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Introduction

In this chapter we provide a brief introduction to the subject matter of this thesis. We
introduce colloids and nanoparticles, discuss their relevance, and mention some recent
developments in this research area. We then discuss the polarization of dielectrics, which
is of primary importance to this thesis. We introduce the atomic polarizability and the
Clausius-Mossotti relation. Subsequently, we give a brief introduction to Van der Waals
forces and, more specifically, London dispersion forces, before going into specific methods
for their calculation. Primarily, we focus on the Coupled Dipole Method, which is the
method used throughout this thesis, for calculating not only London dispersion forces
but also polarization and electrostatic interactions. We end with a brief outline of the
remaining chapters.
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1.1 Colloids and Nanoparticles

Colloids are particles with a size roughly between 1 nm and 1 µm, whose name is derived
from the Greek word for glue, kìlla. Thomas Graham originally invented the term for
substances that do not, or only very slowly, diffuse through parchment (e.g., glue and
gelatin), unlike what he called crystalloids (such as salts, sugars, acids and bases), which
diffuse quickly [1]. While this distinction turned out to be somewhat artificial, as under
different circumstances Graham’s “colloids” may act as crystalloids or vice versa, the
name stuck for substances that are suspensions of mesoscopic particles. We note that the
term “colloid” seems to have originally been used to refer to a system of such mesoscopic
particles [2], whereas it is now frequently used to refer to the particles themselves. In this
thesis, we will always use the latter, newer definition, as given in the first sentence.

One of the defining characteristics of colloids is that they exhibit Brownian motion
when suspended in a fluid. Named after botanist Robert Brown, who in 1827 described the
phenomenon as observed in pollen grains suspended in water [3], Brownian motion refers
to the erratic motion that colloidal particles display due to the constant bombardment by
solvent atoms and/or molecules. Averaged over a long time, the number of collisions on
each side of the particle will be roughly equal, but at shorter time scales the number of
collisions per unit of time will fluctuate. As a result, the particle experiences “pushes” in
random directions, causing its kinetic energy to undergo fluctuations of the order of the
thermal energy kBT , where kB is Boltzmann’s constant and T is the temperature. For
heavy objects, the thermal energy is too low for Brownian motion to have a noticeable
effect on the object’s motion, while very small particles such as atoms and molecules are
generally difficult to observe in real time and space. When it comes to size and mass,
colloids are in the “sweet spot” in-between: still large enough to be reasonably easily
observable using microscopes but light-weight enough to experience significant effects from
Brownian motion. At the time of Brown’s publication, the atomic theory was still disputed
and Brownian motion was a crucial factor in settling this dispute: Albert Einstein’s 1905
theoretical description [4] of Brownian motion in terms of atoms and molecules and Jean
Perrin’s 1908 experimental verification [5] of this theory led to the final acceptance of the
atomic theory Dalton had proposed more than a century earlier [6].

Colloids and nanoparticles are found in many everyday substances. Well-known ex-
amples include aerosols such as mist and smoke, emulsions such as milk, and sols such
as blood. These examples occur naturally, but colloids have also appeared in man-made
substances since prehistoric times, including in butter, cheese and, fittingly, some early
glue types such as animal glue [7]. Of course, the fact that these substances contain
colloids was not known until relatively recently, when the advent of the microscope made
it possible to study samples at unprecedentedly small length scales. Today, control over
the fabrication of colloids is extensive and, accordingly, their use has broadened spectac-
ularly: for example, they are of medicinal use as drug deliverers or antibiotics, are used
for catalytic purposes in the chemical industry, can be found in paints, are employed by
the food industry to chemically stabilize as well as to control the various properties (e.g.,
texture) of foods, and are the crucial ingredient of LCD screens and electronic paper.

Not only has the variety of materials used for colloid fabrication increased, but the
accessible size range has also widened and now comprises the nanoscale. Such nano-sized
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colloids are called nanoparticles. Another, mostly recent, development is that the fabri-
cated particles can be anisotropic. For example, by controlling the surface chemistry of
the particles, for instance when synthesizing colloids with patches of different materials
[8–10], or by using single-stranded DNA molecules as linkers [11, 12], interparticle inter-
actions can be modified. However, the most obvious way of making particles anisotropic
is by making them nonspherical. The collection of shapes that can be fabricated today is
enormous [13], but in this thesis we will restrict ourselves to spheres, cubes [14], dumbbells
[15–18], bowls [17, 19, 20], rods [21, 22] and platelets. The result of the anisotropy of the
particles (and/or their interactions) is that they can, under certain conditions, sponta-
neously form interesting new ordered structures that one does not observe with isotropic
particles [23–28]. The process by which ordered structures appear without external in-
fluence on the system is called self-assembly [29, 30]. We note that Brownian motion is
essential for self-assembly because, without it, the system would not be able to effectively
explore its phase space and find its optimal configuration. However, since the process
of self-assembly is often difficult to achieve in practice and hampered by slow dynamics,
several techniques can be employed to assist it [29, 31], such as introducing a substrate
to the system [32, 33], employing fluid flows [34], or applying magnetic [35] or electric
[36–39] fields. We note that, strictly speaking, this can no longer be called self-assembly
because of the presence of an external influence; assembly that happens through ther-
modynamic processes but with certain pre-set external influences is often referred to as
assisted self-assembly.

1.2 Polarization
The earliest account of experimentation involving electric charge and electric polarization
is commonly attributed to Thales of Miletus (ca. 624 BC - ca. 547–546 BC), said to be
the first Western philosopher [40, 41]. Although there are plenty of stories of how Thales
rubbed amber (in Greek: ¢lektron) with fur and noted that it subsequently attracted
small objects, it is uncertain whether he in fact ever wrote down anything at all [42].
It seems that the only surviving antique reference to Thales’ amber experiment is by
Diogenes Laërtius (3rd century AD) and it is rather minimalistic [43]: Laërtius only
writes that Thales believed that inanimate objects had souls because of “Magnesian rock
and amber”, citing Aristotle (384 BC - 322 BC) and Hippias (late 5th century BC),
an Elean sophist contemporary to Socrates of whom no work survives. Aristotle indeed
writes [44] that Thales’ belief that rock had a soul was based on the fact that rock
could move iron, but he does not mention amber, likely making Hippias the first to have
written about the amber experiment. In fact, Hippias might have also been Aristotle’s
source for the reference to magnetism [42]. In any case, references to static electricity are
widespread in the Mediterranean world from the time of Plato (427 BC - 347 BC), who
himself hazarded a (rather vague) guess as to what might be the explanation for amber’s
mysterious electrical properties.

It seems not unreasonable to assume that knowledge of the electrostatic phenomena
associated with amber were in fact much older than Hippias or Thales. Since prehistory,
amber had been used as jewelry and as material for buttons, and fur as clothing, making
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the rubbing of amber and the resulting electrostatic effects phenomena likely to have been
observed by humans. Thales may simply have used pre-existing knowledge to motivate
his belief that all things had souls.

Electric polarization plays a role in Thales’ experimentation because of the effect that
the electrically charged amber had on other objects, such as hair, straw, feathers, or
small pieces of papyrus [45]. The charge would induce a dipole moment in those objects,
causing them to be attracted to the amber. This explanation was, of course, unknown to
the ancients; it not only requires the concept of electric charge but also that of positive and
negative charge and polarization, ideas which did not appear until the mid-18th century
with the work of Benjamin Franklin. The idea of there being only one type of electricity
but with opposite polarities was reinforced by Faraday’s 1839 experiments [46].

Michael Faraday is also of interest to us because he was the first to conduct experiments
showing that the capacitance of a capacitor increases when an insulator is placed between
the capacitor plates, indicating that the insulator gains an induced polarization [47–50].
This behavior may at first seem counter-intuitive: if charges cannot move inside the
insulator and the insulator is electrically neutral throughout, one may expect there to be
no polarization at all and, thus, the capacitance to remain unaffected. If one places a
conductor (instead of an insulator) between the plates, it can be easily shown [45] that
the capacitance increases as the inverse of the fraction of space between the plates not
occupied by the conductor. From this, Faraday and others reasoned that insulators in
fact had small conducting regions inside them that would become polarized when the
capacitor was charged. If one associates these regions with atoms, this explanation is not
very far from the truth, although one significant problem is that the induced polarization
is dependent on the volume that the atoms occupy.

Nowadays we know that atoms polarize depending not on the volume they occupy but
on other atomic properties. A simple yet effective model for describing atomic polarization
is the Lorentz model, which describes an atom as composed of a nucleus with charge e
with a spherical electron cloud with total charge −e around it. If the cloud is assumed to
have a homogeneous negative charge density ρ, the equilibrium position for the nucleus
is at the center of the cloud: a situation where the atom has no dipole moment. If
the nucleus is displaced a distance d from the sphere center, the restoring force can be
calculated by noting that the enclosed charge inside a spherical Gaussian surface of radius
d is Q = 4

3πd
3ρ, so that the restoring force acting on the nucleus is F =

4
3πd

3eρ

d2 ∝ d, i.e.,
a harmonic force. Calling its characteristic frequency ω0, we can write the restoring force
as F = −meω

2
0d, where me is the mass of the electron. In effect, an atom described in

this way is a harmonic oscillator with frequency ω0, sometimes called a Drude oscillator.
If a static electric field E0 is applied, the charge is displaced until the restoring force is
equal to the force resulting from the external electric field, so meω

2
0d = eE0 [51], such

that the induced dipole moment p = ed is

p = e2

meω2
0
E0

≡ α0E0
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where the proportionality factor

α0 = e2

meω2
0

(1.1)

is the atomic polarizability, which has units of volume (in CGS) and is typically of the
order of cubic Ångströms. We note that the magnitude of d is typically very small;
e.g., for α0 = 5 Å3 and a strong electric field of E0 = 100 statV cm−1 = 3 V µm−1, we
find d = α0E0/e ≈ 10−12 cm. For comparison, the Bohr radius is about three orders of
magnitude larger. This suggests that even though the provided model of a homogeneous
charge density may seem simplistic and we have ignored the complications of quantum
mechanics, using a harmonic force seems sensible since, to first-order approximation, most
spatially symmetric potential wells are harmonic wells.

Determining the exact numerical value to assign to α0 is a highly nontrivial task. It is
not reliable to simply insert a value for ω0 into Eq. (1.1) since, due to the simplifications of
the model, it is not clear what value to use. A more accurate method is to first determine
the bulk (macroscopic) electrostatic properties of the material we wish to model and then,
using the Clausius-Mossotti relation, work out the atomic polarizability. The Clausius-
Mossotti relation, named after the physicists Ottaviano-Fabrizio Mossotti and Rudolf
Clausius, gives an approximate relationship between a material’s dielectric constant ε and
its atomic polarizability α0. It supposes that when an electric field E0 is applied to a
material, the atoms experience a total electric field equal to E0 plus a contribution due to
the macroscopic polarization of the material, such that the average atomic dipole moment
obeys [51]

〈p0〉 = α0

(
E0 + 4π

3 P
)
.

Using P = n 〈p0〉, where n is the atomic number density of the material, and substituting
P = 1

4π (ε− 1) E0 (in CGS), we have

α0n = 3
4π

(
ε− 1
ε+ 2

)
. (1.2)

This equation is approximately accurate for a piece of material (particle) with dielectric
constant ε in vacuum. If the particle is suspended in a medium with dielectric constant
εm, we instead have an effective atomic polarizability given by

α0n = 3
4πεm

(
ε/εm − 1
ε/εm + 2

)
. (1.3)

If indices of refraction are used instead of dielectric constants, the equation is usually
referred to as the Lorenz-Lorentz equation [51]. We note that for 3-dimensional lattices,
n ∝ a−3, where a is the lattice constant. Inserting this into Eq. (1.3), we see that
the dimensionless lattice constant a/α1/3

0 could be used instead of ε/εm to characterize
a material’s electrostatic properties. This dimensionless lattice constant also appears
naturally in the theoretical method that we will be using in this thesis (the Coupled
Dipole Method, elaborated in Sec. 1.4), as a parameter controlling atom-atom coupling.
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1.3 Van der Waals Interactions

Van der Waals interactions are named after Dutch physicist Johannes van der Waals,
who in the 7th chapter of his PhD thesis derived an equation of state for a system of
particles with short-range repulsion and long-range attraction, reasoning that the former
could be modeled by reducing the volume available to the particles and the latter by a
term proportional to the square of the particle density. Today, we denote by Van der
Waals forces all the intermolecular forces that are not due to bond formation or to the
electrostatic interaction of ions or ionic groups with one another or with neutral molecules
[2]. These forces include interactions between permanent dipoles, between a permanent
dipole and a dipole induced by that permanent dipole, and between two instantaneously
induced dipoles (the London dispersion force, elaborated on below). Because we do not
consider particles with permanent dipoles in this thesis, we will refer to this London
dispersion force as “Van der Waals” force. Another force that we are interested in is the
force between two induced dipoles under the influence of an electric field. We will refer
to such forces as induced dipole interactions.

The London dispersion force is named after German physicist Fritz London, who, using
quantum mechanical perturbation theory, first derived the interaction energy between a
pair of noble gas atoms [52–54]. He found that this interaction energy was proportional
to r−6 (hence the force is proportional to r−7), where r is the distance between the atoms.
It was found later that by modeling the atoms as dipoles with a Boltzmann-weighted
random orientation distribution and calculating their average interaction energy, the same
r-dependence could be recovered, which is why the force is often also referred to as the
instantaneous induced dipole-induced dipole force. Of course, since colloids are made of
atoms, the London dispersion force does not only occur between single atoms but also
between colloidal particles in suspension. The force is, because of its strong decay as
a function of r, mostly negligible over long distance, but can be extremely strong at
short distances, causing particles to aggregate and form larger clumps of material. To
prevent this aggregation, experimentalists often add steric molecules to the surface of
the particles: the resulting steric interactions ensure that the particles do not get close
enough to aggregate. Another way to keep the particles apart is to electrically charge them
and tune the salt concentration of the medium appropriately: the resulting combination
between a London dispersion attraction and a screened Coulomb repulsion is described
by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [55, 56], which features a strong
short-range attraction, a medium-range repulsion, and a long-range attraction, allowing
for the possibility of “trapping” particles at a certain distance controllable by varying the
salt concentration.

There are various methods of calculating the interaction between colloidal particles
or other spatially extended bodies such as films. Arguably the simplest method is by
summation of the London interaction between pairs of atoms, an approach known as the
Hamaker-de Boer approach [57]. Another approach is to instead treat each particle as
a continuum and integrate the pairwise interaction between volume elements, which is
what Hamaker first did for pairs of spheres [58]. In his 1955 paper [59], Lifshitz also took
a continuum approach but arrived at an interaction energy by introducing fluctuating
terms to the Maxwell equations and assigning the energy of a harmonic oscillator to
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each mode. The resulting calculations are rather involved but also general, being able
to account for the effects of retardation and finite temperature. A significant problem,
though, is that Lifshitz theory requires values for the dielectric function at imaginary
frequencies. These can only be calculated via the Kramers-Kronig relation, but this
relation requires knowledge of the dielectric function over a wide range of frequencies, of
which the low frequencies are particularly problematic since no optical experimental data
is available for low-enough frequencies. Recently, a solution was proposed that weighs the
Kramers-Kronig integral such that the low frequencies do not contribute as much [60]. In
this thesis we will not employ continuum theories but will instead describe particles as
discrete “chunks” of matter.

