,
positive line tension or electrostatic repulsion. Our results showed that this assumption
may not always be valid.

The observations in this chapter were made using a simple model that neglects many
elements required to give an accurate description of the physics of experimental systems.
However, there are indications [240] that our results may to some extent be recovered
by more elaborate models. Our analysis and our approaches can be built upon in future
studies to achieve a better understanding of the behaviour of anisotropic colloids at a
liquid-liquid interface.
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Triangular Tessellation and
Nonconvex Patterned Particles

In this chapter we extend the numerical technique of triangular tessellation introduced in
Chapter 2. This extended technique allows us to numerically determine the free energy
of adsorption for a nonconvex colloidal particle with surface patterning at a flat liquid-
liquid interface. Two cases are considered: truncated cubes with facets that have different
surface properties and octapod-shaped particles. For the former we investigate the ad-
sorption behaviour, for the latter we are interested in the cross-sectional shapes that result
from a plane-particle intersection. Such cross sections can be relevant to the analysis of
confocal microscopy data. We also investigate the effects of interfacial deformation on the
adsorption of a spherical particle and use these results to comment on the validity of the
assumptions made in Chapters 2 and 3.
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4.1 Introduction
Recent advances in the synthesis of colloids and nanoparticles have resulted in a wide range
of surface-patterned and/or nonconvex particles [82, 83]. For example, there are (Janus)
particles with two different halves [110–119], particles for which the poles and equator
are different [32], and many nanoparticles [84–86, 89–93, 95, 96], which have an inherent
surface patterning due to their faceted nature [241]. Examples of nonconvex particles
include dumbbells [97], colloidal clusters [29, 98], branched colloids and nanocrystals such
as octapods [54, 78, 99–101] and tetrapods [102, 103], nanostars [104–106], and colloidal
caps [107–109]. The development of these new colloids and nanoparticles, which have
complex shapes and (contact-angle) surface heterogeneities, presents many opportunities
for the study of particles adsorbed at liquid-liquid and liquid-gas interfaces. The in- and
out-of-equilibrium adsorption behaviour of these particles [163, 164, 242] may deviate
substantially from that of spheres.

Theoretical analysis of colloids adsorbed at an interface is difficult even for simple
homogeneous particles, due to the complex geometry that arises by the particle pene-
trating the interface [147]. For nonconvex and surface-patterned particles this problem
is exacerbated. To the best of our knowledge, only for amphiphilic - having both a
hydrophilic and a hydrophobic part - spherical Janus particles [141, 142, 146] and for sim-
ilarly patterned cylindrical particles [160] was the adsorption considered using a force or
free-energy analysis. A technique that may be applied to study the adsorption of complex
(surface-patterned) particles at an interface is therefore required.

As an initial step towards such a technique we introduce a generalized version of the
theory from Chapter 2 in Section 4.2. In Section 4.3 we extend the triangular-tessellation
technique, which is used to numerically approximate this free energy of adsorption, to
reflect the changes in our model. In Section 4.4 we investigate the behaviour of truncated
nanocubes with surface patterning at an interface and we show that the equilibrium
adsorption configurations can be subdivided into three classes. To which class the equi-
librium configuration of a system belongs only depends on the properties of the patterning
and the level of truncation. We discuss possible plane-octapod cross sections in Section 4.5
to demonstrate the applicability of our method to nonconvex particles. We conclude this
chapter by considering the effects of interfacial deformation on the adsorption of a single
sphere in Section 4.6.

4.2 Theoretical Model
In this section we extend our theory of interfacial adsorption for uniaxial convex colloids
from Chapter 2 to a theory for nonconvex colloids with surface patterning. We consider
a particle of which the surface has several areas with different liquid-solid surface tension
properties (contact-angle patterning), see Fig. 4.1. An axis is fixed through the centre
of mass of the particle, at which we locate the origin of the system. The interface is
positioned at a height z with respect to the origin. The polar angle φ specifies the angle
between the axis and the interfacial normal, and the orientation angle ω specifies rotations
around the axis.
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Figure 4.1: A schematic view of a nonconvex surface-patterned colloid adsorbed at a liquid-
liquid interface (a) and a sketch of the same colloid’s surface patterning (b). (a) The particle’s
position and orientation are described by three quantities. (i) The depth z. (ii) The polar angle
φ that some fixed axis through the colloid’s centre of mass, where the origin is located, makes
with the interfacial normal. (iii) The angle ω which specifies rotations around this axis. The
parameter A denotes the total (macroscopic) surface area of the interface, S12 the area excluded
from the interface by the presence of the particle, and γ12 the medium 1 (M1) - medium 2 (M2)
surface tension. The surface patches are labelled Pi. (b) Each patch has a Pi −M1 surface
tension γ1ci , a Pi −M2 surface tension γ2ci , and a three-phase line tension τi. The surface area
of Pi in M1 is given by S1i , the surface area in M2 by S2i , and the contact-line length by Li.



48 Chapter 4

The free energy of adsorption is specified by the particle’s surface properties. Let the
surface be partitioned into patches Pi, with i = 0, 1, . . . , n an index, see Fig. 4.1. Each
patch has a specific patch-medium surface tension γ1ci

(Pi−M1) and γ2ci
(Pi−M2), and

a line tension τi. Let S1i
be the surface area of patch Pi in M1, S2i

the surface area in
M2, and Li the length of the associated contact line. The free energy of adsorption for
the colloid in our approximation is given by

V (z, φ, ω) = γ12(A− S12) +
n∑
i=0

(γ1ci
S1i

+ γ2ci
S2i

+ τiLi) . (4.1)

We define Si ≡ S1i
+S2i

, such that the total surface area is S = ∑n
i=0 Si. The free energy

of adsorption to is set to zero in M1 by subtracting

γ12A+
n∑
i=0

γ1ci
Si, (4.2)

to obtain the shifted free energy of adsorption

F (z, φ, ω) =
n∑
i=0

((γ1ci
− γ2ci

)(S1i
− Si) + τiLi)− γ12S12. (4.3)

The quantities f ≡ F/γ12S, γ12 cos θi ≡ γ1ci
− γ2ci

[140], ri ≡ Si/S, r1i
≡ S1i

/S, r12 ≡
S12/S, li ≡ Li/

√
S, and τ ∗i ≡ τi/γ12

√
S are introduced to rewrite Eq. (4.3) to the following

elegant from

f(z∗, φ, ω) =
n∑
i=0

(cos θi(r1i
− ri) + τ ∗i li)− r12. (4.4)

Here z∗ = z/R, with R the radius of the smallest sphere that encloses the particle.
In our model we glanced over one detail, namely that it is possible to have a four-phase

contact line on the boundary of two patches, when the interface (partially) coincides with
this boundary. We define the contribution to the free energy of adsorption to be the
length of this four-phase contact line times the averaged line tension. To the best of our
knowledge, only one study considered four-phase contact lines [243], but nothing is known
about the associated line tension. However, we believe that the averaging we propose is
not unreasonable.

4.3 Improved Numerical Technique
To numerically approximate the free energy in Eq. (4.4), the object under consideration
is tessellated with triangles using a suitably chosen parametrization, also see Chapter 2.
This tessellation obeys the following rules. (i) Patch boundaries are approximated by
triangle edges; consequently, a single triangle has a single set of surface properties. (ii)
Each triangle is labelled according to the patch it is in, with the label Pi. (iii) The
direction of the surface normal of each triangle is known and is required to point outward
from the particle. (iv) A sufficiently large number of small triangles is used where the
surface of the particle changes abruptly, either through patterning, a large gradient, or
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a cusp-like feature. Determining the approximate total surface area S̃ is analogous to
the procedure outlined in Chapter 2. Similarly, the surface area of the i-th patch, Si, is
approximated by summing the surface area of triangles with label Pi, yielding S̃i. The
surface area of a patch above the interface S1i

is obtained by subdivision the triangle
mesh, see Fig. 2.3, and the approximate surface area is denoted by S̃1i

. The area S̃2i
is

established in the same way.
Determining S̃12 and L̃i is, however, a little more involved. In partitioning the trian-

gle mesh, two points are obtained for each triangle intersected by the interface. These
two points span a line segment, which is oriented via the normal of the triangle. After
partitioning a set of line segments, say Λ, is obtained, see Fig. 4.2a. The members of Λ,
say Λi, with i an index, are encoded with information on the location of the particle as
follows. The triangle’s normal is projected onto the interface and normalized. This unit
vector, referred to as a directional (unit) vector, gives orientation of the line segment. A
triangle which is flush with the interface needs to be special cased: all three directional
unit vectors point outward. Each Λi has 7 elements, two for the xy-location of the start-
ing point of the line segment, two for the end point of the segment, another two specify
the directional unit vector, and one gives the number of the patch it corresponds to. To
determine S̃12 the set of line segments Λ undergoes several refinement steps which we refer
to as loop reduction.

Consider all instances of a Λi, for which there is a Λj, that has the same line segment
coordinates, but not necessarily the same directional vector, see Fig. 4.2a. There are two
situations in which there are ‘overlapping’ segments. (i) When two triangles are completely
on opposite sides of the interface and they share two vertices, we obtain segments with
the same directional vector. (ii) When two triangles are both completely on the same
side of the interface and they share two vertices located on the interface, or when they
are both flush with the interface, we obtain two Λi with antiparallel directional vectors.
To eliminate unnecessary segments Λj is removed from Λ, if Λi and Λj have the same
directional vector. If, however, the directional vectors are antiparallel both instances
are removed, since then these are interior segments or they come from the particle just
touching the interface. By subjecting each element in Λ to this procedure a new set Λ̃
is formed. This set contains only segments which are a part of the boundary of S12, see
Fig. 4.2b.

The set Λ̃ is subdivided into closed loops. A loop is determined by choosing a segment
in Λ̃ and adding its neighbours recursively, until no more new neighbours can be added.
This procedure is illustrated as follows. Let Λi be the starting segment. Then after one
iteration we obtain the sequence Λi−1 −Λi −Λi+1, and after m iterations Λi−m − · · · −
Λi−1 − Λi − Λi+1 − · · · − Λi+m. The last neighbours to be added are either equal, i.e.,
Λi−m = Λi+m, in which case only one is added, or have a common vertex, in which case
the loop is also closed. We thus obtain a loop which is ordered by construction. This
procedure is repeated until Λ̃ is subdivided into loops. It is a priori not excluded that a
loop crosses itself, e.g., a lemniscate-like structure. Crossover points are however easily
located, because such a vertex shares an even number of line segments greater than two.
We cut all loops into closed pieces which do not cross themselves, see Fig. 4.2c. Let these
new loops be denoted by Ci with i an index, then Λ̃ = ∪Ci and ∩Ci = ∅.
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(b)(a)

(c)

Figure 4.2: Illustration of the loop-reduction procedure for the approximate area excluded
from the interface S̃12 by the presence of some nonconvex colloid. (a) The line segments obtained
after partitioning triangles form the set Λ. The arrow heads represent the directional unit
vectors. (b) The set of segments Λ̃ which is obtained by removing all redundant line segments.
(c) The subdivision of Λ̃ into four closed oriented loops.
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For each Ci we have to determine whether it is outwardly or inwardly oriented. By
construction loops cannot contain both outward and inward segments. For a loop where
all directional vectors point outward, there is at least one line segment for which one of
the halflines drawn through its end points does not intersect another line segment in that
loop. Numerically checking this criterion efficiently is not trivial. In practice, it is seldom
required to invoke this property to determine the orientation of the loop. Any knowledge
on the possible shapes excluded from the interface can be used to make the algorithm
more efficient. A dumbbell [97], for instance, only has outwardly oriented loops, which
can be easily derived from its symmetry properties. We define the sign function S(Ci)
to be +1 when the orientation of a closed loop is outward and −1 if the orientation is
inward.

After each loop is labelled either ‘outward’ or ‘inward’, the area enclosed by each of
the Ci in Λ̃ is easily calculated using a polygonal version of Green’s theorem. The line
segments in a loop Ci define a set of points in the plane, which are ordered by construction.
These points can be mapped onto three-dimensional (3D) vectors aj, where the first two
components are the x and y coordinates, respectively, the last component is zero, and j
is an index. Let the set of these vectors be ordered according to the ordering imposed by
Ci. If there are ñ − 1 distinct points which define the loop, then we require j = 0, . . . , ñ
with añ = a0. The area of Ci is given by

A(Ci) =
∣∣∣∣∣∣
ñ−1∑
j=0

aj × aj+1

∣∣∣∣∣∣ , (4.5)

where the ×-symbol indicates the cross-product and the vertical bars the norm of the
vector obtained by summation. It can be shown that Eq. (4.5) is only valid when there
are no self intersections, which is why these needed to be eliminated first. The surface
area excluded from the interface by the presence of the particle is now approximated

S̃12 =
∑
i

S(Ci)A(Ci). (4.6)

The approximate contact-line length L̃i can be obtained by summation of the length of
the line segments that have the label Pi.

In summary, we presented a method that can be used to determine the surface ar-
eas and contact-line length(s) required to establish the free energy of adsorption for an
arbitrary nonconvex contact-angle-patterned colloid in contact with a flat interface.

4.4 Interfacial Adsorption of a Truncated Cube
In this section we apply our generalized algorithm to study a specific contact-angle-
patterned particle, namely a truncated nanocube, also see Fig. 4.3. These type of par-
ticles have recently been synthesized [89, 93] and investigations of their self-assembly on
a liquid-liquid interface are under way [164]. As an initial step towards understanding
the experimentally observed behaviour, we apply our simple model to this system and
investigate the way in which such a particle adsorbs. This analysis should be seen as a
proof of principle for the generalized triangular-tessellation technique, not as an attempt
to rigorously quantify the physics behind the adsorption of these particles at an interface.
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Figure 4.3: A sketch of the initial configuration of a contact-angle-patterned truncated cube,
with truncation parameter s = 0.25. The orientation of the particle is specified by two angles:
the polar angle φ, which gives a rotation in the xz-plane with respect to the z-axis, and the
azimuthal angle ψ, which gives the rotation around the z-axis. The octagonal faces can have
a three-phase contact angle that differs from that of the triangular faces, as indicated by the
labels cos θ1 and cos θ2, with θ1 and θ2 the respective contact angles. The position of the flat
liquid-liquid interface (not shown here for clarity) is given by the height z, which is measured
with respect to the origin.

4.4.1 The Truncated Cube Model

In our model the truncated cube initially has its octagonal faces axis-aligned and it is
centred on the origin. The level of truncation can be described by the parameter s ∈
[0, 1/2]. The set of vertices of the truncated cube in its initial configuration is given by

{v(s)} = 1(
1− 4

3s
3
)(1/3)PD

((
±
(1

2 − s
)
,±1

2 ,±
1
2

)T)
, (4.7)

where PD is a permutation operation that generates all permutations of each element
in the set of 8 vertices spanned by the ±-operations. By letting PD act we obtain 48
vertices. Subsequently deletion of all duplicates reduces this set to the desired total of 24
vertices. The ‘T ’ indicates transposition. The prefactor ensures that the truncated cube
is normalized to unit volume.
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The orientation of a truncated cube is given by two angles. The azimuthal angle ψ
applies a rotation around the z-axis. This is followed by a rotation in the xz-plane of φ
radians around the origin w.r.t. the z-axis in a counter-clockwise manner, φ is referred
to as the polar angle. It can be shown that these two rotations are sufficient to generate
all possible orientations of a truncated cube. Due to symmetry properties of the particle,
we can restrict ourselves to φ ∈ [0, π/2] and ψ ∈ [0, π/4]. The height of the interface
with respect to the origin, which is located at the centre of the particle, is denoted by z.
We assume that the wetting properties of the different facets are given by cos θ1 for the
octagonal facets and cos θ2 for the triangular facets, with θ1 and θ2 the respective contact
angles.

4.4.2 The Free Energy of Adsorption
By varying z, φ, and ψ for fixed values of cos θ1 and cos θ2 and computing the reduced
free energy f using our numerical technique, we could determine a four-dimensional (4D)
free-energy landscape; three parameter coordinates and one coordinate for the function
value. For several conveniently chosen (symmetric) configurations and several surface pat-
terns we analytically verified the accuracy of our triangular-tessellation technique. The
correspondence between the analytic and numerical results was within the numerical pre-
cision of our algorithm, which is very high, because we only required a 56 relatively large
triangles to ‘approximate’ the shape of the truncated cube. This correspondence gives
confidence that our technique can be used to handle general surface-patterned particles as
well. In the following we restrict ourselves to investigate two levels of truncation s = 0.25
and s = 0. All results were established using 50 nonequidistant grid points in z, φ, and
ψ, respectively.

Figure 4.4 shows the free-energy landscape and equilibrium configurations for a trun-
cated nanocube with cos θ1 = −0.25, cos θ2 = −0.25, and τ ∗ = 0, i.e., the particle has
homogeneous surface properties. Note that we do not require any knowledge about the
surface tension of the interface γ12 in the theory of Eq. (4.4). Figure 4.5 shows cross
sections of the landscape in Fig. 4.4a parallel to the zψ-plane.

There are two (meta)stable minima in the free energy for this system. The abso-
lute minimum (green, middle-right Fig. 4.5) corresponds to the configuration shown in
Fig. 4.4(b,c). A relatively large piece of the interface is excluded, thereby lowering the free
energy, but this comes at the price of a large contact area with the unfavoured medium.
The metastable minimum for φ = 0 (blue, top-left Fig. 4.5) corresponds to the particle
being almost completely immersed in the favoured medium and it only excludes one of its
octagonal facets from the interface. The free energy of this configuration is nearly identi-
cal to that of the absolute minimum, but based on our results it is favourable to exclude a
larger amount of interfacial surface area for this particular system. Finally, there appears
to be a third minimum (blue, bottom-right Fig. 4.5). The presence of this minimum can
be explained by the fact that configurations with φ = 0 and ψ ∈ [0, π/4] are essentially
the same as the configuration with φ = π/2 and ψ = 0 due to the symmetry properties
of the truncated cube. We therefore again find the metastable minimum. The small size
of the region around φ = π/2 and ψ = 0 where the configurations are similar to those
around φ = 0 and ψ ∈ [0, π/4] also explains the serrated nature of the f = −0.115 contour
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Figure 4.4: The reduced free energy of adsorption f for a truncated cube with contact-angle
surface patterning and its equilibrium position. The parameters for this system are s = 0.25,
cos θ1 = −0.25, cos θ2 = −0.25, and τ∗ = 0. (a) Three-dimensional (3D) contour plot of f as
a function of the height z, the polar angle φ, and the azimuthal angle ψ. From red to blue
the free-energy contours are f = −0.1, −0.05, 0.05, and 0.1, respectively. Two red translucent
surfaces bound the adsorption region. (b,c) Two views of the equilibrium configuration achieved
for this particular parameter set. The particle is intersected by the interface in such a way
that three of the triangular faces are close to touching the interface and the largest part of the
particle is immersed in the top medium.
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Figure 4.5: A two-dimensional (2D) contour representation of the free energy f in Fig. 4.4a
as a function of z and ψ. We chose slightly different contours here to give better insight into the
properties of the landscape. The thick grey curves show the boundaries to the adsorption region.
The minimum free energy is given by f ≈ −0.116. There are three regions in this landscape
where f < −0.115, indicated using blue and green. The absolute minimum is located in the
green region and corresponds to the configuration in Fig. 4.4(b,c).
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Figure 4.6: A representation of the reduced free energy f and the equilibrium position for a
truncated nanocube with s = 0.25, cos θ1 = −0.8, cos θ2 = 0.0, and τ∗ = 0. (a) 3D contour plot
of f as a function z, φ, and ψ. From red to blue the free-energy contours are f = −0.01, 0.05,
0.1, 0.2, and 0.4, respectively. The two red translucent surfaces bound the adsorption region.
(b,c) Two views of the equilibrium configuration achieved for this particular parameter set. The
particle is almost completely immersed in the top medium.

in the bottom-right panel, since there is increased numerical uncertainty associated with
such a small feature.

We also considered the set of parameters, s = 0.25, cos θ1 = −0.8, cos θ2 = 0, and τ ∗ =
0 for which the particle is contact-angle patterned. We obtained a different free-energy
landscape, see Figs. 4.6a and 4.7, for which there is only one minimum, corresponding
to the equilibrium configuration shown in Fig. 4.6b. The change in adsorption behaviour
between the two systems we considered here is exclusively determined by the properties
of the surfaces and media that are in contact. The quality of our results for these systems
gave us confidence in applying our technique for other choices of the contact angle pattern
as well. In the next section we therefore examine the dependence of the equilibrium
configuration on cos θ1 and cos θ2.

4.4.3 Equilibrium Adsorption Configurations
We considered an equidistant grid for cos θi ∈ [−1, 1] (i = 1, 2) using 20 points, where we
assumed s = 0.25 and τ ∗ = 0. For each of the contact-angle combinations we employed
our triangular-tessellation technique to determine the free energy of adsorption f and from
that we obtained the associated equilibrium configuration. In analysing these equilibrium
configurations, we observed that they can be divided into three groups. Members in a
group have a small spread around an average configuration, and the distance between the
groups in (z, φ, ψ) is large, i.e., they are disjoint. In Fig. 4.8 we show three configurations
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Figure 4.7: Various equi-φ sections corresponding to the system in Fig. 4.6. The slices of the
landscape in Fig. 4.6a give a 2D contour representation of the free energy f as a function of
ψ and z. Again we chose slightly different contours. The thick grey lines form the boundaries
to the adsorption region. The minimum free energy is given by f ≈ −0.026. There are now
two regions in this landscape where f < −0.025 occurs, indicated using blue. The absolute
minimum, see Fig. 4.4(b,c), is assumed in both blue regions as explained in the text.
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Figure 4.8: Visual representations of the three archetypical equilibrium adsorption configu-
rations of a truncated cube (s = 0.25) that are encountered by varying both cos θ1 and cos θ2
between −1 and 1 (τ∗ = 0). (a,b) The red ‘I’ configuration corresponds to the truncated cube
having two opposing face diagonals and two associated opposing ribs flush with the interface.
(c,d) The green ‘II’ configuration corresponds to the interface bisecting the particle in two of
its triangular facets. (e,f) The blue ‘III’ configuration corresponds to one of the octagonal faces
being flush with the interface.

that are representative of the three groups we found. The extent to which we take this
archetypical property is exemplified by comparing Fig. 4.4b and configuration I from
Fig. 4.8. The orientation in these two cases is very similar, the height of adsorption is
however slightly different. To further illustrate the idea of these preferential configurations
we also used the associated colour coding to indicate the minima in Figs. 4.5 and 4.7.

Figure 4.9 shows the equilibrium configurations obtained as a function of the two
contact angles. We used the symmetry properties of the system to reduce the parameter
space to cos θ1 ∈ [0, 1] and cos θ2 ∈ [−1, 1]. Most of the configurations we obtained can
be assigned to one of the three representative states in Fig. 4.8. The relatively sharp
division of these configurations into three areas is related to the disjoint nature of the
grouping of the equilibrium configurations and shows that the members of these groups
share properties with regards to the surface patterning. The contact angle of the octagonal
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faces plays a dominant role in determining the particle’s equilibrium configuration. This
is to be expected, because the surface-area ratio of the triangular to the octagonal faces
is 0.062.

In light of the results in Fig. 4.9, the presence of free-energy minima associated with
configuration II and III for cos θ1 = cos θ2 = −0.25, see Figs. 4.4a and 4.5, can be
explained by the close proximity of this parameter choice to the boundary between the
respective regions. There are no metastable minima in the free energy for cos θ1 = −0.8
and cos θ2 = 0.0, see Figs. 4.6a and 4.7, because this choice puts the system deep inside
region III.

4.4.4 Comparison to the Adsorption of a Cube
To give a reference frame for our results, we also studied regular cubes (s = 0). Note
that a cube only has one surface property in our model, which is specified by cos θ1. We
found only two equilibrium configurations upon varying the contact angle, i.e., all points
in the respective groups fall on top of each other. Figure 4.10 shows this result and the
associated equilibrium configurations. From Fig. 4.9 it becomes clear that for a truncated
cube with homogeneous surface properties a new configuration appears with respect to the
two configurations found for the cube. This new configuration can therefore be directly
related to the truncation. Moreover, truncation appears to destabilize the equilibrium
configurations, i.e., they are less sharply defined since the points in the three equilibrium-
configuration groups have a spread. Keeping the change induced by truncation in mind,
it becomes even more clear that the influence of cos θ2 is not very significant for s = 0.25.
The only effect seems to be a slight increase/decrease in the sizes of the various regions.

In conclusion, we showed that we can determine the free energy of adsorption at a flat
interface for a contact-angle surface-patterned particle by making use of the generalized
triangular-tessellation technique. The research in this section is more a proof of principle
than an attempt to establish a model for and rigorously analyse experimental systems.
One key element that requires further investigation is the effect of interfacial deformation,
which is expected to be very relevant in describing the behaviour of these sharp-edged
particles in experiments. It would be interesting to see to what extent our observations
may be recovered in a more elaborate model, but this goes beyond the scope of the current
investigation.

4.5 Nonconvex Shapes and Confocal Microscopy
In this section we show that our generalized triangular-tessellation technique can be used
to determine the cross section of a plane with a nonconvex particle. Together with the
result in Section 4.4, this illustrates that our algorithm is in principle capable of deter-
mining the surface areas and contact-line length(s) required to establish the free energy
of adsorption for a nonconvex contact-angle-patterned particle using our simple model.
We choose not to study the free energy here, since for highly nonconvex faceted particles
the assumption of negligible interfacial deformation is undoubtedly flawed. However, as
mentioned in Section 2.4 the ability of our technique to determine cross-sectional shapes
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Figure 4.9: A visual representation of the equilibrium adsorption configurations as a function
of cos θ1 and cos θ2 for a contact-angle-patterned truncated cube with truncation parameter
s = 0.25 and line tension τ∗ = 0. We used symmetry properties to reduce the domain. Red
circles, green triangles, and blue squares indicate the configurations which can be assigned to
groups I, II, and III, respectively, also see Fig. 4.8. Black crosses indicate the configurations
which fall outside of these groups. The three groups of configurations also correspond to three
connected areas in parameter space. We roughly indicate the boundaries between these areas
using black lines. Two magenta circles give the location of systems equivalent to those considered
in Figs. 4.4 and 4.6, respectively. The thick grey line indicates the systems for which the particle
has a homogeneous contact angle ‘pattern’.
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Figure 4.10: (a) The equilibrium adsorption configurations for a cube as a function of cos θ1 ∈
[−1, 1]. We used symmetry properties to reduce the domain to cos θ1 ∈ [0, 1]. Red circles
indicate the systems that are in configuration ‘I’ and blue squares the systems that are in to
configuration ‘III’. The labelling is similar to that used in Fig. 4.9 to show the relation between
these two particles. (b,c) The red ‘I’ configuration corresponds to the cube having two opposing
face diagonals and two associated opposing ribs flush with the interface. (d,e) The cube in the
blue ‘III’ configuration has one face flush with the interface, but is otherwise immersed in the
favoured medium.
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Figure 4.11: A sample of the cross sections that result from plane-octapod intersection. The
top row gives three orientations of the octapod, labelled I, II, and III. The octapod (red) is
intersected by various horizontal planes (blue, transparent). The bottom three rows give the
different silhouettes that correspond to the intersections above. The orientation label can be
found in the top-left corner of the leftmost panel. The height z is indicated in the top-right
corner of each panel in the row. The projection of the octapod’s centre of rotation is located in
the middle of the panels.

for complex particles may be used to help understand two-dimensional (2D) confocal-
microscopy data and to verify the quality of particle-tracking algorithms.

We considered an octapod-shaped nanocrystal [54], also see Chapter 7. This is an
ideal candidate to demonstrate our technique on, because of its highly nonconvex nature,
despite it being too small for conventional confocal microscopy. However, confocal mi-
croscopes capable of imaging on such length scales are being developed [244, 245]. The
so-called octapods have an octahedral core on which eight tapered pods are grown. We
approximated their shape according to the model given in Section 7.3.1. Figure 4.11 shows
three orientations of the octapod model intersected by several conveniently chosen hori-
zontal planes and the cross-sectional shape of these intersections. We scaled the model to
unit volume and the value of the height z at which the plane intersects the octapod model
is indicated in the associated reduced units. We obtained a variety of convex, nonconvex,
and disjoint cross-sectional areas for these three configurations and we verified that these
indeed correspond to the actual intersection.

We do not show that our method can also handle inclusions, e.g., the situation sketched
in Fig. 4.2, since these do not occur for this model. However, we confirmed that these can
also be handled by our algorithm. Moreover, we determined using analytic techniques
that the surface areas and contact-line lengths predicted by our triangular-tessellation
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method were indeed correct for several highly symmetric configurations. We have thus
shown that our extended algorithm has the desired functionality.

4.6 Towards Interfacial Deformation
In this section we study the relatively simple case of the adsorption of a single colloidal
sphere at a liquid-liquid interface to show the changes in the free energy of adsorption
by going from a model that assumes an undeformed interface to model that allows the
interface to deform. We only allow deformation that is induced by the requirement that
along the three-phase contact line the contact angle is correct. To that end, we closely
follow the approach outlined in Ref. [153].

We first consider a single colloidal sphere adsorbed at an interface that does not
deform to give a frame of reference for the deformed-interface results. This is also the
approximation used throughout this thesis to analyse interfacial adsorption. The free
energy of adsorption F for such a system can be written as

F (∆h)
πγ12a2 =


(1 + cos θ)2 ∆h/a < −1− cos θ

(∆h/a)2 1− cos θ ≥ ∆h/a ≥ −1− cos θ
(1− cos θ)2 ∆h/a > 1− cos θ

, (4.8)

using the approach outlined in Chapter 2. Here ∆h measures the particle’s position with
respect to the reference point. This reference point (∆h = 0) is shown in Fig. 4.12 and
corresponds to the colloid being adsorbed at a depth z = −a cos θ with respect to the
interface, with z = 0 the location of the interface. That is, the colloid is adsorbed in its
equilibrium position. The height of the interface with respect to the colloid’s centre is
given by h = −z and for the reference state we therefore have h = a cos θ. This is the
same result as obtained by Pieranski [129]. The free-energy profile of Eq. 4.8 is a parabola
as long as there is contact with the interface, also see Fig. 4.14.

We now consider a system where the interface is allowed to deform, see Fig. 4.13.
The reference point is given by the configuration in Fig. 4.12. The amount by which the
interface is deformed can be quantified by the radially symmetric function u(r), which
measures the height of the interface w.r.t. the reference interface (z = 0), as a function
of the radial distance r. The value of r for which the interface makes contact with the
colloid is given by r0. The free energy can be subdivided in the following way:

F = Fcontact + Fmeniscus + Fvolume, (4.9)

where Fcontact is the contribution that comes from the colloid being in contact with the
two media, Fmeniscus gives the free energy related to the colloid penetrating the interface
and the interface being stretched by the deformation, and Fvolume takes into account the
force of gravity acting on the fluids. We consider a system for which there are no forces
acting on the particle, such as gravity, and no forces acting across the interface, e.g., a
force induced by osmotic pressure due to an ion concentration mismatch.

It is relatively easy to show, following Ref. [153], that the free energy associated with
colloid-medium contact is given by

Fcontact ≈ πγ12
(
(u(a sin θ)−∆h)2 +

(
r2

0 − a2 sin2 θ
))
, (4.10)
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Figure 4.12: The reference point for the study of the influence of interfacial deformation on
the free energy of adsorption for a spherical colloid. This reference state also corresponds to the
equilibrium configuration for a system where the interface does not deform. The radius of the
particle is given by a, the three-phase contact angle by θ, the colloid-medium surface tensions
by γ1c and γ2c, respectively, and the interfacial surface tension by γ12. The interface is located
at z = 0 and the colloid’s centre is at a depth z = −a cos θ with respect to the interface, or
conversely the interface is at a height h = a cos θ with respect to the colloid’s centre. The figure
is rotationally symmetric around the z-axis and radial distance is measured by r.
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Figure 4.13: A sketch of a configuration for which the interface is deformed. The function
u(r) measures the height of the interface with respect to the z = 0. The position of the interface
with respect to the colloid’s centre (in the reference state) is denoted by h. The value of r for
which the interface makes contact with the particle is given by r0.
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with ∆h = h − a cos θ. This approximation is valid when du/dr � 1. The contribution
to the change in meniscus area Fmeniscus can be approximated by

Fmeniscus ≈ πγ12
(
a2 sin2 θ − r2

0

)
+ πγ12

∫ ∞
a sin θ

r

(
du(r)
dr

)2

dr, (4.11)

again using Ref. [153]. To determine Fvolume we introduce the capillary length

λ =
√

γ12

(ρ2 − ρ1)g , (4.12)

with ρ2 > ρ1 the mass densities of the two media and g the constant of gravitational
acceleration, such that

Fvolume ≈ πγ12

∫ ∞
a sin θ

r
u2(r)
λ2 dr. (4.13)

By combining the three relations, Eqs. (4.10), (4.11), and (4.13), we obtain an expression
for the free energy

F ≈ πγ12

∫ ∞
a sin θ

r

(du(r)
dr

)2

+ u2(r)
λ2

+ (u(a sin θ)−∆h)2

 dr. (4.14)

Functional minimization with respect to the interfacial profile u(r) for r > a sin θ leads
to the following second-order ordinary differential equation

d2u

dr2 + 1
r

du

dr
− 1
λ2u = 0. (4.15)

Minimization with respect to u(a sin θ) leads to the first boundary condition

u′(a sin θ) = u(a sin θ)−∆h
a sin θ , (4.16)

where the prime denotes the derivative w.r.t. r. The second boundary condition is that
u(r ↑ ∞) → 0, i.e., the interface is asymptotically flat. The solution to the differential
equation in Eq. (4.15) with these two boundary conditions can now be written as

u(r) = λ

a sin θ
(∆h−K0(a sin θ/λ))

K1(a sin θ/λ) K0(r/λ), (4.17)

whereK0 andK1 are the zeroth and first modified Bessel functions of the second kind [246].
When this relation is inserted in Eq. (4.14), we obtain that the free energy is again
quadratic in ∆h, but with different prefactors.

Figure 4.14 shows the free-energy profile we obtained for cos θ = 2/3 and λ = 100a.
This is a physically reasonable choice for λ since colloids are roughly 1 µm in size and
typical capillary lengths are in the order of a millimetre. In the absence of forces acting
on the particle and across the interface the equilibrium configuration is the same as that
of the undeformed interface model. This is not surprising since for a sphere the contact
angle between the colloid and the interface is correct in this configuration. Moreover, any
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Figure 4.14: The reduced free energy of adsorption F/(πγ12a
2) as a function of the height

difference ∆h with respect to the equilibrium position of a spherical colloid with radius a. The
blue curve gives the result for the undeformed-interface model: a parabolic free energy when
the particle is adsorbed, and two flat pieces when the particle does not touch the interface.
The difference in height between the two flat pieces is determined by the contact angle we use
here: cos θ = 2/3. The red curve shows the free energy for the model which takes interfacial
deformation into account, the capillary length is given by λ = 100a. The dashed lines roughly
indicate regions where the model breaks down, see the text. The location of the dots and
corresponding numbers between brackets refer to the visual representations in Fig. 4.15.
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Figure 4.15: Several snapshots of a spherical colloid (black silhouette) at an interface. The
contact angle is given by cos θ = 2/3 and the capillary length by λ = 100a. We show the interfa-
cial profile u(r) as a function of the radial distance from the origin r, for both the undeformed-
(blue, dashed) and deformed-interface (red, solid) model. The height of adsorption h is given in
the top-left corner and the corresponding number in Fig. 4.14 is given under it.
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deformation of the interface with respect to this state would only lead to an increase in
interfacial surface area, which gives a corresponding increase of the free energy.

By allowing the interface to deform the free-energy profiles become substantially wider
with respect to the undeformed-interface model. We used dashed lines for certain values
of ∆h in Fig. 4.14 to roughly indicate where our deformed-interface model breaks down.
For ∆h � a the assumption that du/dr � 1 is eventually violated when the particle
moves deeper into the bottom medium, also see Fig. 4.15, which shows several snapshots
of the colloid and the interface for the numbered sites in Fig. 4.14. In a model that
incorporates interfacial curvature to a higher order approximation a liquid bridge will
form. For sufficiently positive values of ∆h we encounter a different problem: there is
hysteresis, as we will explain in the following.

A colloid completely immersed in the top medium (∆h� a) experiences the free en-
ergy of the blue curve (Fig. 4.14), which has a constant value. When the colloid reaches
point 1 from (∆h� a) the undeformed-interface configuration becomes metastable. How-
ever, the particle can only cross over to the free energy of the red curve, if it comes into
contact with the interface. As long as the particle is not in contact with the interface it
experiences the constant free energy associated with the blue curve, within the confines
of the model. See Ref. [157] for a more realistic description of this phenomenology, in
which capillary-wave fluctuations are considered. For ∆h = 0 the particle is penalized
for moving away from the equilibrium configuration according to the free energy of the
red curve. Upon reaching point 1, the deformed state becomes metastable. However,
only when the interface de-wets the particle does it experience the constant free energy of
complete immersion in the top medium. This is what we referred to when we mentioned
that there is hysteresis in the system. We used dashes in Fig. 4.14, since our model does
not account for capillary fluctuations and we could therefore not determine where the
deformed free-energy branch terminates.

Summarizing, we showed that there is a significant difference between the free energy
of adsorption associated with a model that does and with a model that does not take
deformation of the interface in to account. In light of this, the relevance of the results in
Chapters 2 and 3 to experimental systems requires further investigation, but such a study
goes beyond the scope of this thesis.

4.7 Conclusion and Outlook
In this chapter we generalized the triangular-tessellation technique from Chapter 2 to
determine the surface areas and contact-line length(s) associated with the adsorption of
an arbitrary nonconvex surface-patterned colloid at a flat interface. We demonstrated
that our extended technique has the proper functionality by considering two systems.

Truncated nanocubes, for which the triangular and octagonal facets have distinct wet-
ting properties, were studied to demonstrate that contact-angle surface-patterned parti-
cles can be handled by our method. Using our technique we examined the properties of
the interfacial adsorption of truncated cubes within the confines of a simple undeformed-
interface model. We found that there are three types of adsorption that can occur for
truncated cubes and two for cubes. Our investigation marks the starting point of a the-
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oretical study into the behaviour of similarly shaped colloids at a liquid-liquid interface,
which is aimed at elucidating recent experimental observations [164, 242]. However, to
give a proper description of the experimental systems our simple model has to be sub-
stantially extended. This we leave for future study.

Using a model for an octapod-shaped nanocrystal we showed that our triangular-
tessellation technique is also capable of handling nonconvex particles. This, together with
our observations for the patterned nanocubes, illustrates that the generalized technique
can be applied to arbitrary surface-patterned particles.

Finally, we examined, using the methods of Ref. [153], the consequence of incorporating
interfacial deformation into our model for the simple case of a spherical particle adsorbing
to a liquid-liquid interface. We found that there is a richness in behaviour that is not
captured by our undeformed-interface model even for such a simple shape. However, our
results and approaches can be built upon in future studies to achieve better insight into
the complex problem of interfacial adsorption.
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The Floppy-Box Monte Carlo
Algorithm

In this chapter we introduce the floppy-box Monte Carlo (FBMC) method [L. Filion et
al., Phys. Rev. Lett. 103, 188302 (2009)] to predict crystal-structure candidates. The
algorithm is described in detail to ensure that it can be straightforwardly implemented
on the basis of this text. The way in which hard-particle interactions are handled in a
FBMC simulation is given special attention, as (soft) short-range and semi-long-range
interactions can be treated in an analogous way. We also discuss two types of algorithm,
the method of separating axes and a triangular-tessellation based technique. These can
be combined with the FBMC method to enable crystal-structure prediction for systems
comprised of highly shape-anisotropic particles. Finally, we comment on the process of
crystal-structure prediction itself, which requires the FBMC algorithm to be applied many
times to a particular system, and the choices that can be made in this regard.
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5.1 Introduction

The prediction of crystal structures for atomic, colloidal, and nanoparticle systems, based
only on knowledge of the interactions between particles, is of primary importance to guid-
ing the development of new materials. This problem has received a lot of attention over
the past few decades [165], but there are still many unanswered questions concerning
the efficient prediction of crystal structures. Commonly used techniques rely on sim-
ulated annealing [177, 178], genetic algorithms [179, 180], or Monte Carlo (MC) basin
hopping [181]. However, these methods do not work well for systems that have a large
entropic contribution to the free energy. Hard-particle systems pose a particular problem,
since the entropy is the only factor that imposes the crystal structure for a fixed pressure,
temperature, and particle shape. These entropy-driven systems can in principle be stud-
ied using an ergodicity search algorithm [182] or a metadynamics method [183], but both
methods have their limitations.

Interest in the subject of crystal-structure prediction has intensified over the past few
years due to the remarkable advancements made in colloid and nanoparticle synthesis [82,
83]. Not only can spherical particles be synthesized with a high level of precision and
reproducibility, but also a wide variety of convex (faceted) shapes, such as cubes [84–86],
octahedra [89, 90, 247], tetrahedra [91, 92, 248], and many more [33, 93–96]. Perhaps
most remarkable of all is the level of control that has been attained over the synthesis of
nonconvex, irregular, and even punctured particles. Branched colloids and nanocrystals
such as octapods [54, 78, 99–101] and tetrapods [102, 103] have been created, as well
as other nonconvex shapes, e.g., nanostars [104–106, 247] and colloidal caps [107–109].
Moreover, there is a better understanding of the way to achieve phase behaviour that is
dominated by entropic contributions in experimental systems [70–73].

To address the problem of crystal-structure prediction at finite pressures, for systems
that are mostly entropy driven, the method of floppy-box Monte Carlo (FBMC) was re-
cently introduced [75]. It is a technique that is similar in approach to the metadynamics
simulation [183], but it uses compression from the fluid and Monte Carlo (MC) sampling
to determine candidate structures. The FBMC technique was used to great effect on a
wide variety of systems consisting of, for instance: spheres that interact via a combination
of hard and attractive pair potentials, binary mixtures of hard spheres, and star polymers
which have semi-long-range soft interactions [75]. Truly long-range dipole-dipole interac-
tions, for which Ewald Sums were employed to determine the total energy of the system,
were also considered [75]. Moreover, the FBMC algorithm was applied to determine a
lower limit to the packing fraction of the densest configuration for highly shape-anisotropic
solids [249], also see Chapter 6. This use of the FBMC technique connects the field of
materials science with fields as diverse as discrete geometry, number theory and computer
science [184, 186, 250–252]. We only briefly go into this here and leave the discussion of
the recent developments in analysing densest packings for Chapter 6. The FBMC tech-
nique led to the discovery of a wide variety of new crystal structures [75, 171, 249] and it
has proven itself to be a remarkably efficient and robust method.

In this chapter we describe the elements required to set up a FBMC crystal-structure-
prediction algorithm, as implemented in Refs. [75, 249]. We assume only basic familiarity
with thermodynamics and simulation techniques, such that this text can be used as a
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self-explanatory recipe. In Section 5.2 we discuss the components that define a FBMC
simulation. This is followed by an introduction of the MC trial moves and acceptance
rules that we employ in Section 5.3. Section 5.4 presents a way to efficiently check for
overlaps in the system, which is based on minimizing the number of periodic images
that have to be taken into account. This, as we will show in Section 5.4, is a nontrivial
problem due to the size of the box in comparison to the range of the interaction between
the particles. Two types of hard-particle overlap routines are explained in Section 5.5,
by which simulations of (nonconvex) irregular faceted particles can be performed. The
technique of lattice reduction, which is essential to prevent unphysical distortions of the
simulation box, is introduced in Section 5.6. We briefly comment on soft interactions and
external fields in Section 5.7, before we examine the way to use the FBMC algorithm
to allow for efficient crystal-structure prediction in Section 5.8. We conclude with a
discussion of the properties of the algorithm, a brief comparison to other hard-particle
algorithms developed to predict the dense structures, and an outlook in Section 5.9.

5.2 Characterisation of the Method
The FBMC algorithm is an isothermal-isobaric NPT ensemble Monte Carlo (MC) sim-
ulation. There are three properties that turn an ordinary NPT MC simulation into a
tool for crystal structure prediction. (I) The number of particles N is small, typically
N < 12. (II) The three vectors that span the simulation box are allowed to vary indepen-
dently of each other in both their length and orientation. This is the origin of the term
floppy box, which was adopted to emphasize that the box does not have a fixed shape.
It is a variable-box-shape method, which is in common use in computational studies of
colloids [183, 253]. However, by the adjective ‘floppy-box’ (MC) we refer to the whole of
the technique to predict crystal structures, rather than just the fact that the box shape
is variable. We shall use this distinction explicitly when referring to FBMC and regular
variable-box-shape simulations throughout this thesis. Note that an NPT variable-box-
shape simulation is essentially an isothermal-isotension simulation [253], for which a spe-
cial form of the imposed stress tensor is used. This tensor only has diagonal elements,
which are all the same and are directly proportional to the pressure, i.e., according to the
hydrostatic-pressure assumption. We therefore prefer the wording ‘isothermal-isobaric’
or ‘NPT ’ ensemble. (III) To predict crystal structures the NPT part of the simulation
is preceded by a compression from a dilute phase (gas or liquid), which is accomplished
by increasing the pressure to drive the system towards higher densities. FBMC has a
fourth ‘defining property’, which does not have anything to do with the algorithm itself,
rather it pertains to the implementation. (IV) To effectively predict crystal structures it
is necessary to perform FBMC simulations for the same system many times with different
random seeds, initial conditions, compression paths, etc.

The first two properties - that the number of particles is small and that the box can
deform - essentially allow the box to act as a unit cell for the crystal structures we are
interested in. The crystal structure is strongly imposed by the periodic boundary condi-
tions. That is, the effect of periodicity is far more pronounced than for simulations with
N � 10 particles, where the goal is to minimize such finite-size effects. Fast and efficient
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exploration of crystal-structure candidates is made possible by choosing the method of
compression (III) and the way in which the algorithm is repeatedly applied (IV). There is,
however, a computational bottleneck that has to be overcome for any FBMC simulation
to obtain such fast and efficient sampling: determining the number of periodic images that
has to be checked. A particle in the unit cell of a crystal (simulation box) interacts with
its neighbours, which are its own periodic images in the FBMC method. For instance, a
single particle in a cubic unit cell is surrounded by a layer of 26 neighbours, followed by
another layer that contains 98 (secondary) neighbours, etc. If a particle has an interaction
range larger than the dimensions of the box, which is typical for FBMC simulations, it
will notice the particles in one or more adjacent layers. When the particle is translated
or rotated, the interaction between it and all these neighbours/images has to be checked
to determine whether the move is accepted or rejected. Even worse, the number of rele-
vant image layers may have increased when the box is deformed. Each additional layer
that has to be considered increases the number of interaction computations quadratically,
which quickly leads to unreasonable computational overhead even for simple interaction
potentials. However, it is often not necessary to check all images in a layer, e.g., a sphere
centred in a cubic box with a diameter slightly larger than the box length can only inter-
act with 6 of the 27 images in the next layer. As we will show, determining a small, yet
sufficient number of images to be taken into account, is not straightforward in general,
especially for very deformed boxes. In the following we explain the procedure to obtain
these images in a fast way. We shall first discuss the case where there are only pairwise
hard-core interactions in a system of shape-anisotropic particles, before discussing the
particles with soft-interactions.

5.3 The Ensemble and Monte Carlo Moves

We assume that the system of interest consists of N particles at positions rj ∈ R3 and of
which the orientation is specified by orientation vectors qj ∈ Q, where j is an index and
runs from 1 to N . The particles are contained in a box spanned by the three box vectors
vi ∈ R3, with i = 1, 2, 3. In this description the vertices of the box are given with respect
to a standard Cartesian coordinate frame and one of them is located at the origin. The
set of rj gives the location of the particles’ centre of rotation, also with respect to this
coordinate frame. The orientation of the j-th particle is obtained by applying the rotation
matrix generated by qj to a predetermined initial orientation [253]. Let the volume of
the j-th particle be given by Vj > 0. The packing fraction is then φ = (1/V )∑j Vj,
with V ≡ |v1 · (v2 × v3)| the volume of the system. Each particle has an outscribed
sphere, of which the centre is located at the rotation point rj and the radius is given by
RO,j. Note that this sphere does not necessarily satisfy the mathematical definition of
the minimum outscribed sphere. The radius of the largest outscribed sphere is denoted
RO = maxj RO,j. Finally, U gives the total energy of the system, which implicitly depends
on the sets v3 ≡ {vi}, rN ≡ {rj}, and qN ≡ {qj}, i.e., U ≡ U(v3, rN ,qN). For a system
with only hard-particle interactions U assumes two values: βU = 0, when there are no
overlaps, and βU =∞, when there are overlaps.
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(a)

(b)

(c)

Figure 5.1: A two-dimensional (2D) representation of the 4 types of Monte Carlo (MC) trial
moves that we consider for the floppy-box Monte Carlo (FBMC) simulations. (a) Translation
and rotation of the particles. (b) Uniform scaling of the box. (c) Box deformation.

For a FBMC simulation we consider 4 types of trial moves to sample phase space:
translation and rotation of the particles and scaling and deformation of the box, see
Fig. 5.1. These moves must satisfy the acceptance criterion for detailed balance in the
NPT ensemble, which is based on the Metropolis algorithm [253, 254]. We write the
probability of a move to be accepted as acc(o → n), where ‘o’ and ‘n’ are the labels
for the old and new state, respectively. Translation, rotation, and scaling moves are
performed according to Ref. [253], where we apply Ref. [255] to construct the random
perturbation of the quaternions. The acceptance criterion for these moves is given by

acc(o→ n) = min
(

1, exp
[
−β (Un − Uo + P (Vn − Vo)) + (N + 1) log

(
Vn
Vo

)])
, (5.1)

where the subscripts indicate the new and old values, P is the pressure, and V is the
volume of the system, as before. Here, we assume logarithmic steps in V for the scaling
moves, hence the natural logarithm in Eq. (5.1) is preceded by the factor (N + 1) [253].
For the deformation moves we select one element of one of the box vectors at random.
This element is perturbed by a small number, which is chosen from a uniform probability
distribution over an interval symmetric around zero. These moves also satisfy detailed
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balance for the NPT ensemble, when the acceptance rule

acc(o→ n) = min
(

1, exp
[
−β (Un − Uo + P (Vn − Vo)) +N log

(
Vn
Vo

)])
, (5.2)

is used [253]. It is easy to verify that Eq. (5.2) holds for this type of move using properties
of the cross- and dot-product to show that the deformations described above allow for
perturbations of the volume that scale linearly with the perturbation of the box vectors.

We introduced two types of moves that change the volume of the box - scaling and
deformation - because we found that the combination of the two typically led to faster
equilibration and exploration of phase space than using deformation moves only. The
scaling moves essentially create space in the system for deformations to be more readily
accepted at high volume fractions. The order in which we apply these moves is chosen
at random and satisfies the following probability distribution. For N = 1 particles we
only require deformation and scaling moves, but sampling is sped up by also allowing
rotation moves. We do not make any assumptions concerning the orientation of the box
here. A commonly used choice for variable-box-shape simulations is to have one of the
box vectors along the x-axis, another vector in the positive part of the xy-plane, and the
third in the z > 0 half space. However, this choice necessitates the use of rotation moves
for N = 1 in order to fully explore phase space. We found that roughly 70% rotation, 15%
scaling, and 15% deformation trial moves yields relatively efficient sampling. For N ≥ 2
we typically used 35% translation, 35% rotation, 15% scaling, and 15% deformation trial
moves. The ratio assigned to the volume moves may appear to be somewhat high, when
compared to typical (N � 10) MC simulations, for which they are usually applied with
probability ∼ 1/N � 1. However, these values are not unreasonable, since there are only
a few particles in the box and deformation plays an important role in sampling possible
structures.

5.4 Construction of the Image-Lists
In the following we do not make any additional assumptions on the composition of the
system other than the ones specified in Section 5.3: mixtures of highly shape-anisotropic
particles are allowed. When there are only hard-particle interactions in the system, the
acceptance criteria of Eqs. (5.1) and (5.2) are substantially simplified. Translation and
rotation moves are always accepted when they do not result in overlaps. However, as
explained before, checking for overlaps even in the simplest of systems can be time con-
suming due to the strong influence of periodicity. For scaling and deformation moves it is
even more expensive, since the minimum number of periodic images that has to be taken
into account also needs to be redetermined. We therefore first verify that such a move is
not rejected on the basis of the pressure/volume part of acc(o→ n) [Eqs. (5.1) and (5.2)]
before checking for overlaps. It is also convenient to use the packing fraction φ as an early
out at high densities, since φ ≤ 1 must always hold.

In order to check for overlaps, as well as perform the various moves, it is convenient
to introduce a set of scaled coordinates in analogy to the procedure outlined in Ref. [253].
Let sj ∈ [0, 1)3, with j = 1, . . . , N an index, denote the scaled position coordinates of
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the particles. There is a bijective function that relates these scaled coordinates to the
positions of the particles in the box, i.e., M : [0, 1)3 → R3, rj = Msj. Here M is the
matrix generated by the box vectors: M = (v1v2v3), where it is understood that the box
vectors are the columns of the matrix. This function is bijective when the volume of the
box V > 0, since this implies that det(M) 6= 0. The scaled coordinate frame allows us to
determine the number of periodic images of the box that we need to check for overlaps in
order to confirm that there are no overlaps in the entire system. Here we use the fact that
checking for overlaps in the entire system is equivalent to checking for overlaps between
a particle in the box and
(i) another particle in the box,

(ii) its own periodic images, and

(iii) other particles’ periodic images,
for all particles in the box. It is efficient to first carry out step (i) for all particles,
making sure not to double check, then step (ii) for all particles, and finally step (iii). For
N = 1 the algorithm reduces to step (ii). It is computationally favourable to only check
for overlaps between a particle and a minimum number of periodic images. However,
obtaining this minimum number of images should not go at the expense of the overall
speed of the algorithm, since volume changes occur frequently. We therefore construct
the lists of images as follows.

Recall that the largest outscribed-sphere radius is given by RO. When any two parti-
cles/images are a distance of 2RO apart, they do not overlap. However, it is difficult to
determine how many layers of images we need to take into account in each direction such
that every image-point inside this sphere is considered. To establish this number for the
self-image check [step (ii)], we may assume, without loss of generality, that the particle in
the box is located in the origin. We pick a plane that goes through the origin and that is
orthogonal to the vector v1 + v2 + v2, to bisect the sphere of radius 2R0, see Fig. 5.2a.
By choosing the plane orthogonal to the sum of the box vectors we can (usually) avoid
it intersecting image points. We only consider images that are on one side of the plane
or that lie in it. This is justified because of point-symmetry, as can be easily understood
by considering Fig. 5.2a. Take any one of the green points in Fig. 5.2a and mirror it
in the origin. This image interacts with the particle in the origin in the same way as
the particle in the origin interacts with the image located at the original (green) point,
because the orientation of all images is the same. That is to say, the periodicity allows
us to translate the entire crystal by the distance vector between the two points and this
translated structure coincides with the original. We therefore have to check only one of
the two point-symmetric possibilities.

A sufficiently large list of self-images is constructed by considering a cube with vertices
cn = 2RO (±x̂± ŷ ± ẑ) with n = 1, . . . , 8 and x̂, ŷ, and ẑ the Cartesian unit vectors.
This cube envelops the sphere at the origin with radius 2RO, see Fig. 5.2a. By applying
the inverse matrix M−1 to the eight cn vertices of the cube we obtain 8 vertices that span
a parallelepiped (Fig. 5.2b), say pn = M−1cn. Using the vertices pn the upper bounds to
the number of images that need to be checked in each direction can be constructed:

N1 = dmax
n

(pn · x̂)e;N2 = dmax
n

(pn · ŷ)e;N3 = dmax
n

(pn · ẑ)e, (5.3)
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Figure 5.2: The construction of the self-image list in two dimensions; the three-dimensional
(3D) case is analogous. (a) The simulation box (black parallelogram), the particle’s position
(blue dot), the coordinate frame (grey lines), the periodic images (dashed black lines), the
outscribed circle of radius RO (solid magenta), and double-radius circle (dashed magenta). The
solid red line indicates the point-symmetry axis: all images relevant for the overlap check are
indicated with green dots. An axis-aligned cyan square envelops the 2RO circle. (b) In the
scaled coordinate frame a bounding rectangle [−N1, N1] × [−N2, N2] (dashed red line) can be
constructed. (c) The red bounding rectangle can be mapped back to the original frame and
gives an upper bound to the number of images that have to be checked in each direction.

respectively, where d·e indicates the ceiling function. Since the parallelepiped is symmetric
around the origin the positions of the relevant images in the scaled coordinate frame are
located in the rectangle [−N1, N1] × [−N2, N2] × [−N3, N3] (Fig. 5.2b). For images that
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fall outside of this rectangle we can be certain that they do not overlap with the particle
in the origin. Using the matrix M we may now establish the equivalent set of images in
the regular coordinate frame Pim = {iv1 + jv2 + kv3}, with i = −N1, . . . , N1; j = −N2,
. . . , N2; k = −N3, . . . , N3; and i+ j + k 6= 0, see Fig. 5.2c.

The list Pim can contain many elements which are irrelevant to the overlap check -
i.e., points which fall outside of the halfsphere with radius 2RO - when the box becomes
strongly deformed or the particle has an ‘odd’ shape. We employ the following steps to
remove these images. Using the dot-product of a vector in Pim with the normal of the
point-symmetry plane we can efficiently eliminate all images that are not on the right
side of this sphere-bisecting plane. Points that have a distance to the origin greater than
2RO are also removed from the list by simply calculating the length of the position vector.
Inscribed-sphere checks between the particle in the origin and a particle at a lattice-site in
the reduced set of images P̃im are used to confirm that there are no situations where two
particles clearly overlap, before switching to a more computationally expensive overlap
algorithm. Here we employ a ‘concentric approach’ to check for overlaps. That is, we first
consider all images for which |i| + |j| + |k| = 1, followed by the set of images for which
|i|+ |j|+ |k| = 2, etc. If there are overlaps it is far more likely that they are encountered
close to the original particle, rather than further away. If there are no overlaps detected in
the entire system - having checked steps (i), (ii), and (iii) - the reduced list is accepted and
can be used to check for overlaps until an attempted volume move (scaling or deformation)
requires a new self-image list to be constructed.

Checking for overlaps between a particle in the box and another particle’s images [step
(iii)] is a simple matter of extending the above reduced self-image list. We add 1 layer
of images in the positive vi directions to the set P̃im. It is easily understood that it is
sufficient to check up to this range in periodic images. The list P̃im already contained
all relevant image points with a distance 2RO and the distance added by considering two
particles in the box is at most one box length in each vi direction. The fact that the
problem is no longer point symmetric is overcome by checking one particle with another
particle’s images and vice versa.

5.5 Hard-Particle Overlap Algorithms

In this section we briefly discuss two hard-particle overlap algorithms, the method of
separating axes and a triangular-tessellation-based technique, which can be used in com-
bination with the FBMC technique to study crystal structures for faceted (nonconvex)
particles. These algorithms were recently employed to great effect in Refs. [54, 249]. The
two routines are predominantly used in computer-game and engineering applications [218–
220]. However, such methods have gained popularity in the physics and mathematics
communities and show great promise for future studies, especially with the emergence
of the graphics card as a powerful platform for particle simulations and image process-
ing [256–258]. Moreover, there has been a marked increase in the ability to synthesize
a stunning array of faceted (nonconvex) particles [78, 99, 102–106, 247], as well as the
level of control with which such particles can be prepared [54]. This has led to particu-
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lar interest from materials science in these overlap algorithms to perform simulations on
nanoparticle and colloid systems [167, 169, 172–174, 259, 260].

5.5.1 The Method of Separating Axes
The method of separating axes is an overlap algorithm that can be applied to convex
particles. This technique is based on the (Hahn-Banach) separating-hyperplane theorem
for convex sets in Euclidean space [261]. The theorem implies that for two disjoint convex
sets there exists a plane between these sets that does not intersect either. That is, one
of the particles is in one of the halfspaces defined by the separating plane and the other
particle is in the opposite halfspace, respectively. Any axis orthogonal to the separating
plane is referred to as a separating axis, because orthogonal projections of the convex
sets onto this axis are disjoint, also see Fig. 5.3. The problem of determining if two
objects overlap can therefore be reduced to finding a separating axis: if there is such
an axis, the objects do not overlap; if there is no such axis, they do. The procedure
to find a separating axis for two arbitrary convex particles cannot be performed in a
finite time, since an infinite number of directions may result in a possible separating axis.
However, it can be shown that for two convex three-dimensional (3D) polyhedra, only a
finite number of directions has to be checked [261]. This makes it possible to turn the
separating-hyperplane theorem into an efficient algorithm.

Figure 5.3: A 2D representation of method of separating axes. We consider two disjoint convex
polygons. The dashed vertical line indicates a possible separating plane for these particles, and
the solid horizontal line an associated separating axis. Note that the projection of the particles
on the separating axis results in disjoint domains, as indicated by the arrows and line segments.

Only the set of vectors normal to the faces of the two polyhedra and the set of vectors
generated by cross-products between two edges, one from each polyhedron, have to be
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checked for separation. The way in which to perform such checks efficiently is described
in great detail for 3D polyhedral particles, as well as for two-dimensional (2D) polygons,
in Ref. [262]. One minor addition to the overlap routine of Ref. [262] should be made,
when applying it in a FBMC simulation close to the maximum packing fraction. At
these high densities it is possible that two particles come together in such a way that
the cross-product of two of their respective edges becomes very small. This leads to
numerical instabilities in the algorithm proposed in Ref. [262]. Such instabilities can
result in a separating axis being identified, despite the particles interpenetrating. We
found that normalizing the cross-product vector eliminates the problem for all the systems
we considered.

5.5.2 Triangular-Tessellation-Based Overlap Algorithms

The method of separating axes described above has the advantage that it is very easy to
implement, can be applied without modification to a wide class of particles, and is also
computationally efficient. However, due to the algorithm’s dependence on the separating-
hyperplane theorem it cannot be extended to handle nonconvex particles.

Checking for overlaps between nonconvex particles can be made possible by approxi-
mating the shape of a particle with a collection of spheres or rods [263–266]. The respective
overlap algorithms are simple and efficient enough to justify the use of spheres and rods
as building blocks for larger objects. Such approximations give exact results is the case
of, e.g., dumbbells, which consist of two interpenetrating spheres. However, a prohibitive
number of spheres or rods may be required to give a decent approximation, especially
when an object contains both drastic changes in curvature and large flat parts. Only
recently were the first attempts made to study systems that contain relatively complex
curved particles. For bowls [176] an overlap algorithm was devised unique to this shape.
Nonconvex shapes with sharp edges and smooth surfaces, such as superdisks [175] and
caps [176], have also come under investigation. Moreover, Ref. [267] introduced a general
method to handle collision detection for smooth (nonconvex) objects in Molecular Dy-
namics simulations. Unfortunately, none of the above methods are particularly suited to
study nonconvex faceted particles.

Simple nonconvex polyhedral (faceted) particles may be broken up into convex con-
stituents, for which the method of separating axes can be employed. However, an alter-
native to this type of partitioning exists, which is better suited to study more complex
faceted shapes. In computer-game and engineering applications the surface of the objects
is defined usually by a polygonal mesh [218]. Two particles overlap when there is an
intersection between a pair of polygons in the respective meshes. Such intersections are
easily determined on a polygon-by-polygon basis, because of a polygon’s simple shape,
which also makes polygons ideally suited to describe objects. The algorithms employed to
search for overlaps are often specifically designed to handle highly irregular objects and
are typically very general in their setup. Moreover, they can usually be straightforwardly
implemented, and ordinarily a lot of effort has been put into their optimization. An ex-
ample of such optimization is the use of an oriented-bounding-box-tree (OBB-tree) [268]
for high-polygon models. An OBB-tree essentially breaks up the model into smaller pieces
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in a very efficient way. The tree allows the polygon-based overlap routine to be applied
solely to parts of the model that are in close proximity.

Due to our familiarity with approximating the surface of an object with triangles,
so-called triangular tessellation, also see Chapters 2 - 4, we decided to base our overlap
algorithm for nonconvex hard particles on the Robust and Accurate Polygon Interference
Detection (RAPID) library [218]. The RAPID library is designed specifically to quickly
determine if there are triangle intersections; it employs an OBB-tree for larger objects
and is easy to set up. See Refs. [219, 220] for some alternative overlap-detection libraries.
The procedure of performing an overlap check is as follows. Particles are tessellated with
triangles, according to the method of Chapter 2, to generate simulation models. This
triangular tessellation is exact for polyhedral particles, i.e., the shape is approximated
perfectly. These models are passed to the RAPID library. To perform an overlap check
we only need to input two position vectors and two rotation matrices in the relevant
RAPID subroutine. This subroutine returns a Boolean value that specifies whether there
are triangle intersections or not. We found RAPID to be extremely stable, even for
FBMC simulations in the high-pressure dense-packed limit, where the numerical stability
of any algorithm is put to the test. Unlike the method of separating axes inclusions may
occur, when there is a substantial size difference between particles, since the triangular-
tessellation-based algorithm only considers the surface area of a particle. We can use an
inscribed-sphere check to reject trial moves that result in an inclusion. The RAPID algo-
rithm also allows for interior and even disconnected triangles to be added to a model [218]
that can be used to further prevent inclusions, when the gap between a particle and its
inscribed sphere is too wide.

5.6 Unphysical Distortions and Lattice Reduction
In the above discussion, we did not take into consideration that by allowing the box to
deform, especially when compressing from a dilute phase, it may become very distorted.
That is to say, the box can become very flat or elongated, when the angles between the
lattice vectors become large or small. This slows down our algorithm, since an enormous
number of periodic images needs to be taken into consideration in order to determine
whether a move is accepted or not. Moreover, the overly distorted shape of the box
can interfere with the sampling of crystal-structure candidates, i.e., it induces artificial
preferential directions in the system. For a flat box the particles tend to line up into
columns, which results in an unphysical contribution to the entropy, since the particles
only interact with periodic images in one direction. At high pressures/densities the box
cannot easily move back to a more orthorhombic shape, because the (isotropic) pressure
induces a stronger cumulative force acting on the larger faces of the box, thereby squeezing
it flat. To improve the efficiency of the FBMC algorithm and to prevent unphysical
distortions of the unit cell we require lattice reduction.

Lattice reduction is the process by which a set of basis vectors for a lattice is replaced
by an equivalent set of basis vectors, which are shorter and more orthogonal. That is
to say the surface-to-volume ratio of the box is minimized. In Ref. [179] an algorithm
is proposed to accomplish this lattice reduction in a three-dimensional (3D) system. We
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Figure 5.4: Illustration of the lattice-reduction procedure. A 2D binary crystal of disks
is shown, as well as three possible unit cells for this crystal. From top to bottom the lattice
vectors of the unit cells become more orthogonal and shorter. The lattice vector that is modified
is shown in grey. The one by which it is reduced, is indicated using a dashed grey arrow. The
lattice-reduced unit cell has a square geometry.

modify this algorithm as follows. We measure the distortion of the simulation box using
the function

C(v1,v2,v3) = 1
9

(|v1|+ |v2|+ |v3|) (|v1 × v2|+ |v1 × v3|+ |v2 × v3|)
v1 · (v2 × v3) , (5.4)

with | · | the vector norm. This function is obtained by multiplying the average box-vector
length with the size of the box’s surface, dividing by the total volume of the box, and
normalizing this quantity such that C = 1 for a cube. It can be shown that C > 1, when
the box is not cubic. We empirically established a criterion for lattice reduction: if C . 1.5
the box is sufficiently orthorhombic and we do not perform lattice reduction, although
this number may be tweaked to better suit a particular system. When C > 1.5, we follow
Ref. [179] and generate a set of 12 lattice combinations:

{v1 ± v2,v2,v3} , {v1 ± v3,v2,v3} ,
{v1,v2 ± v1,v3} , {v1,v2 ± v3,v3} ,
{v1,v2,v3 ± v1} , {v1,v2,v3 ± v2} . (5.5)

We calculate the surface area for each of these potentially more orthorhombic boxes
and select the one with the smallest surface area. For this new box another set of 12
combinations is constructed according to Eq. (5.5) and the procedure is repeated. This
process is terminated when the smallest surface area among these 12 candidates is greater
than the surface area of the box in the previous iteration. See Fig. 5.4 for an illustration
of the procedure. Full lattice reduction is always accomplished within a finite number
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of steps, but it is prudent to impose a cut-off at roughly 10 iterations. We found that
convergence for this algorithm is fast, typically taking no more than 3 to 5 iterations, for
boxes with 1.5 . C . 10. When the fully lattice-reduced box is found the particles are
placed back in the box. Note that the number of particles in the box is preserved under
lattice reduction. We did not implement the constraint of Ref. [75] on the angles that
the box vectors can make with each other. The lattice-reduction procedure removes any
unwanted deformations efficiently and an angular constraint might bias the simulation for
particles with a highly anisotropic shape.

5.7 Soft Interactions and External Fields
Hard-particle FBMC simulations, for which a suitable overlap routine is chosen, can be
performed using the above combination of acceptance criteria, image-list generation, and
lattice reduction. Introducing soft interactions into the system requires extending the
above approach as follows. The method of truncation and tail correction described in
Ref. [253] is employed to determine the contribution to the system’s total energy for
short-range and semi-long-range interaction potentials. That is, soft interactions which
decay faster than r−3, with r the inter-particle distance. Here we assume a radially
symmetric cut-off distance of RC, which allows us to construct similar image lists as for
the hard-particle interaction. A version of the FBMCmethod was also successfully applied
to systems with long-range interaction potentials [75], for which Ewald Sums [253, 269]
are required to compute the energy contribution. Interaction with an external field can
also be easily introduced, since such a term only couples to the particles in the box in
the expression for the total energy. It depends on the specifics of the system whether it
is advantageous to first consider acceptance of the scaling and deformation moves on the
hard-particle part of acc(o→ n) or on the soft-interaction part.