1.4 Coupled Dipole Method
The Coupled Dipole Method (CDM) was introduced by Renne and Nijboer in the 1960s
[61–63]. For this method, dielectric matter is supposed to be built up of discrete Lorentz
atoms (i.e., inducible dipoles with no permanent dipole moment) located on certain fixed
lattice sites. A cluster of these atoms then represents a particle. The atoms interact
with each other: if one atom gains a polarization, it will produce an electric field which
will induce a polarization in the other atoms. The harmonic modes of this system of
N coupled dipoles can be calculated by diagonalizing a large (3N × 3N) matrix. As in
Lifshitz’s method, each of these modes is assigned an energy equal to that of a harmonic
oscillator with the same frequency, and the sum of all these harmonic oscillator energies
then results in a potential energy. In other words, the system can be seen as a harmonic
oscillator in 3N dimensions, with characteristic frequencies in each dimension given by
a normal mode of the oscillator. The CDM, which can be shown to yield the Van der
Waals interaction between two atoms [61, 64, 65], was originally intended to calculate
the London dispersion forces between dielectric particles consisting of multiple atoms and
has been applied as such relatively recently [64, 66–70]. Because it includes many-body
effects, the CDM can be expected to give more accurate London dispersion forces than
pairwise approaches such as the aforementioned Hamaker-de Boer theory. However, the
CDM is not limited to calculating London dispersion forces: we will show in this thesis
that its Hamiltonian can also be extended to include an external electric field, such that
the polarizability and the induced dipolar interaction of particles of arbitrary shape can
be calculated as well. An important limitation of the CDM is that, due to its reliance on
the Lorentz model in which electrons are bound to their respective atoms, it can not be
used to describe metals because those contain free (unbound) electrons.

The effect of an electric field on systems of coupled dipoles has been studied before
in scattering calculations within the Discrete Dipole Approximation, which involves an
incident oscillating electric field [71–74]. Forces on particles in optical traps have also
been calculated using the CDM [75–80]. Moreover, polarizability has also been studied in
recent years by replacing the oscillating external field with a permanent one [81]. In this
thesis, we only consider homogeneous static electric fields and use a Hamiltonian approach,
leading straightforwardly to orientational potential energies of particles subjected to such
an electric field.
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At the time that the CDM was conceived of, it was infeasible to computationally per-
form the large-scale matrix manipulations involved in the CDM, but everyday computers
of today can easily handle atom numbers of the order of 104. Still, this is lower than
the number of atoms found in most colloidal particles. To remedy this limitation, we
remember that not just atoms but any “chunk” of matter will, in first-order approxima-
tion, gain a polarization proportional to the applied electric field. Therefore, the Lorentz
atoms employed by the CDM do not necessarily have to represent physical atoms but
can instead be thought of as a discretization of matter necessary for employing a coupled
dipole scheme. In the first three chapters (chapters 2, 3 and 4) we will still work with
Lorentz atoms that have atomic proportions, while in chapter 5 we will present a slight
generalization of the CDM which will enable us to also compute results if the dipoles
represent larger chunks of matter.

1.5 Thesis Outline
In this thesis, we will employ the CDM to investigate various electrostatic properties of
dielectric particles of various shapes. In Chapter 2, we calculate the polarizability tensor of
cuboid-shaped (rods and platelets), bowl-shaped and dumbbell-shaped particles and use
it to calculate the orientation-dependent energy of these particles in an external electric
field. In Chapter 3, we take a close look at the local polarization inside a cubic and a
spherical particle. In Chapter 4, we investigate the minimum size for which dielectric
particles may be aligned by an external electric field and the dependence of this minimum
size on the shape of the particle. In chapter 5, we calculate the London dispersion forces
between single inducible dipoles, spheres and cubes and investigate whether these particles
prefer to form linear or compact particle clusters. Moreover, we study in detail the
accuracy of various other calculation techniques with respect to the CDM. In Chapter 6,
we investigate the electric field-induced dipolar interactions between particles and again
compare the accuracy of various calculation techniques to the CDM. Chapter 7 contains
a number of incomplete studies, which may form an interesting basis for future research.
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Polarizability and Alignment of
Dielectric Nanoparticles in an
External Electric Field: Bowls,

Dumbbells, and Cuboids

We employ the Coupled Dipole Method (CDM) to calculate the polarizability tensor of
various anisotropic dielectric clusters of polarizable atoms, such as cuboid-, bowl-, and
dumbbell-shaped nanoparticles. Starting from a Hamiltonian of a many-atom system, we
investigate how this tensor depends on the size and shape of the cluster. We use the po-
larizability tensor to calculate the energy difference associated with turning a nanocluster
from its least to its most favorable orientation in a homogeneous static electric field and
we investigate the dependence of this energy difference on the cluster size.
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2.1 Introduction

Monodisperse (colloidal) particles with a wide variety of shapes can nowadays be synthe-
sized in the nano- to micrometer size regime [13, 15]. These particles can serve as building
blocks for new materials and devices with great technological potential. Self-assembly of
the particles is an important process by which large-scale nano-structures can be formed.
This self-assembly process can be spontaneous in the case of favorable thermodynamic
conditions and suitable effective particle-particle interactions [23–27, 29–31], but can also
be steered and further manipulated by external fields. Rodlike particles in a liquid disper-
sion, for instance, can spontaneously align at sufficiently high concentrations solely due to
their excluded volume interactions [28], but their self-organization has also been driven by
external magnetic or electric fields [33, 35–39], by substrates that preferentially orient the
rods [32, 38], or by fluid flow [34]. More complicated shapes have also been synthesized
and studied, for instance dumbbells [15–18], cubes [82], and bowls [17, 19, 20].

In this chapter we study the electric-field assisted alignment of anisotropic nanopar-
ticles by calculating their polarizability tensor using the Coupled Dipole Method (CDM)
[61, 64, 66–69, 83–85]. We first describe the formalism of the CDM, deriving, through
a Hamiltonian approach, expressions for the polarizability tensor, potential energy and
orientational electrostatic energy of non-spherical clusters of Lorentz atoms. We then
proceed to numerically calculate these quantities for specific particle shapes. We focus
here on cuboid-shaped (rods and platelets), bowl-shaped, and dumbbell-shaped particles,
for which we consider various shape and size parameters. For alignment experiments,
quantities such as the polarizability and the resulting orientational electrostatic energy
are highly relevant because the value of the latter relative to the thermal energy deter-
mines the degree of orientational order that can be achieved in systems where interparticle
interactions are negligible. We elaborate more on the relationship between the orienta-
tional energy and the nematic order parameter in Chapter 4. The polarizability of shapes
similar to the ones considered here has in recent years been studied using continuum
electrostatics [86–90] and, on several occasions, we briefly compare those results to ours.

2.2 Formalism of the CDM: Potential Energy, Polar-
izability, and Orientational Energy

As mentioned in Chapter 1, the CDM models matter as being built up out of Lorentz
atoms. In this chapter, we assume each atom to be identical, such that each has the same
atomic polarizability α0 as given by Eq. (1.1) and, by extension, the same characteristic
frequency ω0. If N of these atoms are brought together and allowed to interact, the
dipole-dipole interactions will influence the electric properties of the cluster as a whole.
In general, the total polarizability of the cluster cannot be expected to equal Nα0, but
will instead be modified because the atoms are subject to each other’s induced electric
field.
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2.2.1 Static Polarizability and Orientational Energy of Dipole
Clusters in an External Electric Field

The Hamiltonian of a set of N Lorentz atoms at fixed positions ri (i = 1, . . . , N) has been
given and studied in Refs. [61, 64, 66–69]. In the present work, we use the same Hamil-
tonian but add an extra term to allow for an externally exerted, spatially homogeneous
electric field E0, such that the complete expression for the Hamiltonian is

H =
N∑
i=1

k2
i

2me

+
N∑
i=1

meω
2
0d2

i

2 −
N∑

i,j=1

e2di ·Tij · dj
2 −

N∑
i=1

edi · E0, (2.1)

where we denote the momentum of the electron of atom i by ki, and its displacement
from the atom nucleus by di. The 3× 3 matrix Tij is the dipolar tensor, given in terms
of the separation vector rij = ri − rj of atoms i and j, by

Tij =


(
3rijrij/ |rij|2 − I

)
|rij|3

if i 6= j,

0 if i = j,

(2.2)

where I denotes the 3× 3 identity matrix and 0 denotes the 3× 3 null matrix. Note that
the dipolar tensor is not only symmetric in its indices, Tij = Tji, but also in its elements,
Tij = TT

ij. As is clear from the Hamiltonian (2.1) and the form of Tij, this model describes
interatomic interactions in an instantaneous, non-retarded way. Therefore, the validity of
the theory for Van der Waals interactions is limited to model systems where the relevant
length scales are small enough for the speed of light to be essentially infinite. This is
because these interactions are due to dipolar fluctuations with time scales comparable to
the time it takes for light to travel across the system size. However, quantities such as
polarization and polarizability are static quantities and are expected to be accurate for
any system size.

We now introduce 3N -dimensional vectors K, D and E0, which are built up from the
ki, di and N copies of E0, respectively. We also introduce a 3N ×3N -dimensional matrix
T , built up from the Tij. In terms of these objects, the Hamiltonian (2.1) is given by

H = K2

2me

+ 1
2meω

2
0D · (I − α0T ) · D − eD · E0,

where α0 is given in Eq. (1.1), and I denotes the 3N × 3N -dimensional identity matrix.
Next, we introduce a 3N -dimensional vector D0 that satisfies

meω
2
0 (I − α0T ) · D0 = eE0, (2.3)

and use it to complete the square in the Hamiltonian, obtaining
H = H0 + VE, (2.4)

with

H0 = K2

2me

+ 1
2meω

2
0 (D −D0) · (I − α0T ) · (D −D0)

(2.5)

VE = −1
2α0E0 · (I − α0T )−1 · E0. (2.6)



12 Chapter 2

Note that VE is constant with respect to the generalized momenta and coordinates K
and D − D0, respectively. The 3N oscillatory modes associated with the (harmonic)
Hamiltonian H0 are given by(

D(k) −D0
)

(t) =
(
D(k) −D0

)
(0) exp (−iωkt) (k = 1, . . . , 3N) , (2.7)

where the amplitude vectors
(
D(k) −D0

)
(0) and the frequencies ωk are given by an eigen-

value equation for the matrix (I − α0T ):

ω2
k

ω2
0

(
D(k) −D0

)
(0) = (I − α0T )

(
D(k) −D0

)
(0) . (2.8)

If we denote the eigenvalues of the matrix T by λk , we see that the eigenvalues of
(I − α0T ) are (1− α0λk), and thus that the allowed frequencies are

ωk = ω0

√
1− α0λk.

Assuming the system to be in the electronic ground state, we arrive at the total potential
energy

V = V0 + VE, (2.9)
where V0 is the ground state energy of H0, given by the sum of mode frequencies,

V0 = 1
2~

3N∑
k=1

ωk, (2.10)

where ~ is the reduced Planck constant.
We note that V0 depends solely on the matrix (I − α0T ) and, thus, only on the

relative coordinates rij of the atoms with respect to each other. It follows that this term
is completely independent of the orientation of the cluster with respect to the electric
field. In the absence of other clusters, V0 can therefore be interpreted as the self-energy of
the cluster; in the presence of other clusters, the term also contains the interaction energy
between the clusters [66]. For the analysis of the response of the clusters to an external
electric field, however, we turn to the second term VE of Eq. (2.9); this term, given in Eq.
(2.6), contains all the orientational potential energy of the cluster in the external electric
field.

Clearly, the Hamiltonian of Eq. (2.4) describes a set of harmonic oscillators with
equilibrium positions given by D0 and a shifted ground state energy V . Using this inter-
pretation of D0, we show in the following that VE is the energy of the total time-averaged
dipole moment of the cluster in the external electric field. We first rewrite Eq. (2.3) in
terms of the mean polarization vector P ≡ eD0,

(I − α0T ) · P = α0E0, (2.11)

and use this equation in combination with the expression for VE given in Eq. (2.6) to
derive

VE = −1
2E0 · P = −1

2E0 · pc, (2.12)
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where
pc ≡

N∑
i=1

pi (2.13)

denotes the total polarization of the cluster and pi ≡ ed0,i denotes the mean (time-
averaged) polarization of atom i, as given by the elements of P . From the form of Eq.
(2.12), it is clear that VE is the energy of an induced dipole pc in an electric field E0 [51].
If we divide the matrix (I − α0T )−1 into 3× 3 subblocks Yij, it can easily be seen from
Eq. (2.11) that pi = ∑

j Yij · E0 and thus that

pc = α0

N∑
i,j=1

Yij · E0 ≡ αc · E0, (2.14)

where we define the 3× 3 cluster polarizability matrix by

αc ≡ α0

N∑
i,j=1

Yij. (2.15)

An alternative derivation of Eqs. (2.11)-(2.14) is given in Ref. [81]. Note that αc depends
solely on the spatial configurational properties of the cluster, not on the external electric
field. Moreover, one can prove mathematically that αc is a symmetric matrix as long as
each atom has an equal polarizability α0. This is done in Appendix A.a This symmetry
of αc implies that its eigenvectors are orthogonal, which in turn implies that it is always
possible to transform the system to an orthogonal basis, formed by these eigenvectors, in
which αc is diagonal.

Computationally, Eq. (2.15) is not a practical way of determining αc, since it involves
the very expensive operation of explicitly calculating the inverse of a large matrix. Nu-
merically, the most favorable approach is to use Eq. (2.14): after choosing a suitable
coordinate system, we apply an electric field in the x-direction and calculate the cluster
polarization by solving Eq. (2.11). Efficient numerical algorithms for solving a set of linear
equations are readily available, for example in the LAPACK package [91]. Having solved
Eq. (2.11) for P , we calculate the sum in Eq. (2.13), then divide the resulting vector by
the electric field strength; the result is the first column of αc. To gain the remaining two
columns, this procedure is then repeated in the other two Cartesian directions.

If we were to neglect the dipolar interactions within the cluster, the cluster’s polariza-
tion would be Nα0E0, i.e., the cluster polarizability would simply be a scalar Nα0. The
ratio of the “actual” polarizability αc and this “naive” guess for the polarizability,

f = αc
Nα0

, (2.16)

aThe proof relies on the fact that Yij = YT
ij , which in turn can be proven by using induction in

combination with the general expression for the inverse of a matrix built up of submatrices:(
K L
M N

)−1
=
(

K−1 + K−1LS−1MK−1 −K−1LS−1

−S−1MK−1 S−1

)
,

where
S = (N−MK−1L).
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is a measure of how much the polarizability is enhanced due to dipole-dipole interactions
and may therefore be called the “enhancement factor” of the dipole cluster [81].

In terms of αc, we can rewrite Eq. (2.12) compactly as

VE = −1
2E0 ·αc · E0. (2.17)

This expression can then be written in terms of the eigenvalues αn and the corresponding
normalized eigenvectors vn (n = 1, 2, 3) of αc:

VE = −1
2

3∑
n,m=1

(E0 · vn) (vn ·αc · vm) (vm · E0)

= −1
2

3∑
n=1

(E0 · vn)2 αn. (2.18)

In the first line, we twice inserted a complete orthonormal set of eigenvectors while, in the
second line, we made use of the fact that αc · vm = αmvm and vn · vm = δnm. The inner
products obey the rule ∑n (E0 · vn)2 = E2

0 , from which follows that ∑3
n=1 (E0 · vn)2 αn ≤

αmaxE
2
0 , where αmax = max ({αn}) and the equality is achieved if and only if E0 ‖ vmax,

where vmax is the eigenvector corresponding to αmax. It follows that VE is minimized by
an electric field in the direction of vmax. A similar reasoning leads to the observation that
VE is maximized by an electric field in the direction of the eigenvector with the smallest
eigenvalue, αmin. The difference |∆| between maximum and minimum orientational energy
VE is thus given by

|∆| = 1
2 (αmax − αmin)E2

0 .

Here, for future purposes, we intentionally kept the freedom of choosing the sign of ∆.

2.2.2 Rotationally Symmetric Clusters

The bowl- and dumbbell-shaped nanoparticles considered in this chapter are clusters with
an axis of rotational symmetry. The rotational invariance implies that the polarization
that would be induced by an electric field in the direction of the symmetry axis must lie
along this symmetry axis and, therefore, that this axis is an eigenvector of the cluster’s
polarizability matrix αc. Since it is known that αc must be a symmetric matrix, we know
that its eigenvectors must be perpendicular to each other. This leads to the conclusion
that the preferred direction of any rotationally symmetric cluster must lie either along
the rotational symmetry axis or perpendicular to it. In this chapter, we always choose
our coordinate system such that this rotational symmetry axis lies along the z-axis, and
choose the x- and y-directions such that αc is diagonal (i.e., the Cartesian axes are the
eigenvectors of αc). Moreover, for rotationally symmetric clusters, αxx = αyy, and hence
we are left with only two independent entries on the diagonal of αc, one of which will be
αmax and the other αmin. For the remainder of this chapter, we define the orientational
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energy difference asb

∆ ≡ 1
2 (αzz − αxx)E2

0 , (2.19)

where we choose the sign of ∆ such that ∆ is positive when the preferred direction of the
cluster is along the rotational symmetry axis (which is equivalent to αzz > αxx).

Using Eq. (2.16), we can write Eq. (2.19) as

∆ = 1
2∆fNα0E

2
0 , (2.20)

where
∆f = fzz − fxx.

As will be shown for all the cluster shapes in this chapter, the quantity ∆f is largely
independent of the cluster size, provided that the number of atoms is large enough. In this
regime, ∆f depends only on the shape of the cluster and on the dimensionless interatomic
distance a/α1/3

0 . This assertion does not state anything about the individual values of
fzz and fxx as a function of cluster size. From the numerical data, it turns out (as we
will see) that these quantities can still depend on cluster size, albeit usually only weakly.
From Eq. (4.1), we note that because ∆f is independent of N , ∆ is linear in N and can
thus be extrapolated to larger clusters than considered in this chapter. This possibility
will be investigated in detail in Chapter 4.

2.2.3 Fourfold Rotationally Symmetric Clusters
One of the discussed cluster shapes in this chapter is a cluster with a cubic shape. If
we choose the coordinate axes along the ribs of the cube, it can be easily seen from
symmetry considerations that an electric field applied in the x-direction must induce
a total cluster polarization p(cube)

c with a nonzero component only in the x-direction.
Similarly, the polarizations resulting from electric fields in the y- and z-directions will
also point along the y- and z-axes, respectively. Because these resulting polarizations are
proportional to the columns of α(cube)

c , it follows that α(cube)
c must be diagonal in this

basis. Moreover, because the cube is invariant under 90° rotations, we do not expect the
induced polarization of the cube to be dependent on whether the electric field is applied
in the x-, y-, or z-direction and, therefore, the entries on the diagonal of α(cube)

c must be
equal. Hence,

α(cube)
c ∝ I. (2.21)

bFrom Eq. (2.18), we could also have derived an explicit expression for the orientational energy of the
cluster shapes discussed in this chapter:

VE = −1
2

[
(E0 · x̂)2 + (E0 · ŷ)2

]
αxx −

1
2 (E0 · ẑ)2

αzz

= −1
2
(
αxx + (αzz − αxx) cos2 θ

)
E2

0 ,

where in the first line we used αxx = αyy and, in the second line, we introduced the angle θ between E0
and the z-axis. From the resulting expression, it is clear that the extrema of the orientational energy are
located at θ = 0 and θ = π/2 and that the difference in orientational energy between the two extrema is
indeed given by Eq. (2.19).
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Substance a
(
Å
)

α0
(
Å3)

ã

Hexane 6.009 11.85 2.64
Silica 3.569 5.25 2.05

Sapphire 3.486 7.88 1.75

Table 2.1: Lattice spacings a, atomic polarizabilities α0, and dimensionless lattice spacings
ã ≡ a/α1/3

0 of some typical substances [81].

Note that, in this case, both the polarizability and the enhancement factor can be de-
scribed by a scalar: the former by the proportionality factor between α(cube)

c and I, the
latter by this “scalar polarizability” divided by Nα0. Since, in this case, αxx = αyy = αzz,
we find from Eq. (2.19) that ∆ = 0. This kind of cluster will therefore not have a preferred
orientation within an external electric field. Physically, this is a surprising result since,
a priori, one could expect an anisotropic cluster such as a cube to prefer to align one of
its features (such as its ribs, faces, or vertices) along the electric field. However, simple
symmetry arguments negate this expectation. For cuboid-shaped rods and platelets, on
the other hand, as is the case for bowls and dumbbells, αxx = αyy 6= αzz and hence ∆ 6= 0.

2.2.4 Units of Distance
Throughout the remainder of this chapter, we will usually measure distances, lattice
spacings in particular, in units of α1/3

0 . The reason is that, throughout the theory, the
matrix T is always multiplied by a factor α0. Upon applying this multiplication to the
submatrices Tij, we get

α0Tij =

(
3sijsij/ |sij|2 − I

)
|sij|3

(i 6= j) ,

where
sij = rij/α1/3

0 .

Clearly, the relevant parameters are not the rij themselves, but rather the dimensionless
combinations sij = rij/α1/3

0 . Using these dimensionless distances, we eliminate the atomic
polarizability as an explicit input parameter. At the same time, the dimensionless com-
binations are O (1) in magnitude (for typical lattices and atomic polarizabilities), which
is convenient for computational purposes. Some values of dimensionless lattice spacings

ã ≡ a/α
1/3
0

of a few substances are given in Table 2.1 [81]. For clarity, we note here that all other
physical quantities remain unscaled in this chapter.

2.2.5 Comparison with Continuum Theory
At various instances in this chapter and Chapter 3, we are going to compare results derived
using continuum theory [86–90] with our results. It might be of interest to mention how
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we relate our enhancement factor to the dimensionless polarizability calculated in the
mentioned references. Starting with a dimensionless lattice constant and assuming that
the particles are inside a vacuum, we infer the relative permittivity ε using the Clausius-
Mossotti relation in (CGS) [51],

ε = 1 + 4πχe
= 1 + 4πnα0

1− 1
34πnα0

= 1 + 4π
ã3 − 4

3π
, (2.22)

where χe is the electric susceptibility and n is the number density of atoms, for a cubic
lattice equal to n = 1/a3. We then plug this ε into one of the formulas provided in Refs.
[86–90] to gain a dimensionless polarizability αn, which we convert to an enhancement
factor by

f = αc
α0N

= αcã
3

V
= αSI ã

3

4πε0V
= αnã

3

4π , (2.23)

where αSI is the polarizability of the cluster in SI units (whereas we use CGS), ε0 is the
dielectric permittivity of vacuum, and we used the definition of dimensionless polarizabil-
ity

αn = αSI
ε0V

as given in Refs. [86–90].

2.3 Dielectric Rods and Platelets
A simple (but useful) example illustrating the introduced quantities are dielectric rods
and platelets. We consider cuboid-shaped clusters, with the atoms on a simple cubic
lattice with a dimensionless lattice constant ã = 2. Let L be the number of atoms along
the edge parallel to the axis of 90◦ rotational symmetry and l the number of atoms along
the other two edges. Then the shape of the l × l × L cuboid is defined by the ratio l/L.
This cluster shape is rod-like for l/L < 1, cubic-shaped for l/L = 1, and platelet-shaped
for l/L > 1.

The cuboid’s edge of length L is the axis of fourfold rotational symmetry, and we
choose the z-axis along this edge. In this coordinate system, the polarizability matrix is
diagonal, with only two independent elements, αxx = αyy and αzz.

A well-known property of parallel dipoles is that it is energetically favorable for them
to lie head-to-toe and unfavorable to lie side-by-side. Therefore, for l/L < 1 (rods), if we
apply an electric field in the z-direction, thus inducing a polarization of the dipoles along
the “head-to-toe direction,” we expect the dipole-dipole interactions between the atoms
to enhance the induced polarization, because there are more dipoles lying head-to-toe
than side-by-side. On the other hand, an electric field in the transverse direction (x-y
plane) would induce more atomic polarizations lying side-by-side than head-to-toe and
therefore, in this case, we expect the interactions to reduce the induced polarization. Also,
we expect this effect to be stronger for smaller l/L ratios since, the smaller this ratio, the
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more extreme the difference in the number of head-to-toe and side-by-side interactions
will be. We expect the opposite to happen for l/L > 1 (platelets), for similar reasons.

In Fig. 2.1(a), we plot the elements of the enhancement factor fxx = αxx/Nα0 and
fzz = αzz/Nα0, as a function of l/L, for L = 10. Our heuristic expectation that the
enhancement in the z-direction is larger than that in the x-direction for l/L < 1 is
confirmed by this plot. For small l/L, the interatomic interactions reduce the polarization
when the electric field is applied in the x-direction, while they enhance it when the electric
field is applied in the z-direction. However, fxx becomes larger than unity for l/L & 0.73,
where atomic interactions enhance the polarization in both directions. We note that
fxx and fzz cross over at l/L = 1, which is the special case of a dielectric cube-shaped
particle. Here, the enhancements in both directions equal each other, as was predicted
in Eq. (2.21). The value of the enhancements for l/L = 1 is fxx = fzz ≈ 1.05687. The
L-dependence of the enhancement factor of cubic clusters will be discussed in chapter
3. For l/L > 1 (platelets), the cuboid polarizability is more enhanced in the x-direction
than in the z-direction, and fzz becomes smaller than unity for l/L & 1.17, which means
that the interatomic interactions start reducing the z-polarizability for sufficiently flat
platelets.

In Fig. 2.1(b) we plot the orientational energy difference ∆ (as defined in Eq. (2.19)),
for a typical electric field strength of E0 = 100 V mm−1, an atomic polarizability α0 =
5.25 Å3, at room temperature (T = 293 K), as a function of the number of cluster atoms,
for several values of l/L < 1 (rods). The lattice is simple cubic with lattice spacing
a = 2α1/3

0 ≈ 3.48 Å.c Clearly, ∆ is linear in the number of particles. We fit the data to
the functional form of Eq. (4.1), with ∆f as fit parameter.

For sufficiently large N , we can confirm from Fig. 2.1(b) that ∆f is constant with
respect to the particle size, and that ∆f hence depends only on the shape parameter l/L
(save for the internal parameter ã). As mentioned before, the individual values for fzz
and fxx are allowed to vary with size, but the numerical data shows that they do so only
slightly in the case of rods. This means we can extrapolate ∆ to larger cluster sizes; this
possibility will be explored in detail in Chapter 4.

In Fig. 2.1(c), we plot ∆f as a function of l/L, for several values of L. Interestingly,
these graphs overlap for sufficiently large N , again confirming the independence of ∆f of
L. It appears that, for cuboids, a “sufficiently large N” is easily achieved: already for
l × l × 5 cuboids there is almost perfect collapse of the data.

Dielectric Strings

A special case of a dielectric rod is a cluster consisting of L Lorentz atoms positioned on
a straight line, separated by an interatomic distance a. This shape can be viewed as a
L× 1× 1 cuboid for which l/L becomes arbitrarily small as L increases. We will briefly
discuss this cluster shape here, because it has been investigated previously [81].

For lattice spacing ã = 2, the enhancement factor matrix elements fxx and fzz are
plotted, as a function of L in Fig. 2.2(a). We note that this is not a new result, Kim
et al. produced a similar plot in Ref. [81]. From fzz > fxx, it is clear that an electric

cUsing Eq. (2.22), we can convert the value ã = 2 into a permittivity: the result is ε ≈ 4.3.
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Figure 2.1: Properties of an l× l×L cuboid-shaped cluster of atoms with atomic polarizability
α0 on a simple cubic lattice with spacing ã = 2. (a): The elements fxx (red) and fzz (blue) of
the enhancement factor matrix as a function of the shape parameter l/L, for L = 10. Note that
fxx = 1 at l/L ≈ 0.73, that fzz = 1 at l/L ≈ 1.17, and that fxx = fzz = 1.05687 at l/L = 1.
(b): The energy difference ∆ (in units of kBT ) of turning the cuboidal rod from its least to its
most favorable orientation in an external electric field, as a function of the number of atoms N
in a rod, with shape parameters l/L = 0.10, 1/6 ≈ 0.17 and 1/3 ≈ 0.33. System parameters are
given in the text, and the solid lines are linear fits to the data. (c): The difference ∆f = fzz−fxx
of the enhancement factor elements as a function of l/L, for several values of L.
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Figure 2.2: (a): The diagonal elements fxx (red squares) and fzz (blue circles) of the enhance-
ment factor matrix of a straight line of L dipoles along the z-axis. The spacing between the
atoms is ã = 2. (Note that for fii, no other parameters are needed to define this system) (b):
The energy difference ∆ associated with turning this string from its least to its most favorable
orientation in an external electric field E0 = 100 V mm−1, for three different values of the di-
mensionless interatomic distance, ã = 1.75 (red), ã = 2 (blue) and ã = 3 (yellow). Choosing
atomic polarizability α1/3

0 = 5.25 Å3 (silica), these values correspond to spacings of, respectively,
a ≈ 3.04 Å, 3.48 Å and 5.21 Å. The temperature is T = 293 K (room temperature).

field applied in the z-direction will induce a higher polarization than one applied in the
x-direction. The enhancement in the z-direction, fzz, is greater than unity, meaning that
the interactions enhance the induced polarization, as expected. On the other hand, fxx
is smaller than unity, meaning that the polarizability is reduced by the interactions. The
limiting value of fzz for L→∞ is fzz (L→∞) ≈ 2.5064 while, in the transverse direction,
fxx (L→∞) ≈ 0.7689 [81].