5.8 Compression and Crystal Structure Prediction
In order to successfully predict crystal structures we apply the following procedure, also
see Chapter 6 for some examples. Systems are prepared in a dilute phase, for which
the particles are not in contact, at a low pressure. What constitutes a ‘low pressure’ is
strongly dependent on the system, but can easily be ascertained by a few trial runs. In
order to obtain the pressure P of interest, the initial pressure is increased over a number
of Monte Carlo cycles, where one cycle is understood to be one (translation, rotation,
volume) trial move per particle. A slow increase of the pressure, for instance, according
to a geometric series of pressure steps, can be applied to allow the system to sample more
ways in which to ‘crystallize’, in the hope that it chooses the optimal structure. If a
slow increase of the pressure is used, we typically find that the FBMC simulation only
has to be performed a small number of times in order to obtain a good understanding
of the possible crystal structures that can be found at the pressure of interest, say 25 to
100 compression runs. It is also possible to compress the system by rapidly increasing
the pressure. In this case, effective sampling of crystal structures usually necessitates
a larger set of compression runs than for the slower pressure increase, since there is less
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time for the system to explore different orientations before it becomes jammed in a (local)
minimum of the crystal-structure free energy. Both slow and fast compression runs should
be followed by a period of equilibration at the desired pressure to allow the system to
settle in its (locally) optimal structure. When the fluctuations in the system are relatively
large, it can be useful to follow this equilibration with a production run during which, for
instance, the lattice vectors, particle positions, and particle orientations are averaged to
obtain a representative crystal-structure candidate.

Increasing and decreasing the pressure several times around the P value of interest
can prove useful in helping the system to cross free-energy barriers, thereby improving the
chance of finding the global minimum in the free energy. Allowing the MC step size to
adjust to predetermined acceptance ratios during the compression and equilibration part
of the simulation also improves the results of the FBMC algorithm. We typically employ
an acceptance ratio of 25% for translations and rotations, and a ratio of 10% for scaling
and deformation moves. The set of crystal-structure candidates that is obtained by slow
and/or fast compression, can be analysed using a combination of software packages [270]
and manually going through crystal-structure databases [271, 272]. For a binary mix-
ture of hard spheres this approach allowed the crystal structures of the candidates to be
determined [75]. However, establishing the structure of a numerically obtained result is
highly nontrivial in general. Moreover, a description of a system by its molecular equiva-
lent [75, 174, 260, 272], is not always adequate or possible for nonspherical particles, also
see Ref. [249] and Chapter 6. Finally, we note that the frequency with which structures
are observed in the FBMC runs can give some insight into which of the structures we find
is stable [75], but only free-energy calculations can give a definitive answer.

5.9 Discussion and Outlook
Summarizing, we described in detail the way in which a floppy-box Monte Carlo (FBMC)
simulation [75], which allows for the prediction of crystal-structure candidates at finite
pressure, can be set up. We also discussed two types of overlap algorithm, the method of
separating axes and a triangular-tessellation based technique, by which hard-particle sim-
ulations for (nonconvex) faceted objects can be performed. When these overlap routines
are combined with the FBMC algorithm, a powerful simulation technique is obtained
with many applications to colloid research, as well as mathematical problems of a more
fundamental nature. We briefly go into these here and discuss these in more detail in
Chapter 6.

The FBMC algorithm can be used to establish a lower bound to the packing fraction
of the densest configuration of shape-anisotropic (nonconvex) objects [249]. Currently
several techniques exist to estimate this lower bound numerically [166, 167, 169, 249, 260,
273, 274]. The FBMC method is similar to the adaptive-shrinking-cell (ASC) method
of Refs. [166, 167], since both allow for a sequential search of configurational space and
lattice space using a Metropolis based Monte Carlo (MC) procedure. However, FBMC
uses a lattice-reduction technique [179] to avoid unphysical distortions of the unit cell,
whereas the ASC algorithm employs a symmetric strain tensor. In addition, FBMC
drives the systems towards its densest configuration by employing a (gradual) pressure
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increase according to a NPT -MC simulation, whereas ASC drives compression using the
negative packing fraction as the basis of its Metropolis acceptance rule. The method
used in Refs. [169, 260], likely amounts to a different implementation of the principles
that underlie the FBMC algorithm, whereas the technique of Refs. [273, 274] constitutes
a completely different means of determining densest packings. The latter is based on a
divide-and-conquer approach to achieve simultaneous satisfaction of multiple constraint
equations. It goes beyond the scope of this thesis to determine which of these techniques
is most suited to achieve densest-packed structures.

Of the aforementioned crystal-structure prediction algorithms FBMC has the advan-
tage that it can be used to explore suboptimal packings in accordance with the statistical
NPT -ensemble at finite pressures. This is particularly relevant, since densest-packed can-
didate crystal structure need not be thermodynamically stable at all pressures for which
the system crystallizes [54, 171–173]. It is important to realize that there are strong
finite-size effects for the prediction of candidates at finite pressure. The pressure P at
which we perform the FBMC simulations only sets a range from which we sample crystal
structures. Large fluctuations in PV/kBT , where P is the pressure, V is the volume, kB is
Boltzmann’s constant, and T is the temperature, are to be expected in general due to the
small number of particles considered. The extent of these fluctuations may be probed by
studying the density fluctuations that occur during a FBMC simulation and this can give
some insight into coarseness of the result. The presence of large fluctuations likely prevents
mesophases with a small pressure range of stability to be discovered using our method.
However, such mesophases can often be determined by melting a higher density crystal,
which may be obtained using the FBMC technique, in an N � 10 simulation [171].

Due to the level of fluctuations that is expected, the FBMC algorithm allows some
flexibility in the precision to which soft-interaction terms are taken into account. For
example, it is possible to ignore small cut-off corrections without incurring a large error,
since this type of correction can be absorbed as a (small) pressure change in the acceptance
rules. In this sense the FBMC technique is quite robust, but by the same token it is not
a priori capable of attaining a high degree of accuracy at finite pressures. The ability
of the technique to predict plastic-crystal phases has to be investigated further in the
near future. Despite these minor concerns, the FBMC technique has proven itself an
extremely useful and effective tool to predict crystal-structure candidates for colloids and
nanoparticles, as well as dense regular packings of irregular nonconvex solids.
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Dense Regular Packings of
Irregular Nonconvex Particles

In this chapter we employ the floppy-box Monte Carlo technique introduced in Chapter 5
to analyse regular packings of odd-shaped bodies. Our interest stems from a materials-
science perspective, as well as from a mathematical perspective. We examine the densest-
known (regular) structures for 17 irregular nonconvex shapes and we confirm several
mathematical conjectures for the packings of a large set of 142 convex polyhedra. We also
extend upon these conjectures and prove that we have obtained the densest packings for
rhombicuboctahedra and rhombic enneacontrahedra. Moreover, we improve the value of
the densest-known packing of enneagons and truncated tetrahedra. For the colloid and
nanoparticle aspect of our investigation we consider a family of truncated cubes, which
interpolates between a cube and an octahedron. We obtain a fascinating richness in the
structures that are achieved for the various levels of truncation. Finally, we apply our
dense-packing result to determine the equation of state for a system of octahedra and we
examine the properties of the different phases.
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6.1 Introduction

As mentioned in Chapter 5 the synthesis of colloids and nanoparticles has advanced
tremendously over the last decade [82, 83]. Currently it is not only possible to synthesize
spherical particles with a high level of precision and reproducibility, but also a wide
variety of convex faceted shapes, e.g., [84, 89, 93], as well as nonconvex, irregular, and
even punctured particles, e.g., [54, 78, 102, 103, 106, 107, 109]. The experimental study
of the self-assembly of such particles into dense phases and regular structures [275–277]
has raised questions on how to model such systems using simulations. Several techniques
were developed to perform simulations on dense phases of convex particles [166, 167,
169, 172, 173]. Interestingly, in studying these dense configurations materials-science
research interfaces with fields as diverse as discrete geometry, number theory and computer
science [184, 186, 250–252]. The computational power of modern desktop PCs makes it
possible to analyse longstanding mathematical problems on the dense packing of solids in
a numerical way, as well as assist in the proof of mathematical theorems, e.g., the proof of
the Kepler conjecture [184, 186]. This is an additional driving force in the development of
tools that allow dense packings to be predicted numerically. The discovery of tetrahedron
packings which achieve a packing fraction greater than that of spheres [167, 169, 259,
278], is a particularly good example of the importance of simulation-based approaches
to geometry. Despite this strong interest in packings, the properties of dense structures
comprised of irregular and nonconvex solids have hardly been investigated. This can be
explained by the fact that the overlap algorithm for such particles is often difficult to
implement. Only recently were the first attempts made to study such systems, namely
for superdisks [175] and bowls [176].

To analyse dense regular structures, we use the floppy-box Monte Carlo (FBMC)
algorithm to predict candidate crystal structures, see Chapter 5 and Refs. [75, 176, 249].
When this predictive technique is combined with a triangular-tessellation-based overlap
algorithm [218, 249] a powerful tool is obtained, which allows us to study the densely
packed configurations of irregular nonconvex particles. In this chapter we demonstrate
the general applicability of this method. We apply it to determine the densest-known
packing of 142 convex polyhedra and 17 irregular shapes, also see Refs. [249, 279] and
Appendix B. This set includes a few models that contain a huge number of triangles, e.g.,
the cap, the Stanford bunny, and the hammerhead shark, with 3,850, 3,756, and 5,116
triangles, respectively. These models allow us to gauge the efficiency of the algorithm,
in Section 6.2. In Section 6.3, we discuss the mathematical insights gained by analysing
the dense regular packings of these 159 polyhedral particles. This analysis is followed by
a proof that the FBMC results achieve the densest packing for rhombicuboctahedra and
rhombic enneacontrahedra in Section 6.4. We also construct a denser packing for regular
enneagons (9-gons) in Section 6.5. In Section 6.6, we introduce a family of truncated cubes
and investigate the crystal structures that its members can form. We obtain a stunning
richness in the structure as a function of the level of truncation. We conclude with an
analysis of the equation of state for octahedra and a discussion of the phase behaviour of
these particles in Section 6.7.
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6.2 Method: Accuracy, Efficiency, and Applications
All particle models for the 159 (irregular) polyhedra considered in the following sections
were obtained from particle databases [280–282] or were created to resemble existing
nanoparticles and colloids [54, 102, 106, 109]. These triangular-tessellation models are
given in Ref. [279]. We applied the FBMC technique described in Chapter 5 to these
particles and we used the following strategy for the compression. Systems of tessellated
particles were prepared in a dilute phase, typically with packing fraction φ ≈ 0.001. By
increasing the reduced pressure p ≡ PVM/kBT from p = 1 to p ≈ 105 in 100 steps
over 50,000 Monte Carlo (MC) cycles, according to a geometric series of increases, we
compressed the system to a high-density crystalline state. Here P is the pressure, VM
is the volume of a particle model, kB is Boltzmann’s constant, T is the temperature,
and one cycle is understood to be one trial move per particle. We typically applied this
compression a total of 25 times for each number of particles in the unit cell N (N = 1,
. . . , 6) and for each shape and select the densest packing among these. These 6 packings
(per shape) were allowed to equilibrate for 106 cycles at p ≈ 106, to obtain a maximally
compressed state. Finally, we compared the results and determined the lowest value of
N for which the densest packing is achieved and what the lower bound to the packing
fraction of the densest packing φLB is.

The method was typically quite fast with simulations taking minutes to hours on a
modern desktop PC. We observed that for the initial 50,000 MC cycles of compression the
algorithm exhibits linear scaling in the number of triangles and moves. We disregarded
the final compression run of 106 MC cycles, since this part only serves to achieve a high
decimal accuracy, while the structure no longer changes significantly. Let NT be the
number of triangles of a specific model, NC = 50,000 the number of MC cycles, and let t
be the total run time of the simulation in seconds. We obtained

t

(NNC)(NNT ) = C, (6.1)

with C a constant that depends only on the model and the way in which the system is
compressed. The algorithm thus scales linearly with the total number of triangles times
the total number of attempted moves. The value of C differs per model, because some
models ‘crystallized’ more easily than others. For the 159 models we studied, we found
the mean value of this constant to be 〈C〉 ≈ 70 µs on a modern 2.0 GHz desktop computer
system. The median value is 〈C〉M ≈ 40 µs, with only 27 models exceeding C = 100 µs.
Even for the aforementioned high-triangle models the time scales are accessible, the total
run length of the simulations, including the final 106 cycles of equilibration, did not exceed
175 hours, mostly due to the advanced overlap algorithm that we employed. For more
information on the overlap algorithm and its benchmarking we refer to Ref. [218].

We showed that our FBMC method yields sufficiently accurate results by considering
the 5 Platonic and 13 Archimedean solids, for which we found excellent agreement with
Refs. [169, 252, 283]. We typically obtained a very narrow distribution of crystal-structure
candidates, which had a packing fraction close to that of the densest-known configuration,
typically within 1%. The densest of these candidates was further compressed and this
usually resulted in a packing fraction that only deviated from the literature value φLB by
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(a) (b)

Figure 6.1: The dense dimer crystal structure for truncated tetrahedra that we obtained by the
FBMC technique and which achieves a packing fraction φLB = 0.988 . . . . (a) The dimer formed
by two truncated tetrahedra (blue and red). (b) A piece of the crystal structure generated by
this unit cell, only 7 periodic images are shown. The viewpoint is such that the dimers in this
crystal are pointing out of the paper, with the top triangle [as given in (a)] facing the reader.

an absolute amount of 0.002. Upon analysing our results for the Archimedean solids, we
discovered a new crystal structure for truncated tetrahedra, namely a dimer lattice with
φLB = 0.988 . . . ; also see Fig. 6.1, Appendix B, and Refs. [249, 279]. This is not only math-
ematically interesting [283], but also relevant to the study of nanoparticle systems [260],
since truncated tetrahedra have recently been synthesized [91, 93]. After verifying the
accuracy of our method, we used it to study 17 nonconvex (irregular) shapes, some of
which even contain holes. Our results for these shapes give confidence in the applicability
of our method to nonconvex objects in general. Figure 6.2 shows representations of the
shape and predicted crystal structure for 4 of the nonconvex particles we considered. Such
candidate crystal structures can be used in simulations of larger systems or in theoretical
studies to determine their stability by free-energy calculation, e.g., see Ref. [171]. We will
come back to this in Section 6.7, in which we consider simulations of the phase behaviour
of octahedra.

A nonconvex irregular particle that we considered in more detail is the colloidal cap,
see Fig. 6.2a, which shows the model that was used. This model was derived by min-
imizing the Hamiltonian that describes the bending and in-plane stretching elasticity
terms that govern the collapse of a shell under an external isotropic pressure using Sur-
face Evolver [109, 284]. The cap (model) contains 3,850 triangles. When we applied our
technique to this model, we obtained crystal structures similar to the ones found - also
using the FBMC technique - for a much simpler bowl-shaped model [176]: columnar,
braided, and inverse braided phases, see Appendix B. Figure 6.2b shows a braided con-
figuration. Support is thus provided for the idea that the simple bowl shape of Ref. [176]
captures the essential shape-related physics of these systems. We were unable to map
our results directly onto the phase diagram of Ref. [176], because the substantial differ-
ence in the shape of the interior of the caps prevented us from assigning an appropriate
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(a) (b)

(e)(d)

(f)

(c)

Figure 6.2: Four nonconvex shapes and three of their densest-known crystal structures. (a)
Side and bottom view of our model (3,850 triangles) for a colloidal cap. (b) A piece of the
double-braided structure formed by these caps. There are four particles in the unit cell, i.e.,
the structure can be decomposed into quadrumeric building blocks. Each particle in the unit
cell is indicated with a different colour. (c) The centrosymmetric dimer formed by two Szilassi
polyhedra (red, blue) in relation to the unit cell (grey box) predicted using the FBMC technique.
We do not show the crystal this unit cell generates, since it is difficult to make out individual
particles in it even when they are colour coded. (d) A centrosymmetric tetrapod dimer (red,
blue) in relation to the unit cell (grey box) of the associated structure. (e) A piece of the crystal
this unit cell generates. (f) The densest-known packing for great stellated dodecahedra, again
the structure is a dimer lattice as indicated by the use of red and blue.

L/σ [176]value. Nevertheless, this result is very encouraging as it gives an example of the
usefulness of our method to the study of physically relevant systems.

Another physical system we studied in great detail is that of octapod-shaped nanocrys-
tals dispersed in a liquid [54]. In Ref. [54] and Chapter 7 we analyse the hierarchical self-
assembly of these so-called octapods into interlocking chains and three-dimensional (3D)
super structures, which is caused by the hard-core repulsions and van-der-Waals attrac-
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(a) (b)

Figure 6.3: A crystal-structure candidate obtained for octapod-shaped particles, with short-
ranged square well interactions between the tips of the pods. (a) The hard-particle part of the
model used in this simulation. (b) A part of a candidate crystal structure that has a simple
cubic morphology. Note that the octapods touch each other at the tips.

tions between the octapods. We managed to reproduce the interlocking-chain formation
at high dilutions using an empirical model for octapod-octapod interactions, which incor-
porates an octapod-shaped hard core, a Lennard-Jones potential, and square-well attrac-
tions. Figure 6.3 shows an example (simple cubic) candidate crystal structure obtained
by our FBMC method for a system of octapods with a less complicated interaction po-
tential. The centroids of the tips are attracted to each other according to a short-ranged,
a radius of half the tip length, yet deep (4 kBT ) square-well interaction. Although simu-
lations on octapods proved technically challenging, we showed that the method described
in Chapter 5 allows for a complicated hard-particle interaction to be supplemented with
soft potentials to more accurately model experimental systems.

6.3 General Properties of Convex Polyhedra
Over the course of our investigation we obtained several exciting and remarkable results
on the packing of faceted particles, which we summarize in this paragraph. We refer
the reader to Appendix B and Ref. [279] for additional information and the data which
supports our claims, respectively.

• We extended the verification of Ulam’s conjecture [187], which states that all (non-
spherical) convex particles can achieve a monodisperse space-filling packing that is
denser than that of spheres, to the first 8 regular prisms and antiprisms, the 92
Johnson solids, and the 13 Catalan solids, see Fig. 6.4. For regular n-prisms and
n-antiprisms, where n indicates the number of edges of the base polygon, the verifi-
cation of Ulam’s conjecture may be further extended to n =∞. For regular prisms
this follows from the analysis of the lower bound to the packing fraction of regular
n-gons [250, 251] and the columnar way in which these prisms stack. The estimate
for antiprisms is based on determining the outscribed-cylinder volume. The particle
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Figure 6.4: The maximum packing fraction φLB we obtained using the FBMC technique as
a function of the sphericity γ for the 142 convex (circles, blue) and 17 nonconvex (crosses, red)
shapes we investigated. Also see Tables B.1 - B.15 for the numerical values of these data points.
Note that particles with a sphericity of γ > 0.8 tend to group closer to the packing fraction of
spheres (φSPH = π/

√
18, solid line), however, even for γ > 0.8 there is significant spread in the

φLB values. Therefore, we conclude that there is no clear relation between γ and φLB. Using
the line φSPH and the inset, we show that all 142 convex particles satisfy Ulam’s conjecture.

volume divided by this cylinder volume, times the hard-disc packing fraction π/
√

12
gives a lower bound to the 3D packing fraction of antiprisms. From this estimate it
follows that it is sufficient to check up to n = 7 numerically. For all n > 7 we have
π/
√

18 < φLB by our outscribed-cylinder construction.

• Our results showed that there is no clear dependence between the sphericity γ,
the ratio of the largest inscribed- and smallest outscribed-sphere radius, and the
densest-known packing fraction φLB. At least not in the γ-regime we analysed. The
construction of γ is explained in Appendix B. Figure 6.4, which shows our value for
φLB as a function of γ, gives a visual representation of this result.

• We confirmed for 49 convex centrosymmetric particles that their densest-known
lattice packing is a Bravais-lattice structure, in accordance with the conjecture of
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Ref. [167]. Centrosymmetry is understood here to imply that there is an inversion
point to the symmetry group that is associated to the particle’s shape.

• Our data also supports the conjecture of Ref. [166] that convex, congruent solids
without central symmetry do not necessarily achieve their densest packing in a non-
Bravais structure. In general noncentrosymmetric particles pack densest in a non-
Bravais structure, however, there are indications that some particles do not obey this
‘rule’. A possible example is the snub cube (Fig. 6.5c) that achieved φLB = 0.787 . . .
for N = 1 particle in the unit cell (Bravais lattice). We confirmed this using an
extended sample set to achieve greater numerical accuracy, see Appendix B. This
result may be an indication that in three dimensions central symmetry is not as
strong a prerequisite for the densest regular packing to be a Bravais structure as it
is in two dimensions [285]. However, our result constitutes only a possible counter
example, not a full mathematical proof. Nevertheless, the snub cube is not the only
particle for which we observed this phenomenon, e.g., the snub dodecahedron and
the metabigyrate rhombicosidodecahedron probably achieve their densest packing
for N = 1 as well. For the snub cube and snub dodecahedron this possibility was
already alluded to in Refs. [166, 286].

• Many noncentrosymmetric particles, both convex and nonconvex, were found to
form a centrosymmetric compound which achieves the densest regular packing. For
noncentrosymmetric particles the arrangement of the particles in the crystal may
be such that there is a Bravais sublattice with the same group of particles associ-
ated to each of its lattice sites. If the shape of this group is centrosymmetric we
say that the particles pack densest by forming a centrosymmetric compound. For
example, truncated tetrahedra (Fig. 6.1a), (anti)prisms (n < 11), Szilassi polyhedra
(Fig. 6.2c), and our tetrapod model (Fig. 6.2d), form centrosymmetric dimers and
tetrahedra form centrosymmetric quadrumers [169].

• Remarkably, it appears that some noncentrosymmetric particles, e.g., the gyrate
rhombicosidodecahedron and the tetrapod model, have a noncentrosymmetric N =
1 packing and an N = 2 centrosymmetric dimer packing that achieve (nearly) the
same packing fraction.

6.4 Analytic Construction of Two Densest Packings
In this section we prove that the densest-packed configurations for rhombicuboctahedra
φLB = (4/3)

(
4
√

2− 5
)
and for rhombic enneacontrahedra φLB = 16 − 34/

√
5 are given

by the Bravais-lattice structures we obtained using the FBMC technique.

6.4.1 Rhombicuboctahedra
A rhombicuboctahedron (RCH, Fig. 6.5a) can be specified by the vertex coordinates(

i

(
1
2 + p√

2

)
, j

(
1
2 + q√

2

)
, k

(
1
2 + r√

2

))
, (6.2)
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(a) (b) (c) (d)

Figure 6.5: Four representations of convex particles for which interesting results were obtained.
(a) Rhombicuboctahedron. (b) Rhombic enneacontrahedron. For both of these particles we
showed that the densest packing is a Bravais-lattice packing. (c) The snub cube, which is not
centrally symmetric, yet it appears to achieve its densest-known packing in a Bravais lattice.
(d) An enneagon, for which we constructed a denser packing than was previously known.

where i, j, and k ∈ {−1, 1} and p, q, and r ∈ {0, 1}, with p+q+r = 1. This gives a list of
24 vertices centred on the origin, which span a RCH with volume VM = 4 + 10

√
2/3. For

the orientation imposed by this set of vertices, the three vectors that describe a (potential)
unit cell which realizes the densest packing are given by

v0 =
(

1 + 1√
2
,−1− 1√

2
, 0
)

; (6.3)

v1 =
(

1 + 1√
2
, 0,−1− 1√

2

)
; (6.4)

v2 =
(

0, 1 + 1√
2
, 1 + 1√

2

)
. (6.5)

Checking for overlaps in this configuration is a simple matter of verifying that there are
no overlaps for an appropriate number of nearest neighbours, i.e., the algebraic equivalent
of the FBMC image-list-based overlap routine introduced in Chapter 5. The volume of
the unit cell is given by |v0 · (v1 × v2)| = 5 + 7/

√
2. Therefore, the packing fraction is

φLB = 4 + 10
√

2/3
5 + 7/

√
2

= 4
3
(
4
√

2− 5
)
, (6.6)

which gives a lower bound to the packing fraction φD of the densest configuration. We
determined the minimum face-to-point distance for all 26 faces of the RCH, which leads
to a set of 26 constrained equations. The maximum inscribed sphere can be obtained
using constrained minimization on this set of equations. Its radius is RI = 1/2 + 1/

√
2

and its centre coincides with that of the RCH. This results in the following upper-bound
estimate, according to Ref. [167], for φD:

φLB ≤ φD ≤ φUB ≡
VM

4
√

2R3
I

= 4 + 10
√

2/3
4
√

2
(
1/2 + 1/

√
2
)3 = 4

3
(
4
√

2− 5
)
. (6.7)

This upper bound is incorrectly listed as φUB = 1 in Ref. [167]. We have thus proven
that the maximum packing fraction is obtained, since φUB = φD = φLB. Here it should be



96 Chapter 6

noted that this proof is conditionally dependent on the proof of Ref. [184], which shows
that spheres pack densest with packing fraction π/

√
18, via the proof for the upper-bound

criterion of Ref. [167].

6.4.2 Rhombic Enneacontrahedra
We consider the rhombic enneacontrahedron (RECH, Fig. 6.5b) that is specified by the
92 vertices listed in Tables B.17 - B.19. These vertices span a RECH with volume

VM = 20
3

√
43 + 56

√
5

3 . (6.8)

For the orientation of this RECH, the three vectors that describe a (potential) unit cell
which realizes the densest packing are given by

v0 =
−5

6
(
2 +
√

5
)
,
1
2

√
5
3 ,

1
3
(
5 + 2

√
5
) ; (6.9)

v1 =
− 5

12
(
1 +
√

5
)
,

√
235
24 + 35

√
5

8 ,
1
6
(
5 +
√

5
) ; (6.10)

v2 =
(

1
12
(
25 + 13

√
5
)
,
5 +
√

5
4
√

3
,
1
6
(
5 +
√

5
))

. (6.11)

Checking for overlaps in this configuration is again a simple matter. The volume of the
unit cell is given by

|v0 · (v1 × v2)| =
10
(
20 + 9

√
5
)

3
√

3
. (6.12)

This gives the lower bound φLB = 16− 34/
√

5. By determining the set of 90 face-to-point
constrained equations, it is easily shown using constrained minimization that the centre
of the maximum inscribed sphere coincides with the RECH’s centre and that the radius
of this sphere is given by

RI =
√

35
12 + 5

√
5

4 . (6.13)

The upper bound to the packing fraction is therefore φUB ≡ VM/(4
√

2R3
I ) = 16−34/

√
5 =

φLB. We have thus proven that the maximum packing is obtained.
Interestingly, it now is possible to construct two additional upper bounds to the pack-

ing fraction of the densest configuration for a given species of particle, which are based
on the largest inscribed RCH and RECH, respectively. The proof follows the same line
of argument as used in Ref. [167] for the construction of a sphere-based upper bound.
The disadvantage of these estimates over the inscribed-sphere one is that determining the
largest inscribed RCH and RECH is significantly more challenging than obtaining the
largest inscribed sphere.
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Figure 6.6: The new denser-packing crystal structure for enneagons. (a) The vectors V0(k∗)
and V1(k∗) that span the unit cell in relation to the position [P0(k∗) and P1(k∗)] of the N = 2
enneagons in it. We also show the outline of both enneagons to indicate their orientation with
respect to each other. (b) A piece of the dimer crystal structure the unit cell generates. The
two orientations of the enneagons are indicated with red and blue, respectively.

6.5 Denser-Packing Crystal Structure for Enneagons
By extension of our result for the 9-prism, we obtained a new two-dimensional (2D)
packing (Fig. 6.6b) with φlb = 0.901 . . . for the regular Enneagon (Fig. 6.5d) that surpasses
the packing fraction φLB = 0.897 . . . of the old structure [251] by roughly 0.04. In this
section we describe the construction of our new 2D crystal. An enneagon is defined
here to have a centre-to-tip distance of 1. It is centred on the origin of a Cartesian
coordinate system with its tips mirror-symmetrically distributed around the y-axis and
one tip located on the positive y-axis, i.e., it has the orientation shown in Fig. 6.5d. To
describe the crystal structure we require three 2D vector parametrizations

p1(q) =
(
q

(
sin π9 −

√
3

2

)
+ 2 cos π9 sin 2π

9 ,
1
4

(
q
(

2− 4 cos π9

)
− csc π

18

))
; (6.14)

p2(r) =
(

2 cos π9 sin π9 − r sin 2π
9 , 2 cos2 π

9 + r
(

1− cos 2π
9

))
; (6.15)

p3(s) =
(
s

(
sin π9 −

√
3

2

)
+ 2 cos π9 sin 2π

9 ,−1
4

(
s
(

2− 4 cos π9

)
− csc π

18

))
, (6.16)

with q, r, and s ∈ [−1, 1]. We employ these to specify the lattice vectors of the unit cell
and positions of the enneagons in it. We eliminate two of the variables (r, s) in such a
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way that different enneagons in the structure (i) have some of their edges and corners
touch and (ii) have these edges slide over each other upon varying the third variable (q).
To that end we introduce the relations

T (k, l) =
csc 2π

9

4
(
cos 2π

9 − 1
) ·

[√
3(k + l)

(
cos 2π

9 − 1
)

+ 2(k + l) sin π9
−8 sin π9 cos π9 − (k + l) sin π9 cos 2π

9 + (l − k) sin 2π
9

+8 sin π9 cos π9 cos 2π
9 − 2(l − k) sin 2π

9 cos π9
+8 sin 2π

9 cos π9 − 8 sin 2π
9 cos π9 cos 2π

9

]
; (6.17)

U(k) =
[√

3k + 2 cos π18 − k cos π18 −
√

3k cos π9 + 2k cos π18 cos π9
+
√

3k sin π

18 − k sin π9 + 4 sin π

18 cos π18 − 2k sin π

18 sin π9
−4 sin 2π

9 cos π9 − 8 sin π

18 sin 2π
9 cos π9

]
; (6.18)

V (k) =
[
sin π9 + 2 sin π

18 sin π9 − cos π18
−
√

3
(

sin π

18 + cos π9

)
+ 2 cos π18 cos π9

]
; (6.19)

W (k) = U(k)
V (k) , (6.20)

with k and l ∈ [−1, 1]. Using T (k, l) and W (k), we may write

P0(k) = (0, 0) ; (6.21)
P1(k) = p2 (T (k,W (k))) ; (6.22)
V0(k) = p3 (W (k)) + p2 (T (k,W (k))) ; (6.23)
V1(k) = p1 (k) + p3 (W (k)) , (6.24)

where the Pi (i ∈ {0, 1}) give the position of the enneagons in the unit cell (N = 2), which
has lattice vectors Vj (j ∈ {0, 1}). The enneagon at P0 has the same orientation as the
base enneagon defined above and the one at P1 is rotated by π with respect to the base
enneagon, also see Fig. 6.6a which shows this configuration for the densest-known packing.
By determining the value of k, say k∗, for which the volume fraction Fv associated to this
structure is maximized,

Fv(k) =
18 sin π

9 cos π
9

|V0,x(k)V1,y(k)−V0,y(k)V1,x(k)| , (6.25)
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we obtain the desired crystal. For this structure the following holds

k∗ = 0.334782056761309 . . . , (6.26)
Fv(k∗) = 0.901030078420934 . . . = φLB, (6.27)
P0(k∗) = (0, 0) , (6.28)
P1(k∗) = (0.8471436672437109 . . . , 1.691664920976177 . . . ) , (6.29)
V0(k∗) = (1.7675368645589482 . . . , 3.372726522382239 . . . ) , (6.30)
V1(k∗) = (1.9530111855752121 . . . , 0.094167780690677 . . . ) . (6.31)

An analytic expression for k∗ can also be derived, but it is too cumbersome (spanning
several pages) to reproduce here. Moreover, using the steps outlined above, it should be
relatively straightforward to obtain the analytical result. Note that we confirmed that the
density of at least one of the packings in Ref. [251] can be improved upon by large scale
reorganizations. Also note that this configuration forms a centrosymmetric-dimer lattice.

6.6 A Family of Truncated Cubes
In this section we introduce a family of truncated cubes, which interpolates between a cube
and an octahedron. We are interested in these systems, because such truncated particles
have recently been synthesized [84–86, 93, 94, 247], in particular the entire family can
be generated using one silver nanoparticle synthesis [89, 90, 287, 288]. Here, we study
the densest regular packing of these truncated cubes and we analyse the dependency of
the crystal structure on the level of truncation. We only consider hard particles, but our
results may be extended to include soft interactions as explained before. A truncated
cube is completely specified by the level of truncation s ∈ [0, 1] and the volume of the
particle. Its vertices may be written as

{v(s)} =



1(
1− 4

3s
3
)(1/3)PD

((
±
(1

2 − s
)
,±1

2 ,±
1
2

)T)
s ∈

[
0, 1

2

]
1(

4
3 − 4λ3

)(1/3)PD
(
(±(1− λ),±λ, 0)T

)
λ ≡ 1− s ∈

[
0, 1

2

] , (6.32)

where PD is a permutation operation that generates all permutations of each element
in the sets of 8 and 4 vertices spanned by the ±-operations, respectively. All duplicate
vertices are removed after letting PD act. The ‘T ’ indicates transposition. The prefactors
ensure that the truncated cubes are normalized to unit volume. Figure 6.7a shows 5 of
the shapes that may be obtained by varying s. Several Platonic and Archimedean solids
are members of this family: s = 1 a cube, s = (2 −

√
2)/2 a truncated cube, s = 1/2 a

cuboctahedron, s = 2/3 a truncated octahedron, and s = 1 an octahedron.
Using the FBMC technique in combination with a separating-axis-based overlap algo-

rithm, see Chapter 5, we obtained the packing fraction φ of the (densest-known) crystal
structures as a function of s. For 1,000 equidistant points in s ∈ [0, 1] we prepared systems
of truncated particles in a dilute phase, typically with packing fraction φ ≈ 0.001. We
increased the reduced pressure in 100 steps according to a geometric series from p = 1
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Figure 6.7: The densest-packing for a family of truncated cubes, which interpolates between
a cube and an octahedron. (a) Visual representations of several members of this family with the
corresponding truncation parameter s listed at the top. (b) The packing fraction φ as a function
of s for the densest-known crystal structure. The red dots show the location of several members
of the Platonic and Archimedean solids. Grey vertical lines partition the s-domain into pieces
with a ‘different’ crystal structure. Roman numerals are added to some of these areas to identify
them; the enumeration is continued from left to right for the regions in which no number could
be placed. (c) The length vi (i = 1, 2, and 3) of the three vectors which span the unit cell,
indicated in red, green, and blue. Not every line is clearly visible, since there is some overlap. In
the region where the grey and black dots are used (II and III), there appears to be degeneracy
in the crystal structures. (d) The cosine of the angles θij (i < j = 1, 2, and 3) between the three
vectors that span the unit cell as a function of s.

to p ≈ 105 over 4 · 106 Monte Carlo (MC) cycles in order to compress these systems to a
high-density crystalline state. This pressure increase is typically applied a total of 1,000
times for N = 1 particles in the unit cell and for each shape. We restricted ourselves to
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N = 1 particles in the unit cell, because the truncated cubes are all centrosymmetric. We
only considered N = 2, . . . , 6 for 14 conveniently chosen values of s, located in the centre
of the regions indicated in Fig. 6.7, as will be justified shortly. For these N > 1 systems
we obtained roughly same value of φ and also the same crystal structures. The densest
crystal-structure candidate was selected and allowed to compress further for another 106

MC cycles at p = 106 to achieve 5 decimals of precision in φ. In practice these final cycles
of compression did not improve the packing fraction substantially. Figure 6.7b shows φ as
a function of s. Note that the packing fraction ‘curve’ is continuous, but has discontinu-
ities in its first derivative. To double check our result, we considered another set of FBMC
runs. We used several of the 1,000 densely-packed crystals as our initial configuration and
we varied s around these points at high pressure to study the evolution of their structure.
Steps of 10−5 in s were used and for each step the system is expanded to remove any
overlaps, before re-compressing it at p ≈ 105. The packing fractions we obtained showed
reasonable correspondence with our original result, but this correspondence failed for a
transition between two crystal structures. The consecutive method would often become
stuck in the lower density structure that corresponded to morphology of the crystal phase
it came from.