In Fig. 2.2(b), we plot the orientational energy difference (2.19) for three values of
the dimensionless interatomic distance ã, for a typical electric field strength of E0 =
100 V mm−1, an atomic polarizability of 5.25 Å3, and at room temperature (T = 293 K).
To the numerical results, linear functions of the form

∆ = 1
2∆fα0E

2
0 (L− L0) (2.24)

have been fitted with ∆f and L0 as fit parameters. We note here that Eq. (2.24) is
compatible with Eq. (2.20) when L � L0. In this regime, atomic strings will have a
negligible end effect. We usually find that L0 . O (10) so, often, L� L0. As an example,
the fit parameters for ã = 2 turn out to be

∆f ≈ 1.72, L0 ≈ 1.98. (2.25)

Because this cluster shape is not considered in Chapter 4, we include here a prediction
of the length L∗ of an atomic string for which the orientational energy difference becomes
of the order of kBT , which, as will be shown in Chapter 4, is the energy difference at
which the electric field is first able to significantly orient a cluster. Using Eq. (2.24) and
Eq. (2.25), and equating ∆ = kBT , it is easily seen that

L∗ = 2kBT
∆fα0E2

0
+ L0 ≈ 8.1× 108.
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Figure 2.3: Construction and definition of parameters for (a) bowl and (b) dumbbell. (a):
The bowl diameter σ and the bowl thickness d completely define the bowl’s shape, as follows. If
d < σ/2, the shape of the bowl is defined by set-theoretic subtraction of one sphere from another
(the blue area). [17] If d > σ/2, we let d → σ − d and use the same construction, but take the
intersection of the spheres instead of the difference (the orange area). Note that in the latter
case, the shape is no longer a “bowl” in the traditional sense of the word. (b): The shape of
the dumbbell is constructed by set-theoretic addition of two (overlapping) spheres. The sphere
diameter σ and the distance between the sphere centers L completely define the shape of the
dumbbell. Note that if L > σ, the “dumbbell” in fact consists of two separate spheres.

Since in this case a = 2α1/3
0 ≈ 3.5 Å, we find a minimum string length of about a meter

in order to experience any significant effect from the electric field. Atomic strings a meter
in length are clearly unphysical; we will consider more realistic cluster shapes in Chapter
4.d

2.4 Dielectric Bowls and Dumbbells
In this section we consider two other shapes of dipole clusters, namely bowl-shaped and
dumbbell-shaped clusters. As mentioned in Chapter 1, these shapes have recently been
synthesized [17, 19, 20] and show self-assembly behavior that can be influenced by an
external electric field. It is of interest to investigate how the shape and size of such
particles influence their interaction with the electric field.

The shape parameters of the bowl and dumbbell, d/σ (the ratio of the maximum
thickness of the bowl and its diametere) and L/σ (the ratio of the center-to-center distance
of the composing spheres and their diameter), respectively, as well as their theoretical
construction, are given in Fig. 2.3. For the bowl, d/σ = 0 is the limit of an infinitesimally
thin hemispherical shell, d/σ = 1/2 corresponds to a half sphere, and d/σ = 1 to a
sphere. For the dumbbell, L/σ = 0 refers to a sphere, L/σ = 1 corresponds to two

dAnother difference from the extrapolation done in Chapter 4 is that in the latter, the extrapolation is
done for constant aspect ratio, while the aspect ratio of an atomic string changes if the number of atoms
is increased.

eThe bowl thickness d should not be confused with the Hamiltonian variable di, which is never used
as an explicit input parameter in any of the studied systems.
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(a) (b)

Figure 2.4: Examples of the dipole setup for (a) a bowl (shape parameter d/σ = 0.275) and
(b) a dumbbell (shape parameter L/σ = 0.55), both intersected with a simple cubic lattice.
Each sphere corresponds to an inducible dipole (Lorentz atom).

touching spheres, and for L/σ > 1, the spheres are actually separated by a gap. The
locations of the atoms in the clusters can be inferred by intersecting the cluster shape
with a lattice of our choice. In this chapter, we will focus on a simple cubic lattice.f
Examples of resulting clusters are depicted in Fig. 2.4, in which our choice of coordinate
system is also defined, such that the cluster polarizabilities are diagonal with αxx = αyy.

2.4.1 Bowls
In Fig. 2.5(a), we plot αxx and αzz for a bowl-shaped particle, consisting of atoms on a
simple cubic (sc) lattice with lattice spacing ã = 2 and fixed bowl diameter σ/a = 20,
as a function of the shape parameter d/σ, defined in Fig. 2.3. As expected, both αxx
and αzz rise as d/σ increases from d/σ = 0 (a hemispherical shell) to d/σ = 1 (a sphere),
because the number of atoms increases. Clearly, however, αxx > αzz for all d/σ except
d/σ = 1, meaning that the bowl is more polarizable in the x-direction and, hence, from
Eq. (2.12), has a lower orientational energy when the field is along the x-direction.

Plotting the diagonal elements of the enhancement factor matrix in Fig. 2.5(b), we
note that fxx increases upon decreasing d, but that fzz reaches a minimum at around
d/σ ≈ 0.5, where the interactions’ diminishing effect on the polarizability in the z-
direction is largest. In the same figure, we indicate the results for a hemisphere (cor-
responding to d/σ = 0.5), as presented in Ref. [88]. Considering that the theoretical
approach presented in that work is completely different from ours, the agreement is ex-
cellent.

The orientational energy difference ∆ for bowls composed of atoms on a sc lattice is
plotted in Fig. 2.5(c) as a function of the number of atoms N for several values for d/σ, for
an electric field strength E0 = 100 V mm−1, an atomic polarizability α0 = 5.25 Å3, and

fFor bowls and dumbbells, calculations were also done using a face-centered cubic lattice. The results
are qualitatively the same. Quantitatively, the enhancement factors tend to differ from unity more with
an fcc lattice than with an sc lattice, which can be attributed to the higher density of atoms, resulting
in stronger atom-atom interactions and hence stronger many-body effects.
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Figure 2.5: Quantities associated with a bowl-shaped cluster of atoms on a simple cubic
(sc) lattice with dimensionless lattice constant ã = 2, shape parameter d/σ, and diameter σ
(illustrated in Fig. 2.3a). For σ/a = 20, panel (a) shows the elements αxx (red) and αzz (blue)
of the polarizability tensor, and (b) the elements fxx (red) and fzz (blue) of the enhancement
factor tensor, both as a function of d/σ. The light red and blue crosses in panel (b) indicate
the enhancement factor elements of a hemisphere as calculated using continuum theory in Ref.
[88]. Panel (c) shows the energy difference of turning a bowl from its least to its most favorable
orientation in an external electric field E0 = 100 V mm−1, as a function of the number of
atoms in the bowl, for d/σ = 0.25, 0.4 and 0.75. The atomic polarizability is 5.25 Å3 (yielding
lattice constant a ≈ 3.48 Å) and the temperature is T = 293 K. Panel (d) shows the difference
|∆f | = |fzz − fxx| of the enhancement factor elements in the z- and x-directions, as a function of
d/σ, for σ/a = 7.5, 10.5, 13, 15.5 and 18, showing a strong dependence on the shape parameter
d/σ and a weak dependence on the size parameter σ/a.
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at room temperature (T = 293 K). To the numerical results, linear functions of the form
(4.1) have been fitted to determine ∆f , which we now find to be negative. This implies
that the axis of rotational symmetry is, for bowl-shaped particles, the least favorable
direction for the external field. The numerical data show that the individual values of fxx
and fzz vary (slightly) with cluster size but that the difference ∆f is essentially constant.
The latter is illustrated in Fig. 2.5(d) where we plot |∆f | as a function of the shape
parameter d/σ, for several different bowl diameters σ. These graphs clearly overlap for
higher values of σ or d/σ, which means that for those values, ∆f is indeed independent
of the particle size parameter σ. In Chapter 4, we investigate the implications of this
independence for extrapolation to much larger bowls than considered here.

2.4.2 Dumbbells

In Fig. 2.6(a), we plot αxx and αzz for a dumbbell particle with fixed sphere diameter
σ/a = 20, consisting of atoms on an sc lattice with spacing ã = 2, as a function of the
shape parameter L/σ, defined in Fig. 2.3. With increasing L/σ (and thus increasing
L, since σ is fixed), the number of atoms increases, resulting in a rising trend of αii for
L/σ < 1. For L/σ > 1 (two separate spheres), an increase in L no longer increases
the number of particles and instead only increases the distance between particles in both
spheres, reducing their interactions. The result is that αzz decreases, while αxx, which
benefits from less interactions, keeps increasing. We note here that αzz already starts
decreasing before L/σ = 1, which can be explained by the fact that close to L/σ = 1, the
number of particles does not increase enough with increasing L to make up for the larger
distance between particles in different spheres.

We plot the enhancement factor elements fxx and fzz in Fig. 2.6(b). We notice here
again that fzz already “stalls” at L/σ ≈ 0.7 and decreases before L/σ reaches unity, while
fxx displays the opposite behavior. Also note that, for L > σ, as the distance between
the separate spheres increases, the enhancement factors decay to that of a single sphere.
This was to be expected as the enhancement factor of two spheres at infinite separation
is equal to that of a single sphere. Again, we indicate in the graph the results that are
calculated in Ref. [89] using continuum theory for two touching spheres (L/σ=1) and
note the excellent agreement with our work.

The energy difference between the most and least favorable orientations is given by
Eq. (2.19) and is plotted in Fig. 2.6(c) as a function of N for three different values of L/σ,
for E0 = 100 V mm−1, α0 = 5.25 Å3, ã = 2, and room temperature T = 293 K. Each of
the plotted energy differences appears linear with respect to the number of dipoles N .

In Fig. 2.6(d), we plot ∆f as a function of the dumbbell shape parameter L/σ, for
several size parameters σ. Clearly, since the graphs overlap, ∆f for dumbbells is also
largely independent of the overall size and depends only on the shape. As is the case
for rods and bowls, we extrapolate the energy difference of dumbbells and estimate the
dependence on L/σ of the minimum required size of the dumbbell for alignment in an
electric field in Chapter 4.
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Figure 2.6: Quantities associated with a dumbbell-shaped cluster of atoms on an simple cubic
(sc) lattice with dimensionless lattice constant ã = 2, with shape parameter L/σ, and dumbbell
sphere diameter σ (illustrated in Fig. 2.3(b)). For σ/a = 20, panel (a) shows the elements
αxx (red) and αzz (blue) of the polarizability matrix and (b) the elements fxx (red) and fzz
(blue) of the enhancement factor matrix as a function of L/σ. The light red and blue crosses in
panel (b) indicate the enhancement factor elements of two touching spheres as calculated using
continuum theory in Ref. [89]. Panel (c) shows the energy difference of turning the dumbbell
from its least to its most favorable orientation in an external electric field E0 = 100 V mm−1,
as a function of the number of atoms in the dumbbell, for L/σ = 0.25, 0.85 and 0.95. The
atomic polarizability is 5.25 Å3 (yielding lattice constant a ≈ 3.48 Å) and the temperature is
T = 293 K. Panel (d) shows the difference ∆f = fzz − fxx of the enhancement factor elements
in the z- and x-directions, as a function of L/σ, for σ/a = 6, 8, 10, 12, and 14, again showing a
strong shape- and a weak size-dependence.
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2.5 Conclusions and Outlook
The CDM is a rigorous tool for including many-body interatomic interactions on the
basis of a polarizable atom model not only in the potential energy but also in other
quantities such as the polarizability of a cluster of atoms. The applicability of the method
is limited by computing power and becomes unfeasible for atom numbers larger than
O (104). This corresponds to very small nanoparticles, slightly below the experimentally
realizable regime. However, as has been shown in this chapter, it is in most cases fairly
straightforward to extrapolate some of the key properties to larger cluster sizes.

We have discussed the polarizability and orientational energy of cuboids, bowls, dumb-
bells, and cubes. In general, these clusters are all most polarizable in the direction of their
largest dimension: for cuboids along their longest rib, for bowls in the directions perpen-
dicular to their axis of rotational symmetry, and for dumbbells along their rotational
symmetry axis. These directions are also the preferred orientations of the cluster in an
external electric field. Cubes are equally polarizable in all directions and thus have no
preferred orientation in an external electric field.

We then turned our attention to the magnitude of the energy difference ∆ between
the most- and least-favored orientations of each cluster shape. We found that, for typical
experimental values for electric field strength, temperature and atomic polarizability, these
energy differences are small compared to the thermal energy (for the atom numbers that
are feasible with our computer resources). However, we also found an essentially linear
dependence of ∆ on the number of cluster atoms N , and related the slope of the graph to
the difference ∆f in enhancement factor diagonal elements, a quantity that turns out to
be independent of the cluster size and that depends only on the cluster shape and lattice
spacing. The dependence of ∆f on the cluster shape was then investigated. This was
done for several cluster sizes in order to prove the size-independence of ∆f . Using the
linear dependence of ∆ on N , we will, in Chapter 4, estimate the minimum required size
for alignment in an electric field as a function of the aspect ratio of the cluster, for rods,
platelets, bowls, and dumbbells.



3

Global and Local Enhancement
Factor of Cubes and Spheres

Using the Coupled Dipole Method (CDM), we study in detail the global and local po-
larizability of a cubic and a spherical cluster, and the dependence of these quantities on
material properties and cluster size. We compare the results from the CDM with those
obtained using continuum electrostatics and draw the conclusion that the CDM and con-
tinuum electrostatics are equivalent if the number of dipoles in the CDM is sufficiently
large. Since the CDM is relatively simple to use, this indicates that it may be useful for
solving complex electrostatic problems.



28 Chapter 3

3.1 Introduction

In Chapter 2, we investigated the polarizability and enhancement factor of anisotropic
particles. In this chapter we turn our attention to two particle shapes that exhibit an
isotropic polarizability, namely cubes and spheres. For both of these shapes, we first
investigate the enhancement factor as a function of the number of atoms and then take a
look into the interior of the particles, plotting the local enhancement factor as a function
of position. We also compare our results with those from continuum electrostatics of
dielectric bodies. The polarizability of a sphere is a well-known problem in electrostatics
and has a straightforward solution [51]. The cube is a more challenging problem, but its
polarizability has also been numerically calculated using continuum theory [87]. Small
cubes have been considered in the CDM before [81], and spheres have been compared to
continuum theory in the context of scattering calculations [71, 72, 74], but here we consider
electrostatic quantities of larger clusters. We find an apparent asymptotic agreement
between the two theories, especially for cubes, and conclude that for large atom numbers
the CDM is equivalent to continuum theory. Since the CDM is readily applicable to any
geometrical setup (and can possibly even be applied to systems with nonuniform dielectric
constant), this could make it possible to solve complicated electrostatic problems using
the CDM. We note here that for the cube and sphere specifically, the CDM might not be
the best choice for calculating the polarizability, since analytical expressions for both have
been derived in the aforementioned references [51, 87], and since the sphere is especially
hard to model using discrete dipoles.