The unit cell with N = 1 truncated cubes can be specified by three vectors vi (i = 1,
2, 3) that are implicitly s dependent. The structure spanned by these three vectors can
also be described by the length vi = |vi| of the vectors and the angles θij (i < j = 1,
2, 3) between them. Note that we ignore the orientation of the particle with respect to
the unit cell here. In order to give an unbiased comparison of the different vectors we
used lattice reduction [179] to ensure that for each unit cell the surface to volume ratio is
minimal. These results are shown in Fig. 6.7(c,d). By analysing the vi and θij, as well as
the location of the kinks in the φ-curve, we were able to partition the s ∈ [0, 1] domain
into 14 distinct pieces. This is the reason behind our choice of 14 verification points for
N > 1 simulations. In Figs. 6.8 and 6.9 the crystal structure in the centre of each of
these 14 regions is shown. There is a strong difference between the domains s < 1/2
and s > 1/2. Geometrically the cuboctahedron (s = 1/2) is the transition point between
shapes which have a more truncated-cube-like nature and shapes which have a more
truncated-octahedron-like nature. It is therefore not surprising that the crystal structures
in the two regions (s < 1/2 and s > 1/2) appear to have a deformed cubic symmetry
and a body-centred symmetry, respectively. We illustrate this in Figs. 6.8 and 6.9 where
we show the most orthorhombic unit cell: N = 1 for s < 1/2 and N = 2 for s > 1/2.
A more remarkable result is the stability of the Minkowski crystal [289], which is the
densest-packed Bravais-lattice structure for octahedra [252], under variations in s. For all
s ∈ [0.71, 1] find a Minkowski structure in the dense-packed limit, which can be inferred
from the horizontal cos θij lines in Fig. 6.7d. The scaled length of the vectors viφ−1/3 is
also constant on this domain.
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I
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Figure 6.8: Visual representations of the crystal structures obtained for the first 7 regions
in Fig. 6.7. From left to right each entry (row) contains a bird’s eye view, the front view, the
side view, and the top view of this structure. The Roman numeral in the top-left corner gives
the relevant domain in Fig. 6.7. The truncation parameter s for these structures is given in the
bottom-right corner.
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Figure 6.9: Visual representations of the crystal structures obtained for the last 7 regions
in Fig. 6.7. From left to right each entry (row) contains a bird’s eye view, the front view, the
side view, and the top view of this structure. The Roman numeral in the top-left corner gives
the relevant domain in Fig. 6.7. The truncation parameter s for these structures is given in the
bottom-right corner.
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Let us now examine the crystal structures in the 14 regions identified by the disconti-
nuities in the vectors of the unit cell. In literature it has become commonplace to assign
atomic equivalents to structures observed in simulations or experiments. For example, this
was done for binary mixtures of spheres [74, 75], a family of truncated tetrahedra [260],
several faceted particles [174], and systems of nanoparticles [40, 49]. We attempted to
follow suit by determining the symmetry group of the structures in 6.8 and 6.9 using
FindSym [270] and by subsequently assigning an atomic equivalent [272]. However, we
found that a description in terms of atomic equivalents inadequately captures the richness
in crystal structure, since particle orientation is not taken into account. Moreover, for
many of our structures we were unable to determine a nontrivial space group using Find-
Sym. We therefore resorted to visual analysis and we used this to group the 14 regions
in Fig. 6.7 based on similarities between the respective structures.

• I In this region (s ∈ [0.00, 0.37]) we obtained a continuous and uniform distortion of
the simple cubic structure for cubes. For s = 0 the particles form a simple cubic (sc)
crystal, which has the same morphology as αPo (α-Polonium) [272]. The uniformly
distorted simple cubic (udsc) structure we found for s > 0 is similar to that of
βPo [272]. We verified this distorted quality for values as low as s = 10−5.

• II & III For these two regions (s ∈ [0.37, 0.40] and s ∈ [0.40, 0.42]) we found that
there is a degeneracy in the crystal-structure candidates that achieve the densest-
known packing. Although certain structures appear favoured over others, there is
no clear relation between φ and s. The observed degeneracy can be explained by
considering Fig. 6.10, which shows one of the crystal structures in region II. The
truncated cubes arrange in a distorted simple cubic lattice, where the particles form
columns. These columns are interlocked in a diagonal way, see Fig. 6.10(c,e), which
fixes the structure in two directions, but leaves freedom of motion in the third. There
appears to be a continuous degeneracy between systems where sheets consisting of
diagonally-interlocked columns slide up or down (in the direction of the columns)
with respect to each other. This degeneracy may prove to strongly influence the
phase behaviour at intermediate to high pressures. We refer to these structures as
mono-interlocking distorted simple cubic (mi-dsc) crystals.

• IV For this region (s ∈ [0.42, 0.49]) we find a distorted simple cubic (dsc) phase
that is interlocking in two directions: a bi-interlocking dsc (bi-dsc) phase. For each
instance of interlocking two degrees of translational motion are frozen out. This
implies that the bi-dsc structure is completely fixed, which is confirmed by the
unicity of the vi and θij results in Fig. 6.7(c,d).

• V In this region (s ∈ [0.49, 0.50]) we observed a tri-interlocking dsc (ti-dsc) phase.
At the time of this writing it is unclear whether the transition between the various
interlocking (mi-, bi-, and ti-) dsc phases is continuous or not. The discontinuities
in the parameters φ, vi and θij as a function of s appear to imply that it is not.

• VI - VIII Here (s ∈ [0.50, 0.51], [0.51, 0.52], and [0.52, 0.54]) we found structures
that are best described by a distorted body-centred tetragonal (dbct) structure.
The truncated cubes in these crystals are not aligned with the axes of the unit cell.
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It is unclear to what extent structures in regions VI, VII, and VIII are the same.
The smooth flow of the φ-curve (Fig. 6.7b) appears to imply continuity, but the
jumps in the values of vi and θij [Fig. 6.7(c,d)] suggest otherwise.

• IX - XI These structures (s ∈ [0.54, 0.56], [0.56, 0.59], and [0.59, 0.63]) have a body-
centred tetragonal (bct) morphology, for which the particles are aligned with the
lattice vectors of the unit cell. It is surprising that the structures in region XII
exhibit a dbct morphology, since regions IX - XII share the same smooth piece of
φ-curve, see Fig. 6.7b. This leads us to conclude that a smooth dependence of φ on
s is not indicative of uniformity in crystal structure. The strong similarity between
the crystal structures in regions IX - XI and the apparent smooth transition between
structures from region IX to X and from X to XI, also leads us to conclude that
discontinuities in the properties of unit cell are not indicative of discontinuities in
the properties of the crystal structure.

• XII & XIII These two dbct structures (s ∈ [0.63, 0.67] and s ∈ [0.67, 0.71]) are
different from the dbct structures in regions VI - VIII, since the particles appear
to be aligned with the lattice vectors of the unit cell. Moreover, crystals in region
XIII are unusual, since there are large ‘voids’ in the structure. That is, for all other
structures we found that the largest facets of a particle are always in contact with
a facet of another particle. This is not the case in region XIII, because there is a
substantial gap between some of the hexagonal facets.

• XIV The Minkowski crystal of region XIV (s ∈ [0.71, 1.00]) is also peculiar. It
is the only structure which does not undergo some form of reorganization upon
varying the level of truncation. It is worthwhile to study the origin of this apparent
stability, which sharply contrasts with the immediate distortion found around s = 0.
However, this goes beyond the scope of the current investigation.

Summarizing, we studied the densest-known packings for a family of truncated cubes,
which interpolates between a cube and an octahedron. Even for such a simple system
there is a wealth of different structures, with interesting properties, that can be achieved
by varying only one parameter. The dense-packed crystal structures that we found may
be used to determine the crystal branch of the equation of state, which in turn can be
used to establish the phase diagram for this family of truncated cubes, in analogy to the
work of Refs. [171, 260]. Such a phase diagram [290] will lead to better understanding of
experimental systems [287] and the way in which the phase behaviour of cubes is influenced
by sight shape changes. The latter is of particular fundamental importance since it was
recently shown that for hard cubes there is an unusually high vacancy concentration
at coexistence pressures [291], and questions have been raised to what extent this high
vacancy concentration is present for almost cubic shapes [263, 292]. Our truncated cube
model has the advantage that levels of truncation very close to s = 0 may be studied with
relative ease, whereas other models, e.g., the superball model [168, 170, 171], suffer from
numerical problems in the convergence of the overlap algorithm close to the cube limit.
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(a)

(c) (d)

(b) (e)

Figure 6.10: A visual representation of the crystal structure degeneracy that occurs in regions
II and III of Fig. 6.7. Here we take a structure from region II, also see Fig. 6.8, and colour coded
pairs of truncated cubes, for which the octahedral faces are aligned. (a-d) The viewpoints
of Fig. 6.8. In (c) we use a magenta circle to indicate that the blue column is interlocking
with the green column in a diagonal way. This property, together with the dense-packing
condition prevents lateral motion in the plane normal to the column’s direction. (e) The two
red columns are not interlocking with the blue and green column, allowing for freedom of motion
in the direction of the magenta arrows. The green column has been made translucent to better
illustrate the properties of this crystal structure.

6.7 The Phase Behaviour of Hard Octahedra

In this paragraph we discuss the way in which a phase diagram can be determined using
our results. We confine ourselves to a system of hard octahedra (s = 1) and we focus
on determining the equation of state (EOS) and analysing the phase behaviour. The
EOS gives pressure as a function of the density of the system, or equivalently the reduced
pressure p = PVM/kBT as a function the packing fraction φ. We only briefly comment on
the free-energy calculation required to establish the coexistence densities, since we were
only indirectly involved with this part of the research.

We determined the EOS using isothermal-isobaric (NPT ) Monte Carlo (MC) simula-
tions and system sizes of 1,458 octahedra, see Fig. 6.11a. The liquid branch of the EOS
was established using a cubic-box simulation, which is allowed since there is no long-range
order in the liquid phase. We considered p ∈ [0.5, 13.5] with equidistant steps of 0.5, us-
ing 0.5 · 106 MC cycles of equilibration and 1.5 · 106 MC cycles of production to obtain 2
decimals of precision in φ. We did not observe crystallization from the fluid phase upon
increasing the pressure. This can be explained by the fact that the Minkowski crystal
does not fit in a cubic box. Even in variable-box-shape simulations, for which the box
vectors change freely and independently of each other to accommodate noncubic crystal
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Figure 6.11: The equation of state (EOS) and free energy of the phases obtained for a system
of hard octahedra. (a) The reduced pressure p = PVM/kBT as a function of the packing fraction
φ. The liquid branch is indicated in red, the body-centred cubic (bcc) rotator (plastic crystal)
phase is indicated in green, and the Minkowski crystal phase is indicated in blue. The nature
of these phases is illustrated by the insets which show snapshots of the simulation box in the
liquid and crystal branch for the values of φ indicated by the arrows. The bcc nature of the
rotator phase is visualized by showing a part of the simulation box that contains one unit cell.
The central particle is coloured red and the surrounding 8 octahedra are shown in blue. (b) The
reduced and scaled free energy f , defined in Eq. (6.33), for the three phases as determined in
Ref. [171] using the above equation of state. There is coexistence between the liquid and crystal
phases: the f -axis acts as a common tangent. The plastic crystal is metastable with respect to
these two phases since its free energy is greater than zero for all values of φ.

structures, we did not observe crystallization. Our systems were probably too small to
find liquid-crystal phase coexistence or nucleation of the crystal from the liquid.

The crystal branch of the EOS for this system was obtained by melting the Minkowski
crystal. We arranged the 1,458 particles in the simulation box in the body-centred man-
ner indicated in Fig. 6.9 (region XIV). This body-centred construction ensured that the
simulation box is as orthorhombic as possible in order to minimize finite-size effects. Such
finite-size effects are more pronounced for the N = 1 Minkowski structure, since the cor-
responding simulation box is far more distorted. We were able to determine the crystal
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branch of the EOS with a precision of at least two decimals in φ, by employing an equi-
libration of 0.9 · 106 cycles and a production of 2.0 · 106 cycles, for p ∈ [9, 19.5] with steps
of 0.05 for p < 9.5 and steps of 0.25 otherwise. We used variable-box-shape NPT MC
simulations to allow for a full exploration of phase space. For pressures p . 9 we observed
that the crystal phase melted into a plastic crystal (rotator) phase that has a body-centred
cubic (bcc) structure, as can be seen in Fig. 6.11a. Our result [171] constitutes the first
time that such a structure was reported for a system of hard particles.

We determined the rotator branch of the EOS by using the same number of equili-
bration and production cycles as for the crystal phase to achieve φ-values with two or
more decimals of precision. We studied p ∈ [7.7, 9.3] with a distance between p points of
roughly 0.05 to map out the full rotator phase, including the part where there is hysteresis
with respect to the crystal branch. Because of the bcc morphology of the rotator phase,
regular NPT cubic-box simulations could be performed. The advantage of these simu-
lations is that they are computationally faster than the variable-box-shape simulations
and that they preserve the bcc structure more easily. Variable-box-shape simulations
were used at several pressures to confirm that the morphology of the rotator phase is
indeed bcc throughout. At high pressure (p ≈ 11) variable-box-shape simulations showed
crystallization from the rotator phase into the Minkowski crystal. Note that the rotator
phase has a very liquid-like pressure-density dependence, see Fig. 6.11a. This, to the best
of our knowledge, has not been observed for any other plastic crystal. The cause of this
liquid-like behaviour remains to be clarified.

The fact that no crystallization into the bcc rotator phase was observed from the liquid
branch upon increasing the pressure, as well as the fact that the crystal branch always
appears to melt into the rotator phase upon decreasing the pressure, raised questions with
regards to the stability of this phase. These questions were addressed by determining the
free energy. To that end the method of Widom-insertion [253] combined with thermody-
namic integration [253] was applied to determine the free energy F as a function of φ in
the liquid branch [171]. For the crystal and rotator phase Einstein-integration [253] and
the procedure of Ref. [293], to take the rotational degrees of freedom into account, were
employed.

In order to perform an Einstein integration a suitable Einstein crystal is required. We
therefore studied the φ-dependence of the morphology of the crystal structure, by per-
forming variable-box-shape NPT simulations to average the box vectors for 7 pressures in
the crystal phase. We used 1.0·106 cycles of equilibration and 2.5·106 cycles of production
for a box containing 512 particles in the N = 1 representation of the Minkowski crystal
to accomplish this. The properties of the averaged unit cell, which can be determined
from the averaged box vectors, are shown in Fig. 6.12. The system accommodates for
lower pressures by uniform scaling of the Minkowski lattice vectors only. Within the nu-
merical uncertainty of our result, we did not observe a continuous deformation from the
Minkowski crystal to the lattice of the bcc rotator phase. We also confirmed, as we will
discuss shortly, that the average position and orientation of the particles is same as that
of the densely-packed Minkowski crystal.

Our result allowed us to use a scaled Minkowski crystal as the Einstein crystal for
the free-energy calculation. A similar approach was followed for the bcc rotator phase.
Using the free energies we were able to construct a common tangent between the liquid
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Figure 6.12: The dependence of the morphology of the crystal phase on the packing fraction
φ for hard octahedra. (a) The length vi (i = 1, 2, 3) of the three vectors that span the unit
cell, which is scaled according to the volume fraction of the system. The points for which we
determined the structure are indicated by the symbols and a horizontal line is fitted through
these points. The lines are drawn from φ ≈ 0.57 to φ = 18/19 the minimum and maximum
packing fractions for the crystal phase of octahedra, respectively. (b) The cosine of the angles
θij (i < j = 1, 2, and 3) between the three vectors that span the unit cell as a function of
φ. Again a horizontal line may be fitted to this data. These results show that the Minkowski
crystal structure is preserved along the entire crystal branch.

and crystal branch and establish the phase-coexistence region. Figure 6.11b shows this
common tangent. Here we introduced a scaled and reduced free energy

f = 1
kBT

(
F

V
− VMφµc + Pc

)
, (6.33)

with F/V the free energy per unit of volume for the system, VM the volume of the particle,
and µc and Pc the chemical potential and pressure at bulk coexistence, respectively. This
scaling ensures that the common tangent between two coexisting phases is given by the
line f = 0. The coexistence packing fractions are φ = 0.492 . . . and φ = 0.588 . . . for the
liquid and crystal, respectively. The representation in Fig. 6.11b also allows us to visually
indicate that the rotator phase is metastable with respect to the liquid and crystal phases.
Its f -curve assumes its minimum for f ≈ 0.015 > 0. The free energy difference per particle
at the bulk coexistence pressure is however very small (F/N ≈ 10−2). This may explain
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why we always observed a two-stage melting from the crystal to the liquid via the rotator
phase.

Let us return to the averaging of the particle coordinates. We performed regular
NV T simulations to determine the average position and orientation for the 512 particles
in the box. The volume in the NV T simulations is based on the pressures studied before.
We again used 1.0 · 106 cycles of equilibration and 2.5 · 106 cycles of production. This
allowed us to confirm that the particles indeed obeyed the Minkowski crystal structure
with only a uniformly increased lattice spacing, i.e., the crystal fits nicely the simulation
box. The results of the orientational averaging are, however, more interesting. Here we
used the following strategy for averaging. The vectors which describe the orientation can
be mapped on a unit sphere. For each particle, we added all sampled unit vectors, divided
the resulting sum vector by number of sampling moments, and renormalized this result
to obtain the averaged orientation vector. It can be shown that this way of averaging is
acceptable for vectors that are confined to the unit sphere, when there is a small spread
(solid angle) in the vectors being averaged [294, 295]. If this is not the case, the proper
way to average is according to the Frobenius norm [294], which is algorithmically more
complicated to implement.

For a system with sufficiently limited movement (φ = 0.71) this averaging method gives
good results and reveals the cubic nature of the particle’s rotational symmetry group, see
Fig. 6.13(a,b). At low pressures our method breaks down. Figure 6.13(c,d) shows the
distribution of the 512 averaged orientations for a packing fraction of φ = 0.64. We
obtained 6 circles that intersect in the 8 orientational points associated to the Minkowski
structure. This result can be explained as follows. The particle orientations are the
same as those of the Minkowski crystal, but the particles can flip between equivalent
orientations in the octahedron’s rotational symmetry group for φ = 0.64. Because we
initially did not consider averaging the orientations modulo the octahedron’s symmetry
group, we obtained averaged vectors that are ‘in between’ the orientation the particle
was in before flipping and the orientation it has flipped to. Only 6 circles are formed,
which implies that the flipping of the particles obeys certain rules, the points outside of
the circles we account to multiple flips. We found that a particle only flips to one of the
3 closest equivalent orientations, i.e., it only rotates by an angle π/2. Further analysis of
our results also revealed that this flipping only occurs in pairs: when one particle flips its
orientation, one of its neighbours flips at the same time.

At even lower pressures, see Fig. 6.13(e,f) for results at a packing fraction of φ = 0.61,
the occurrence of flipping becomes more frequent, since there are far more point on the
circles and we kept the number of production cycles and the number of particles the
same. Also multi-flips begin to become more prevalent throughout the system. This
flipping is likely a precursor to the full rotational freedom in the bcc plastic-crystal phase.
We confirmed that, when we average the orientation modulo the octahedron’s symmetry
group, we retrieve the expected Minkowski-crystal orientations for the seven packing
fraction we considered. Only the deviation from this average orientation increased with
decreasing φ.



Dense Regular Packings of Irregular Nonconvex Particles 111

(a)

(b)

(c)

(d) (f)

(e)
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Figure 6.13: The distribution of the (incorrectly) averaged orientation vectors in the crystal
phase. Any orientation is described by eight (equivalent) points on the unit sphere, which map
out the rotational symmetry group of the octahedron. That is to say, there are eight rotations
which take the octahedron into itself. (a) For φ = 0.71 all particles have the same average
orientation - only 8 groups of points can be seen - as indicated by red points in a bird’s eye
view. (b) A side view which shows that the clusters are only slightly ellipsoidal, indicative of
a small orientational spread. (c,d) For φ = 0.64 our averaging leads to a distribution which is
confined to 6 circles that intersect in the original 8 points corresponding to the orientation in
the densest-packed crystal. This behaviour becomes more pronounced with decreasing φ as is
illustrated by (e,f) for φ = 0.61.

6.8 Conclusion and Outlook
We employed the combination of the floppy-box Monte Carlo (FBMC) technique and
a triangular-tessellation-based overlap algorithm introduced in Chapter 5 to determine
dense regular packings of irregular, nonconvex, and punctured objects. By establishing
high-density crystal structures for 142 convex and 17 nonconvex shapes, we managed to
improve upon the literature value for the packing fraction of a huge number of solids. We
also confirmed and extended upon existing conjectures for the densest packing of convex
solids. Using our numerical technique we discovered the densest-packed configurations for
rhombicuboctahedra and rhombic enneacontrahedra. The analytic construction, by which
we prove that the observed configurations indeed pack densest, constitutes a remarkable
result, because it has historically [186] been exceedingly difficult to verify that a given
arrangement of objects is the densest possible packing. Moreover, our result allows for
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the construction of two new upper bounds to the packing fraction of the densest config-
uration of any shape. Finally, we discovered denser packings of enneagons and truncated
tetrahedra, for which the particles form centrosymmetric-dimers.

In this chapter we also studied a family of truncated cubes, which interpolates between
a cube and an octahedron. These truncated cubes have recently been synthesized [89,
90, 287, 288] and we believe that our results may be recovered in experimental systems.
A wealth of different structures is achieved for this simple system by varying only one
parameter, namely the level of truncation. We found that the members of this family
can be grouped according to the crystal structure they form at high pressure. There
are particles that formed a (distorted) simple cubic structure and there are particles
that formed a structure with a (distorted) body-centred tetragonal morphology. Some of
the crystals we obtained possess unusual properties. For instance, the Minkowski crystal,
which is associated with the densest packing of octahedra, appeared to be very stable with
respect to truncation. There are also levels of truncation for which the crystals showed
degeneracies in their structure. Such degeneracies may be important to the formation of
three-dimensional materials with two dimensional order.

To further illustrate the usefulness of our methods to condensed-matter research we
also determined the phase diagram for hard octahedra. We observed three phases for these
particles: a liquid, a body-centred cubic (bcc) plastic crystal, and a Minkowski crystal.
Our result constitutes the first time that a bcc plastic crystal (rotator phase) was reported
for a system of hard particles. Using free-energy calculations [171] it was shown that the
rotator phase is metastable with respect to the coexistence between the liquid and crystal
phases. In analysing the phase behaviour of hard octahedra we took a first step towards
understanding the behaviour of similarly-shaped nanoparticles [89, 90, 247, 287, 288], for
which the behaviour is typically also governed by short- and/or long-ranged interactions.

We showed that the methods introduced in Chapter 5 can be used to study previ-
ously inaccessible nanoparticle and colloid systems over a range of pressures and volume
fractions. Our triangular-tessellation approach allowed us to approximate the shape of
such particles with greater precision and the FBMC technique’s ability to predict crystal-
structure candidates is of paramount importance to establishing their phase behaviour.
Moreover, we showed the potential of our methods to aid in the analysis of complex math-
ematical problems concerning the packing of shapes. This investigation therefore marks
the starting point of a far more extensive investigation of complex shape-anisotropic ob-
jects than was previously considered feasible.
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Hierarchical Self-Assembly of
Octapod-Shaped Nanoparticles

In this chapter we analyse the recently observed hierarchical self-assembly of octapod-
shaped nanocrystals (octapods) into three-dimensional superstructures [K. Miszta et al.,
Nature Materials 10, 872 (2011)], using the methods developed in Chapters 5 and 6. We
devise a simulation model with simple empirical interaction potentials that is capable of
reproducing the initial chain-formation step of the self-assembly. A Hamaker-de-Boer-type
integration is used to obtain the van-der-Waals interactions between octapods dispersed in
a liquid and justifies elements of our empirical model. The theoretical calculation, together
with the experimental and simulation results, allows us to formulate a mechanism that
explains the observed self-assembly in terms of the solvent-dependence and directionality
of the octapod-octapod interactions. Our approach shows the great potential of our
approach to study self-assembly in other experimental systems containing anisotropic
nanoparticles.
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7.1 Introduction
Over the past few years significant progress has been made in the ability to realize self-
assembly of man-made nanoscale units into macroscopic superstructures [32, 34–54, 60,
61]. The quest to control this process is inspired by the richness in structure that self-
organization brings about in nature [57, 58]. A limited number of (relatively simple)
building blocks can lead to a spectacular variety in the materials that are formed by the
numerous ways in which these building blocks self-assemble in a hierarchical way [55, 56,
59, 62, 63]. Unfortunately, man-made self-assembled structures consisting of inorganic
nanocrystals are still at an elementary level. This is due to limited control over the
fabrication of these nanocrystals, specifically with regard to the complexity of the shapes
and interaction potentials with which we are currently able to endow these building blocks.

Recently, the hierarchical self-assembly of complex inorganic nanocrystals (octapods)
into high-quality macroscopic objects was observed [54]. Octapods [54, 78, 99] are branched
colloidal nanocrystals consisting of a CdSe octahedral core, on which eight CdS pods are
grown. These particles were found to self-assemble into interlocking chains in the apolar
solvent toluene. Such chains could subsequently self-assemble into a 3D superstructure by
the addition of the polar solvent acetonitrile. This remarkable result was made possible
by an improved control over the synthesis of the octapods, which resulted in samples that
were sufficiently monodisperse in size and shape to conduct self-assembly studies on [54].
It was shown that obtaining large structures comprised of complex inorganic building
blocks, which are of interest to, for instance, the semi-conductor industry, is possible.

In this chapter we focus our theoretical and simulation study on the observed hierar-
chical self-assembly of octapods. In Section 7.2 we describe the experimental investiga-
tion performed in the group of Prof. dr. Liberato Manna to put our contribution into
context. In Section 7.3 we consider simulations using a simple empirical model for the
octapod-octapod interactions in toluene, by which we are able to reproduce the initial
interlocking-chain formation step of the hierarchical self-assembly. In Section 7.4 we in-
troduce a theoretical model for the van-der-Waals (vdW) interactions between octapods
suspended in a liquid and we discuss its consequences. The vdW forces that we obtain
give insight into the solvent-dependent nature of the hierarchical mechanism, as well as
the directionality observed in the interlocking-chain formation step and the subsequent
aggregation of these chains into the 3D superstructures. Finally, in Section 7.5 we com-
bine the simulation, theoretical, and experimental results and propose a model which we
believe to explain the observed self-assembly.

7.2 Experimental Results
In this section we discuss the experimental findings for the behaviour of octapods dispersed
in an (a)polar liquid, see Ref. [54] for more information. We focus only on the elements
relevant to the simulation and theoretical studies in the following sections. The Manna
group recently developed a synthesis technique to create octapod-shaped nanocrystals, in
which eight CdS ‘pods’ are grown from a central region made of CdSe [54, 78, 99], with
unprecedented shape homogeneity and monodispersity. Figure 7.1a shows a 3D tomo-
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Figure 7.1: (a) Three-dimensional (3D) tomographical reconstruction of a single eight-fold
branched nanocrystal (octapod) used in the self-assembly experiments of Ref. [54]. The dashed
lines show the cubic nature of the particle’s symmetry group. (b) An STEM image of the
vitrified dispersion reveals the presence of chains of octapods after 24 hours of ageing, which
are approximately 4 µm in length. The inset shows a magnified view of a single chain. (c)
Curves obtained by DLS give the cluster-size distribution at different ageing times. Here D is
the size of the aggregates and the vertical axis gives the percentage frequency (%). The DLS
measurements show a time-dependent evolution of the cluster size and confirm the formation
of aggregates. (d) A single chain of octapods reconstructed by performing a 3D tomographical
analysis on a sample similar to that in (b). From this reconstruction the interlocking nature of
the chain becomes clear. The octapods are properly aligned on the chain axis. This is illustrated
by the cut-through in the inset, where the cyan line indicates the axis.
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graphical reconstruction of one of these so-called octapods. The octapods were coated
with hydrophobic surfactant molecules and therefore they favourably interacted with hy-
drophobic solvents, i.e., apolar or moderately polar solvents. When the octapods were
suspended in chloroform they remained stable and separated in solution, as confirmed
in Ref. [54] by both Dynamic Light Scattering (DLS) and cryo-Scanning Transmission
Electron Microscopy (cryo-STEM). For octapods dissolved in toluene, slow aggregation
on a time scale of a few hours was observed. This aggregation could be followed by DLS
(Fig. 7.1c) and by cryo-STEM, see Fig. 7.1b, which shows an image of an aliquot taken
after 24 hours of ageing. Most of the octapods had arranged into chain-like structures
and only a few isolated particles remained. Further investigation using STEM and tomo-
graphical reconstruction revealed that the octapods in the chains are ‘interlocking’ with
their neighbours (Fig. 7.1d and inset). No other types of chains or structures were found
in toluene. Henceforth, we shall refer to these chains as interlocking chains.

The addition of the highly polar acetonitrile to a chloroform-based suspension of oc-
tapods or a freshly prepared toluene-based suspension led to rapid precipitation, resulting
in disordered aggregates of octapods. A different type of precipitate was formed when
acetonitrile was added to an aged suspension of octapods in toluene. This suspension had
been sufficiently aged to allow almost all octapods to assemble into interlocking chains.
The precipitate obtained by the addition of acetonitrile to this suspension consisted of
micron-sized 3D superstructures of octapods, together with a fraction of isolated linear
chains (Fig. 7.2a). The fraction of chains consisted of longer and straighter chains than
those observed in pure toluene, suggesting that they were stiffer [54]. The morphology
and internal structure of the ordered 3D clusters led us to conclude that they had formed
by aggregation of the linear chains rather than via clustering of individual octapods. This
was further confirmed by the fact that occasionally entire chains of octapods were miss-
ing (Fig. 7.2b). Moreover, the nearest-neighbour configuration along one of the principal
directions of the crystal had the interlocking property of the chains (Fig. 7.2c). The struc-
ture could be described by a tetragonal unit cell, with the c-direction parallel to the chain
axis (Fig. 7.2d). Note that the arms of two neighbouring octapods in adjacent chains
were in close contact, we refer to this as the pod-pod configuration.

7.3 Monte Carlo Simulations of Octapods
In this section we consider the simulations that we performed to gain an understanding of
the experimental results. We refer the reader to Chapter 5 for a more detailed explanation
of some of the techniques that we used: floppy-box Monte Carlo (FBMC) simulations [75,
249], isothermal-isobaric (NPT ) Monte Carlo (MC) simulations, and isothermal-isochoric
(NV T ) MC simulations.

7.3.1 Hard Octapods
We first considered a hard-particle model (Fig. 7.3a) in order to verify that interlocking
chains and superstructures do not form by excluded-volume interactions only. This also
allowed us to test the speed and efficiency of the various simulations. We based the shape
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Figure 7.2: (a) Scanning Electron Microscopy shows that 3D clusters approximately 2 µm in
length have formed after the addition of the highly polar acetonitrile to an aged toluene-based
suspension containing mostly chains. (b) The clusters have a regular (crystalline) structure,
which is achieved by the ordered packing of the interlocking chains. This is further illustrated
by the cyan box, which marks the spot of a defect in the superstructure, where a chain is
missing. The defect also reveals the layer underneath. (c) A close-up of the structure showing
the arrangement of the octapods: a crystal with a tetragonal unit cell. The inset shows a
sketch of the structure using the 3D models that were employed in the simulation studies. (d) A
representation of the tetragonal unit cell, seen here from the top/side and the front, with c ≈ 70
nm and a ≈ c

√
2. The chains are oriented along the c-axis. The blue and magenta octahedra

represent the cores of the octapods and the colour also serves to indicate the orientation of the
particles.
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Figure 7.3: (a) Two-dimensional (2D) projection of the octapod model used in our simulations.
The core edge length is given by lc, the tip edge length by lt, and the pod length by la. The
range of the tip-tip square-well (SW, magenta) interaction and the core-core Lennard-Jones (LJ,
blue) interaction is also shown. The dashed blue circles indicate ULJ(r) = −1 kBT , and the solid
blue circle indicates rm [ULJ(rm) ≈ −8 kBT ; ULJ is minimal]. (b) The interaction strength (in
kBT ) experienced by an octapod in the interlocking configuration, as a function of the distance
r. This distance is measured along the chain axis from the centre (r = 0) of the cage formed by
two octapods. The grey vertical lines indicate for which r the octapod comes into contact with
its neighbours. (c) A snapshot of a simulation box containing 16 octapods at a volume fraction
of φ ≈ 0.01. Several of the octapods have formed interlocking chains, indicated with white
arrows. (d) The aggregation energy U (at contact) as a function of the number of octapods M
in an interlocking chain for on-end attachment (red) and side-by-side aggregation (blue). The
energetically favoured side-by-side contact is shown to the right.
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of the model for the octapods used in simulations on the tomography results shown in
Fig. 7.1a. The following quantities define the shape and size of the octapod model, also
see Fig. 7.3a, which shows this model and indicates various length scales. The edge length
of the octahedral core is given by lc = 22 nm, the edge length of the triangular tip of
a pod by lt = 15 nm, and the length of a pod by la = 62 nm, which is measured from
the centre of the octapod to the centroid of the triangular tip. In this model we do not
account for the increase in the width of this inorganic nanocrystal caused by the presence
of a capping layer, which one could consider a soft-potential effect.

For the FBMC crystal-structure-prediction simulations we compressed a system of oc-
tapods - over 1000 trials with varying compression rates - from a dilute-gas phase to a
high-density state for N = 1, . . . , 6, with N the number of particles in the unit cell. We
found several high-density crystal structures, none of which corresponded to the experi-
mentally observed crystal. The hard-particle model’s inability to form 3D superstructures
was further confirmed by performing regular NV T MC simulations at high volume frac-
tions φ ≈ 0.2, as well as regular NPT MC simulations at pressures for which the system
‘crystallizes’. Only irregular clusters of octapods were found. Also, for gas-phase NPT
and NV T simulation studies with φ ≈ 0.01, we did not observe any chain-like structures
forming spontaneously. We therefore conclude that the hard-particle model is not suited
to describe the hierarchical self-assembly. This was to be expected on the basis of the
experimental results, since the initial chain-formation step and the dilution at which this
occurs, are indicative of a system driven by attractive interactions.