The (global) enhancement factor has been defined in Chapter 2, but not the local
enhancement factor. Choosing the z-direction to lie along the external electric field E0
(see Fig. 3.3(a)), we define the local enhancement factor f ′ as the z-component of the
polarization of the local atom, divided by α0E0. Note that, using this definition, the
analogy with the global enhancement factor f is not complete, because even when the
electric field is applied in the z-direction, the polarization of the individual atoms can
have nonzero components in the x- and y-directions. Consequently, if we were to express
the local polarization as

p = f ′ · α0E0,

where f ′ would be a 3× 3 matrix, f ′ would not be diagonal.
In Ref. [81], the enhancement factor of 1-dimensional lines and 2-dimensional squares

of atoms was determined and investigated in detail. For these low-dimensional systems,
the r−3 dipole-dipole interaction is short-ranged, such that a more or less constant local
enhancement factor is found in the "middle" of these clusters, independent of the boundary
layers. In this chapter, we aim to perform a similar study for a cubic-shaped and a
spherical particle with atoms on a cubic lattice. As we will show, we were not able to
determine the limiting value of the global enhancement factor of a cube for the cube
sizes studied (up to 120 × 120 × 120), but we do observe that it comes very close to the
electrostatic value. For spheres, we find similar results, although the numerical value of
the global enhancement factor for the studied sphere sizes is somewhat further removed
from the value predicted by continuum electrostatics (unity; see below) than was the case
for cubes.
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3.2 Theoretical Predictions
In Ref. [81], the (scalar) enhancement factor for a cubic L× L× L cluster of atoms on a
cubic lattice is plotted as a function of the rib length L. The enhancement factor is seen
to increase with increasing cube size, seemingly approaching some limiting value greater
than unity. In contrast, when it is assumed on the basis of translational invariance that all
dipoles have the same polarization, it is possible to prove that [51, 81] f (∞×∞×∞) =
1. However, by assuming the same polarization for all dipoles, we neglect the effect of the
surfaces of the cube, making this a questionable assumption given the long range of the
dipole-dipole potential (∝ r−3).

In Ref. [81] the enhancement factor is plotted for cube sizes up to 10× 10× 10. This
is still far from the regime where the surface can be expected to be negligible; the ratio
of dipoles at the surface is, for this cube size, still (103 − 83) /103 ≈ 0.49. In the present
work, we will therefore consider larger cubic clusters, of sizes up to 120× 120× 120. For
these clusters, the fraction of surface dipoles is approximately 0.05.

In Ref. [87], the normalized polarizability of a cubic particle of dielectric constant
ε is calculated using continuum electrostatics. Moreover, the numerical results are then
approximated using a Padé approximation, leading to the equation

αn ≈ α(∞)
n (ε− 1) ε3 + 4.83981ε2 + 5.54742ε− α(0)

n

ε4 + 8.0341ε3 + 19.3534ε2 + 15.4349ε+ α
(∞)
n

, (3.1)

where α(∞)
n = 3.6442, α(0)

n = −1.6383. In this chapter, we determine ε by Eq. (2.22)
and convert αn to an enhancement factor using Eq. (2.23). It is reasonable to expect
the CDM to agree with this continuum result in the limit where the number of coupled
dipoles is large.

The polarization of a sphere in an electric field is a well-known problem in electrostat-
ics. A sphere of radius R of a material with relative dielectric constant ε in vacuum in an
electric field E0 has a polarization [51]

psphere =
(
ε− 1
ε+ 2

)
R3E0.

On the other hand, from the point of view of the CDM, the polarization is

psphere = Nα0fsphereE0,

where N is the number of Lorentz atoms and fsphere is the sphere’s enhancement factor,
such that we have

Nα0fsphere =
(
ε− 1
ε+ 2

)
R3.

Assuming that for large enough spheres α0 follows the Clausius-Mossotti relation [Eq.
(1.2)], we can express α0 in terms of ε. After dividing out equal terms, this results in

fsphere = 4π
3
R3

N
n,
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where n is the number density of atoms and is, in the limit of large spheres, equal to
N
(

4π
3 R

3
)−1

, such that, for large spheres, we can expect

fsphere = 1.

Furthermore, since electrostatics predicts a uniform polarization inside the sphere, we
expect the local enhancement factor f ′ to be homogeneous as well.

3.3 Numerical Methods

Special optimization techniques were used in the case of large dielectric cubes and spheres.
Because the number of atoms in the cluster increases rapidly with the rib length of the
cube or the diameter of the sphere, we encounter practical problems such as memory
limitations. However, these problems can be alleviated using two techniques (and their
combination), which we will now briefly discuss.

3.3.1 Exploiting Symmetry

In this technique, we use the symmetries of the cube and sphere to reduce the order of the
linear equation to be solved. It is possible to express the polarizations of all the dipoles
in terms of only those in one octant of the particle. If we insert these relations into the
set of equations (2.11), we reduce the number of dipoles by a factor 8. Note that, in this
way, we also increase the computational cost of calculating a matrix element by (roughly)
a factor 8, but since the cost of solving a set of linear equations scales much faster than
linearly (the exact scaling is dependent on the algorithm used), we significantly increase
the computation speed. We elaborate on the exploitation of symmetries more explicitly
in Appendix B.

3.3.2 The Gauss-Seidel Method

The second technique uses the Gauss-Seidel method [92] for solving a set of linear equa-
tions, trading computation speed for less memory use. The Gauss-Seidel method is an
iterative method for solving P from an equation of the form (2.11). The method starts
with a guess (discussed below) for P , which we shall call P(0). The next approximation
for P , P(1), is calculated using the following formula:

p
(k+1)
i = 1

zii

ei −∑
j>i

zijp
(k)
j −

∑
i>j

zijp
(k+1)
j

 , (3.2)

where the p(k)
i are the elements of P(k), the ei are the elements of E , and the zij are the

elements of the matrix (I − α0T ). Note that in our case zii = 1, and that we can write
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Eq. (3.2) in terms of more familiar quantities,a

p(k+1)
i = E0 −

∑
j>i

Zij · p(k)
j −

∑
i>j

Zij · p(k+1)
j ,

where the Zij are 3 × 3 blocks in the matrix (I − α0T ). With this technique, it is not
necessary to store a “new” and an “old” copy of P , because only elements that have been
calculated previously are needed; i.e., we can simply keep overwriting the elements of P .

As an initial guess, we construct P(0) as follows: we sum the Zij horizontally and then
solve the equation  N∑

j=1
Zij

 · p(0)
i = E0

for each p(0)
i . Using this guess, the enhancement factor could be calculated to a precision

of 10 digits within 20 iterations.
Since Zij can be (re-)calculated on the fly as needed and the elements of E can be in-

ferred using only a 3-dimensional vector, we only need to store approximately 3N numbers,
namely the elements of P . This effectively eliminates the memory problem. However, as
a consequence, the resulting calculation is much slower than the ones that use the efficient
routines provided in the LAPACK library [91], which were used in Chapter 2.

By combining the two techniques (symmetry exploitation and the Gauss-Seidel method),
we were able to calculate the enhancement factor for cubes as large as 120×120×120 and
spheres with up to 120 atoms along their diameter (making for a total of 881960 atoms).
The data points for cubes, presented in Subsection 3.4, have been calculated using various
methods corresponding to combinations of applying the two aforementioned techniques.
In Table 3.1, we give an overview of these methods and define the acronyms that are
used in the caption of Fig. 3.1. For spheres, we only used the SGS method, i.e., the
Gauss-Seidel solution where symmetries were exploited.

The different methods have all been tested for consistency and the agreement between
them is excellent. Computationally, the most practical techniques were the SDL-method
for small cube rib lengths, because of its speed and simple implementation, and the SGS-
method for large rib lengths, because of its negligible memory usage.

3.4 Numerical Results for Cubes

3.4.1 Global Enhancement Factor
In Fig. 3.1(a), the (scalar) enhancement factor f of L × L × L cubes, as calculated
numerically, is plotted as a function of L for several (dimensionless) lattice spacings ã.
For all of the lattice spacings, the qualitative behavior of the enhancement factor is the
same: for low L, it increases rapidly as a function of L, but starts to level off at L ≈ 10,
seemingly reaching a limiting value f (L) > 1 around L ≈ 20. This contradicts the

aNote that, in this expression, i and j run from 1 to N whereas, in Eq. (3.2), they run from 1 to 3N .
Therefore, by using j > i and i > j as summation range, we exclude some of the elements of Z that were
present in Eq. (3.2). Fortunately, these elements are zero, because Zii = I.
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Acronym Method Symmetries Precision Lmax

NDL LAPACK No Double 20
SDL LAPACK Yes Double 40
SSL LAPACK Yes Single 48
NGS Gauss-Seidel No Double 60
SGS Gauss-Seidel Yes Double 120

Table 3.1: An overview of techniques used for calculating the polarizability of a cubic cluster
of atoms on a simple cubic lattice, and their associated acronyms, as used in the caption of Fig.
3.1. In the LAPACK Methods, we load the elements of the matrix in memory to the numerical
precision specified in the “Precision” column and use the routines in the LAPACK package to
solve the relevant set of linear equations. The Gauss-Seidel Methods involve (re-)calculating
the elements of the matrix on the fly and, starting from an initial guess, using 20 iterations of
the Gauss-Seidel method to solve the set of linear equations. The “Symmetries” column refers
to whether or not the symmetries of the dielectric cube were exploited. The “Lmax” column
lists estimates for largest feasible rib lengths that each method can handle, given our available
resources.
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Figure 3.1: The enhancement factor f of a cubic L × L × L cluster with atoms on a cubic
lattice, as a function of the number of atoms along the rib L, in panel (a) for the dimensionless
lattice spacings ã = 1.75 (blue), ã = 1.8 (red), ã = 2.0 (yellow), ã = 2.05 (green), ã = 2.64
(light blue) and ã = 3.0 (purple). Panel (b) displays a zoom-in (along the vertical axis) for
ã = 2.0 with the data points generated by different numerical methods (see text and Table 3.1):
SGS (dark yellow points and curve), NGS (red points), SSL (green points), SDL (bright yellow
points), and NDL (light blue points). Note that SSL slightly underestimates f for L ≈ 40.
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prediction f (∞) = 1 made by ignoring the edges of the cube. We investigate the behavior
with a particular lattice spacing, ã = 2, in full detail. Fig. 3.1(b) shows a (vertical) zoom-
in of Fig. 3.1(a), including data points as generated by various numerical methods. It
can be seen from Fig. 3.1(b) that the enhancement factor (for ã = 2) reaches a maximum
value of f ≈ 1.05814 at L = 20, after which it starts decreasing, where the rate of decrease
reaches a maximum at L = 34. This behavior is the same for all other values of ã, albeit
with different values of f .

The decrease of f observed beyond L = 34 is so slow that it could, conceivably, be
caused by systematic rounding errors in the calculation of the elements of the matrix.
This is still an open question that may be approached in a number of different ways, for
example by increasing the cube size and observing whether the enhancement factor keeps
decreasing; another approach might be to increase the precision to which the elements of
the matrix are calculated and observe whether this affects the value of the enhancement
factor. A relevant observation here is that the single precision method SSL gives slightly
lower results (for large L) than the double precision methods. However, the difference
does not appear to be large enough to expect the decline to vanish for asymptotically
large precisions.

Technically, we have not been able to determine a large-L limiting value for f . The
decay observed beyond L = 34 slows down as L increases but a reliable extrapolation
to asymptotically large cubes could not be determined. However, the residual decay for
large L is slow and variation only occurs in the fifth decimal. We note, furthermore, that
the continuum limit for ã = 2 is f ≈ 1.0567; a value that, judging from the plot, could
very well be f ’s asymptotic limit for large L. It therefore seems physically reasonable to
expect the CDM to asymptotically reach the continuum limit for large L and to conclude
that a 120 × 120 × 120 cube, or even a 10 × 10 × 10 one, is a good approximation for a
cube composed of a continuous material.

The latter conclusion becomes even more obvious when, as done in Figure 3.2, we plot
the enhancement factor of a 120× 120× 120 and a 10× 10× 10 cube as a function of the
dimensionless lattice constant ã, together with the results from continuum theory [87],
which we quote in Eq. 3.1. From the figure, we note an excellent agreement between
these three results, illustrating that f changes very little for L > 10, and that the CDM
result for both small and large cubes agrees very well with the continuum result, despite
the fact that the latter is calculated using a completely different method than the CDM.

3.4.2 Local Enhancement Factor
In Figs. 3.3(b) and 3.3(c), we plot the local enhancement factor f ′ along two planes cut
through the middle of a 120×120×120 cube, as illustrated in Fig. 3.3(a). From the shape
of the graph we clearly see that f ′ is not a spatial constant and varies most pronouncedly
on the faces and in the corners of the cube. In Fig. 3.3(b) we observe that the sides of
the cube normal to the electric field (z = ±60a) experience a clear polarization reduction
(i.e., f ′ < 1), reaching a local enhancement factor of f ′ ≈ 0.71335 in the middle of the
face (at x = 0, y = 0 and z = ±60a). The interior of the cube turns out to experience
a slight enhancement of f ′ ≈ 1.04530 in the center x = y = z = 0 (not visible from the
graphs). A more dramatic enhancement is experienced by the faces of the cube that lie
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Figure 3.2: The enhancement factor f of a 120×120×120 (blue dots) and a 10×10×10 (solid
red line) cube of atoms, as a function of the (dimensionless) lattice constant ã = a/α

1/3
0 , plotted

together with the result from Ref. [87] (green dashed line), where the enhancement factor is
numerically calculated using continuum theory (See Eq. (3.1)). We note the excellent agreement
between the latter and our results for both small and large cubes, despite the completely different
approaches.

in-plane with the electric field (e.g., x = ±60a); for example at z = 0, the enhancement
on the faces is f ′ ≈ 1.23876, while in the corner (z = ±60a), f ′ ≈ 1.29005, as mentioned
earlier.

In Fig. 3.4, we plot the local enhancement factor along one line parallel and one
perpendicular to the electric field, in both cases through the middle of the cube (these
lines are also illustrated in Fig. 3.3), for several values of L, as a function of scaled
coordinates. The behavior of the local enhancement factor, as seen in Figs. 3.3 and 3.4,
shares many features also seen in the case of two-dimensional squares, as discussed in
Ref. [81]: we observe high local enhancement on all edges of planes perpendicular to the
electric field, high local enhancement on the edges parallel to the electric field of planes in-
plane with the electric field, and low local enhancement on the edges perpendicular to the
electric field of planes in-plane with the electric field. Furthermore, the local enhancement
varies by far the most rapidly at locations close to the edge. Like in Ref. [81], for all values
of L the outer layer of atoms in faces parallel to the electric field is especially polarized.
This is illustrated in the inset of Fig. 3.4(a), but also visible in Fig. 3.3. In this layer of
atoms, the local enhancement factor appears to depend more strongly on L and a limiting
value for the on-edge local enhancement was not reached for the cube sizes considered in
the present work (up to L = 120). Whether such a limiting value exists for the edge is
therefore unclear at this point.

An important difference with two-dimensional squares is that the local enhancement
factor in a cube varies significantly in the interior of the cube (albeit less than on the
edge). Focusing now on Fig. 3.4, we observe that, upon varying L, the local enhancement
factor in the interior of the cube, as a function of scaled coordinates, goes to a limiting
behavior for large L. This means that the (absolute) “penetration depth” of the electric
field into the cluster is not independent of the cluster size but is instead approximately
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Figure 3.3: (a): The orientation of the planes, cube, electric field, and coordinate system with
respect to each other: the planes are cut through the middle of the cube, in the x-z plane and the
x-y plane, while the electric field is applied in the z-direction. The cube is oriented such that the
ribs lie along the Cartesian directions. The (green) line along the x-axis denotes the intersection
of the two planes and is also represented in panels (b) and (c). (b, c): The local enhancement
factor f ′ (defined in the text) of two sheets of dipoles lying on perpendicular planes, cut through
the middle of a 120× 120× 120 cube of dipoles on a cubic lattice, with lattice constant ã = 2.
Panel (b) corresponds to the blue and panel (c) to the red plane as depicted in panel (a). The
yellow and green lines appearing in this figure also correspond to the directions along which we
plot the local enhancement factor in Fig. 3.4.
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Figure 3.4: The local enhancement factor f ′ along a straight line in (a) the x-direction (⊥ E0,
illustrated in green in Fig. 3.3) and (b) the z-direction (‖ E0, illustrated in yellow in Fig. 3.3),
through the middle of a cubic cluster of atoms on a simple cubic lattice with lattice spacing
ã = 2, for cube rib lengths L = 10, 20, 50, and 120. In both panels, the rib length was scaled
out but, in the inset of panel (a), we also plot f ′ as a function of the absolute x-coordinate.

proportional to L, unlike the penetration depth of the lower-dimensional objects studied
in Ref. [81].

3.4.3 Polarization Charge

Since our algorithm outputs the enhancement pi

α0E0
of all atoms, it is possible to calculate

the dimensionless polarization charge ρ̃p = a∇·pi

α0E0
inside the dielectric cube. In continuum

theory, the polarization charge in the interior is identically zero, because ∇ ·D = 0 (the
divergence of the displacement field D is zero since there is no free charge), therefore
∇ · E = 0 (since the local electric field E is given by D = εE, where we assume a
homogeneous dielectric constant ε), hence ρp ∝ ∇ ·P = 0 (since the polarization density
P = χeE, where χe is the electric susceptibility). In contrast, such an inherent requirement
is not present in the CDM and it is therefore interesting to investigate to what extent a
polarization charge is present in our work.

In Fig. 3.5, ρ̃p is plotted, for a 120×120×120 cube, along the plane denoted by (b) in
Fig. 3.3. We see that ρ̃p is nonzero in most regions. However, it should be noted that the
observed charge density is very small, judging from the fact that the typical magnitude
of pi

α0E0
is of the order of 100, while the divergence measured in units of lattice spacing is

of the order of 10−2.
It is interesting to investigate how the polarization charge varies with the cube rib

length L. We therefore plot ρ̃p along the line x = 0, for several different values of L,
as a function of normalized coordinates 2z/aL, in Fig. 3.6(a). Clearly, the slopes of the
graphs display a downward trend, indicative of a smaller polarization charge for larger L.
In Fig. 3.6(b), the slope s of a linear fitb to the graphs in Fig. 3.6(a) is plotted. It turns

bTo be precise, for the fit, we do not take into account the two outermost points of the graph (2z/L =
±1).
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Figure 3.5: The polarization charge density a∇ · pi/α0E0 of a 120× 120× 120 cube along the
plane denoted by (b) in Fig. 3.3(a).
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Figure 3.6: (a): The polarization charge density a∇ · pi/α0E0 along the line x, y = 0 of an
L × L × L cube, for L = 10 (blue), 40 (red), 80 (yellow), and 120 (green). (b): The slope s of
linear fits a∇ ·pi/α0E0 = 2zs/aL to the functions in (a), as a function of 1/L (dots). The solid
line is a fit to the data, s (L) =

∑
n>0 cnL

−n. Clearly, s (L) goes as L−1 for large L (i.e., small
1/L).
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Figure 3.7: The enhancement factor f of a spherical cluster of atoms on a simple cubic lattice,
as a function of the number of atoms along the diameter σ/a, for the dimensionless lattice
spacing ã = 2.

out that, to the data of s, a function of the form

s (L) =
∑
n>0

cnL
−n

can be fitted with great accuracy, which is also shown in Fig. 3.6(b). The coefficients cn
increase as n increases, but it turns out that the relative size of the terms at L = 120
becomes smaller for increasing n. Hence, for large L, we have s (L) ∝ L−1 and we can
be fairly certain that s (L→∞) = 0. This is an indication that the polarization charge
will vanish for large enough L and that, hence, the continuum limit can be reached
asymptotically by increasing the cube size.

3.5 Numerical Results for Spheres

3.5.1 Global Enhancement Factor
In Fig. 3.7, we plot the enhancement factor of a sphere with dimensionless lattice spacing
ã = 2 as a function of its dimensionless diameter σ/a. We note, first of all, that the
typical values achieved by the enhancement factor are lower than in the case of cubes.
The maximum of the graph, at σ/a = 6, is f ≈ 1.030, which is about half as much
above unity as the maximum of the enhancement factor for a cube with the same lattice
spacing. Moreover, while the enhancement factor for cubes stays at values only slightly
below this maximum for large L, the enhancement factor of a sphere decays very quickly
with increasing σ/a, such that at σ/a = 120, the enhancement factor is only f ≈ 1.0017.
We note that f continues to decline even at σ/a = 120 such that the limiting value was
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not reached. Therefore, we cannot be entirely sure what this limiting value will be, but
intuitively it does appear that f is headed asymptotically towards unity. We also note
that the graph displays some bumps at low σ/a; we ascribe this to the fact that we can
not create an exactly spherical shape using a cubic lattice and, especially for low σ/a, the
achieved shape can vary somewhat.

3.5.2 Local Enhancement Factor

In Figs. 3.8(b) and 3.8(c), we plot the local enhancement factor f ′ along two planes cut
through the middle of a σ/a = 120 sphere, as illustrated in Fig. 3.8(a). We see that, con-
trary to the observation for cubes, the local enhancement factor is a constant throughout
most of the sphere, only varying, rather erratically, near its edge. This constant value
is, in the center of the sphere, f ′ ≈ 1.00336 and, in most of the plotted region, only the
last two digits of this number vary. Such a constant f ′ seems consistent with continuum
theory, which predicts a uniform polarization throughout the interior of the sphere.

Of course, as with the cubes, we can also plot f ′ along a straight line through the mid-
dle of the sphere, done in Fig. 3.9 for two straight lines parallel with, and perpendicular
to, the electric field (these lines are also illustrated in Fig. 3.8), for various sphere sizes,
as a function of scaled coordinates. We note, as already seen in Fig. 3.8, that the local
enhancement factor is much more constant throughout the sphere than it is throughout
the cube, and that the flat region becomes wider for larger spheres. The graphs also seem
to fall less onto a similar behavior than observed for the cube, and the jump of local en-
hancement near the edge is somewhat more extreme. As was the case for cubes, a certain
“penetration depth” of the electric field is exhibited, which is still contracting (in relative
coordinates) as a function of the sphere size when comparing the cases of σ/a = 80 and
σ/a = 120, but not as fast as the sphere is expanding: from plots as a function of absolute
position (not shown), we observe that the absolute penetration depth still becomes some-
what longer from σ/a = 80 to σ/a = 120. For the sphere sizes shown, we can therefore
not reliably conclude whether this absolute penetration depth will become independent
of the sphere size for large σ/a (such that it becomes negligible for large sphere sizes), or
whether it will start scaling with the sphere size (such that the relative penetration depth
will become constant).

A related complication is that there is a certain arbitrariness as to how the sphere is
oriented in the electric field due to the underlying simple cubic lattice. In our case, we
have made the choice to orient one lattice vector with the electric field and to plot the
local enhancement along the lattice vectors, but we could have made other choices. In
the chosen orientation, the sphere surface is very likely to gain flat facets perpendicular
and in-plane with the electric field, which likely influences the local enhancement factor
near the surface. From the erratic behavior of the local enhancement factor along the
cube edge seen in Fig. 3.8, it is not difficult to imagine that plots along lines through the
middle might look very different if the cubic lattice were oriented differently.
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Figure 3.8: (a): The orientation of the planes, sphere, electric field, and coordinate system with
respect to each other: the planes are cut through the middle of the sphere, in the x-z plane and
the x-y plane, while the electric field is applied in the z-direction. The sphere is oriented such
that the lattice vectors of its composing simple cubic lattice lie along the Cartesian directions.
The (green) line along the x-axis denotes the intersection of the two planes and is also represented
in panels (b) and (c). (b, c): The local enhancement factor f ′ (defined in the text) of two sheets
of dipoles lying on perpendicular planes, cut through the middle of a σ/a = 120 sphere of dipoles
on a cubic lattice, with lattice constant ã = 2. Panel (b) corresponds to the blue and panel (c)
to the red plane as depicted in panel (a). The yellow and green lines appearing in this figure
also correspond to the directions along which we plot the local enhancement factor in Fig. 3.9.
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Figure 3.9: The local enhancement factor f ′ along a straight line in (a) the x-direction (⊥ E0,
illustrated in green in Fig. 3.8) and (b) the z-direction (‖ E0, illustrated in yellow in Fig. 3.8),
through the middle of a spherical cluster of atoms on a simple cubic lattice with lattice spacing
ã = 2, for sphere diameters σ/a = 20, 40, 80, and 120, as a function of scaled coordinates x/σ
(a) or z/σ (b).

3.6 Conclusions and Outlook

The enhancement factor of a cubic cluster of atoms on a simple cubic lattice at first glance
seems to go to a well-defined asymptotic value. However, closer inspection reveals that, in
fact, the enhancement factor starts decreasing again as the rib length increases, such that
we were not able to determine the limiting value with certainty although, judging intu-
itively from the graph, we do not expect variations of much more than 0.1% for L-values
higher than the ones considered here. The enhancement factor as a function of lattice
spacing agrees excellently with results from continuum theory, strongly indicating that
the CDM and continuum theory are equivalent. We note that for cubes, this agreement
with continuum electrostatics is already excellent for a cube size of only 10 × 10 × 10.
For large cube sizes, the local enhancement factor in the interior of the cube scales in
such a way that, as a function of relative coordinates, its behavior is independent of the
cube size. The polarization charge seems relatively low, however, such that this variation
can mostly be ascribed to the electric field varying near the edges of the cube, similar to
continuum behavior.

For spheres, the results also indicate an equivalence between the CDM and continuum
theory, but in this case the indication is somewhat less strong. The global enhancement
factor was seen to decrease with increasing sphere size, reaching f = 1.0017 for the largest
sphere studied, which is in good agreement with the result one would asymptotically
expect, namely f = 1. From the graph, it seems entirely possible that the enhancement
factor will continue to approach this value for large spheres. The local enhancement
factor was constant throughout most of the interior of the sphere, in accordance with
continuum theory. A certain nonzero penetration depth of the electric field into the sphere
was observed, and it was not possible to determine whether this depth would become
independent of the sphere size for large diameters, as we would expect from continuum
theory. We note that the sphere is a somewhat problematic shape to model using a simple
cubic lattice, which complicates the analysis and might influence the results somewhat.
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For future study, it might therefore be worthwhile to investigate in what way the lattice
type and orientation influence the resulting local and global enhancement factor. Such a
study might also be of some experimental significance since, for experimentally achievable
nanoparticles, the diameter of spherical particles could easily be as small as σ/a ≈ 20,
which is in the regime where f is still about 1% above the continuum expectation, while
surface effects seen in the local enhancement factor are even stronger.
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The Optimal Shape for Alignment
in an External Electric Field:

Bowls, Dumbbells, and Cuboids

Self-assembly and alignment of anisotropic colloidal particles are important processes that
can be influenced by external electric fields. However, dielectric nanoparticles are generally
hard to align this way because of their small size and low polarizability. In this work, we
employ the Coupled Dipole Method to show that the minimum size parameter for which a
particle may be aligned using an external electric field depends on the dimension ratio that
defines the exact shape of the particle. We show, for rods, platelets, bowls, and dumbbells,
that the optimal dimension ratio (the dimension ratio for which the size parameter that
first allows alignment is minimal) depends on a nontrivial competition between particle
bulkiness and anisotropy because more bulkiness implies more polarizable substance and
thus higher polarizability, while more anisotropy implies a larger (relative) difference in
polarizability.
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4.1 Introduction

Self-assembly of nanoparticles is an interesting thermodynamic process in which particles
spontaneously form highly ordered structures, with important technical applications in
new materials and devices. In recent years, the technology of synthesizing anisotropic
nanoparticles has made tremendous progress [13, 15], and has resulted in the synthesis and
analysis of colloidal rods [14], bowls [17–20], and dumbbells [16]. Anisotropic particles are
known to self-assemble into orientationally (and possibly positionally) ordered structures
under the influence of their interparticle interactions [23–27, 29–31]. However, this process
is often difficult to achieve in practice and hampered by slow dynamics. Several techniques
can be employed to assist the self-assembly process, such as aligning the particles by
introducing a substrate to the system [32, 33], employing a fluid flow [34], or applying
external magnetic [35] or electric [36–39] fields. The fact that an external electric field can
align an anisotropic particle is due to the particle’s anisotropic polarizability, which causes
the particle’s potential energy to vary with its orientation in the field. Since the thermal
Brownian motion competes with the tendency to align, the potential energy difference has
to be high enough to overcome these fluctuations and substantially align the particle. For
nanoparticles, this is difficult to achieve: because of their small size, they are generally
only slightly polarizable and thus the difference in potential energy will, for accessible
electric fields, be low. In this chapter, we investigate the conditions for alignment and we
show that the minimum size for aligning a particle depends on the shape of the particle
because of a nontrivial competition between particle bulkiness and anisotropy.