7.3.2 Attractive Interactions
For the next phase of our investigation, we focused on reproducing the experimentally
observed chain formation in toluene at low volume fractions, which is an important step in
the superstructure self-assembly process. We studied a variety of simple soft potentials,
which we added to our hard-particle model, in order to determine a combination that
produces the experimental structures. Here we were restricted to very basic potential
types and small system sizes due to computational difficulties. We achieved formation
of chains in the dilute phase using a model for which there are attractions between the
octahedral cores of the particles and also attractions between the tips of the pods.

One model we found to give good results employs a Lennard-Jones (LJ) interaction
ULJ(r) between the cores and a square-well (SW) interaction USW(r) between the centroids
of the tips. Figure 7.3a shows a representation of the LJ and SW interaction potentials
in relation to the hard-particle model. The LJ interaction is given by

ULJ(r) = εl

{(
rm
r

)12
− 2

(
rm
r

)6
}
, (7.1)

with r the centre-to-centre distance between two octapods, rm ≈ la/
√

3 the location of
the minimum, and εl ≈ 8 kBT the well depth, where kB is Boltzmann’s constant and
T is the temperature. The value of rm was chosen such that in an interlocking chain
configuration, each octapod is located in the double-well potential of the ‘cage’ formed
by its two neighbouring octapods, provided it is not on the end of the chain. Figure 7.3b
shows this effect and the associated double-well potential. To ensure that the tips of the
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octapods (with the same orientation) touch in the interlocking configuration a spherically
symmetric SW interaction was implemented

USW(r) =
{
−εs : r < σ
0 : r > σ

(7.2)

with r the centroid-to-centroid distance between the triangular tips of the pods, σ ≈ lt/2
the range of the interaction, and εs ≈ 4 kBT the well depth.

7.3.3 Self-Assembly into Interlocking Chains
Using the above LJ-SW empirical model in NV T MC simulations we observed the forma-
tion of chains containing as many as 5 octapods in the interlocking configuration for dilute
systems with φ ≈ 0.01. Figure 7.3c shows a snapshot of an NV T simulation box contain-
ing 16 particles, most of which have formed interlocking-chain segments. Two segments of
length four and one dimer can be observed. For the dilute systems all particles eventually
became part of a chain through on-end attachment. Small changes in the model did not
interfere with the formation of chains, although the ease of formation and the stability of
the chains varied significantly when the depth of either interaction potential was changed
by 1 kBT . The well-depth used in both the LJ and the SW potentials was required to
achieve spontaneous formation of relatively stable chains at low densities φ ≈ 0.01, also
see Fig. 7.1b. For higher densities, both branching and noninterlocking trimer formation
were observed. Clustering of the chains into structures with greater hierarchy, such as
sheets or crystals was, however, not observed.

Figure 7.3d shows the on-end lengthening and the side-by-side aggregation interaction
energy as a function of the number of octapods M in the two chains coming together.
The interaction energy was determined by theoretical calculation, since simulations of
these long chains, using 2M octapods that are free to move, proved prohibitive. Our
results show that chain lengths exceeding M = 20 octapods are required to make on-
end lengthening of the chain energetically less favourable than side-by-side assembly. For
the LJ-SW model the energetically favoured side-by-side aggregation of chains did not
yield the experimentally observed pod-pod morphology. Instead, we found a configuration
where the chains touch at the tips, see the representation in Fig. 7.3d. This was confirmed
by NV T MC (and limited FBMC) simulations of rigid pre-assembled chains that did not
allow movement of the octapods in the chain or detachment from the chain.

By performing FBMC simulations we were able to probe the high density structures
that our LJ-SW models can form more readily than by ordinary NPT and NV T simu-
lations. We observed a variety of crystal structures, which did not possess the chain-like
morphology. For the most part, configurations where the tips of the pods are in close
proximity to one another were found, e.g., structures similar to the one in Fig. 6.3. These
configurations differed from the experimentally observed 3D superstructure because they
either did not possess the interlocking property, or if they did, the interlocking rows did
not come together in the pod-pod configuration. On occasion, however, we did find struc-
tures similar to those observed in the experiments, possessing both the interlocking and
the pod-pod configuration. We attribute these occurrences to an increased probability of
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interlocking aggregation taking place, when compressing from the fluid phase, due to the
core-core attractions.

Summarizing, we established an empirical simulation model capable of reproducing
the experimentally observed formation of interlocking chains in the dilute fluid phase.
We accounted for the shape of the octapods using a triangular-tessellation-based overlap
algorithm [249] and the model used Lennard-Jones attractions between the cores of the
octapods and square-well attractions between the tips of the octapods to achieve octapod
self-assembly. However, our model did not appear to capture the subsequent step of the
chains aggregating into 3D superstructures with the desired morphology.

7.3.4 Opportunities for Improvement
For dilute systems, φ ≈ 0.01, cluster moves could have been employed to accelerate
the exploration of phase space. We did not pursue this here for the following reasons.
Cluster moves only facilitate the initial on-end lengthening and sideways aggregation
of the chains. However, when these chains come in close proximity of one another, the
largest contribution to the sampling of phase space comes from single particle translations
or rotations. We would therefore again be limited by the computational efficiency of our
method. That is, the number of individual octapods required to simulate several long
chains with this type of LJ-SW interaction is prohibitive. The stiff pre-assembled chains
we used to compute the on-end lengthening and side-by-side aggregation energy, reduce
the freedom of motion of the particles and thereby the number of overlap checks and energy
calculation that have to be performed. This compromise between computational efficiency
and the area of phase space that can be sampled allowed us to perform simulations for long
chains on a time scale that is accessible. However, the relevance of the results obtained for
this system to the system where the octapods are free to move is questionable. Another
reason why we did not consider cluster moves is that at higher packing fractions, φ ≈ 0.2,
the nonconvex nature of the octapods makes it difficult to identify clusters and to move
such clusters, since the octapods can form a kind of ‘brier patch’ through which single
particles cannot easily pass, let alone clusters. On the basis of our simulation results, we
cannot exclude that these dense systems were kinetically arrested, but it is unlikely that
the use of cluster moves would have been able to overcome any such arrest. Currently,
a new (more coarse) model is being considered in the group of Prof. dr. Marjolein
Dijkstra [266], by which the computational efficiency may be improved. This model
consists of four spherocylinders which intersect in their respective centres and span a
cube. Since the hard-particle overlap routine is sped up significantly with respect to the
triangular-tessellation model, bigger and more complex systems may be considered.

7.4 Van-der-Waals Interactions between Octapods
In this section we examine the van-der-Waals (vdW) interactions between solvated oc-
tapods to ascertain the extent to which these interactions can explain the experimentally
observed self-assembly. We start by describing the method used to determine the vdW
interactions. This is followed by a discussion of the properties of the media in which
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the octapods are suspended and the effect the medium has on the strength of the vdW
interaction. We also examine the steric repulsion between the octapods that is brought
about by the capping layer that covers these particles. Finally, we show the orientational
dependence of the vdW interaction between two octapods in toluene.

7.4.1 Numerical Integration of the Dispersion Forces
Calculating the vdW interactions between two octapods is extremely complicated, due to
the geometry of the particle and the high dimensionality of the parameter space which can
be explored. Our approach to this problem is as follows. The nonretarded vdW interaction
between two octapods is given by UvdW(r,u,v), UvdW for short, where r denotes the
position of the centre of one of the octapods (octapod 1) with respect to the centre of
the other (octapod 2) and the quaternions u and v specify the orientation of octapods
1 and 2, respectively. Using a Hamaker-de-Boer-type integration [69] of the inter-atomic
dispersion forces the vdW interaction can be approximated by

UvdW(r,u,v) = Cρ1ρ2

∫
O1

∫
O2
|τ1 − τ2|−6 dτ2dτ1, (7.3)

with | · | the Euclidean vector norm, C the London constant associated with the octapod-
medium-octapod dispersion interaction, and ρi the number density of atoms in the i-th
octapod (i = 1, 2). The integration boundaries Oi are implicitly dependent on r, u, and v.
Our model assumes homogeneous density distributions ρi and a spatially constant value
of C. The London constant C is related to the Hamaker constant A for the octapod-
medium-octapod interaction according to A = 2πCρ1ρ2.

Analytic evaluation the integrals in Eq. (7.3) is impractical due to the complex shape
of the octapod even for the most symmetric of configurations. We therefore resort to a
numerical method. It proves useful split the integration in Eq. (7.3) into two parts and
consider a convenient reference frame. Without loss of generality we can place octapod 1
in the origin, such that its pods are oriented along the (±1,±1,±1) vectors. The vdW
potential of this single octapod in the origin is given by

UvdW,pnt(R) = A

π2ρ2

∫
O1
|τ1 −R|−6 dτ1, (7.4)

where O1 is understood to be appropriately translated and rotated to place the octapod
in the origin with the proper orientation. The vdW interaction between the two octapods
can be written in terms of this potential as

UvdW(r,u,v) = ρ2

∫
O2
UvdW,pnt(τ2)dτ2, (7.5)

where O2 is subject to the same transformation operation as O1 to preserve the config-
uration of interest. By tabulating the potential of Eq. (7.4) we can determine the vdW
interaction for a given configuration using Eq. (7.5) in a computationally reasonable time.

In our analysis we exploited the symmetry of the octapod and we therefore tabulated
Eq. (7.4) for only one octant of the Cartesian coordinate frame over a cubic grid (R-
grid) with a 0.5 nm lattice spacing up to a distance of 180 nm from the origin. We were
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able to determine this potential landscape in roughly 4 days using 20 modern 2.0 GHz
desktop PCs. Carefully tailoring the number of integration points on the octapod allowed
us to obtain convergence to within 5% of the actual value of UvdW,pnt(R) per R-grid
point. We required approximately 10 points per nm in each direction on the octapod -
replacing the integral in Eq. (7.4) by a summation over these points - to achieve this level
of convergence. The deviation from the actual value of UvdW,pnt(R) was determined by
comparing our results to results obtained using higher precision numerical integration for
a limited number of points, both close to the octapod and farther away from it. The high
precision integration took roughly four hours per R-point, thereby making it impractical
to apply it for the entire R-grid within a reasonable amount of time. The point density
used in the tabulated potential is necessary to obtain a decent approximation for UvdW
when the octapods are in close proximity. Note that a range of 180 nm in the R-grid does
not allow for a very large separation of the octapods, which themselves are 124 nm in
diameter. We were, however, limited to this range due to time constraints and round-off
errors, which became appreciable for large |R|.

To determine UvdW for a given configuration, we approximated octapod 2 using a
group of points (O2-grid, approximately 10 points per nm in each direction) which had
the correct position and orientation with respect octapod 1. We summed UvdW,pnt over
the O2-points to obtain UvdW. Since the O2-grid did not coincide with the R-grid we used
a trilinear interpolation to obtain the relevant values. We managed to achieve a fractional
deviation of around 0.15 from the actual value of UvdW for configurations where the
octapods were within 3 to 6 nm of contact. We determined this value by fitting a higher
order interpolation to the potential and integrating that with high precision for several
configurations, accounting for the 5% deviation already present in the potential landscape.
The relatively high deviation at close separations is a result of an underestimation of UvdW,
due to a systematic property of the trilinear interpolation. The level of deviation was,
however, acceptable and better accuracies could be achieved for greater separations.

It took around 30 minutes to evaluate Eq. (7.5) using the precalculated R-grid for
a single configuration on a modern 2.0 GHz desktop computer with 2 GB of random-
access memory (RAM). Because the tabulated potential of Eq. (7.4) was too large to
store in RAM, roughly 5 GB of data, we implemented a piecewise strategy: retrieving a
portion of the R-grid from the hard drive, integrating all relevant O2-points over that,
and repeating this until all O2-points had been considered. We believe that substantially
faster integration and better convergence is possible by making more conscientious choices
with regards to the tabulation of Eq. (7.4) and the interpolation/integration techniques,
but for the purposes of our investigation the current approach sufficed.

7.4.2 Hamaker Constants and Steric Repulsion
To determine the value of the vdW interaction for the experimental systems, we required
the Hamaker constant of the octapod-medium-octapod interaction for the three media
used: chloroform, toluene, and toluene-acetonitrile. CdSe and CdS have an equal Hamaker
constant (over vacuum) ACdSe = ACdS = 11.0 · 10−20 J [296, 297]. That of toluene over
vacuum is given by Atol = 5.4 · 10−20 J [298]. The Hamaker constant of CdSe/CdS over
toluene is therefore Aoto = (

√
11.0 −

√
5.4)2 · 10−20 J = 9.9 · 10−21 J, where we applied
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the combining relations of Ref. [69]. For chloroform we obtained Aoco = 7.9 · 10−21 J,
because the Hamaker constant over vacuum for chloroform is given by Achl = 5.9 · 10−20

J, according to Lifshitz theory [69] and the values in Ref. [299]. Finally, for the toluene-
acetonitrile mixture we obtained Aoao = 1.5 · 10−20 J, since Aace = 4.2 · 10−20 J over
vacuum [300] and we have an 80% acetonitrile to 20% toluene solution (by volume), for
which we used the theory of Ref. [301]. We assumed that impurities and the presence of
the capping layer do not strongly affect the vdW interaction and we therefore considered
these CdSe/CdS-based Hamaker constants to be representative for the octapod-medium-
octapod values. The large difference between Aoao, Aoto, and Aoco results in a proportional
difference in the strength of the vdW forces between the octapods in the three solvents,
since UvdW is linear in the Hamaker constant [see Eq. (7.5)].

There are short-ranged repulsive interactions between the octapods when the surfaces
of these particles are in close proximity to each other. These steric repulsions are caused
by a loss of configurational entropy resulting from volume restriction of the molecules in
the two overlapping capping layers, due to interdigitation. For the octapods the capping
layer consisted of octadecylphosphonic acid (ODPA) molecules [54], which have a length
of H = 2.5 nm [302]. Therefore, we assumed that steric effects only occur when the
surfaces of two octapods are within 2H = 5.0 nm of each other. The steric repulsion
dominates over the vdW attraction in a good solvent for the ODPA molecules, which
prevents the octapods from aggregating. In a poor solvent the repulsion is reduced and
the octapods can aggregate. To determine steric interactions the Alexander-de Gennes
model [69] is often employed. However, for our system we did not feel justified in using
this model, since there are too many unknowns with respect to the properties of the
capping layer. For instance, we did not know the affinity (covering density) of the ODPA
for the different crystal facets of the octapod. Moreover, the behaviour of the molecules
near the edges joining the various facets was not well understood. To (in some way) take
the steric repulsion into account in our model for octapod interactions and to ensure a
fair comparison of the different media, we specified that the combined vdW and steric
repulsion interaction assumes its minimum at 1.5H and that the depth of this minimum
is given by UvdW. We chose r = 1.5H because steric repulsion is unlikely to dominate
the vdW force at r = 2H, but will almost certainly dominate at r = H; based on simple
estimates using the theory in Ref. [69] for spherical particles and typical values of the
surfactant covering in nanoparticle systems [49].

7.4.3 Van-der-Waals Interactions in Toluene
Given an initial orientation u and v of the two octapods and an initial r, say r0, for which
the octapods touch, we determined the distance dependence of the vdW interaction using
the method explained in Section 7.4.1, the Hamaker constants of Section 7.4.2, and the
following expression

UvdW(r) ≡ UvdW

(
r0 + r

r0

|r0|
,u,v

)
, (7.6)

with r the separation between the surfaces of the octapods. Because of the large con-
figurational space that is associated to two octapods interacting and the computational
limits of our method, we restricted ourselves to 7 configurations for which we computed
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Figure 7.4: (a) The nonretarded vdW interaction strength UvdW in toluene in terms of the
thermal energy kBT as a function of the distance r between the octapods for 7 configurations.
The distance is measured from contact between the octapods (r = 0) and is expressed in terms
of 2H, with H = 2.5 nm is the length of a fully extended octadecylphosphonic acid (ODPA)
molecule. The dashed grey line indicates r = H and the solid grey line r = 2H. (b) The 7
configurations at contact are shown schematically and are labelled with Roman numerals to
which we reference in the text.

UvdW(r) on an equidistant r-grid using 200 points starting from r = 0 with steps of 0.30
nm.

Figure 7.4 shows our results for 7 configurations in toluene, the results for chloro-
form and the toluene-acetonitrile mixture can be obtained by vertical scaling of these
curves. We chose these particular configurations because they were either observed in
the experiments (i), (ii), (iii), and (vii), or because we believed that they might give
similar interaction strengths as the experimentally observed configurations (iv), (v), and
(vi). The difference between configurations (ii) and (iii) is that for the former the pods
are along each other as far as possible, whereas for the latter another octapod can be
symmetrically fitted in the ‘V-structure’ formed by two pods at a separation of 1.5H.

The interlocking (i) and pod-pod (ii,iii) configuration appear to be the only configu-
rations which have a substantial vdW interaction, when compared to the thermal energy
kBT . Configuration (i) achieves a well depth of around −3 kBT at r = 1.5H and configura-
tions (ii,iii) achieve −2.5 kBT and −1.5 kBT at r = 1.5H, respectively. We conjecture that
in toluene configuration (i) is the only one that is stable, since the interaction strength
of configurations (ii,iii) is lower and UvdW also decays much faster. In fact, for short
distances (ii,iii) UvdW(r) ∝ r−14 to UvdW(r) ∝ r−18 depending on the separation, whereas
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UvdW(r) ∝ r−6 for configuration (i). In addition, configurations (ii,iii) are probably more
efficiently passivated by steric repulsion, since the contact area for r = 1.5H is much
greater.

We verified that there is sufficient interaction strength between the octapods to sta-
bilize the interlocking chains in toluene. That is, the distance between the surfaces of
the octapods in the chain is roughly 2.5H, which would seemingly result in a far lower
vdW binding energy than the 3 kBT that we predicted for 1.5H of separation. However,
superimposing the vdW interactions of the two neighbouring octapods that form a cage
around an octapod in the interlocking configuration (see Fig. 7.3b for an example of this
caging) leads to significant binding energy. The central octapod typically experiences a
vdW binding energy of between 2 and 5 kBT , depending on exact shape of the cage and
the position of the octapod within it.

7.4.4 Relation to the Simulation Model

In this section we briefly compare the vdW interactions that we found using the Hamaker-
de-Boer formalism to the soft interactions that we employed to achieve chain formation
in our simulations, see Section 7.3.2. An essential element for the chain self-assembly in
simulations was the use of core-core Lennard-Jones (LJ) attractions. Our calculations
showed that there are indeed relatively strong attractions between the core regions of
the octapods in toluene. We consider this further (indirect) evidence that the vdW
interactions are responsible for the initial self-assembly step in toluene. However, the
square-well tip-tip attractions, which ensured that the tips of the octapods (with the same
orientation) touched in the interlocking chain, could not be explained by our results. It
is possible that the steric repulsion between the tips of the octapods is far lower than we
assumed in our model, because the ODPA surface coverage is lower at the tip, but this is
merely speculation. Another possibility is that tip-tip interactions are unnecessary. The
octapod and capping layer combination may be described better by an effectively more
voluminous simulation model. The model we used had rather slender pods, which only
accounted for the CdS part of the octapod and not for the presence of the capping layer,
see Section 7.3.1. The added width of the capping layer could substantially reduce the
freedom of motion in the interlocking configuration and might thereby naturally impose
close proximity of the tips due to geometrical constraints. Adjusting our simulation model
according to the insights gained by our vdW calculations is, however, left for future studies.

7.5 Mechanism for the Hierarchical Self-Assembly

By combining the experimental, theoretical, and simulation results we can now formulate a
mechanism for the hierarchical self-assembly of the octapods and explain the experimental
observations.

The strength of the vdW attractions between the octapods in chloroform is reduced by
20% with respect to the values in toluene. Moreover, chloroform is a better solvent for the
capping molecules, which likely improves the steric repulsion. The combination of these



Hierarchical Self-Assembly of Octapod-Shaped Nanoparticles 127

effects may well be sufficient to prevent aggregation of octapods into larger structures for
this solvent, in agreement with the experimental observations.

In toluene the vdW attractions are sufficiently strong to allow for self-assembly into
interlocking chains. The formation of chains can be further explained by considering the
peculiar geometry of the octapods. In forming a dimer each octapod can approach another
octapod from eight possible equivalent directions. However, once a dimer is formed, a
third octapod can join and form a stable trimer only by adding to one of the two ends
of the chain, any other side is too sterically hindered by the pods of the other octapods
in the dimer. Furthermore, the interlocking configuration at the ends is the only one
which is capable of supporting attachment in toluene. The same holds for formation of
longer chains, realized either by addition of individual octapods or by gluing of octapod
oligomers. The interaction strength in toluene is however insufficient to support the chain
lengths required to achieve stable side-by-side aggregation. That is, only linear chains
may be formed in toluene. This dimer formation and subsequent chain lengthening is
shown in the sketch of Fig. 7.5a.

The addition of acetonitrile, a strongly polar solvent, to an aged suspension of octapods
in toluene containing mostly chains, has two effects. First, the effective thickness of the
capping layer around each octapod can shrink, because acetonitrile is a poor solvent for
its ligands. Second, the increased polarity of the toluene-acetonitrile mixture boosts the
vdW interaction strength, see Fig. 7.5b. Within the confines of our model this has several
consequences, in agreement with the experimental findings. (i) Octapods in pre-existing
chains bind more strongly, thereby stiffening these chains. (ii) Chain-chain interactions
become stronger, initially resulting in lengthening of the chains. This is followed by side-
by-side aggregation, when the chains are of sufficient length to make such aggregation
energetically preferential. (iii) The side-by-side aggregation favours the pod-pod due to
deep vdW minimum that is associated with it. A schematic of steps (ii) and (iii) is
given in Fig. 7.5c to clarify this process. The addition of acetonitrile therefore ultimately
yields large, ordered 3D structures with the morphology observed in experiments. These
superstructures precipitate when they have grown to sufficient size.

7.6 Conclusion and Outlook

In this chapter we considered the hierarchical self-assembly of branched octapod-shaped
nanocrystals, which were suspended in a liquid, into the interlocking chains and three-
dimensional (3D) superstructures observed in experiments [54], using simulations and
theory. Our simulation studies showed that attractions between the cores of the octapods
are essential in obtaining interlocking chains at low volume fractions. The origin of these
attractions was considered using a theoretical calculation of the van-der-Waals (vdW)
interaction between two octapods, which is based on the Hamaker-de-Boer formalism.
Our analysis also showed that the vdW attractions between the pods of an octapod can
explain the morphology of the 3D superstructure and revealed the role that the suspending
medium plays in the hierarchical process. Based on our simulation and theoretical work
we have thus demonstrated that the observed self-assembly is predominantly driven by
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Figure 7.5: (a) In toluene chains are grown by interlocking of octapods [configuration (i)]. (b)
The red curves give the vdW strength UvdW (in kBT ) as a function of the separation r between
two octapod surfaces for a pure toluene solvent and the blue curves are for a 20/80% by volume
toluene/acetonitrile mixture. The gray vertical lines mark the steric hindrance, see Section 7.4.2.
The interlocking configuration between two octapods achieves sufficient vdW attraction [full
curve, or (i)] to result in the formation of chains in toluene. The interaction-strength increase
for the pod-pod configuration [dashed curve, or (ii)] by the addition of acetonitrile explains
the morphology of the three-dimensional (3D) superstructure the chains self-assemble into. (c)
The addition of acetonitrile to an aged toluene sample (containing mostly chains) initially leads
to chain grow by on-end interlocking of smaller chains [configuration (i)]. This is followed by
side-by-side assembly of chains into the 3D superstructure according to the pod-pod interac-
tion [configuration (ii)] between octapods belonging to different chains, when the chains reach
sufficient length to support such aggregation.
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the complex anisotropic shape of the octapods, through the directionality of the hard-core
repulsions and the van-der-Waals (vdW) attractions this shape brings about.

A natural step for further investigation is to improve upon our simulation model
with the knowledge obtained from our theoretical vdW analysis. It is our hope that an
improved model will capture superstructure formation, a step in the hierarchical self-
assembly that we did not manage to reproduce. The use of a simpler model for the shape
of the octapod, based on a spherocylinder approximation [266], may prove essential in
obtaining the computational efficiency required to perform such complicated simulations.
Another point that requires further study is the possibility of an electrostatic component
to the octapod interactions. Electrostatic interactions in polar media can be quite strong
due to the relatively low ionic screening, despite the fact that only a few charge groups
can dissociate in such solvents. We did not take these effects into account, because the
mechanisms based on vdW interactions appear to explain the main steps of the self-
assembly process, but it would be preferable to show that this is justified.

The theoretical and simulation procedures described in this chapter for octapods show
great promise for the analysis of other experimental systems that achieve (hierarchical)
self-assembly. It is our hope that our methods will not just be limited to describing the
behaviour in experiments, but that in the near future they can be built upon to obtain a
predictive tool which may be used to guide experimental studies.

7.7 Acknowledgements
It is a pleasure to thank Prof. dr. Liberato Manna, Dr. Giovanni Bertoni, Karol Miszta,
Dr. Dirk Dorfs, Dr. Rosaria Brescia, Sergio Marras, Dr. Luca Ceseracciu, and Prof. dr.
Roberto Cingolani of the Istituto Italiano di Tecnologia, where the study of the hierarchi-
cal self-assembly of the octapods was initiated and all experiments were performed, for
the fruitful collaboration on this project. I would in particular like to Giovanni Bertoni
and Liberato Manna for the long discussions on the properties of the experimental system,
which proved crucial to guiding the simulation and theoretical investigation.





8

Electrostatic Interactions between
Janus particles

In this chapter we study the ionic screening of charged spherical Janus particles using
primitive-model Monte Carlo simulations for a wide variety of parameters. We introduce
a method to compare these results to the predictions of nonlinear Poisson-Boltzmann
theory. Using this method and the large set of parameters studied, we are able to probe the
range of validity of the Poisson-Boltzmann approximation. For homogeneously charged
spheres this range of validity corresponds well to the range that was predicted by field-
theoretical studies of homogeneously charged flat surfaces. Moreover, we find similar
ranges for colloids with a Janus-type charge distribution. Our investigation therefore
extends the field-theoretical result to charged spherical (Janus) particles. The techniques
and parameters we introduce may be used in future studies of an even wider class of
charge-patterned particles.
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8.1 Introduction

Electrostatic interactions in suspensions of charged colloids are of paramount importance
to the structure and phase behaviour of these systems [66, 76, 77, 191]. However, char-
acterising the behaviour of such systems by theory or by simulations is difficult due to
the long range of the Coulomb interactions between charged particles, which results in a
complex many-body problem. The presence of mobile ions in the suspension causes the
bare charge on the particles to be screened. That is, near a charged surface a diffuse layer
of ions forms of which the excess charge is opposite to that of the surface, this structure
is called the double layer. The presence of this double layer effectively reduces the range
of colloid-colloid interactions, which is therefore screened.

Several theoretical models have been formulated to describe the phenomenon of screen-
ing. The Derjaguin Landau Verwey Overbeek (DLVO) [192, 193] is a classic linear screen-
ing theory that is applicable only in a limited parameter range, mostly for monovalent
salts, high-polarity solvents, low surface charge, and high ionic strength. The nonlinear
Poisson-Boltzmann (PB) approach [194, 195] extends this range, although analytic results
are only possible for a limited number of systems. PB theory is based on a mean-field
approximation that ignores ion-ion correlations, which is justified only at high tempera-
tures, high dielectric constants, low ion valence, and low salt concentrations. Finally, in
regimes where ion-ion correlations are important Strong-Coupling (SC) theory [196–198]
may be applied. Several other approaches exist [303–311], including modifications of the
traditional PB theory that account for finite-size ions, but, interesting as this may be, we
will not go into these here.

In the computational field, both Monte Carlo (MC) and Molecular Dynamics (MD)
techniques have been developed to analyse charged particles suspended in an electrolyte.
Simulations are used to bridge the gap between the macroscopic phenomenology that is
described well by theory and the smaller length scales, which often need to be considered
on a more explicit level, relevant to many experiments. In primitive-model simulations
ions are taken into account explicitly [199–204]. Ewald Sums [269] usually provide the
basis for calculating the long-ranged Coulomb contribution to the total energy of a system
with periodic boundary conditions. However, employing Ewald Sums is computationally
expensive and the systems that can be studied in the primitive model are therefore small
in size. When studying charged colloids suspended in an electrolyte it is desirable to
coarse grain the system and use the much shorter ranged effective interactions between
the particles instead of accounting for the ions explicitly. Most simulation studies therefore
consider systems where the interactions between the colloids can be modelled by a DLVO
pair potential [77, 205–208].

Even charge-patterned particles have been studied using the DLVO approximation by
partitioning the surface charge over a finite number of point-Yukawa charges with dif-
ferent prefactors [190]. For charge-patterned particles this approximation still generally
results in an expensive calculation of the pair interaction as a function of the separation
and orientation. Moreover, it is known that the point-Yukawa description inadequately
accounts for the hard core of the particle, i.e., it implicitly assumes that ions can pene-
trate the colloid. In Ref. [212] a correct, simple, and therefore computationally far more
efficient DLVO-multipole approximation was derived for the effective interaction between
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two charge-patterned particles. The multipole-based effective interactions have an enor-
mous potential for use in simulation studies to explore the phase behaviour of previously
inaccessible systems

In this chapter we investigate the range of applicability for nonlinear PB theory to
accurately describe the behaviour of the ion density around charged heterogeneous par-
ticles. We are interested in this, because it allows us to quantify for which parameters
the DLVO-multipole approximation of Ref. [212] may be applied in coarse-grained simu-
lations, since this approximation was derived using PB theory. For this study we restrict
ourselves to particles with a Janus-type charge pattern. The term Janus refers to the two-
faced Roman god of doors and was introduced to describe colloid properties in 1988 [117].
A Janus particle [117–119] consists of two opposing parts (usually hemispheres) with dif-
ferent properties for the wetting, charge, chemical functionality, etc. The past decade has
seen a marked increase in the ability to synthesize such Janus colloids [110–116] and of
their use in self-assembly experiments. Many interesting structures were found [32, 190]
and questions have been raised on how to approach simulations of such systems. With
our study we aim to address some of these questions for charged Janus particles in an
electrolyte, in much the same way as the pioneering simulation studies that probed the
applicability of the regular DLVO/PB approximation for homogeneously charged parti-
cles [199, 201].

In Section 8.2 we introduce the methods by which we compute the ion density around
charged Janus particles: primitive-model MC simulations (8.2.1) and nonlinear PB theory
(8.2.2). We discuss the results of our investigation in Section 8.3, which is divided into
four parts. In Section 8.3.1 we introduce the method, based on Fourier-Legendre (FL)
mode decomposition, by which we compare the MC and PB results. This method is
applied to a homogeneously charged particle in Section 8.3.2, in which we also investigate
the relation to the field-theoretical results of Refs. [213, 214] for homogeneously charged
flat surfaces. In Section 8.3.3 we extend our results to a Janus dipole and show that
there is remarkable correspondence with the results for a homogeneously charged sphere.
We consider a particle with a single charged hemisphere in Section 8.3.4. Finally, we
discuss our findings, comment on the potential synergy between simulation methods and
theoretical results, and present an outlook in Section 8.4.

8.2 Simulations and Theory
In the following we consider a system of spherical charge-patterned colloids with radius a
suspended in an electrolyte. The colloid volume fraction is denoted by η. To simplify the
calculations we study only one of these particles, which we locate at the centre of a volume
V = 4πa3/(3η). We apply periodic boundary conditions to this volume to account for the
fact that we are in principle interested in a system which contains many colloids. The par-
ticle’s (heterogeneous) surface charge may be specified in Poisson-Boltzmann (PB) theory
by a charge density q(r), which is only nonzero when |r| = a with r the position w.r.t.
the origin, or in Monte Carlo (MC) simulations by 100 point charges distributed over this
surface. We studied three types of charge distribution. (i) A homogeneous surface charge
of Ze, with Z > 0 the number of charges and e the elementary charge. (ii) A perfectly
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antisymmetric surface charge, with Ze/2 and −Ze/2 homogeneously distributed over the
particle’s upper and lower hemisphere, respectively. (iii) A homogeneously charged upper
hemisphere with charge Ze and a completely uncharged lower hemisphere. Unless stated
otherwise Z = 100 throughout this chapter. The number of free monovalent ions N in
the volume V is fixed, i.e., we are interested in an average ion concentration N/V for the
system that we approximate by our one-colloid calculation. We only consider systems for
which a monovalent salt is added to improve the screening effected by the counter ions to
the particle’s charge. The balance between the number of positive N+ and negative N−
ions (N = N+ + N−) is such that the volume, and thereby the entire system, is charge
neutral. For the monopole and charged hemisphere we require Z +N+ −N− = 0 and for
the Janus dipole N+ = N−. We assume that there is a perfect dielectric match between
the colloid, the ions, and the medium to avoid any related boundary effects.

8.2.1 Ewald Sums and Monte Carlo Simulations

To study the systems described above by MC simulations we turn to the primitive model,
for which the ions are represented by charged spheres and the suspending medium is
treated as a dielectric continuum. To sample phase space Monte Carlo (MC) simulations
are performed in the isothermal-isochoric (canonical, NV T ) ensemble. We consider a
cubic simulation box of length L = 50d, with d the ion diameter. A spherical particle is
located at the centre of the box (the origin). Periodic boundary conditions are imposed
to emulate a system with a colloid volume fraction η. The particle’s rotational symmetry
axis is chosen parallel to one of the box’s ribs for the Janus-type charge distributions. The
charge sites on the colloid are chosen according to the optimal packing of 100 points on
a sphere [312] to ensure that they are spaced as homogeneously as possible. The ion-ion
pair potential is a combination of a Coulomb and a hard-particle interaction part:

UII(ri, rj) = qiqje
2

4πε0ε
1

|ri − rj|
+
{
∞ |ri − rj| ≤ d
0 |ri − rj| > d

, (8.1)

with ri and rj the position of ions i and j with respect to colloid’s centre, respectively.
The function | · | gives the Euclidean norm of a vector, qi = ±1 the sign of the i-th
ion’s charge, ε0 the permittivity of vacuum, and ε the relative dielectric constant of the
medium, ions, and particle. The interaction between a charge site on the particle located
at ri, with |ri| = d− a/2, and an ion located at rj is given by

USI(ri, rj) = qiqje
2

4πε0ε
1

|ri − rj|
+
{
∞ |rj| ≤ a+ d/2
0 |rj| > a+ d/2 . (8.2)

The coupling between periodicity and the (long-range) Coulomb interactions, Eqs. (8.1)
and (8.2), is taken into account using Ewald Sums with conductive boundary condi-
tions [253, 269]. The total electrostatic energy UC of a particular configuration may be
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written as

4πε0ε
e2 UC = 1

2L3

∑
k 6=0

 4π
|k|2

∣∣∣∣∣∣
Ñ∑
j=1

qj exp (ik · rj)
∣∣∣∣∣∣
2

exp
(
−|k|

2

4γ

)
−
√
γ

π

Ñ∑
i=1

q2
i + 1

2

Ñ∑
i 6=j

qiqjerfc
(√

γ|ri − rj|
)

|ri − rj|
, (8.3)

where summation is over both the ions and the charge sites, i.e., Ñ is the total number
of charges in the system, both free and fixed; k ≡ (2π/L)l is a Fourier space vector, with
l ∈ Z3; γ is the Ewald convergence parameter [253]; and erfc is the complementary error
function. One can safely ignore the site-site interactions in Eq. (8.3), because this gives
a constant contribution to the electrostatic energy UC. The self-energy term also drops
out of the energy difference, on which the acceptance criterion for the MC trial moves is
based [253].