4.2 Theory

As in the previous chapters, we employ the Coupled Dipole Method to calculate the
polarizability αc of a cluster of N Lorentz atoms, each with polarizability α0, placed on
a lattice with dimensionless lattice constant ã = a/α

1/3
0 , where a is the lattice constant

in ordinary units. We only consider ã & 1.7 to prevent the polarization catastrophe
[64, 93]. We investigate the same shapes as in Chapter 2, namely rods, platelets, bowls,
and dumbbells, whose symmetries imply that αc only has two independent entries on the
diagonal, αxx and αzz, as discussed in Chapter 2. If an external electric field E0 is applied,
the difference between these entries leads to an orientational energy difference ∆, causing
certain orientations to be preferred over others.

We note that within the theoretical framework of the CDM, the dipole couplings are
the sole cause of the anisotropy of the cluster polarizability (where αzz 6= αxx). This can
be seen by noting that one atom is considered to have an isotropic polarizability, α0I, and,
thus, a cluster of N of these atoms would, if atom-atom interactions were ignored, have
an isotropic polarizability Nα0I. Hence, the magnitude of the polarization of the cluster
would be independent of the orientation of the external electric field E0. In contrast, in
the CDM, where many-body effects are included in the calculation, the (diagonalized)
cluster polarizability in general does not have equal entries on the diagonal and thus has
an orientation-dependent polarizability.
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As discussed in Chapter 2, the orientational energy difference induced by an external
electric field is given by

∆ = 1
2 (αzz − αxx) E2

0 ≡
1
2∆fNα0E

2
0 , (4.1)

with
∆f ≡

(αzz − αxx)
Nα0

.

The quantity ∆f is the difference fzz−fxx of the diagonal elements of the (3×3) enhance-
ment factor fc ≡ αc/Nα0, which is a measure for how much the interactions between the
point dipoles enhance or reduce the polarizability. From Chapter 2, we know that ∆f is
essentially independent of N and, thus, depends only on the particle’s shape and on ã
but not on its overall size. This independence is approximate since, for small values of
N , effects of the discretization employed by the CDM become appreciable. However, for
the values of N that we employ, approximations for fc and ∆f are very accurate, which
is illustrated by the excellent agreement between values calculated using the CDM (see
Chapter 2) and those calculated using continuum theory [86–90]. In Chapter 2, numerical
values for ∆ were presented for numbers of atoms N low enough that ∆ could still be
explicitly computed. In this chapter, we will use the independence of ∆f of the cluster
size to extrapolate to much larger N whilst keeping the shape of the cluster constant.

The angular distribution function ψ (θ) of a particle in solution, where θ is the angle
between an applied electric field E0 and the particle’s rotational symmetry axis, subject
to Brownian motion due to the molecular medium at temperature T , is proportional to
the Boltzmann factor,

ψ (θ) = exp (β∆ cos2 θ)
4π
∫ π/2

0 dθ sin θ exp (β∆ cos2 θ)
,

where β = 1/kBT is the inverse of the thermal energy. We can quantify the degree of
orientational order of this particle by introducing the nematic order parameter

S (β∆) = 〈P2 (cos θ)〉 = 4π
π/2∫
0

dθ sin θψ (θ)P2 (cos θ) ,

where P2 is the second Legendre polynomial and 〈.〉 denotes the ensemble average. The
distribution ψ (θ) for several values of ∆, and the order parameter S (β∆), are plotted in
Fig. 4.1.

From Fig. 4.1, it is clear that an externally applied electric field will only align a
particle substantially if ∆ & kBT . The number of atoms N∗ in the cluster for which
∆ ≈ kBT is, via Eq. (4.1), given by

N∗ = 2kBT
∆fα0E2

0
. (4.2)

For given ã, we can calculate N∗ numerically by using the value of ∆f as calculated within
the CDM for (relatively) small clusters (with N ≈ 104). This is accurate since, as noted
before, ∆f is essentially independent of N .
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Figure 4.1: The angular distribution function ψ (θ) (a) and the nematic order parameter S (b)
of an anisotropic particle with orientational energy VE (θ) = −∆ cos2 θ in an external electric
field E0. Here, θ is the angle between the particle’s rotational symmetry axis and E0 and ∆ is
the energy difference of turning the particle from its least to its most favorable orientation.

4.3 Rods and Platelets
We model rods and platelets as l × l × L cuboids of Lorentz atoms on a simple cubic
lattice. The shape of the cuboid is determined by its shape parameter r ≡ l/L. For each
r, we can calculate N∗ [by making use of Eq. (4.2)] and, hence, the size parameter for
which the cuboid satisfies ∆ = kBT . This “size parameter” is, throughout this chapter,
defined as the length of the particle when measured along the electric field if the particle
is perfectly aligneda. For rods, this is given by aL∗ and for platelets by al∗, where L∗ and
l∗ can be calculated from r and N∗ by

L∗ =
(
N∗

r2

)1/3
, l∗ = (N∗r)1/3 , (4.3)

and a follows from a = ãα
1/3
0 .

From our numerical data we find that ∆f is largest for very anisotropic particles
(see Chapter 2). This implies, via Eq. (4.2), that N∗ is smallest for very anisotropic
particles. However, when converting this N∗ to a length such as L∗ or l∗, a competing
mechanism arises from the fact that more anisotropy means less bulkiness. For rods,

aOther choices for the definition of size parameter are possible, with the condition that it, together
with the shape parameter, fixes the dimensions of the particle. For example, one possibility would be to
define the size parameter as the diameter of the particle’s circumscribed sphere. Qualitatively, this new
definition does not cause any change to our results; quantitatively, we observe that the minima in Fig.
4.2 for rods shift to l/L ≈ 0.47 and those for platelets to L/l ≈ 0.32, while there is no change for bowls
and dumbbells (since the size parameter remains σ and σ + L, respectively).
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Figure 4.2: The length aL∗ (a) and the width al∗ (b) for which l × l × L cuboidal rods
and platelets, respectively, first become alignable by an electric field E0 = 100 V mm−1, as
a function of their shape (l/L and L/l, respectively), for several different lattice constants
ã = a/α

1/3
0 = 1.75, 2, 2.5 and 3. The temperature is T = 293 K, and the atomic polarizability

is α0 = 5.25 Å3. The dots denote the minima in the graphs.

we note that lowering r has two effects: on the one hand, it lowers N∗ because more
anisotropy enhances ∆f ; on the other hand, it increases L∗ via Eq. (4.3). Similarly, for
platelets, higher anisotropy is achieved through raising r, while l∗ rises with increasing r
[see Eq. (4.3)]. In other words, fewer atoms “fit” in a highly anisotropic particle for a
given L∗ (for rods) or l∗ (for platelets).

In Fig. 4.2 we plot L∗ (for rods) and l∗ (for platelets) as a function of the shape
parameter r = l/L (for rods) and r−1 = L/l (for platelets), for several values of the lattice
constant.b The other parameters are the experimentally typical values of T = 293 K,
E0 = 100 V mm−1, and α0 = 5.25 Å3. For rods, we find a minimum L∗ around l/L ≈ 0.62;
this dimension ratio thus defines the optimum shape for alignment of rods in an external
electric field. For platelets, a minimum l∗ is observed at L/l ≈ 0.38. The locations
of these minima do not depend strongly on the lattice constant. Additional numerical
calculations, not shown here, confirm that this (approximate) independence also holds for
ã > 3.0. As could be expectedc, however, a lower lattice constant does imply a lower L∗
or l∗.

4.4 Bowls and Dumbbells
The same analysis can be applied to clusters of other shapes. Here, we show results for
bowl-shaped and dumbbell-shaped particles. As discussed in Chapter 2 and Fig. 2.3, the
bowl shape is achieved by revolving a crescent around its symmetry axis [17]. Note that
bowls with d/σ = 0 are hemispherical shells and bowls with d/σ = 0.5 are hemispheres.

bThe chosen value for ã corresponds to the following relative permittivities in vacuum: ε ≈ 11.7 for
ã = 1.75, ε ≈ 4.2 for ã = 2, ε ≈ 2.1 for ã = 2.5, and ε ≈ 1.6 for ã = 3 [calculated using Eq. (2.22)].

cThe reason that a lower lattice constant lowers L∗ or l∗ is two-fold: a lower lattice constant means
that atoms interact more and hence will have a higher ∆f ; at the same time it also means that the atom
density is higher and thus smaller dimensions are needed to achieve a certain number of atoms.
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Figure 4.3: The size parameter σ∗ (a) and σ∗+L∗ (b) for which colloidal bowls and dumbbells,
respectively, first become alignable by an electric field E0 = 100 V mm−1, as a function of their
shape parameters d/σ and L/σ, respectively. Here, d is the thickness of a bowl and L is the
separation of the two composing spheres of a dumbbell. The bowls and dumbbells are built up
of atoms on a simple cubic lattice with dimensionless lattice spacings a/α1/3

0 = 1.75, 2, 2.5, and
3. The temperature is T = 293 K, and the atomic polarizability is α0 = 5.25 Å3. The dots
denote the minima in the graphs.

For d/σ > 0.5, instead of a bowl in the conventional meaning, we get a hemisphere with
a protrusion on its flat side (the orange area in Fig. 2.3). “Bowls” with d/σ = 1 are
spheres. The dumbbell shape has also been discussed in Chapter 2: we take two spheres
of diameter σ at center-to-center distance L from each other and take as the shape of
the dumbbell the region in which all points are either in one sphere or in the other, or
in both. Thus, L/σ = 0 corresponds to a sphere, L/σ = 1 corresponds to two touching
spheres, and L/σ > 1 refers to two separate spheres. Once the shape is determined,
we intersect it with a simple cubic lattice grid with spacing a, resulting in a cluster of
atoms of approximately the appropriate shape. Note that the size parameter, using the
definition mentioned earlier, is given by σ for bowls and σ + L for dumbbells.

As in the case of rods and platelets, extrapolation [Eq. (4.2)] has to be used to
determine the atom number N∗ for which ∆ & kBT . Furthermore, since we no longer
have a straightforward relation to determine the size parameter (σ∗ or σ∗ + L∗) from a
given N∗, we use extrapolation of the phenomenological dependence of N on σ (N ∝ σ3)
to estimate σ∗. For dumbbells, we subsequently add L∗ (which can be calculated from
L/σ and σ∗) to gain the correct size parameter. The result is plotted in Fig. 4.3.

For bowls [Fig. 4.3(a)], we observe that the optimal shape is located around d/σ ≈
0.52, corresponding to a slightly protruded hemisphere. Note that for d/σ > 0.5, the bowl
shape construction used in this work no longer produces a bowl in the traditional sense
of the word. Hence, the optimally alignable “traditional” bowl is as bulky as possible: a
hemisphere.

For dumbbells [Fig. 4.3(b)], the minima lie around L/σ ≈ 0.51. Thus, as in the case
of rods, the optimum size ratio for dumbbells lies between the maximally anisotropic and
bulky configurations (two touching spheres and one sphere, respectively): two comfortably
overlapping spheres.
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4.5 Conclusion
Using the linear dependence of ∆ on N , we estimated for rods, platelets, bowls, and
dumbbells the number of atoms and hence the spatial dimensions required for ∆ to be
of the order of the thermal energy, as a function of the aspect ratio of the cluster. This
is relevant because, as we showed, ∆ ≈ kBT is the lowest orientational energy difference
that can cause a particle to significantly align in an external electric field. The dimensions
found, for an electric field strength of E0 = 100 V mm−1, are typically of the order of 1 µm
along the longest dimension of the colloid, indicating that dielectric nanoparticles are not
easily aligned in this external field. We note that N∗ ∝ E−2

0 and all the size parameters
are ∝ N1/3, such that we expect the size parameter required for alignment to scale as
E
−2/3
0 . This means, for example, that increasing the field strength tenfold would decrease

the required size by a factor of approximately 4.6, which would put these particles in the
nanoparticle regime (using the definition that the smallest dimension should be less than
100 nm). We also note that particles of strongly coupled materials (i.e., low ã, achievable
for example through a high dielectric constant mismatch between the particle and solvent)
have a lower required size, such that nanoparticles consisting of those materials are more
easily aligned by an electric field.

We showed that the dependence of the minimum size of an alignable particle on the
shape ratio of the particle is nontrivial, as it is not in general true that, for alignment, the
more anisotropic the particle the better, nor are bulkier particles always better: for all
the particle shapes studied here, the optimum shape lies in-between. We note here that,
for lower values of ã (strong coupling), the graphs of Figs. 4.2 and 4.3 are very flat, such
that a broad range of dimension ratios can be considered near-optimal. Interestingly, the
graphs are more strongly dependent on the shape when the coupling is weak (high ã).
Apparently, with weak coupling, it is more important (for alignment) that the particle
has exactly the right shape. We also note that, apart from being independent of the field
strength (which only affects the height of the graphs and not their shape), the found
optimum shapes are also independent of the material that the particle is made of, since
the (horizontal) position of the minima in the graphs does not depend strongly on ã.
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Can Nonadditive Dispersion Forces
Explain Chain Formation of

Nanoparticles?

We study to what extent dielectric nanoparticles prefer to self-assemble into linear chains
or into more compact structures. To calculate the Van der Waals (VdW) attraction be-
tween the clusters, we use the Coupled Dipole Method (CDM), which treats each atom in
the nanoparticle as an inducible oscillating point dipole. The VdW attraction then results
from the full many-body interactions between the dipoles. For non-capped nanoparticles
we calculate in which configuration the VdW attraction is maximal. We find that in
virtually all cases we studied, many-body effects only result in metastable (local) po-
tential minima at the linear configuration, as opposed to global minima, and that these
metastable minima are in most cases rather shallow compared to the thermal energy.
In this chapter, we also compare the CDM results with those from Hamaker-de Boer
and Axilrod-Teller theory to investigate the influence of the many-body effects and the
accuracy of these two widely used approximate methods.
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5.1 Introduction

In recent years, the self-assembly of colloidal nanoparticles has received a large amount
of attention. Many procedures have been proposed to achieve the desired highly ordered
structures, e.g., by using systems with substrates or templates [33], applying external
electric or magnetic fields [35–39] to particles with anisotropic response to these fields,
or using a fluid flow [34] to align the particles. One of the most widely used techniques,
however, is the design and manipulation of particle-particle interactions, which can result
in spontaneous self-assembly. Since the synthesis of anisotropically shaped particles has
improved significantly in the past decade [13, 15], it is possible to control the shape of the
particles and rely on excluded-volume interactions (possibly with the use of a depletant)
to achieve alignment [28, 94]. Alternatively, interaction design by controlling the relevant
chemistry has also been successfully employed, for instance when synthesizing colloids
with patches of different materials [8–10], or by using single-stranded DNA molecules as
linkers [11, 12].

Spontaneous self-assembly of nanoparticles into linear chains has been observed ex-
perimentally. Various types of particles display this behavior. Observed systems include
gold [95], PbSe [96–98], CdSe [96, 99–101], ZnSe [101], and CdTe [102, 103] nanoparticles.
In the referenced papers, the behavior is attributed to the presence of a permanent dipole
moment in the nanoparticles, although its origin is not entirely understood. Initial expla-
nations attributed it to the intrinsic polar character of the wurtzite (CdSe) structure [99],
but this does not explain why the same behavior is observed in the nanoparticles of other
structures. Other suggested origins include the presence of trapped, surface-localized
charges [101], and breaking of the nanoparticle’s central symmetry due to asymmetric
arrangement of crystal facets [97].