For our simulations we employ the following parameters. (i) Each run consists of
100,000 MC equilibration cycles, where 1 MC cycle is understood to be one trial (transla-
tion) move per free ion. (ii) This equilibration is followed by a production run of 250,000
MC cycles to determine the ensemble-averaged ion density profiles ρ±(r), with r the po-
sition with respect to the centre of the colloid. (iii) The step size for the ion translational
moves is in the range [0, 5d] and it is adjusted to yield an acceptance ratio of 0.25. (iv)
For the Ewald Sums the real space cut-off radius for the third term in Eq. (8.3) is set
to L/2.5, and we use γ = 0.03 and |l| < 6. This choice of Ewald parameters gives a
reasonable approximation to the value of the electrostatic interaction energy. Doubling
and halving the number of cycles for several runs showed that the MC parameters give
sufficiently equilibrated results for most systems. A possible exception to the perceived
equilibration is deep inside the strong-coupled regime, where ion-ion correlations play an
important role, as we will explain in Section 8.3.1.

8.2.2 The Poisson-Boltzmann Approach
The spherical particle of radius a in a cubic box models a system with colloid volume
fraction η = (4π/3)(a/L)3. The equivalent system in PB theory is described using a
spherical Wigner-Seitz (WS) cell model [195, 313–315], where the radius of the WS cell
is given by

R =
(

3L3

4π

)1/3

= aη−1/3, (8.4)

and the colloid is located at the centre of the cell. The choice of R ensures that the
volumes, and therefore the average density of colloids/ions is the same in both methods.
PB theory is applied, in accordance with the procedure outlined in Refs. [209, 210, 212],
to determine the dimensionfree electrostatic potential φ(r) and the associated ion density
profiles ρ±(r) around the colloid. In our simulations the hard-particle interaction between
the ions and the colloid prevent the ions from approaching the colloid’s centre closer than
a distance of a+d/2. We therefore assume the same spherical hard-core exclusion volume
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for the point ions in PB theory. The colloid’s surface charge density is given by q(r),
which is only nonzero when |r| = a. The PB equation for this system may now be written
as

∇2φ(r) = 4πλBq(r) +
{

0 |r| ≤ a+ d/2
κ2 sinh(φ(r)) |r| > a+ d/2 , (8.5)

where κ2 = 8πλBρs (κ−1 is the Debye screening length), with ρs the (yet unknown) bulk
ion density and λB the Bjerrum length. The Bjerrum length is expressed in terms of
measurable system properties (ε, T ) as

λB = e2

4πε0εkBT
, (8.6)

with kB Boltzmann’s constant and T the temperature. We impose the following boundary
condition

∇φ(r) · r̂|r=R = 0, (8.7)

with r̂ ≡ r/|r|, on the edge of the spherical cell to ensure that the normal component of
the electric field vanishes at the boundary, i.e., the WS cell is charge neutral. To solve
Eq. (8.5) the charge density q(r) and the electrostatic potential φ(r) are expanded as

q(r) =
∑
`

σ`δ(r − a)P`(x); (8.8)

φ(r) =
∑
`

φ`(r)P`(x), (8.9)

with σ` and φ`(r) the surface-charge and potential modes, respectively. Here r ≡ |r|
and x ≡ r · ẑ, with ẑ the orientation of the colloid’s rotational symmetry axis. The P`
are `-th order Legendre polynomials. The nonlinear PB equation [Eq. (8.5)] is likewise
expanded using Fourier-Legendre (FL) mode decomposition and Taylor expansion of the
sinh term around the monopole potential φ0(r). The higher-order expansion coefficients
contain products of Legendre polynomials thereby inducing coupling between the various
modes. These products must be rewritten as a sum of other Legendre polynomials [316] to
solve for the separate modes using an iterative procedure. The mode coupling this induces
necessitates the analysis of a significant number of multipoles even if, for example, only the
dipole mode is of interest. See Refs. [209, 210, 212] for more information on the procedure
of mode expansion to solve the PB equation for heterogeneously charged colloids.

It is important to note that the PB theory treats the screening ions in the grand-
canonical (µV T ) ensemble. The MC simulations were performed in the canonical ensem-
ble, where the number of ions is fixed, to allow for faster exploration of phase space. We
fit the bulk ion concentration ρs in PB theory to ensure that the number of positive and
negative ions in the WS cell corresponds to the number of ions in the MC simulation box.
We consider this condition, coupled with the fact that we study the same colloid volume
fraction η in both approaches, sufficient to justify comparison of the results in the two
ensembles. The bulk ion concentration is fitted according to the criterion

N± = N±,PB ≡
∫
ρ±,PB(r)dr, (8.10)
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Figure 8.1: The monopole moments of the ion distribution ρ0,±(r) as a function of the radial
distance r from a homogeneously charged spherical colloid’s centre. Here a = 10d, λB = d,
N+ = 250, and N− = 350. The results derived by PB theory are indicated using solid curves
and those obtained by MC simulations are indicated using dashed curves. All quantities are
expressed in terms of the Bjerrum length λB in order to give dimensionfree results. We only
show the monopole term, since the higher order modes are negligible.

where the integration is over the region |r| ∈ [a + d/2, R]. One of the two equations is
redundant, since solving for N+ is equivalent to solving for N−. The appropriate bulk ion
concentration ρs, which comes into the right-hand side of Eq. (8.10) via the dependence of
ρ±,PB(r) on this concentration, is established using an iterative procedure. All PB results
presented in this chapter were obtained on an equidistant radial grid of 2,000 points for
|r| ∈ [a+ d/2, R] by 5-th order Taylor expansion of sinh(·) using 6 multipole modes.

8.3 Ionic Screening of Janus Particles

In this section we describe our results for the comparison of ion density profiles obtained
by MC simulations and by PB theory. A total of 99 systems were considered for each
of the three charge-patterned colloids. We used three particle radii a = 5d, 10d, and
15d. For every particle radius a, three salt concentrations were studied: 125, 250, and
375 monovalent cations and anions, respectively, were added to the counter ions already
present in the system. This gives N± = 175, 300, and 425 for the Janus dipole. For
the homogeneously and hemispherically charged particle N+ = 125, 250, and 375 when
N− = 225, 350, and 475, respectively. We considered 11 Bjerrum lengths λB/d = 0.01,
0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, and 10.0 for each a and N± combination.
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8.3.1 Method of Comparison
Figures 8.1, 8.2, and 8.3 show examples of our results for a typical set of parameters:
a = 10d, λB = d, and 250 added anions and cations, respectively. For the homogeneous
charge distribution we only give the monopole term (` = 0, Fig. 8.1), since the ion profiles
are spherically symmetric within the numerical uncertainty. The azimuthal average of
the excess ion concentration [ρ+(r) − ρ−(r)] is shown for the Janus dipole (Fig. 8.2a)
and for the hemispherical surface charge (Fig. 8.3a) to give insight into the shape of the
density profiles. The multipole-expanded ion-density profiles [Figs. 8.2(b-c) and 8.3(b-c)]
further illustrate the level of correspondence between the MC and PB result for these two
systems. Due to the antisymmetry of the problem ρ+,`(r) = ρ−,`(r)(−1)` for the Janus
dipole. All three systems are in the weak-coupling regime for the ion-ion interactions
(α ≈ 0.06), which explains the good agreement between both methods. Here we use the
coupling-parameter α introduced in Ref. [204], which is a measure for the degree of ion
association, to quantify the extent to which strong-coupling effects occur. The definition
of α in terms of our variables reads

α = 1− 1
Kρs

(√
1 + 4Kρs − 1

)
; (8.11)

K = π

2

∫ λB

d
r2 exp

(
2λB
r

)
dr, (8.12)

where the fitted value for ρs is used. In Ref. [204] it is shown that α . 0.5 implies that
strong-coupling effects are not relevant.

The local dimensionfree charge density for the homogeneously charged colloid is y ≡
ZλB/(κa)2 = 4πσλB/κ ≈ 5.2. This charge density can be used as a nonlinearity parameter
and y ≈ 5.2 implies that mode coupling occurs [212]. We will come back to this parameter
in the context of heterogeneous surface charges later. For the Janus dipole we can clearly
observe a nonlinear effect, namely limr↓a ρ±,0(r) 6= ρs, despite the fact that the charge
on the colloid has no intrinsic monopole component. Nonvanishing quadrupole (` = 2)
modes are also induced by mode coupling (nonlinearity).

In order to quantify the difference between results obtained by MC simulations and
by PB theory we compare the difference in the distribution of ions in the double layer
directly for each mode. To that end, we introduce the functions f`, which can be applied
to a general Janus particle with ZU unit charges on the upper hemisphere and ZL unit
charges on the lower hemisphere, respectively:

f` = 4π
|ZU|+ |ZL|

∫ L/2

a+d/2
r2 |ρ`,MC(r)− ρ`,PB(r)| dr, (8.13)

where ρ`(r) = ρ+,`(r) − ρ−,`(r) gives the ion density difference (ion excess) and we use
the labels MC and PB to indicate the origin of the respective profiles. Equation (8.13)
has the property that all f` are 0 when the two profiles are exactly the same and that at
least one f` > 0 when they are not. Because we compare results for the cubic geometry
of the simulation box to the spherical geometry of the WS cell in PB theory, the upper
integration boundary is set to L/2 < R. In principle the difference in shape and associated
boundary conditions imply that we consider the correspondence between a simple-cubic
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Figure 8.2: Ionic screening for a Janus-dipole. Here a = 10d, λB = d, and N± = 300.
(a) Contour plot of the azimuthally averaged ion excess (ρ+ − ρ−) for the Janus dipole: MC
simulations (left) and PB theory (right). The two results are divided by a black vertical line
and the radius of the colloid and r = L/2 are indicated using thick black circles. The surface
charge distribution inside the colloid is represented by a red and blue semicircle. (b,c) The first
four FL modes for the colloid in (a). From red to blue the colours indicate the monopole (` = 0)
through octapole (` = 3) contribution to the ion densities. The positive ion profiles ρ+,`(r) are
given in (b) and the negative ones ρ−,`(r) in (c).
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crystal of colloids and a liquid of colloids at the same volume fraction. However, due to
the separation of the particles and the level of ionic screening the results are virtually
independent of the shape of the volume, when we compare up to r = L/2. This is the
reason why we only considered systems with added salt.

The functions f` are normalized by |ZU|+ |ZL| such that for a homogeneously charged
particle f0 = 2, when there is a full discrepancy between the MC and PB results. Because
the counter charge in the double layer should compensate for the net charge on a colloid,
each |ρ0(r)| separately will contribute at most |ZU| + |ZL|. When the two profiles do
not overlap we obtain twice this number. An example of a strong mismatch between the
MC and PB results is found deep in the strong-coupling regime where the MC method
predicts a total condensation of counter ions in a very small region close to the surface,
whilst PB theory predicts the counter charge to be located in a diffuse layer around the
colloid of significant width. For higher order modes the value of f` is bounded, but the
range is not necessarily [0, 2]. We will come back to the effect of this in Section 8.3.4.

8.3.2 Homogeneously Charged Spherical Particles
To prove that the difference functions introduced in Eq. (8.13) give a useful descrip-
tion of the deviation between the MC and PB results, we investigated the property of
the monopole term f0 for homogeneously charged spherical particles, see Fig. 8.4a. We
compared the behaviour of f0 to field-theoretical predictions [213, 214], which were also
aimed at establishing a range of validity for PB theory, and showed that there is a good
correspondence between the two ranges.

In Refs. [213, 214] the parameter regimes were investigated, for which DH, PB, and
SC theory give trustworthy results for the effective interaction between homogeneously
charged flat surfaces, respectively. For these flat surfaces parameter space is partitioned
into three pieces, see Fig. 8.4b. (I) A region where the Debye-Hückel (DH) approximation
can be applied to the PB equation, the screening is linear. (II) A region where the charge of
the surfaces becomes higher, the nonlinear PB equation [194, 195] has to be solved in order
to determine the effective electrostatic interactions. (III) A region in which the ion-ion
correlations close to the surface require the use of Strong-Coupling (SC) theory [196–198].
In Fig. 8.4 the parameters κµ = 2/y and Ξ = (y/2)κλB represent parameter space in a
‘field-theoretical way’ (see Ref. [214]), with y the local dimensionfree charge density and
µ the Gouy-Chapmann length. The Gouy-Chapmann length must not to be confused
with the chemical potential, which is also usually denoted by µ. In literature Ξ is often
referred to as the electrostatic strong-coupling parameter, but we prefer to use the symbol
throughout this text to avoid confusion with the ion-association coupling parameter α.
PB theory produces satisfactory results for low values of Ξ. Ref. [214] sets the value of
(Ξ ≈ 10) ≡ Ξ∗ for the transition between the PB and SC regimes. The value of κµ is
of minor importance when Ξ < Ξ∗ as PB theory can be straightforwardly applied to the
region where the DH approximation is used in the low-charge limit.

We define f ∗0 = 0.1 to be the value for which the transition between the PB-theory
and SC-theory regimes occurs. This choice is based on a comparison of the MC and
PB ion profiles for the 99 systems containing a homogeneously charged sphere that we
investigated. There appears to be a relatively sharp transition in the agreement between
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the results around (f0 ≈ 0.1) ≡ f ∗0 . This is illustrated in Fig. 8.5, which shows f0 for a
series of systems with a = 10d, N± = 250, and 5 different values of λB. When f0 < f ∗0 PB
theory gives accurate results and for f0 > f ∗0 SC theory should be considered. Based on
the distribution of f0 values we obtained for our 99 systems, see Fig. 8.4a, and our value
of f ∗0 , we locate the PB-SC divide at Ξ∗ ≈ 1. Minor changes in the value of f ∗0 do not
significantly change the location of the PB-SC transition in parameter space. However,
since what is considered an unacceptable level of the discrepancy between PB and MC
results is dependent on the quantities/behaviour we are interested in, there is a measure of
arbitrariness to our result. Nevertheless, our approach to this problem and our choice for
f ∗0 appears justified since we obtain a similar partitioning of parameter space as was found
in Ref. [214], see Fig. 8.4b. This is to be expected for a homogeneously charged sphere,
since there is only a geometrical difference with respect to a homogeneously charged plate,
which for sufficiently large spheres can be considered small close to the sphere’s surface.
Our results show that even for relatively small spheres (compared to the size of the ions)
there is qualitative agreement.

For completeness we comment on the accuracy of our MC result deep inside the strong-
coupling regime. The MC results, also see Fig. 8.5, show that a layer of oppositely charged
ions can form on the surface of the particle. The interaction between the charges (sites
and ions) is such that the free ions effectively condensate on the particle, see Refs. [306,
311, 317–320] for a more comprehensive account of this phenomenology. The ions in
the electrolyte experience similarly strong interactions and form Bjerrum pairs: dipole-
like clusters of two oppositely charged ions that are closely bound due to the strong
interaction energy [203, 204]. Since we only consider single particle MC trial moves, the
formation of Bjerrum pairs interferes with the exploration of phase space in the strong-
coupling limit. The clusters hardly move, because most single particle moves that would
break up a cluster are rejected on the basis of the energy difference. This results in
an ensemble average that is not representative of the system, when the Bjerrum-pair
concentration is high (α & 0.5) [204]. The problem can be overcome by introducing
cluster and association-dissociation moves for the Bjerrum pairs to obtain the correct
sampling [203, 204]. However, we do not believe that ion condensation and Bjerrum-pair
formation will influence our result with regard to the location of Ξ∗, since these effects
only start to play a role for Ξ� Ξ∗.

8.3.3 Janus-Dipole Charge Distributions
In this section we apply our method of comparison to higher order Fourier-Legendre (FL)
modes of the ion density for the case of a Janus dipole. Figure 8.6 shows the deviation
parameter f` for the first four multipole moments (` = 0, 1, 2, and 3) for the large set of
parameters we studied. To apply a representation similar to the one used in Ref. [213]
for Janus particles, we introduce the following modified parameters: yΣ = 2/(κµΣ) ≡
(|ZU|+ |ZL|)λB/(κa2) and ΞΣ ≡ (yΣ/2)κλB. The sum of the absolute value of the charge
on each hemisphere is used, rather than the total charge, which is zero in the case of a
Janus dipole. For pure monopoles yΣ and ΞΣ reduce to the original parameters y and
Ξ. We prefer to express our results in terms of the dimensionfree (absolute) local charge
density yΣ rather than in terms of κµ = 2/yΣ, since the former is a more natural quantity
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respectively.
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for PB theory of colloid systems. The parameter κµ was used in Fig. 8.4 to illustrate the
correspondence between our results and the partitioning given in Ref. [214].

The dipole mode ` = 1 is the first mode to contribute significantly to the double layer
around the Janus dipole. For this dipole term we observe trends in the value of f1 (Fig. 8.6)
as a function of y and Ξ similar to those observed for the value of f0 corresponding to a
homogeneously charged sphere (Fig. 8.4a). The property ρ+,`(r) = ρ−,`(r)(−1)` ensures
that there is no ion excess for the even modes in the PB theory. This implies that the
functions f` (` even) are not particularly suited to establish the difference in the double
layer between the MC and PB results for these antisymmetric systems. That is, if we also
obtain ρ+,`(r) ≈ ρ−,`(r) with ` even for the MC simulations, but ρ±,`,MC 6= ρ±,`,PB, this
difference would not be picked up in f`, since the comparison is based on the ion excess,
which for both methods is zero. The monopole and quadrupole terms in Fig. 8.6 indeed
show negligible discrepancy between the MC and PB result compared to the far greater
mismatch that is observed for the odd modes. In essence, only the level of numerical noise
on the MC data set is measured, which we find to be very acceptable.

Due to this ‘unfortunate shortcoming’ of our method we are forced to base our com-
parison of the PB and MC results on the odd FL modes only. However, analysis of our
results shows that this is not unreasonable, since when there is correspondence between
the odd modes, there also appears to be good correspondence between the even modes.
This was to be expected due to the coupling between the different modes. The onset of
a strong difference in the correspondence between the two results for the dipole mode
occurs at f ∗1 ≈ 0.1, as is illustrated in Fig. 8.7, which shows the MC and PB ion profiles
corresponding to the first four multipole modes for a Janus-dipole charge distribution.
For the octapole (l = 3) term the value of f ∗3 for the accepted level of deviation appears
to be slightly larger than 0.1, but on the strength of our results it is difficult to say this
with certainty.

Based on the above observations a regime can be distinguished for the leading dipole
term where PB theory yields accurate results for the charge profiles in the electric double
layer (ΞΣ < Ξ∗Σ ≈ 1). For the ` = 1, . . . , 5 modes (` = 5 not shown here) the corre-
spondence between MC and PB results is also sufficient when ΞΣ < Ξ∗Σ. The modified
parameter ΞΣ therefore appears useful to describe parameter space for dipolar Janus par-
ticles with regards to quantifying the region where PB theory can be used to describe the
system.

8.3.4 Hemispherical Charge Distributions

Figure 8.8 shows the deviation f` (` = 0, 1, 2, 3) as a function of yΣ and ΞΣ for spherical
particles with a hemispherical charge distribution. The value of f` is larger for lower
values of ΞΣ when ` is odd, than for ` is even. Analysis of the ion density multipole
expansion, see Fig. 8.9 for a sample of the data obtained for the 99 systems we studied,
reveals that for the even modes the level of deviation f ∗` ≈ 0.1 sets a rough upper bound
to the applicability of PB theory. For the odd modes a value of f ∗` ≈ 0.25 appears to be
more appropriate. At the time of this writing, it is unclear what causes this difference. We
speculate the size of the range in which f` assumes values for odd ` may be substantially
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Figure 8.8: The deviation f` in the double layer for a hemispherical charge distribution as a
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1, 2, 3), respectively.



148 Chapter 8

larger than for even `. There is an indication that the range for f1 is indeed larger than
that for f0 ∈ [0, 2], since we obtained f1 ≈ 2.53 for λB = 8d, see Fig. 8.9.

Note that the effects of strong coupling are far more apparent for the hemispherical
charge distribution than for the other two distributions we considered. This can be
explained by the fact that locally the surface charge density is twice as high, even though
the total charge density is the same as that of the homogeneously charged sphere. In
the MC simulations this is expressed by using 50 divalent charge sites on the upper
hemisphere, instead of the monovalent sites used before, since we took the same 100-site
distribution [312] for all three particles. With the boundaries f ∗` ≈ 0.1 and f ∗` ≈ 0.25 for
` odd and even, respectively, we can locate the range of validity of the PB result in the
region ΞΣ . 1. However, further investigation of these hemispherical results is warranted
to give a good level of confidence in this result.

8.4 Conclusion and Outlook
In this chapter we studied the range in parameter space for which the nonlinear Poisson-
Boltzmann (PB) theory of Refs. [209–212] accurately describes the behaviour of the ions
around a Janus charge-patterned spherical colloid in an electrolyte. We used primitive-
model Monte Carlo (MC) simulations to establish the ion density around such a charged
particle for a huge set of parameters. By also computing the ion density for the same
parameters [212] and comparing the two results we were able to establish a regime in
which this PB theory gives a good approximation. This comparison is based on Fourier-
Legendre (FL) decomposition of the MC ion density to determine the contribution of
the monopole, dipole, quadrupole, . . . charge terms. The theoretical approach also relies
on FL decomposition and this enables us to quantify the differences on a mode-by-mode
basis.

For a homogeneously charged sphere we compared our range of validity for PB theory
to the range found in Refs. [213, 214] for a system of homogeneously charged flat plates in
an electrolyte. There is a remarkable correspondence between the two ranges, especially
considering the small size of the colloids in relation to the size of the ions that we studied.
For such small spheres a greater deviation with respect results of a flat-plate calculation
could reasonably be expected. We were also able to show that the range in which the PB
results accurately describes the ion density around a spherical Janus-dipole is similar to
that found for the homogeneously charged sphere. For particles with a homogeneously
charged hemisphere there is an indication that the regime in which PB theory can be ap-
plied matches the regimes found for the other particles, but out results are not sufficiently
conclusive and further study is required.

Our analysis forms a first step towards obtaining a good understanding of the range in
parameter space for which the PB approximation can be applied to describe the behaviour
of heterogeneously charged colloids. This is, for instance, relevant to the study of such
particles using simulations, where PB-theory-based effective interactions [212] can be
used to study the phase behaviour of such particles in the right regime. However, a more
extensive study is required to quantify the limitations of the theoretical approximation
before we can follow such an approach. In this chapter we only considered the equilibrium
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Figure 8.9: The analogue of the Fig. 8.7 for a spherical colloid with a homogeneously charged
hemisphere: a = 10d, N+ = 250, N− = 350, and we consider a variety of λB/d = 0.5, 1.0,
2.0, 4.0, and 8.0 (from left to right). The PB results are indicated using solid curves and the
MC results using dashed curves. From top to bottom we show the FL modes for the monopole
(` = 0), dipole (` = 1), quadrupole (` = 2), and octapole (` = 3) term, respectively.
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ion density profiles of stationary colloids. The rotational movement of mobile charge-
patterned colloids can occur on time scales that would lead to an out-of-equilibrium
double layer. What the effect of the out-of-equilibrium ion density is on the screening
of the particle and how such effects should be incorporated into effective interaction
potentials used in simulations, is left for future investigation.
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A

Analytic Expressions for the Free
Energy of Adsorption

In this appendix we reproduce the semianalytic expressions for the free energy of adsorp-
tion of ellipsoids, cylinders, and spherocylinders, used in Chapter 2 to verify the accuracy
of the triangular-tessellation method. We also consider the problem of determining a
plane-particle cross section for prolate versions of these three particle species.
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A.1 Semianalytic Free-Energy Expressions
We consider the free energy of adsorption, Eq. (2.4), for ellipsoids, cylinders, and sphe-
rocylinders in an analytic way. In the following sections we reproduce the semianalytic
expressions for the z and φ dependence of the surface areas S, S1, and S12 and contact-line
length L required to specify this free energy. We refer to Fig. 2.1 for a visual representa-
tion of the quantities and variables used here. To shorten the notation the dependence of
the parametrizations on z and φ is often implicit.

The following symmetry properties are employed to describe the system and speed up
numerical calculations

S2(z, φ) = S − S1(z, φ); (A.1)
S1(−z, φ) = S − S1(z, φ); (A.2)
S12(−z, φ) = S12(z, φ); (A.3)
L(−z, φ) = L(z, φ). (A.4)

We can therefore restrict ourselves to define our expressions for the surface areas and
contact-line length only on the (z, φ)-domain

D = [0,∞)× [0, π/2]. (A.5)

It proves necessary to subdivide this domain into disjoint pieces to characterise the system,
i.e., S, S1, S12, and L only admit a piecewise description.

For all three particle species the numerical evaluation of one dimensional integrals
is required to obtain the value of the free energy for a given z and φ. In most cases,
a simple equidistant trapezoidal integration algorithm can be used to achieve a high
level of precision. However, for oblate spherocylinders the numerical evaluation of the
integrals requires a more stable method, because of divergences in the integrands near the
integration boundary points. For these particles we use Aitken’s method [321] to obtain
accurate and stable results.

A.2 Ellipsoids
For an ellipsoidal particle the domainD can be partitioned into three subdomains, labelled
D11, D12, and D2, such that D = D11 ∪D12 ∪D2. These subdomains are

D11 = [0, p1]× [0, π/2]; (A.6)
D12 = [p1, p2]× [0, π/2]; (A.7)
D2 = [p2,∞)× [0, π/2], (A.8)

where the boundaries are given by

p1 = a cosφ; (A.9)
p2 =

√
a2 cos2 φ+ b2 sin2 φ. (A.10)
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These boundaries correspond to a transition point in the integration domain and zdet(φ),
respectively. The definition of a subdomain used here is slightly convoluted, since p1
and p2 depend on φ. The notation [0, p1] × [0, π/2] is meant to imply that for a specific
φ ∈ [0, π/2] the z-domain is the line segment [0, p1(φ)].

We introduce the following parameters, which are related to the boundary points of a
plane-ellipsoid intersection,

x± =
−b2z tanφ± ab

√
p2

2 − z2

(a2 + b2 tan2 φ) cosφ ; (A.11)

y± =
a2z ± ab tanφ

√
p2

2 − z2

(a2 + b2 tan2 φ) cosφ . (A.12)

to determine the semiaxes of the corresponding cross section. The long semiaxis can be
written as

across = 1
2

√
(y+ − y−)2 + (x+ − x−)2, (A.13)

and the short semi-axis is given by

bcross = b

√
1−

(
y+ + y−

2a

)2
−
(
x+ + x−

2b

)2
. (A.14)

We also define the integration kernels and associated integral expressions required to
describe the surface area of the particle above the interface

I1(η) = 2πab

√√√√√1−
1−

(
b

a

)2
 η2; (A.15)

I2(η) = I1(η)
π

arccos
(
z − aη cosφ
b sinφ

√
1− η2

)
(A.16)

J1 =
∫ 1

(y+/a)
I1(η)dη; (A.17)

J2 =
∫ (y+/a)

(y−/a)
I2(η)dη. (A.18)

Using the above parametrizations we can now establish the surface areas and contact-
line length required to give the free energy of adsorption. The total surface area of an
ellipsoidal particle is given by

S =
∫ 1

−1
I1(η)dη, (A.19)

the surface area above the interface by

S1(z, φ) =


J1 + J2 (z, φ) ∈ D11
J2 (z, φ) ∈ D12
0 (z, φ) ∈ D2

, (A.20)
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the cross-sectional surface area by

S12(z, φ) =
{
πacrossbcross (z, φ) ∈ D11 ∪D12

0 (z, φ) ∈ D2
, (A.21)

and the contact-line length by

L(z, φ) =


4across

∫ π/2

0

√√√√1−
(
a2

cross − b2
cross

a2
cross

)
sin2 ψdψ (z, φ) ∈ D11 ∪D12

0 (z, φ) ∈ D2

. (A.22)

The above expressions hold for both oblate and prolate ellipsoidal particles.

A.3 Cylinders
For cylinders it is necessary to distinguish between two regimes in polar angle, separated
by φ̃ = arctan(a/b). The angle φ̃ arises naturally from the geometry of the cylinder: for
φ > φ̃ the interface cannot intersect the shaft of the cylinder without intersecting one of
its caps. The domain is decomposed according to D = D11 ∪D12 ∪D2 ∪D3, with

D11 = [0, p1]× [0, φ̃]; (A.23)
D12 = [0, p1]× [φ̃, π/2]; (A.24)
D2 = [p1, p2]× [0, π/2]; (A.25)
D3 = [p2,∞)× [0, π/2], (A.26)

where the boundaries

p1 =
 a cosφ− b sinφ φ ∈ [0, φ̃]
b sinφ− a cosφ φ ∈ [φ̃, π/2]

; (A.27)

p2 = a cosφ+ b sinφ, (A.28)

represent the position of the bottom point of the edge between the shaft and cap of a
cylinder and zdet(φ), respectively.

We introduce the following parametrizations to shorten the notation for the surface
areas and the contact-line length

q± = z ± a cosφ
b sinφ ; (A.29)

u± = arccos q± − q±
√

1− q2
±; (A.30)

v± = q± arccos q± −
√

1− q2
±; (A.31)

w± = b2(u± ± 2v± tanφ). (A.32)

The q± specify the points of intersection between the interface and one of the cylinder’s
caps and u±, v±, and w± follow from the evaluation of surface integrals. The integration
kernel

K(ψ) = 2b
cosφ

√
1− sin2 φ sin2 ψ, (A.33)
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is used to determine the contact-line length. The above definitions lead to the following
expressions for S, S1, S12, and L. The total surface area is given by

S = 2πb2 + 4πab, (A.34)

the surface area above the interface by

S1(z, φ) =


πb2(1− 2q− tanφ) (z, φ) ∈ D11

w+ + w− (z, φ) ∈ D12
w− (z, φ) ∈ D2
0 (z, φ) ∈ D3

, (A.35)

the area excluded from the interface by

S12(z, φ) =



πb2

cosφ (z, φ) ∈ D11

b2(u− − u+)
cosφ (z, φ) ∈ D12

b2u−
cosφ (z, φ) ∈ D2

0 (z, φ) ∈ D3

, (A.36)

and contact-line length by

L(z, φ) =



∫ π/2

−π/2
K(ψ)dψ (z, φ) ∈ D11

∫ arcsin q+

arcsin q−
K(ψ)dψ + 2b

√
1− q2

+ + 2b
√

1− q2
− (z, φ) ∈ D12

∫ π/2

arcsin q−
K(ψ)dψ + 2b

√
1− q2

− (z, φ) ∈ D2

0 (z, φ) ∈ D3

. (A.37)

The above expressions hold for both oblate and prolate cylindrical particles.

A.4 Spherocylinders
For spherocylinders the geometrical problem of a flat interface intersecting a particle is
even more complicated and we are therefore forced to split this section into two parts. In
the first we consider prolate spherocylinders and in the second we consider oblate sphe-
rocylinders. Recall that our definition for the long semiaxis a of a prolate spherocylinder
includes the hemispherical caps and that our definition for the semiaxis b of an oblate
spherocylinder accounts for the particle’s toroidal rim.
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A.4.1 Prolate Spherocylinders

For a prolate spherocylinder there are two polar-angle regimes, separated by the angle
φ̃ = arctan((a− b)/b). The domain D may be written as D = D11 ∪D12 ∪D2 ∪D3 ∪D4,
with

D11 = [0, p1]× [0, φ̃]; (A.38)
D12 = [0, p1]× [φ̃, π/2]; (A.39)
D2 = [p1, p2]× [0, π/2]; (A.40)
D3 = [p2, p3]× [0, π/2]; (A.41)
D4 = [p3,∞)× [0, π/2], (A.42)

and

p1 =
 (a− b) cosφ− b sinφ φ ∈ [0, φ̃]
b sinφ− (a− b) cosφ φ ∈ [φ̃, π/2]

; (A.43)

p2 = (a− b) cosφ+ b sinφ; (A.44)
p3 = (a− b) cosφ+ b. (A.45)

The three boundaries correspond to the position of the bottom and top of the edge between
the particle’s shaft and hemispherical cap, and zdet(φ), respectively.

We introduce the following parametrizations to shorten the notation for the surface
areas and the contact-line length

q± = z ± (a− b) cosφ
b sinφ ; (A.46)

s± = cos2 φ
√

1 + (1− q2
±) tan2 φ± q± sin2 φ; (A.47)

t± = arcsin q± + q±
√

1− q2
±; (A.48)

u± = arccos q± − q±
√

1− q2
±; (A.49)

v± = q± arccos q± −
√

1− q2
±; (A.50)

w± = q± cosφ
√

1− q2
±; (A.51)

x± =
√

1− q2
± sin2 φ; (A.52)

y± = arccos
(
q± cosφ
x±

)
; (A.53)

λ+ = x+y+; (A.54)
λ− = x−(π − y−); (A.55)
µ+ = y+

(
1− q2

+ sin2 φ
)

; (A.56)

µ− =
(
1− q2

− sin2 φ
)

(π − y−). (A.57)
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We also require the integration kernels

K(ψ) = 2b
cosφ

√
1− sin2 φ sin2 ψ; (A.58)

L±(h) = 2b2 arccos
(

(h∓ q±) tanφ√
1− h2

)
, (A.59)

to determine the following physical quantities, by which the free energy of adsorption can
be specified. The total surface area is given by

S = 4πab, (A.60)

the surface area above the interface by

S1(z, φ) =



2πb2(1− q− tanφ) (z, φ) ∈ D11

∫ s−

−q−
L−(h)dh−

∫ s+

q+
L+(h)dh+

πb2(2− q+ − q−) + 2b2(v+ − v−) tanφ
(z, φ) ∈ D12

∫ s−

−q−
L−(h)dh+ πb2(1− q−)− 2b2v− tanφ (z, φ) ∈ D2

2πb(p3 − z) (z, φ) ∈ D3

0 (z, φ) ∈ D4

, (A.61)

the area excluded from the interface by

S12(z, φ) =



πb2

cos(φ) (z, φ) ∈ D11

b2(t+ − t−)
cos(φ) + b2(µ+ − w+) + b2(µ− + w−) (z, φ) ∈ D12

b2u−
cosφ + b2(µ− + w−) (z, φ) ∈ D2

πb2x2
− (z, φ) ∈ D3

0 (z, φ) ∈ D4

, (A.62)
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and the contact-line length by

L(z, φ) =



∫ π/2

−π/2
K(ψ)dψ (z, φ) ∈ D11

∫ arcsin q+

arcsin q−
K(ψ)dψ + 2b(λ+ + λ−) (z, φ) ∈ D12

∫ π/2

arcsin q−
K(ψ)dψ + 2bλ− (z, φ) ∈ D2

2πbx− (z, φ) ∈ D3

0 (z, φ) ∈ D4

. (A.63)

Note the sign asymmetry in the integration boundaries of the L± integrals in Eq. (A.61).
This asymmetry is induced by the ∓-sign in Eq. (A.59). Although the appearance of
these asymmetries may seem counter intuitive, we extensively verified that these equations
indeed hold.

A.4.2 Oblate Spherocylinders

For oblate particles we find two polar-angle regimes, separated by φ̃ = arctan(a/(b− a)).
The domain D may be written as D = D11 ∪D12 ∪D2 ∪D3 ∪D4, with

D11 = [0, p1]× [0, φ̃]; (A.64)
D12 = [0, p1]× [φ̃, π/2]; (A.65)
D2 = [p1, p2]× [0, π/2]; (A.66)
D3 = [p2, p3]× [0, π/2]; (A.67)
D4 = [p3,∞)× [0, π/2], (A.68)

and

p1 =
 a cosφ− (b− a) sinφ φ ∈ [0, φ̃]

(b− a) sinφ− a cosφ φ ∈ [φ̃, π/2]
; (A.69)

p2 = (b− a) sinφ+ a cosφ; (A.70)
p3 = (b− a) sinφ+ a. (A.71)

The three boundaries give the top point of the lower circular edge between the toroidal
rim and the cylindrical interior of the particle, the bottom point of the top circular edge,
and zdet(φ), respectively.

To shorten the notation of the surface areas and contact-line length related to the
adsorption of the particle at a flat interface we introduce the following variables and
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functions

xt± = cosφ(z − (b− a) sinφ)

± sinφ
√

(a+ z − (b− a) sinφ)(a− z + (b− a) sinφ); (A.72)

xb± = cosφ(z + (b− a) sinφ)

± sinφ
√

(a+ z + (b− a) sinφ)(a− z − (b− a) sinφ); (A.73)

µi± = 2πa
(
a− xi± + (b− a) arccos

(
xi±
a

))
; (A.74)

h(x) = z sinφ− x− z cosφ
tanφ (A.75)

k(x) = (b− a)2 arccos
(
h(x)
b− a

)

−h(x)
√

(b− a)2 − h2(x). (A.76)

r(x) = (b− a) +
√
a2 − x2 (A.77)

w(x) =
√
r2(x)− h2(x), (A.78)

where the i in Eq. (A.74) can be either ‘t’ or ‘b’, which stands for ‘top’ and ‘bottom’,
respectively. We use a prime to denote the derivative with respect to x, e.g., h′(x) ≡
∂h(x)/∂x, in the following integration kernels

N1(x) = 2ar(x)√
a2 − x2

arccos
(
h(x)
r(x)

)
; (A.79)

N2(x) = 2w(x)
sinφ ; (A.80)

N3(x) = 2
√

1 + (h′(x))2 + (w′(x))2. (A.81)

Using the above parametrizations, equations, and kernels the physical quantities relevant
to the free energy of adsorption can be specified. The total surface area of the particle is
given by

S = 2π
(
b2 + (π − 2)ba− (π − 3)a2

)
, (A.82)
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the surface area above the interface by

S1(z, φ) =



∫ xb
+

xt
−

N1(x)dx+ π(b− a)2 + µb+ (z, φ) ∈ D11

∫ a

−a
N1(x)dx+ k(a) + k(−a) (z, φ) ∈ D12

∫ a

xt
−

N1(x)dx+ k(a) (z, φ) ∈ D2

∫ xt
+

xt
−

N1(x)dx (z, φ) ∈ D3

0 (z, φ) ∈ D4

, (A.83)

the area excluded from the interface by

S12(z, φ) =



∫ xb
+

xt
−

N2(x)dx (z, φ) ∈ D11

∫ a

−a
N2(x)dx (z, φ) ∈ D12

∫ a

xt
−

N2(x)dx (z, φ) ∈ D2

∫ xt
+

xt
−

N2(x)dx (z, φ) ∈ D3

0 (z, φ) ∈ D4

, (A.84)

and the contact-line length by

L(z, φ) =



∫ xb
+

xt
−

N3(x)dx (z, φ) ∈ D11

∫ a

−a
N3(x)dx+ 2w(a) + 2w(−a) (z, φ) ∈ D12

∫ a

xt
−

N3(x)dx+ 2w(a) (z, φ) ∈ D2

∫ xt
+

xt
−

N3(x)dx (z, φ) ∈ D3

0 (z, φ) ∈ D4

. (A.85)

A.5 Plane-Particle Intersection
In this section we give the parametrization of the cross sections that result from the
intersection of a plane and a prolate ellipsoid, cylinder, or spherocylinder. As explained
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in Section 2.4, these cross sections may be used to gain insight into two-dimensional
confocal-microscopy data and to test the accuracy of particle-tracking algorithms. The
symmetry properties of the particles allow us to only consider z > 0 and φ ∈ [0, π/2] to
completely specify the solution to this geometrical problem.

A.5.1 Ellipsoids
In this paragraph we introduce a parametrization of the intersection between a plane and
a uniaxial ellipsoid. The following notations are used to simplify the expression for the
cross section

B(φ) = cosφ
√
a2 + b2 tan2 φ; (A.86)

x1(z, φ) = b2z tanφ/ cosφ; (A.87)
x2(z, φ) =

√
a2b2 (a2 − z2/ cos2 φ+ b2 tan2 φ); (A.88)

x3(z, φ) = a2 + b2 tan2 φ; (A.89)

x±(z, φ) = −x1(z, φ)∓ x2(z, φ)
x3(z, φ) ; (A.90)

y±(x, z, φ) = ±b
√

1− (x/b)2 − ((z/ cosφ+ x tanφ)/a)2; (A.91)

ζ(x, z, φ) = a
√

1− (x/b)2 − (y+(x, z, φ)/b)2; (A.92)

ξ(x, z, φ) = (z + x sinφ) tanφ
|z/ cosφ+ x tanφ| cosφ ; (A.93)

µ(x, z, φ) = ζ(x, z, φ) ·
{

1 ξ(x, z, φ) ≥ 0
−1 ξ(x, z, φ) < 0 ; (A.94)

c(x, z, φ) = (x cosφ+ µ(x, z, φ) sinφ, y±(x, z, φ), z) . (A.95)

Calculations were performed in a frame where the colloid is oriented along the z-axis and
the plane is at an angle, which is inspired by the approach of Ref. [143]. By rotating this
frame such that the colloid is at an angle and the plane is horizontal, we obtained the
parametrization c(x, z, φ), which is used to specify boundary to the cross section

C(z, φ) =



(x,±b
√

1− (z/b)2 + (x/a)2, z)
|x| ≤ a

√
1− (z/b)2

z ∈ [0, b] ∧ φ = π/2

c(x, z, φ)
x ∈ [x−(z, φ), x+(z, φ)] z ∈ [0, B(φ)] ∧ φ ∈ [0, π/2)

∅ else

, (A.96)

with ∅ the empty set (no intersection). We put the vector-valued functions directly above
their domain in the left column and we specify the range of applicability in the right
column. It is implied that, in order to obtain the entire boundary, both the branches
(resulting from the ±-sign) of the parametrizations have to be evaluated. For φ = π/2
our description results in degeneracies in the frame of reference and we therefore treat it
as a special case.
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A.5.2 Cylinders
For a prolate cylinder we introduce the following notations to describe the intersection
with a horizontal plane

φ̃ = arctan(a/b); (A.97)
B(φ) = a cosφ+ b sinφ; (A.98)
p1(φ) = a cosφ− b sinφ; (A.99)

p2,±(z, φ) = ±a/ tanφ− z/ sinφ; (A.100)

B0(z, φ) =
{

−b z ≥ −p1(φ)
p2,−(z, φ) z < −p1(φ) ; (A.101)

B1(z, φ) =
{

b z < p1(φ)
p2,+(z, φ) z ≥ p1(φ) ; (A.102)

c(x, z, φ) =
(
(x+ z sinφ)/ cosφ,±

√
b2 − x2, z

)
. (A.103)

Note the similarity between these parameters and the ones presented in Section A.3.
Using Eqs. (A.97) - (A.103) the boundary of the plane-shaft cross section is written as

S(z, φ) =



(x,±
√
b2 − z2, z)

x ∈ [−a, a] z ∈ [0, b] ∧ φ = π/2

c(x, z, φ)
x ∈ [B0(z, φ), B1(z, φ)] z ∈ [0, B(φ)] ∧ φ ∈ [0, π/2)

∅ else

. (A.104)

To specify the intersection of the cylinder’s caps with the plane we require a relation that
gives the relevant parametrizations and corresponding domains for all possible orientations

c̃(z, φ) =



(−(a+ z cosφ)/ sinφ, y0, z) ∪ ((a− z cosφ)/ sinφ, y1, z)
y0 ∈ [−

√
b2 − p2

2,−(z, φ),
√
b2 − p2

2,−(z, φ)]
y1 ∈ [−

√
b2 − p2

2,+(z, φ),
√
b2 − p2

2,+(z, φ)]

z < −p1(φ)
∧

z > p1(φ)

(−(a+ z cosφ)/ sinφ, y0, z)
y0 ∈ [−

√
b2 − p2

2,−(z, φ),
√
b2 − p2

2,−(z, φ)] z < −p1(φ)

((a− z cosφ)/ sinφ, y1, z)
y1 ∈ [−

√
b2 − p2

2,+(z, φ),
√
b2 − p2

2,+(z, φ)] z > p1(φ)

.

(A.105)
The boundary to the plane-cap cross section(s) - there may be two depending on the
particle’s orientation - is given by

E(z, φ) =



(−a, y, z) ∪ (a, y, z)
y ∈ [−

√
b2 − z2,

√
b2 − z2] z ∈ [0, b] ∧ φ = π/2

c̃(z, φ) z ∈ [0, B(φ)] ∧ φ ∈ [0, π/2)

∅ else

, (A.106)
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By combining Eqs. (A.104) and (A.106) we derive the expression for the full boundary to
the cross section

C(z, φ) = S(z, φ) ∪ E(z, φ). (A.107)

A.5.3 Spherocylinders

For a prolate spherocylinder we introduce the following notations to describe the inter-
section with a horizontal plane.

φ̃ = arctan(a/b); (A.108)
B(φ) = a cosφ+ b; (A.109)
p1(φ) = a cosφ− b sinφ; (A.110)

p2,±(z, φ) = ±a/ tanφ− z/ sinφ; (A.111)

B0(z, φ) =
{

−b z ≥ −p1(φ)
p2,−(z, φ) z < −p1(φ) ; (A.112)

B1(z, φ) =
{

b z < p1(φ)
p2,+(z, φ) z ≥ p1(φ) ; (A.113)

c(x, z, φ) =
(
(x+ z sinφ)/ cosφ,±

√
b2 − x2, z

)
. (A.114)

Note the similarity between these parameters and the ones presented in Section A.4. N.B.
For convenience we use a to denote the halflength of the cylindrical part in this section.
The total length of the spherocylinder is therefore 2(a + b). Using Eqs. (A.108 - A.114)
the shaft-plane intersection is given by

S(z, φ) =



(x,±
√
b2 − z2, z)

x ∈ [−a, a] z ∈ [0, b] ∧ φ = π/2

c(x, z, φ)
x ∈ [B0(z, φ), B1(z, φ)] z ∈ [0, B(φ)] ∧ φ ∈ (0, π/2)

(b cos η, b sin η, z)
η ∈ [0, 2π] z ∈ [0, a] ∧ φ = 0

∅ else

. (A.115)
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For the plane-hemisphere intersection(s) we require additional expressions to simplify the
notation of the boundary to the cross section

x0,b(z, φ) =
− cos2 φ

(√
(b2 − (z + a cosφ)2) / cos2 φ+

(z/ cosφ+ a) tanφ
) ; (A.116)

x1,b(z, φ) =



− cos2 φ
(√

(b2 − (z + a cosφ)2) / cos2 φ−
(z/ cosφ+ a) tanφ

)
z ∈ [−B(φ),−a cosφ− b sinφ]

p2,−(z, φ)
z /∈ [−B(φ),−a cosφ− b sinφ]

; (A.117)

x0,t(z, φ) =



− cos2 φ
(√

(b2 − z2)/ cos2 φ+ 2az/ cosφ− a2+
(z/ cosφ− a) tanφ

)
z ∈ [a cosφ+ b sinφ,B(φ)]

p2,+(z, φ)
z /∈ [a cosφ+ b sinφ,B(φ)]

; (A.118)

x1,t(z, φ) =
cos2 φ

(√
(b2 − z2)/ cos2 φ+ 2az/ cosφ− a2−

(z/ cosφ− a) tanφ
) ; (A.119)

y±,t(x, z, φ) = ±b
√

1− (x/b)2 − ((z/ cosφ+ x tanφ− a)/b)2; (A.120)

y±,b(x, z, φ) = ±b
√

1− (x/b)2 − ((z/ cosφ+ x tanφ+ a)/b)2; (A.121)
č±,i(x, z, φ) = ((x+ z sinφ)/ cosφ, y±,i(x, z, φ), z) . (A.122)

In Eq. (A.122) the parameter ‘i’ can take the values ‘t’ and ‘b’. In analogy to the re-
sult for a cylinder we introduce a relation that gives the relevant parametrizations and
corresponding domains

c̃(z, φ) =



c̃+,b(ξb, z, φ) ∪ c̃−,b(ξb, z, φ)∪
c̃+,t(ξt, z, φ) ∪ c̃−,t(ξt, z, φ)
ξb ∈ [x0,b(z, φ), x1,b(z, φ)]
ξt ∈ [x0,t(z, φ), x1,t(z, φ)]

z < −p1(φ)
∧

z > p1(φ)

c̃+,b(ξb, z, φ) ∪ c̃−,b(ξb, z, φ)
ξb ∈ [x0,b(z, φ), x1,b(z, φ)] z < −p1(φ)

c̃+,t(ξt, z, φ) ∪ c̃−,t(ξt, z, φ)
ξt ∈ [x0,t(z, φ), x1,t(z, φ)] z > p1(φ)

. (A.123)
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The curves that result from the intersection(s) between the spherocylinder’s hemispherical
caps and the plane are given by

E(z, φ) =



(−a+
√
b2 − z2 cos(π − η),

√
b2 − z2 sin(π − η), z)∪

(a+
√
b2 − z2 cos η,

√
b2 − z2 sin η, z)

η ∈ [−π/2, π/2]

z ∈ [0, b]∧
φ = π/2

c̃(z, φ) z ∈ [0, B(φ)]∧
φ ∈ (0, π/2)

(
√
b2 − (z − a)2 cos η,

√
b2 − (z − a)2 sin η, z)

η ∈ [0, 2π]
z ∈ [a, a+ b]∧

φ = 0

∅ else

.

(A.124)
Using Eqs. (A.115) and (A.124) the expression for the full boundary to the cross section
is obtained

C(z, φ) = S(z, φ) ∪ E(z, φ). (A.125)





B

Properties of Dense Regular
Packings

In this appendix we present the data that we collected on the dense regular packing of
solids, particle models, and miscellaneous shapes and to which we refer in Chapter 6.
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B.1 Tables of Packing Properties
In Tables B.1 - B.15 we consider 11 properties of dense regular packings for solids, par-
ticle models, and miscellaneous shapes. These results were established by analysing the
crystal structures obtained by our combination of the floppy-box Monte Carlo (FBMC)
technique [75] and a triangular-tessellation-based overlap routine, also see Chapters 5
and 6. The relevant crystal structures are given in our polyhedral database [279].

1. The centrosymmetry of the particle. For a centrosymmetric particle there is an
inversion point to the symmetry group that is associated to its shape. This property
is abbreviated ‘CS’ and we use the symbols ‘C’ and ‘NC’ to indicate centrosymmetric
and noncentrosymmetric shapes.

2. The number of particles N in the unit cell for which densest-known regular packing
is achieved.

3. The value of the packing fraction φLB for the densest-known crystal structure. This
value has been rounded down to 5 decimals.

4. The decomposition of the structure into centrosymmetric compounds. For a cen-
trosymmetric particle it is hypothesized that the densest-packed regular structure
is always a Bravais lattice [167]. For noncentrosymmetric particles the arrangement
of the particles in the crystal may be such that there is a Bravais sublattice with
the same group of particles associated to each of its lattice sites. If the shape of
this group is centrosymmetric we say that the particles pack densest by forming
a centrosymmetric compound. For example, the densest-known packing of tetra-
hedra admits a Bravais sublattice by grouping the particles into centrosymmetric
quadrumers [169]. In our definition we allow the group/compound to consist of one
particle to also account for the Bravais lattices formed by centrosymmetric parti-
cles. We use the abbreviation ‘CSc’ and specify whether or not a centrosymmetric
compound may be formed by the symbols: ‘y’ for yes and ‘n’ for no. We use a dash
‘-’ when we did not consider this property for a particular particle.

5. The possibility of a space-filling compound. The regular structure we obtain using
the FBMC method can have a packing fraction of 1 at most. When a structure
achieves a packing fraction of 1, it is space filling. There are also structures with
lower packing fractions, for which the voids between the particles can be filled
using another regular polyhedron. Such packings therefore admit a space-filling
compound. We abbreviate this property by ‘SFc’. If the compound consists of
Platonic and/or Archimedean solids it is called a uniform partition of 3-space (three-
dimensional space), or uniform partition for short. We use capitalized symbols ‘Y’,
‘N’, and ‘-’ to indicate the space-filling potential of a packing and to differentiate
from the symbols used for CSc.

6. The inscribed-sphere upper bound to the packing fraction φUB. We established
the radius RI of the maximum inscribed sphere using constrained optimization and
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applied the procedure of Ref. [167] to arrive at this value:

φUB = min
(

1, 2
√

2π2R3
I

3VM

)
, (B.1)

with VM the volume of the particle. This value has been rounded up to 5 decimals.

7. The outscribed-sphere lower bound φOS to the maximum packing fraction. We
determined the radius RO of the minimum outscribed sphere using constrained
optimization and obtain

φOS = VM

4
√

2R3
I
. (B.2)

This value has been rounded down to 5 decimals.

8. The oriented-bounding-box lower bound φOBB to the maximum packing fraction. We
determine the volume VOBB of smallest oriented bounding box using the method of
Ref. [268] and obtain

φOBB = VM

VOBB
. (B.3)

This value has been rounded down to 5 decimals.

9. The sphericity γ ≡ RI/RO ∈ [0, 1], defined in analogy to the asphericity parameter
of Ref. [167], which is the reciprocal of γ.

We supplemented the simulation based material with literature results and we put refer-
ences in the footnotes wherever appropriate - only for 29 out of 159 entries a literature
result is known.



170 Appendix B

Table B.1: Data for the Platonic solids.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

PS01 NC 4 0.85634a y N
1.00000 0.09072 0.33333 0.33333 Tetrahedron

PS02 C 1 0.83635b y N
0.89343 0.44833 0.51502 0.79465 Icosahedron

PS03 C 1 0.90450b y N
0.98116 0.49235 0.47745 0.79465 Dodecahedron

PS04 C 1 0.94736b y Yc

1.00000 0.23570 0.56218 0.57734 Octahedron
PS05 C 1 1.00000b y Yc

1.00000 0.27216 1.00000 0.57734 Cube

aRef. [169].
bRefs. [167, 252].
cCubes are space filling [172, 322]. Octahedra and tetrahedra with equal edge lengths in a 1:2 ratio

can form a uniform partition of 3-space [322].
dThe following solids have a nanoparticle, colloid, or microscopic particle shape equivalent: tetrahe-

dra [91, 92, 248], cubes [84–86, 89, 90], octahedra [89, 90, 247], dodecahedra [323] (microscopic), and
icosahedra [91, 95, 96].
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Table B.2: Data for the Archimedean solids.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

AS01 NC 2 0.99519a y Yd

1.00000 0.29718 0.41071 0.52223 Truncated Tetrahedrone

AS02 C 1 0.78498b y N
0.83856 0.64230 0.51351 0.91495 Truncated Icosahedron

AS03 NC 1 0.78769b nc N
0.93492 0.57484 0.66109 0.85033 Snub Cubef

AS04 NC 1 0.78864b nc N
0.85547 0.66367 0.53018 0.91886 Snub Dodecahedron

AS05 C 1 0.80470b y N
0.83596 0.66075 0.54747 0.92459 Rhombicosidodecahedron

AS06 C 1 0.82721b y N
0.89731 0.66498 0.53395 0.90494 Truncated Icosidodecahedron

AS07 C 1 0.84937b y N
1.00000 0.59356 0.74491 0.82594 Truncated Cuboctahedron

AS08 C 1 0.86472b y N
0.93800 0.57737 0.50464 0.85064 Icosidodecahedron

AS09 C 1 0.87580b y N
0.87580 0.56262 0.61928 0.86285 Rhombicuboctahedrong

AS10 C 1 0.89778b y N
0.97387 0.57413 0.50032 0.83850 Truncated Dodecahedron

AS11 C 1 0.91836b y N
1.00000 0.41666 0.83333 0.70710 Cuboctahedron

AS12 C 1 0.97374b y Yd

1.00000 0.42712 0.96649 0.67859 Truncated Cube
AS13 C 1 1.00000b y Yd

1.00000 0.50596 0.53333 0.77459 Truncated Octahedron

aRef. [252].
bRefs. [260, 283].
cThe snub cube and snub dodecahedron are not centrally symmetric, yet they achieve their densest

packing in unit cell containing N = 1 particles, nor do they form a centrosymmetric compound.
dTruncated tetrahedra and tetrahedra from a 2:6 space-filling compound with a 3:1 edge length ra-

tio [283]. Cuboctahedra and octahedra form a 1:1 uniform partition of 3-space with 1:1 edge length ratio
and truncated cubes and octahedra form a 1:1 uniform partition with edge length ratio 1:1 [322].

eFor truncated tetrahedra we report a new dimer crystal structure with φLB = 0.98854 . . . , see Sec-
tion B.2. The φLB value in this table was obtained by analytic construction [260, 283].

fThis result was established using 500 computer experiments for N = 1, . . . , 8 with a slow pressure
increase over 4.5 · 106 MC cycles from p = 1 to p = 1.2100 in 100 steps, followed by 0.5 · 106 MC cycles
of equilibration/production at that pressure. For each N and every run we obtained the Bravais lattice
of Ref. [252] and the packing fraction deviated no more than 0.005 in absolute value from the literature
value φLB = 0.78769 . . . .

gRhombicuboctahedra achieve their densest packing in a crystal lattice, see Section 6.4.
hThe following solids have a nanoparticle or colloid shape equivalent: truncated tetrahedra [91, 93],

truncated cubes [89, 90, 93], truncated octahedra [94], and cuboctahedra [84, 89, 90].
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Table B.3: Data for the Catalan solids.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

CS01 C 1 0.77155 y N
0.78287 0.61878 0.53980 0.92459 Deltoidal Hexecontahedron

CS02 C 1 0.79693 y N
0.85134 0.54691 0.54525 0.86285 Deltoidal Icositetrahedron

CS03 C 1 0.79328 y N
0.81365 0.45844 0.54603 0.82594 Disdyakis Dodecahedron

CS04 C 1 0.76549 y N
0.77313 0.57295 0.54354 0.90494 Disdyakis Triacontahedron

CS05 NC 2 0.74107 na N
0.78283 0.60732 0.52603 0.91886 Pentagonal Hexecontahedron

CS06 NC 2 0.74363 na N
0.84856 0.52174 0.51407 0.85033 Pentagonal Icositetrahedron

CS07 C 1 0.75755 y N
0.78799 0.60356 0.53419 0.91495 Pentakis Dodecahedron

CS08 C 1 1.00000 y Yb

1.00000 0.35355 0.50000 0.70710 Rhombic Dodecahedron
CS09 C 1 0.80174 y N

0.83462 0.51374 0.59016 0.85064 Rhombic Triacontahedron
CS10 C 1 0.87601 y N

0.93728 0.29289 0.63158 0.67859 Small Triakis Octahedron
CS11 C 1 0.81401 y N

0.87841 0.40824 0.55555 0.77459 Tetrakis Hexahedron
CS12 C 1 0.80479 y N

0.81804 0.48227 0.55402 0.83850 Triakis Icosahedron
CS13 NC 2 0.79886 y N

1.00000 0.16329 0.59999 0.52223 Triakis Tetrahedron

aNote that the pentagonal hexecontahedron and pentagonal icositetrahedron are not centrally sym-
metric, yet these particles do not achieve their densest-known packing by forming a centrosymmetric
compound.

bRhombic dodecahedra are space filling [172].
cThe following solids have a nanoparticle or colloid shape equivalent: rhombic dodecahedra [33, 85,

86, 324] and possibly deltoidal icositetrahedra [325, 326].
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Table B.4: Data for the Johnson solids.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

JS01 NC 2 0.88745 - -
1.00000 0.41071 0.49624 0.73848 Augmented Dodecahedron

JS02 NC 2 0.97192 - -
1.00000 0.21678 0.69255 0.37819 Augmented Hexagonal Prism

JS03 NC 4 0.90463 - -
1.00000 0.21120 0.66082 0.42422 Augmented Pentagonal Prism

JS04 NC 2 0.83264 - -
1.00000 0.26330 0.44643 0.57631 Augmented Sphenocorona

JS05 NC 2 0.94527 - -
1.00000 0.18200 0.57321 0.48671 Augmented Triangular Prism

JS06 NC 2 0.85704 - -
1.00000 0.13072 0.28916 0.38646 Augmented Tridiminished Icosa-

hedron
JS07 NC 2 0.96347 - -

1.00000 0.40619 0.85433 0.63827 Augmented Truncated Cube
JS08 NC 1a 0.87969 - -

1.00000 0.54646 0.51399 0.81740 Augmented Truncated Dodecahe-
dron

JS09 NC 2 0.90795 - -
1.00000 0.27695 0.57813 0.57344 Augmented Truncated Tetrahe-

dron
JS10 NC 2 0.90677 - -

1.00000 0.16543 0.56196 0.37650 Biaugmented Pentagonal Prism
JS11 NC 2 0.91501 - -

1.00000 0.22322 0.60549 0.48294 Biaugmented Triangular Prism
JS12 C 1 0.96102 y -

1.00000 0.36374 0.78361 0.59153 Biaugmented Truncated Cube
JS13 NC 2 0.81863 - -

1.00000 0.62385 0.58749 0.80687 Bigyrate Diminished Rhombicosi-
dodecahedron

JS14 C 1 0.95273 - -
1.00000 0.19876 0.62377 0.49112 Bilunabirotunda

JS15 NC 2 0.82232 - -
1.00000 0.62385 0.57791 0.80687 Diminished Rhombicosidodeca-

hedron

aNote that the augmented truncated dodecahedron is not centrally symmetric, yet it achieves its
densest-known packing for N = 1 particles in the unit cell.
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Table B.5: Data for the Johnson solids - continued.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

JS16 NC 2 0.85634 - -
1.00000 0.07654 0.29003 0.33333 Dipyramid 3

JS17 NC 2 0.84024 - -
1.00000 0.17317 0.32759 0.49112 Dipyramid 5

JS18 NC 2 0.85870 - -
1.00000 0.37476 0.53256 0.69884 Disphenocingulum

JS19 NC 2 0.83541 - -
1.00000 0.36461 0.65928 0.45045 Elongated Pentagonal Cupola

JS20 NC 2 0.83751 - -
1.00000 0.38059 0.46158 0.67091 Elongated Pentagonal Dipyramid

JS21 C 1 0.79475 y -
1.00000 0.44920 0.60407 0.60567 Elongated Pentagonal Gyrobicu-

pola
JS22 C 1 0.81918 y -

1.00000 0.43524 0.57603 0.74693 Elongated Pentagonal Gyrobiro-
tunda

JS23 NC 2 0.78374 - -
1.00000 0.51299 0.58594 0.79010 Elongated Pentagonal Gyrocupo-

larotunda
JS24 NC 2 0.79329 - -

1.00000 0.44920 0.60407 0.60567 Elongated Pentagonal Orthobicu-
pola

JS25 NC 2 0.81243 - -
1.00000 0.43524 0.57603 0.74693 Elongated Pentagonal Orthobiro-

tunda
JS26 NC 2 0.79266 - -

1.00000 0.51299 0.58594 0.79010 Elongated Pentagonal Orthocu-
polarotunda

JS27 NC 2 0.86656 - -
1.00000 0.35743 0.53225 0.67555 Elongated Pentagonal Pyramid

JS28 NC 2 0.81652 - -
1.00000 0.44260 0.61737 0.65993 Elongated Pentagonal Rotunda

JS29 NC 2 0.85746 - -
1.00000 0.43718 0.68054 0.61012 Elongated Square Cupola

JS30 C 1 0.90995 y -
1.00000 0.14788 0.60947 0.41421 Elongated Square Dipyramid
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Table B.6: Data for the Johnson solids - continued.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

JS31 NC 2 0.80639 - -
0.87580 0.56262 0.61928 0.86285 Elongated Square Gyrobicupola

JS32 NC 2 0.94371 - -
1.00000 0.21844 0.72385 0.49999 Elongated Square Pyramid

JS33 NC 2 0.91258 - -
1.00000 0.35441 0.60017 0.65935 Elongated Triangular Cupola

JS34 NC 2 0.83284 - -
1.00000 0.05180 0.29326 0.21927 Elongated Triangular Dipyramid

JS35 C 1 0.87941 y -
1.00000 0.29486 0.62703 0.60243 Elongated Triangular Gyrobicu-

pola
JS36 NC 2 0.88043 - -

1.00000 0.29486 0.54326 0.60243 Elongated Triangular Orthobicu-
pola

JS37 NC 4 0.86089 - -
1.00000 0.09737 0.35016 0.28867 Elongated Triangular Pyramid

JS38 NC 2 0.83325 - -
1.00000 0.58695 0.56431 0.77906 Gyrate Bidiminished Rhombico-

sidodecahedron
JS39 NC 1a 0.80470 - -

0.83596 0.66075 0.54302 0.92459 Gyrate Rhombicosidodecahedron
JS40 NC 2 1.00000 - Yb

1.00000 0.15309 0.50000 0.43301 Gyrobifastigium
JS41 NC 2 0.76412 - -

1.00000 0.42911 0.58293 0.57146 Gyroelongated Pentagonal Bicu-
pola

JS42 NC 2 0.77761 - -
0.94171 0.45641 0.55737 0.78549 Gyroelongated Pentagonal Biro-

tunda
JS43 NC 4 0.80695 - -

1.00000 0.34161 0.63982 0.41448 Gyroelongated Pentagonal Cu-
pola

JS44 NC 2 0.78540 - -
1.00000 0.51719 0.56621 0.78342 Gyroelongated Pentagonal Cupo-

larotunda

aNote that the gyrate rhombicosidodecahedron is not centrally symmetric, yet it achieves its densest-
known packing for N = 1 particles in the unit cell. However, the densest-known N = 2 packing forms a
centrosymmetric-dimer lattice, which achieves a packing fraction remarkably close to that of the N = 1
packing.

bThe gyrobifastigium is space filling [172].
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Table B.7: Data for the Johnson solids - continued.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

JS45 NC 2 0.86077 - -
1.00000 0.38637 0.50959 0.64079 Gyroelongated Pentagonal Pyra-

mid
JS46 NC 2 0.81250 - -

1.00000 0.44203 0.59756 0.63546 Gyroelongated Pentagonal Ro-
tunda

JS47 NC 2 0.77850 - -
0.97994 0.55378 0.54574 0.82676 Gyroelongated Square Bicupola

JS48 NC 2 0.80712 - -
1.00000 0.42183 0.60324 0.56972 Gyroelongated Square Cupola

JS49 NC 2 0.80261 - -
1.00000 0.17614 0.43129 0.51974 Gyroelongated Square Dipyramid

JS50 NC 2 0.82236 - -
1.00000 0.25752 0.45133 0.59228 Gyroelongated Square Pyramid

JS51 NC 4 0.79162 - -
1.00000 0.32153 0.52112 0.67198 Gyroelongated Triangular Bicu-

pola
JS52 NC 2 0.83145 - -

1.00000 0.37306 0.56343 0.64231 Gyroelongated Triangular Cu-
pola

JS53 NC 2 0.83853 - -
1.00000 0.36444 0.54634 0.62123 Hebesphenomegacorona

JS54 NC 2 0.87796 - -
1.00000 0.38632 0.51502 0.71464 Metabiaugmented Dodecahedron

JS55 NC 2 0.93602 - -
1.00000 0.18772 0.65039 0.35100 Metabiaugmented Hexagonal

Prism
JS56 NC 2 0.86978 - -

1.00000 0.53239 0.52766 0.80327 Metabiaugmented Truncated Do-
decahedron

JS57 NC 2 0.91942 - -
1.00000 0.32441 0.46065 0.57232 Metabidiminished Icosahedron

JS58 NC 2 0.83373 - -
1.00000 0.58695 0.56431 0.77852 Metabidiminished Rhombicosido-

decahedron
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Table B.8: Data for the Johnson solids - continued.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

JS59 NC 1a 0.80470 - -
0.83596 0.66075 0.54302 0.92459 Metabigyrate Rhombicosidodeca-

hedron
JS60 NC 1a 0.82056 - -

1.00000 0.62385 0.58749 0.80687 Metagyrate Diminished Rhombi-
cosidodecahedron

JS61 C 1 0.88941 y -
1.00000 0.33173 0.51502 0.67926 Parabiaugmented Dodecahedron

JS62 C 1 0.97102 y -
1.00000 0.13937 0.65778 0.31783 Parabiaugmented Hexagonal

Prism
JS63 C 1 0.88053 y -

1.00000 0.51540 0.52766 0.79465 Parabiaugmented Truncated Do-
decahedron

JS64 C 1 0.85486 y -
1.00000 0.58695 0.63661 0.68915 Parabidiminished Rhombicosido-

decahedron
JS65 C 1 0.80470 y -

0.83596 0.66075 0.55217 0.92459 Parabigyrate Rhombicosidodeca-
hedron

JS66 NC 1b 0.82048 - -
1.00000 0.62385 0.57791 0.80687 Paragyrate Diminished Rhombi-

cosidodecahedron
JS67 NC 2 0.85648 - -

1.00000 0.09698 0.44385 0.16245 Pentagonal Cupola
JS68 C 1 0.85891 y -

1.00000 0.19397 0.44385 0.32491 Pentagonal Gyrobicupola
JS69 NC 2 0.84969 - -

1.00000 0.38567 0.48784 0.58777 Pentagonal Gyrocupolarotunda
JS70 NC 2 0.82381 - -

1.00000 0.19397 0.44385 0.32491 Pentagonal Orthobicupola
JS71 NC 2 0.81713 - -

0.93800 0.57737 0.50464 0.85064 Pentagonal Orthobirotunda

aNote that the metabigyrate rhombicosidodecahedron and metagyrate diminished rhombicosidodeca-
hedron are not centrally symmetric, yet they achieve their densest-known packing in unit cell containing
N = 1 particles.

bNote the paragyrate diminished rhombicosidodecahedron is not centrally symmetric, yet it achieves
its densest-known packing for N = 1 particles in the unit cell. However, the densest-known N = 2
packing forms a centrosymmetric-dimer lattice, which achieves a packing fraction remarkably close to
that of the N = 1 packing.



178 Appendix B

Table B.9: Data for the Johnson solids - continued.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

JS72 NC 2 0.83123 - -
1.00000 0.38567 0.48784 0.58777 Pentagonal Orthocupolarotunda

JS73 NC 2 0.85874 - -
1.00000 0.28868 0.50464 0.42532 Pentagonal Rotunda

JS74 NC 2 0.94582 - -
1.00000 0.11785 0.33333 0.36601 Pyramid 4

JS75 NC 2 0.80887 - -
1.00000 0.08658 0.23032 0.27365 Pyramid 5

JS76 NC 2 0.86477 - -
1.00000 0.18900 0.65970 0.48676 Snub Disphenoid

JS77 NC 4 0.81981 - -
1.00000 0.34434 0.52936 0.55150 Snub Square Antiprism

JS78 NC 2 0.82102 - -
1.00000 0.27733 0.44893 0.58532 Sphenocorona

JS79 NC 2 0.85093 - -
1.00000 0.16304 0.39771 0.44699 Sphenomegacorona

JS80 NC 2 0.94227 - -
1.00000 0.15397 0.47140 0.27059 Square Cupola

JS81 NC 2 0.82692 - -
1.00000 0.30795 0.47140 0.54119 Square Gyrobicupola

JS82 C 1 0.94249 y -
1.00000 0.30795 0.55228 0.54119 Square Orthobicupola
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Table B.10: Data for the Johnson solids - continued.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

JS83 NC 2 0.91836 - -
1.00000 0.20833 0.41666 0.40824 Triangular Cupola

JS84 NC 2 0.87496 - -
1.00000 0.26151 0.47213 0.49999 Triangular Hebesphenorotunda

JS85 NC 2 0.88316 - -
1.00000 0.41666 0.52465 0.70710 Triangular Orthobicupola

JS86 NC 2 0.87421 - -
1.00000 0.36090 0.52502 0.69033 Triaugmented Dodecahedron

JS87 NC 2 0.89315 - -
1.00000 0.15008 0.49731 0.31783 Triaugmented Hexagonal Prism

JS88 NC 2 0.82855 - -
1.00000 0.20411 0.42377 0.50211 Triaugmented Triangular Prism

JS89 NC 2 0.86679 - -
1.00000 0.52875 0.53355 0.79465 Triaugmented Truncated Dodec-

ahedron
JS90 NC 2 0.91669 - -

1.00000 0.26245 0.37267 0.50209 Tridiminished Icosahedron
JS91 NC 2 0.84993 - -

1.00000 0.55005 0.52883 0.73251 Tridiminished Rhombicosidode-
cahedron

JS92 NC 2 0.80456 - -
0.83596 0.66075 0.54302 0.92459 Trigyrate Rhombicosidodecahe-

dron
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Table B.11: Data for regular prisms.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

RP03 NC 2 1.00000a y Yc

1.00000 0.17181 0.50000 0.37796 Prism 3
RP04 C 1 1.00000a y Yc

1.00000 0.27216 1.00000 0.57734 Cube
RP05 NC 2 0.92131a y N

1.00000 0.31659 0.69098 0.50673 Prism 5
RP06 C 1 1.00000a y Yc

1.00000 0.32863 0.75000 0.44721 Prism 6
RP07 NC 2 0.89269a y N

1.00000 0.32407 0.73825 0.39803 Prism 7
RP08 C 1 0.90615a y Yc

1.00000 0.31175 0.82842 0.35740 Prism 8
RP09 NC 2 0.90103b y N

1.00000 0.29629 0.75712 0.32361 Prism 9
RP10 C 1 0.91371a y N

1.00000 0.28003 0.77254 0.29524 Prism 10

aWe used Ref. [251] to compare our results to the literature studies of two-dimensional (2D) regular
polygons. See Table B.1 for more information on the cube.

bFor regular enneaprisms (9-gonal base) we discovered a new packing, which also improves upon the
result of Ref. [251] for the regular 9-gon (enneagon, nonagon), see Section 6.5.

cCubes (square base), as well as regular tri- (triangular base) and hexaprisms (hexagonal base) are
space filling [172, 322].
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Table B.12: Data for regular antiprisms.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

AP03 C 1 0.94736 y Y
1.00000 0.23570 0.56218 0.57734 Octahedrona

AP04 NC 2 0.86343 y N
1.00000 0.30385 0.66666 0.51108 Antiprism 4

AP05 C 1 0.92052 y N
1.00000 0.32441 0.67418 0.44721 Antiprism 5

AP06 NC 2 0.88189 y N
1.00000 0.32114 0.73204 0.39331 Antiprism 6

AP07 C 1 0.90137 y N
1.00000 0.30741 0.72740 0.34904 Antiprism 7

AP08 NC 2 0.89332 y N
1.00000 0.28987 0.75526 0.31270 Antiprism 8

AP09 C 1 0.90672 y N
1.00000 0.27164 0.75000 0.28264 Antiprism 9

AP10 NC 2 0.89731 y N
1.00000 0.25411 0.76608 0.25750 Antiprism 10

aSee Table B.1 for more information on the octahedron.
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Table B.13: Data for several miscellaneous solids.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

MS01 C 1 0.98926 y N
1.00000 0.31151 0.60300 0.59880 Dürer’s Solidb

MS02 C 1 1.00000 y Ya

1.00000 0.31426 0.66666 0.57734 Elongated Dodecahedron
MS03 C 1 0.79473 y N

0.79473 0.60457 0.54914 0.91286 Rhombic Enneacontrahedronc

MS04 C 1 0.82280 y N
1.00000 0.34650 0.52786 0.64945 Rhombic Icosahedron

MS05 NC 2 1.00000 y Ya

1.00000 0.35355 0.50000 0.70710 Squashed Dodecahedron
MS06 NC 4 0.70503 n N

1.00000 0.13380 0.31616 0.41221 Stanford Bunnyd

MS07 NC 2 0.47242 y N
1.00000 0.00853 0.06853 0.11355 Hammerhead Sharkd

aThe elongated dodecahedron and the squashed dodecahedron are space filling.
bNote that Dürer’s solid is not the same as the dimer compound formed by truncated tetrahedra, also

see Section B.2.
cFor the rhombic enneacontrahedron we proved that the Bravais lattice we discovered achieves the

densest packing, see Section 6.4.
dFor the Stanford bunny [280] and the hammerhead shark [281] the number of triangles that com-

prise these models is very high, 3,756 and 5,116 triangles, respectively, however all quantities could be
established with the appropriate accuracy.
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Table B.14: Data for nonconvex polyhedra.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

PH01 NC 2 0.61327 n N
1.00000 0.04157 0.23149 0.17469 Császár Polyhedron

PH02 C 1 0.29477 y N
1.00000 0.07659 0.06269 0.26640 Echidnahedron

PH03 C 1 1.00000 y Ya

1.00000 0.22922 0.45845 0.55284 Escher’s Solid
PH04 C 1 0.55728 y N

1.00000 0.21644 0.20989 0.51160 Great Rhombictriacontrahedron
PH05 C 2 0.88967 n N

1.00000 0.18806 0.18237 0.18759 Great Stellated Dodecahedron
PH06 C 1 0.74965 y N

1.00000 0.34558 0.39699 0.53633 Jessen’s Orthogonal Icosahedron
PH07 C 1 0.55602 y N

1.00000 0.20643 0.20019 0.51455 Mathematica Spikey 1b

PH08 C 1 0.59998 y N
1.00000 0.14378 0.20246 0.35355 Rhombic Dodecahedron Stella-

tion 2c

PH09 C 2 0.55654 n N
1.00000 0.19854 0.19253 0.41946 Rhombic Hexecontrahedron

PH10 C 2 0.69528 n N
0.97719 0.49635 0.47293 0.79787 Small Triambic Icosahedron

PH11 NC 2 0.51913 y N
1.00000 0.03637 0.13732 0.16538 Szilassi Polyhedron

aEscher’s solid is space filling by construction.
bThe number ‘1’ in the name ‘Mathematica spikey 1’ refers to the first version of the Mathematica

spikey, which was used as a logo for the first version of the Mathematica software package [327]. It is a
cumulated icosahedron with cumulation ratio

√
6/3.

cThe number ‘2’ in the name ‘rhombic dodecahedron stellation 2’ refers to the fact that there are three
stellations of the rhombic dodecahedron (four when including the original). This particular stellation is
listed as number ‘2’ in the Mathematica polyhedron database [282].
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Table B.15: Data for nonconvex nanoparticle and colloid models.

Code CS N φLB CSc SFc
φUB φOS φOBB γ name

PA01 NC 4 0.51850 n N
1.00000 0.18253 0.27282 0.155754 Capb

PA02 C 1 0.68615 y N
1.00000 0.09602 0.22903 0.38489 Nanostar

PA03 C 1 0.31077 y N
1.00000 0.02525 0.06681 0.13281 Octapod

PA04 NC 2a 0.59207 y N
1.00000 0.04864 0.10628 0.20303 Tetrapod

aThe tetrapod model achieves its densest-known packing for N = 2 particles in the unit cell, however,
the N = 1 the packing fraction is remarkably close to that value.

bOur cap model [109] is comprised of 3,850 triangles. Despite this model’s complexity, all quantities
could be established with the appropriate accuracy.

cThe solids were modelled after the following nanoparticles and colloids: caps [107–109], nanos-
tars [104–106, 247], octapods [54, 78, 99–101], and tetrapods [102, 103].
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B.2 Dimer Structure for Truncated Tetrahedra
For the system containing N = 2 truncated tetrahedra we provide additional information
on the composition of the dimer lattice that we obtained using our method. This lattice
achieves a packing fraction φLB = 0.988 . . . . Table B.16 lists the position and orientation
of the particles inside the unit cell, as well as the shape of the cell itself.

Table B.16: Coordinates that define the dimer lattice of truncated tetrahedra.
This table lists the 12 vertices v corresponding to the truncated tetrahedron model used in our
simulations. It also gives the three vectors um, withm = 1, 2, 3 an index, that span the unit cell;
the two position vectors Ri, with i = 1, 2 the particle number, that indicate the location of the
truncated tetrahedra with respect to the origin; and the two rotation matrices Mi, that specify
the rotation of the particles with respect to the initial configuration. The initial configuration
is defined by the set of vertices v. The volume enclosed by the particle’s surface is unity. We
provide all vector and matrix entries with 6 decimal precision. Rounding errors may lead to
small overlaps of particles in the crystal generated using these coordinates.

vx vy vz vx vy vz
v 0.621121 -0.358604 -0.439200 0.621121 0.358604 -0.439200

0.828162 0.000000 0.146400 -0.414081 -0.717209 0.146400
-0.621121 -0.358604 -0.439200 0.000000 -0.717209 -0.439200
0.000000 0.717209 -0.439200 -0.621121 0.358604 -0.439200
-0.414081 0.717209 0.146400 -0.207040 0.358604 0.732000
-0.207040 -0.358604 0.732000 0.414081 0.000000 0.732000
ux uy uz Rx Ry Rz

u1,R1 0.241977 0.928872 0.855892 0.000000 0.000000 0.000000
u2,R2 0.604353 -0.735843 0.832841 -0.073508 -0.001753 0.875316
u3 -1.053988 -0.200499 0.654313

Mxx Mxy Mxz Myx Myy Myz

M1 -0.892816 -0.442579 0.083685 -0.443985 0.896032 0.001996
M2 0.892816 -0.442579 -0.083685 0.443985 0.896032 -0.001996

Mzx Mzy Mzz

M1 -0.075867 -0.035373 -0.996490
M2 0.075867 -0.035373 0.996490
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B.3 Vertices of a Rhombic Enneacontrahedron
In this section the orientation of a rhombic enneacontrahedron (RECH) is specified by
listing its 92 vertices in Tables B.17 - B.19. This orientation is used to prove that we
obtained the densest packing of these particles in Section 6.4.

Table B.17: The vertices of a rhombic enneacontrahedron.
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Table B.18: The vertices of a rhombic enneacontrahedron - continued.
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Table B.19: The vertices of a rhombic enneacontrahedron - continued.
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B.4 Additional Visual Representations
In this section we give visual representations of some of the data in Tables B.3, B.13
and B.14, as well as of the crystal structures we obtained for our cap [109] and hammerhead
shark [281] models.
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Figure B.1: Bounds to the packing fraction φD of the densest structure for 13 Catalan solids.
We show φLB (connected crosses), φOS (circles), φOBB (squares), φUB (diamonds), φSPH = π/

√
18

(red line), and visual representations of the models (shaded red). See Table B.3 for the naming
convention and the numerical values. The grey area shows the old bounds to φD; the area above
φLB curve the improved bounds that were obtained using our FBMC technique.
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Figure B.2: Bounds to the packing fraction φD of the densest structure for 13 nonconvex solids.
We show φLB (connected crosses), φOS (circles), φOBB (squares), φUB (diamonds), φSPH = π/

√
18

(red line), and visual representations of the models (shaded red). See Tables B.13 and B.14 for
the naming convention and the numerical values. The grey area shows the old bounds to φD;
the area above φLB curve the improved bounds that were obtained using our FBMC technique.
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(b)(a)

(c) (d)

(e) (f)

Figure B.3: Two views (a) and (b) of the cap model used in our simulations. Note the buckling
that has occurred in the impression left by the shell collapse. (c) A columnar phase (N = 1),
27 periodic images are shown. For N = 2, 3, 4, and 5, we obtain braided phases without
inversion [176]. (d) The caps and unit cell for N = 4. The different caps are labelled with
different colours. (e) The structure this unit cell generates is a binary braided configuration,
only 8 periodic images are shown. (f) A rough braided phase with inversions (N = 6), which
looks similar to the ‘IB phase’ predicted in Ref. [176], again only 8 periodic images are shown.
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(c) (d)

(e)

(g)(f)

(b)(a)

Figure B.4: Different views (a) - (e) of a hammerhead-shark model [281]. The unit cell of the
densest regular packing (φLB = 0.472 . . . ) is shown in (f) and a piece of the crystal in (g). The
crystal structure is a double lattice where two hammerhead sharks (red, blue) point in opposite
directions and one is rotated by an angle of π radians around its long axis with respect to the
other, thereby forming a centrosymmetric dimer.
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Summary

In this thesis we considered so-called colloids, particles that are typically smaller than a
thousandth of a millimetre in size. Colloids dispersed in a medium experience Brownian
motion, i.e., random displacement and rotation, due to the constant bombardment by
the much smaller solvent molecules. The random motion causes the particles to diffuse
through the system and in principle fully sample phase space. This exploration of phase
space gives rise to a strong relation between the way in which colloids organize into
structures and the way in which molecular systems form phases, e.g., a gas, a liquid, and
a solid. The formation of colloidal structures is referred to as self-assembly, when it is
effected by Brownian motion and particle-particle interactions only.

An important advantage of colloidal matter over atomic and simple molecular systems
is the far greater level of structural complexity that can be achieved. This, coupled with
the fact that colloid properties are more easily modified in situ - making colloids ideally
suited for industrial applications - is one of the main reasons to study these particles.
Moreover, the time and length scales on which colloid dynamics occurs, are experimentally
accessible by conventional optical techniques. This offers a tremendous opportunity to
learn by analogy about processes, such as melting, nucleation, and defect formation,
in molecular systems, where it is often not possible to perform a real-time, real-space
analysis. The study of colloids is therefore also of fundamental importance.

Of particular interest is the way in which colloid behaviour is influenced by anisotropy.
Even for seemingly simple systems consisting only of hard spheres there is a fascinating
richness in the phases that can form. By considering spheres with isotropic soft (short- and
long-range) interaction potentials, even more complex structures are made possible. This
complexity is expected to increase further when anisotropic interactions are used. Recent
advances in particle synthesis have yielded a huge variety of new colloid and nanoparticle
building blocks: dumbbells, ellipsoids, cubes, tetrahedra, superballs, tetrapods, octapods,
Janus particles, and many more. With these building blocks at our disposal many avenues
for the creation of new phases with unprecedented properties can now be explored.

It proves beneficial to perform computer simulations and theoretical calculations to
complement the experimental investigation into the phase behaviour of colloidal particles.
Computer simulations are essentially ‘computer experiments’ that are carried out using
a simplified model of the system of interest, for which there is absolute control over the
parameters that govern the system. This control allows the complex phenomenology
observed in experiments to be more easily unravelled. A theoretical calculation typically
employs a higher level of abstraction and a more mathematical approach to the description
of the system. The sampling of phase space in theory can be considered implicit and the
sampling in a simulation explicit. In this thesis we took the simulation and theory route to
study the influence of anisotropy on the behaviour of colloids. We discussed three topics
for which shape and/or interaction anisotropy plays an important role and for which the
recent development of the aforementioned particles has had a strong impact.

• The adsorption of single particles at a liquid-liquid interface. The behaviour of
small particles adsorbed at a liquid-liquid interface is not only of importance to
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our understanding of phase transitions and critical phenomena in two-dimensional
(2D) systems, but also has great potential for use in industry. Possible applications
include the encapsulation of drugs in emulsion droplets for medical purposes and
the stabilization of foams and emulsions, which are relevant to the food industry.

• Crystal-structure prediction for colloidal systems and the related phase behaviour.
Although there has been a tremendous increase in the ability to control the ways
in which colloids and nanoparticles self-assemble, there are still many unanswered
questions with regards to determining the specific particle properties that result in a
desired structure. In particular, predicting crystal structures based only on knowl-
edge of the interactions between particles has proven very challenging. However, an
efficient ab initio way to predict crystal structures holds the key to designing new
materials with predetermined properties and is therefore highly sought after.

• The ion distribution around charged particles suspended in a dielectric medium. In
many colloidal suspensions electrostatic interactions play an important role and it is
therefore important to characterise the nature of such interactions using theory and
simulations. However, even for systems containing only homogeneously charged
spherical colloids studying the physical properties by theory or by simulations is
difficult due to the long range of the Coulomb interactions. These long-range in-
teractions coupled with the presence of mobile ions that screen the colloid’s bare
charge present a complex many-body problem, which cannot be easily unravelled to
yield effective colloid-colloid interactions. For anisotropic charge distributions the
complexity of the problem increases significantly.

In Chapter 2 we described the numerical technique of triangular tessellation, by which
the surface areas and line length that are associated with a plane-particle intersection
can be approximated. Our method allowed us to determine the free-energy of adsorption
for a single shape-anisotropic colloid with homogeneous surface properties adsorbed at
a flat interface in the Pieranski approximation. We established that prolate ellipsoids
and spherocylinders absorb perpendicular to the interfacial normal. For prolate cylinders
there can also be a metastable adsorption parallel to this normal. We continued our inves-
tigation in Chapter 3 where we considered the free energy in more detail and introduced
simple dynamics to analyse the process of a particle attaching to the interface and re-
laxing to its equilibrium position and orientation. When there are metastable adsorption
configurations, we showed that the orientation of a colloid at its initial contact with the
interface has a strong influence on its final orientation. Within the confines of our model
this resulted in an unexpectedly large domain of stability for the metastable configura-
tion of relatively long cylindrical particles. We even encountered situations for which
a particle (short cylinder) passed through the interface unhindered, despite there being
deep minima in the free energy of adsorption that would ordinarily give rise to strong
binding to the interface. Finally, in Chapter 4 we extended the triangular-tessellation
technique to numerically determine the free energy of adsorption for a nonconvex col-
loidal particle with surface patterning. We showed that the equilibrium orientation of
a truncated cube falls into one of three distinct categories we found; which of the three
depends on the details of the contact-angle pattern. We also considered plane-particle
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cross sections for octapod-shaped nanoparticles to illustrate the use of our technique on
nonconvex shapes. Our results are a first step towards understanding the time-dependent
behaviour of anisotropic colloids and nanoparticles in contact with a liquid-liquid or even
liquid-gas interface.

In Chapter 5 we described the floppy-box Monte Carlo (FBMC) method by which
it is possible to predict crystal-structure candidates. We also discussed two types of
particle-overlap algorithm, the method of separating axes and a triangular-tessellation
based technique. These overlap routines can be combined with the FBMC method to
enable crystal-structure prediction for systems comprised of highly shape-anisotropic hard
particles. In Chapter 6 we employed the FBMC technique to obtain regular packings of
odd-shaped bodies. We examined the densest-known (regular) structures for 17 irregular
nonconvex shapes and we confirmed several mathematical conjectures for the packings
of a large set of 142 convex polyhedra. We also extended upon these conjectures and
we proved that we have obtained the densest configurations of rhombicuboctahedra and
rhombic enneacontrahedra, respectively. Moreover, we improved the value of the densest-
known packing of enneagons and truncated tetrahedra. Finally, we considered a family
of truncated cubes, which interpolates between a cube and an octahedron, for which
we obtained a fascinating richness in crystal structures. For one family member, the
octahedron, we determined the equation of state and examined the properties of the
different phases. We found three phases: a liquid, a body-centred-cubic rotator phase, and
a crystal phase. Our simulations demonstrated that there is a first-order phase transition
between the liquid and crystal phase. The rotator phase was shown to be metastable with
respect to this transition.

In Chapter 7 we analysed the recently observed hierarchical self-assembly of octapod-
shaped nanocrystals (octapods) into three-dimensional (3D) superstructures. We devised
a simulation model with simple empirical interaction potentials capable of reproducing the
initial chain-formation step of the self-assembly. The van-der-Waals (vdW) interactions
between octapods dispersed in an (a)polar liquid were obtained by means of a Hamaker-de-
Boer-type integration and the nature of these interactions allowed us to justify elements
of our empirical model. We used the theoretical vdW calculation, together with the
experimental and simulation results, to formulate a mechanism that explains the observed
self-assembly in terms of the solvent-dependence and directionality of the octapod-octapod
interactions.

Finally, in Chapter 8 we studied the ionic screening of charged spherical Janus particles
by primitive-model (explicit-ion) Monte Carlo (MC) simulations for a wide variety of
parameters. We introduced a method to compare these results to the predictions of
nonlinear Poisson-Boltzmann (PB) theory, which were derived using a Legendre-Fourier
mode-expansion of the charge distribution. Our method of comparison and the large set
of parameters studied allowed us to probe the range of validity of the PB approximation.
For homogeneously charged spheres we found this range of validity to correspond well to
the range that was predicted by field-theoretical studies of homogeneously charged flat
surfaces. Moreover, similar ranges were obtained for colloids with a Janus-type charge
distribution. It should be possible to implement effective interactions based on the mode-
expanded PB theory in coarse-grained (implicit-ion) simulations for nonrotating charged
Janus colloids in the domain of validity that we acquired.





Samenvatting

In dit proefschrift hebben we zogenaamde colloïden bestudeerd, deeltjes die typisch kleiner
zijn dan een duizendste van een millimeter. In moleculair medium, zoals water, ondergaan
colloïden Brownse beweging, dat wil zeggen willekeurige verplaatsingen en draaiingen
die worden veroorzaakt door het constante bombardement dat ze ondervinden van de
veel kleinere moleculen van het medium. De willekeurige beweging zorgt ervoor dat de
deeltjes door het systeem diffunderen en in principe de volledige faseruimte doorlopen.
Deze verkenning van de faseruimte leidt tot een sterk verband tussen de wijze waarop
colloïden zich schikken tot structuren en de manier waarop moleculaire systemen fasen
vormen, bijvoorbeeld een gas, een vloeistof en een vaste stof. Het ontstaan van colloïdale
structuren wordt zelforganisatie genoemd, indien zij teweeg wordt gebracht door enkel de
Brownse beweging en deeltje-deeltje interacties (eventueel gestuurd door externe velden).

Een belangrijk voordeel van colloïdale materie boven atomaire en eenvoudige molecu-
laire systemen is de veel grotere mate van structurele complexiteit die kan worden bereikt.
Dit, in combinatie met het feit dat colloïdale eigenschappen veel gemakkelijker in situ
aangepast kunnen worden - waardoor colloïden bij uitstek geschikt zijn voor industriële
toepassingen - is één van de hoofdredenen om deze deeltjes te bestuderen. Bovendien zijn
de tijd- en lengteschalen waarop bijvoorbeeld de zelforganisatie optreedt, te observeren
met behulp van conventionele optische technieken. De analogie met moleculaire systemen
biedt een uitgelezen kans om via colloïden te leren over processen als smelten, nucleatie
en defectvorming; in moleculaire systemen is het vaak niet mogelijk is om een dergelijke
realtime, realspace analyse uit te voeren. Het bestuderen van colloïden is dan ook van
fundamenteel belang.

Er gaat veel interesse uit naar de wijze waarop het gedrag van colloïden beïnvloed
wordt door anisotropie in de vorm van en de interactie tussen de deeltjes. Zelfs voor
ogenschijnlijk eenvoudige systemen bestaande uit enkel harde bollen is er een fascinerende
rijkdom aan fasen die kunnen ontstaan. Door bollen met isotrope, zachte (korte- en
langeafstands)interactie potentialen te gebruiken, worden nog complexere structuren mo-
gelijk gemaakt. Deze complexiteit zal verder toenemen wanneer anisotrope interacties
worden gebruikt. Recente ontwikkelingen in de synthese van deeltjes hebben geleid tot
een grote verscheidenheid aan nieuwe colloïdale en nanobouwstenen: haltervormige deel-
tjes, ellipsoïden, kubussen, tetraëders, superballen, vierpoten, achtpoten, Janusdeeltjes,
en nog veel meer. Met deze bouwstenen tot onze beschikking is de weg geopend voor de
ontwikkeling van nieuwe fasen en structuren met ongekende eigenschappen.

Het blijkt gunstig om computersimulaties en theoretische berekeningen uit te voeren
als aanvulling op het experimentele onderzoek naar het fasegedrag van colloïdale deeltjes.
Computersimulaties kunnen worden gezien als experimenten die worden uitgevoerd op een
computer met een vereenvoudigd model van het betreffende systeem, waardoor er sprake
is van absolute controle over de parameters die het systeem definiëren. Dit maakt het
ontrafelen van de complexe fenomenologie in experimenten eenvoudiger. Een theoretische
berekening gaat doorgaans uit van een hoger niveau van abstractie en een meer wiskundige
benadering van de beschrijving van het systeem. De bemonstering van de faseruimte kan
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in een theoretische benadering als impliciet worden beschouwd en die in een simulatie
als expliciet. In dit proefschrift hebben we de simulatie- en theorieroute gevolgd voor
het bestuderen van de invloed van anisotropie op het gedrag van colloïden. We hebben
drie onderwerpen behandeld waarin de vorm- en/of interactieanisotropie een belangrijke
rol speelt en waarop de recente ontwikkeling van de bovengenoemde deeltjes een sterke
invloed heeft gehad.

• De adsorptie van één deeltje aan een vloeistof-vloeistof grensvlak. Het gedrag van
kleine deeltjes geadsorbeerd aan een dergelijk grensvlak is niet alleen van belang voor
ons begrip van de fase-overgangen en kritische verschijnselen in twee-dimensionale
(2D) systemen, maar biedt ook grote mogelijkheden voor de industrie. Mogelijke
toepassingen omvatten het stabiliseren van emulsiedruppeltjes die geneesmiddelen
inkapselen en het voorkomen van fasescheiding voor schuimen en emulsies, die van
belang zijn voor de voedingsmiddelenindustrie.

• Kristalstructuurvoorspelling voor colloïdale systemen en het daaraan gerelateerde
fasegedrag. Ondanks de opzienbarende vorderingen in ons vermogen om de zelforga-
nisatie van colloïden en nanodeeltjes te sturen, bestaan er nog veel open vragen met
betrekking tot het bepalen van de specifieke deeltjeseigenschappen die resulteren
in een gewenste structuur. Het voorspellen van kristalstructuren enkel gebaseerd
op kennis van de interacties tussen de deeltjes blijkt bijzonder uitdagend. Echter,
een efficiënte ab initio manier om kristalstructuren te voorspellen vormt de sleutel
tot het ontwerpen van nieuwe materialen met vooraf bepaalde eigenschappen en er
wordt daarom naarstig naar een dergelijk algoritme gezocht.

• De ionverdeling rond geladen deeltjes gesuspendeerd in een diëlektrisch medium. In
veel colloïdale suspensies spelen elektrostatische interacties een belangrijke rol en
het is daarom van belang de aard van deze interacties te karakteriseren met be-
hulp van theorie en simulaties. Echter, zelfs voor systemen die enkel uit homogeen
geladen bolvormige colloïden bestaan, is het bestuderen van de fysische eigenschap-
pen met behulp van theorie of simulaties gecompliceerd vanwege de lange dracht
van de Coulomb interacties. Deze langedrachtsinteracties leiden in combinatie met
de aanwezigheid van bewegelijke ionen die de ‘naakte’ lading van het colloïd afscher-
men tot een complex veel-deeltjes probleem. Dit probleem laat zich niet eenvoudig
ontrafelen waardoor het ingewikkeld is om tot effectieve colloïd-colloïd interacties
te komen. Voor anisotrope ladingsverdelingen is de complexiteit van het probleem
nog groter.

In hoofdstuk 2 hebben we de numerieke techniek die bekend staat als driehoeks-
betegeling beschreven. Deze techniek stelt ons in staat de oppervlaktes en de lengte
geassocieerd met een vlak-deeltjedoorsnede nauwkeurig te benaderen. Met behulp van
onze methode kan de vrije energie van adsorptie worden bepaald voor een enkele vorm-
anisotrope colloïd met homogene oppervlakte-eigenschappen aangehecht aan een vlak
grensvlak in de Pieranski-benadering. We hebben vastgesteld dat langwerpige ellipsoï-
den en spherocylinders aan het grensvlak adsorberen loodrecht op de normaal van het
grensvlak. Voor langwerpige cilinders kan er bovendien een metastabiele adsorptie zijn
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parallel aan de normaal. We hebben dit onderzoek voortgezet in hoofdstuk 3, waarin we
de vrije energie van adsorptie nader beschouwen en hieruit een eenvoudige theorie voor de
beweging van een deeltje destilleren. Deze theorie gebruiken we om het proces te analy-
seren waarbij een deeltje aan het grensvlak aanhecht en uiteindelijk de evenwichtspositie
en -orientatie bereikt. We hebben laten zien dat wanneer er metastabiele adsorptiecon-
figuraties zijn, de oriëntatie van een colloïd bij het eerste contact met het grensvlak een
sterke invloed heeft op de uiteindelijke oriëntatie. Binnen de grenzen van ons model
resulteert dit in een onverwacht grote stabiliteit van de metastabiele configuratie voor
relatief lange cilindrische deeltjes. We hebben zelfs situaties gevonden waarbij het deeltje
(een korte cilinder) ongehinderd het grensvlak doorkruiste, ondanks de diepe minima in
de bijbehorende vrije energie, die normaliter zouden leiden tot een sterke binding aan
het grensvlak. Tot slot hebben we in hoofdstuk 4 de driehoeksbetegelingstechniek uitge-
breid om de vrije energie van adsorptie numeriek te kunnen bepalen voor een niet-convex
colloïdaal deeltje met een oppervlaktepatroon. Zo hebben we laten zien dat de evenwichts-
oriëntatie van een afgeknotte kubus in drie verschillende categorieën uiteen kan vallen;
welke van de drie is afhankelijk van de details van het contacthoek patroon. We hebben
ook vlak-deeltjedoorsneden voor achtpoot nanodeeltjes beschouwd om de toepassing van
onze techniek op niet-convexe vormen te illustreren. Onze resultaten zijn een eerste stap
op weg naar het begrijpen van het tijdsafhankelijke gedrag van anisotrope colloïden en
nanodeeltjes in contact met een vloeistof-vloeistof- of zelfs vloeistof-gasgrensvlak.

In hoofdstuk 5 hebben we de floppy-box Monte Carlo (FBMC) methode beschreven,
waarmee het mogelijk is om kandidaat-kristalstructuren te voorspellen. Ook hebben we
twee soorten deeltjesoverlaproutines besproken: de methode van scheidende assen en een
op driehoeksbetegeling gebaseerde techniek. Deze overlaproutines kunnen worden gecom-
bineerd met de FBMC-methode om kristalstructuurvoorspelling mogelijk te maken voor
systemen bestaande uit sterk vorm-anisotrope harde deeltjes. In hoofdstuk 6 hebben we
de FBMC techniek gebruikt om regelmatige pakkingen van vreemd gevormde lichamen
te verkrijgen. We hebben de dichtste, bekende (regelmatige) structuren onderzocht voor
zeventien onregelmatige niet-convexe vormen en we hebben een aantal wiskundige ver-
moedens bevestigd voor de pakkingen van een grote set van 142 convexe veelvlakken. We
hebben deze hypothesen ook uitgebreid en we hebben bewezen dat we de dichtste pakking
voor romboëdrische kuboctaëders en romboëdrische enneacontrahedra hebben gevonden.
Bovendien hebben we de waarde van de dichtste pakking (tot nu toe) van enneagonen en
afgeknotte tetraëders verbeterd. Tot slot hebben we een familie van afgeknotte kubussen,
die interpoleert tussen een kubus en een octaëder, bestudeerd en daarbij een fascinerende
rijkdom aan kristalstructuren gevonden. Voor één familielid, de octaëder, hebben we de
toestandsvergelijking bepaald en de eigenschappen van de verschillende fasen onderzocht.
We hebben drie fasen gevonden: een vloeistof, een kubisch ruimtelijk-gecentreerde fase
waarin de deeltjes vrij kunnen draaien, en de kristallijne fase. Uit de simulaties bleek dat
er een eerste orde faseovergang tussen de vloeistof en kristallijne fase is. De fase waarin
de deeltjes vrij kunnen draaien bleek metastabiel ten opzichte van deze overgang.

In hoofdstuk 7 hebben we de recentelijk waargenomen hiërarchische zelforganisatie van
achtpoot-vormige nanokristallen (achtpoten) die leidt tot drie-dimensionale (3D) super-
structuren geanalyseerd. We hebben een simulatiemodel geconstrueerd dat een eenvoudige
empirische interactiepotentiaal gebruikt en in staat is om de eerste stap van de zelforgani-
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satie, het vormen van ketens van achtpoten, te reproduceren. De vanderwaalsinteracties
tussen achtpoten in een oplossing hebben we verkregen door middel van een Hamaker-de-
Boer-achtige integratie. Met behulp van deze interacties kunnen we elementen van ons
empirische model rechtvaardigen. We hebben de theoretische vanderwaalsberekeningen,
gecombineerd met de experimentele en simulatieresultaten, gebruikt om een mechanisme
te formuleren dat de waargenomen zelforganisatie verklaart in termen van de oplosmiddel-
en richtingsafhankelijkheid van de achtpoot-achtpoot interacties.

Tenslotte hebben we in hoofdstuk 8 de ionische afscherming van geladen bolvormige
Janusdeeltjes bestudeerd met behulp van Monte Carlo (MC) simulaties binnen het pri-
mitieve model dat uit gaat van expliciete ionen in een dielectrisch continuum, voor een
breed scala aan parameters. We hebben een methode geïntroduceerd om deze resultaten
te vergelijken met de voorspellingen van niet-lineaire Poisson-Boltzmann (PB) theorie,
die zijn afgeleid met behulp van een expansie van de ladingsverdeling in Legendre-Fourier
modes. Onze methode van vergelijking en de grote set van de onderzochte parameters,
stelt ons in staat het gebied waar de PB benadering geldig is te bepalen. Voor ho-
mogeen geladen bollen hebben we een goede overeenkomst gevonden met het gebied dat
wordt voorspeld in veldtheoretische studies van homogeen geladen vlakke oppervlakken.
Bovendien hebben we soortgelijke geldigheidsgebieden verkregen voor colloïden met een
Janus-type ladingsverdeling. Effectieve interacties op basis van de mode-geëxpandeerde
PB theorie kunnen nu worden toegepast in simulaties waarbij de ionen impliciet worden
meegenomen voor niet-roterende Januscolloïden in het geldigheidsgebied dat we hebben
vastgesteld.
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