More recent experimental [104, 105] as well as theoretical and simulational [105] studies
suggest that the capping layer plays an important role in the self-assembly of particles
into various structures, including chains. The underlying mechanism here is a competition
of the attractions between the particle cores with the entropy loss from distorting the
capping layer polymer chains when two or more particles are close together. The linear
conformation of the chains is explained by migration of ligands when two particles attach,
making the site diametrically opposite the first contact point the most attractive for
attachment of a third particle [105]. A detailed simulation study of the influence of the
type of capping layer on two- and three-body interactions between nanoparticles [106]
indeed suggests, among other things, that, due to the influence of the capping layer,
a linear configuration of particles is energetically preferred over a triangular structure.
These studies thus provide a possible explanation for spontaneous chain formation that
does not depend on the presence of a permanent dipole. In this chapter, we investigate a
third option, namely the presence of nonpermanent, induced, fluctuating dipoles. These
fluctuating dipoles are the origin of the Van der Waals (VdW) force between atoms and
colloidal particles. This force is isotropic between two interacting atoms but becomes
orientation-dependent when more atoms are considered, since the fluctuating dipoles, like
permanent ones, prefer to lie head-to-toe as opposed to side-by-side. Thus, to investigate
this effect, we cannot rely on pairwise interactions between atoms, but have to calculate
the full, many-atom VdW interaction, for which the Coupled Dipole Method (CDM) is
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ideal. It turns out, however, that in virtually all of the cases that we studied, many-
body effects only result in metastable local potential minima at the linear configuration,
whereas the global minimum occurs for compact clusters. Moreover, these metastable
minima are usually rather shallow compared to the thermal energy. In most cases, the
answer to the question asked in this chapter’s title therefore seems to be “No.” There are,
however, extreme parameter regimes where linear configurations have the lowest energy.

The CDM, as mentioned before, employs large-matrix manipulation to calculate the
eigenmodes of the system under study; the sum of these frequencies then yields the
ground state energy. The CDM takes many-body effects into account and can therefore be
expected to be more accurate than both Hamaker-de Boer theory [57, 58], which employs
pairwise summation of atom-atom interactions, and a modification thereof, offered by
Axilrod and Teller [107], which includes three-atom interactions. In this chapter, we will
examine the accuracy of the latter two methods when compared to the CDM (which we
will assume to be the “exact” result) for several many-atom systems.

At the time that the CDM was conceived of, it was infeasible to perform the large-scale
numerical calculations associated with the required matrix manipulation, but computers
of today can easily handle systems of at least O (104) atoms. Recently, the CDM has been
employed to calculate interactions between, and also the polarizability of, nanoclusters
of various sizes and shapes [64, 66–68, 70, 81, 83, 84]. Furthermore, the accuracy of the
first-, second-, and third-order approximations of the CDM have been compared to the
CDM itself in the context of graphitic nanostructures, yielding results similar to ours [70].

For reasons that will be explained shortly, the CDM is only valid for non-metallic
particles made of a material that satisfies a/α1/3

0 & 1.7, where a is the lattice constant and
α0 the atomic polarizability associated with the material. Furthermore, all the calculations
in this chapter are performed for particles in vacuum. To obtain results for particles in
a medium, the atomic polarizability would have to be modified to a value that can be
obtained by inserting the permittivity contrast between the particle and the medium into
the Clausius-Mossotti relation [Eq. (1.3)].

5.2 Methods

5.2.1 The Coupled Dipole Method
In the absence of an external electric field, the Hamiltonian of N Lorentz atoms [Eq.
(2.1)] reduces to

H = 1
2me

N∑
i=1

k2
i + meω

2
0

2

N∑
i,j=1

di (Iδij − α0Tij) · dj, (5.1)

where we used ki to denote the linear momentum of the ith electron and di for its
displacement from its nucleus. Like previously, me and ω0 are the mass of the electron
and the characteristic frequency of the Lorentz atoms, respectively, and α0 is the atomic
polarizability as given by Eq. (1.1). In this case completing the square is not necessary,
as the Hamiltonian is already quadratic. The angular eigenfrequencies of this harmonic
system, ωk with k = 1, 2, . . . , 3N , depend solely on the dimensionless positions ri/α1/3

0 of
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the dipoles and on ω0 (or, equivalently via Eq. (1.1), α0). For N . 104 it is numerically
fairly straightforward to find these eigenfrequencies, and hence the quantum mechanical
ground state energy [61–64, 66–68, 83]

U
({

ri/α1/3
0

}
;ω0

)
= ~

2

3N∑
k=1

ωk, (5.2)

where ~ is the reduced Planck constant.
In this chapter, we are interested in the effective VdW interactions between nanopar-

ticles composed of atomic dipoles. These nanoparticles are described as clusters of atomic
dipoles arranged on a cubic lattice with lattice spacing a such that they form a cubic
or an (approximately) spherical nanoparticle. We will only consider interactions be-
tween identical nanoparticles. If we assign each nanoparticle a center-of-mass-position
Ri, the spectrum of eigenfrequencies ωk only depends on the atomic eigenfrequency ω0,
the number of atoms in each nanoparticle, the dimensionless combinations Rij/a, where
Rij = Ri −Rj, and the dimensionless lattice spacing

ã ≡ a/α
1/3
0 .

Typical values of ã are, in vacuum, ã = 2.64 for hexane, ã = 2.05 for silica, and ã = 1.75
for sapphire [81]. For low values of ã, we encounter a polarization catastrophe, where the
interactions become so strong that they overcome the harmonic binding force between
the nuclei and their electrons, and the material becomes a conductor. In the CDM, the
catastrophe manifests itself by some of the frequencies ωk becoming imaginary. For large
numbers of atoms, the value at which the catastrophe occurs lies between ã ≈ 1.70 and
ã ≈ 1.75, depending on the lattice type. For very low numbers of atoms, the interatomic
distance is allowed to be somewhat smaller; e.g., in Sec. 5.3.1, we show a setup with three
atoms where the CDM is valid for ã & 1.44.

To obtain the effective interaction energy V (CDM)
2 (R1,R2) between two nanoparticles

at position R1 and R2, we subtract the ground state energy at infinite separation, which
is the same as the energy of each nanoparticle if the other were absent:

V
(CDM)

2 (R1,R2) =U (CDM)
2 (R1,R2)− U (CDM)

1 (R1)− U (CDM)
1 (R2)

=U (CDM)
2 (R1 −R2)− 2U (CDM)

1 . (5.3)

Here, U (CDM)
2 (R1,R2) is the CDM-energy of the system that results from taking the

positions of the atoms in the clusters at R1 and R2 and plugging them into Eq. (5.2),
and U

(CDM)
1 (Ri) is obtained by plugging only the positions of the atoms in cluster i

into Eq. (5.2). In the second line, we have resolved some of the dependencies by noting
that, in the case of two clusters, translational symmetry requires that U (CDM)

2 (R1,R2) =
U

(CDM)
2 (R1 −R2) only depends on the relative cluster coordinates and that U (CDM)

1 (Ri) =
U

(CDM)
1 does not depend on the center-of-mass position of the particle. Note that, in this

simplification, we also use the fact that the clusters are identical.
If the system consists of two “clusters” consisting each of only one atom with polariz-

ability α0, separated by a distance r, calculation of the interaction can be done analytically
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within the CDM. When we Taylor-expand the result up to quadratic order for large in-
teratomic distance, we find that the r0 and r−3 terms of the expansion vanish and that
we are left with only an r−6 term:

V
(CDM)

2 (r) ' −3
4~ω0

α2
0
r6

(
r � α

1/3
0

)
. (5.4)

This is the VdW interaction energy between two atoms.
For three clusters, the effective interaction energy is the sum of the effective interaction

energies V (CDM)
2 (Ri,Rj) , plus the three-body term

V
(CDM)

3 (R1,R2,R3) = U
(CDM)
3 (R1,R2,R3)− V (CDM)

2 (R1,R2)
−V (CDM)

2 (R2,R3)− V (CDM)
2 (R1,R3)

−U (CDM)
1 (R1)− U (CDM)

1 (R2)− U (CDM)
1 (R3)

= U
(CDM)
3 (R1,R2,R3)− U (CDM)

2 (R1 −R2)
−U (CDM)

2 (R2 −R3)− U (CDM)
2 (R1 −R3)

+3U (CDM)
1 . (5.5)

Here, U (CDM)
3 (R1,R2,R3) is obtained by plugging the atom positions of all three clusters

into Eq. (5.2), and the second equality is obtained by using Eq. (5.3) and resolving the
dependencies, as in the two-body case.

5.2.2 The Hamaker-de Boer Potential
A widely used method for calculating the interaction energy in a colloidal system is to
sum the London potential between pairs of fluctuating dipoles. Given a set of atoms with
locations {ri} (where i = 1, . . . , N), the total Hamaker-de Boer (HdB) interaction energy
is given by

U (HdB) ({ri}) =
∑
(ij)

v(L) (rij) , (5.6)

where rij is the distance between atoms i and j and v(L) (rij) is the London interaction
energy between these atoms, given by

v(L) (r) = −A
r6 , (5.7)

where A is a constant determined by the two atoms’ ionization energies and r is the
distance between the atoms. When dealing with clusters of atoms, U (HdB) ({ri}) will
contain interactions not only between pairs of atoms in different clusters but also between
pairs of atoms in the same cluster. Since we are only interested in the interaction energy
between the clusters, we subtract the latter from their total energy to obtain the HdB
inter-cluster interaction energy V (HdB)

2 (R1,R2). For two clusters located at R1 and R2,
respectively, we have, similarly to Eq. (5.3),

V
(HdB)

2 (R1,R2) =U (HdB)
2 (R1,R2)− U (HdB)

1 (R1)− U (HdB)
2 (R2)

=U (HdB)
2 (R1 −R2)− 2U (HdB)

1 .
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Here, U (HdB)
2 (R1,R2) is obtained by considering the atoms of both cluster 1 and 2 for

Eq. (5.6), while U (HdB)
1 (Ri) is obtained by only considering the atoms of cluster i. For

three clusters, it turns out that V (HdB)
3 (defined similarly to V (CDM)

3 ) vanishes because
only atomic pair interactions are considered.

The constant A to be used in Eq. (5.7) can be calculated in various ways. In this
chapter, we intend to compare the HdB method to the CDM, and we therefore require
that the long-range interaction energy between two atoms be equal when calculated using
Eq. (5.7) and when using CDM (Eq. (5.4)). Comparing Eq. (5.4) with Eq. (5.7), we find

A = 3
4~ω0α

2
0. (5.8)

This is in agreement with, for example, the results in Ref. [108], Eq. (5), if u1 = ~ω0
is inserted into that equation. Note that ~ω0 is the energy cost of ionizing the harmonic
(Drude) oscillator, as expected.

5.2.3 The Axilrod-Teller Potential
The HdB potential only includes pair interactions and ignores any many-body interac-
tions. In 1943, Axilrod and Teller approximated the three-body contribution to the atomic
interaction energy[107],

v(AT ) (ri, rj, rk) = B
1 + 3 cos θi cos θj cos θk

r3
ijr

3
jkr

3
ki

, (5.9)

where cos θi = r̂ij · r̂ik, and B is, according to Ref. [108] with u1 = ~ω0, given by

B = 9
16~ω0α

3
0.

We note that Eq. (5.9), like Eq. (5.7), is a good approximation only for sufficiently large
distances. The total Axilrod-Teller (AT) potential energy is the HdB potential energy,
extended by a summation over dipole triplets,

U (AT ) ({ri}) = U (HdB) ({ri}) +
∑
(ijk)

v(AT ) (ri, rj, rk) , (5.10)

and the interaction energy between clusters of dipoles can be defined in the usual way,
i.e., by Eqs. (5.3) and (5.5), where the superscript (CDM) is replaced by (AT ), and
U

(AT )
1 , U

(AT )
2 (Ri,Rj) and U (AT )

3 (Ri,Rj,Rk) are now calculated using Eq. (5.10).
As far as we are aware, there is no closed expression for the CDM potential energy of

three dipoles in an arbitrary configuration and, therefore, it is in general not possible to
compare the expression of the AT potential energy to that of the Taylor expansion of the
CDM potential energy, as we did in the case of two dipoles. However, for the special case
of an atomic triplet where r12 = r23 (i.e., the distance between the first and the second
dipole is equal to that between the second and the third), we show in Appendix C that
the AT potential equals the first two nonzero terms of this Taylor expansion of the CDM
potential energy.
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5.2.4 A Note on Notation

In this chapter, we only consider setups where a number of clusters (usually two) are sta-
tionary, while an extra cluster is moved. For computational simplicity we will therefore
consider the stationary clusters as one, so that we only calculate V (CDM)

2 , V (HdB)
2 , and

V
(AT )

2 between the moving and the stationary clusters. In the case of three clusters, we
have also analyzed the system when considered as three independent clusters and calcu-
lated V (CDM,HdB,AT )

3 plus the three cluster pair interactions V (CDM,HdB,AT )
2 . As expected,

the resulting interaction energy plots are the same, albeit shifted by a constant. Since
every interaction energy we calculate in this chapter is a V

(CDM,HdB,AT )
2 , we can ease

the notation: from now on, we denote the interaction energy of the moving cluster with
respect to the stationary ones by VCDM , VHdB, and VAT .

5.3 Chains versus Compact Clusters

5.3.1 Atomic Chains and Clusters

Before discussing nanoparticles that are each composed of many atoms, we first consider
N single atoms fixed on a straight line, separated by a lattice constant a. We consider
an N + 1-th atom near the end of the chain, such that the vector separating this atom
from the last atom in the chain has length a and makes an angle θ with the line. This
is illustrated in Fig. 5.1 for N = 2 (note that r = a in the case of single dipoles). We
calculate the CDM, HdB, and AT interaction energies VCDM(θ), VHdB (θ), and VAT (θ),
respectively, between the N + 1-th atom and the cluster formed by the N atoms on the
line, as a function of the angle θ, in order to study the most favorable (lowest energy)
position of the additional atom. Here θ varies from θ = 0, corresponding to the linear
configuration, to θ = 2π/3, corresponding to an equilateral triangle of the three end-
particles of the chain. It is not a priori clear which of these configurations is more stable:
the orientational dependence of the dipole-dipole interaction favors a linear arrangement
and hence θ = 0, but the 1/r3 decay of dipolar interactions favors small distances between
the particles and hence θ = 2π/3. If V (0) < V (2π/3), the linear chain is more stable
while, otherwise, a dense globule is favored.

In Fig. 5.2, we plot VCDM(θ), VHdB (θ), and VAT (θ) for N = 2, 3 and 10, with α0 =
5.25 Å (such that ω0 =

√
e2

meα0
= 6.9× 1015s−1) for the dimensionless lattice spacings ã =

2.0 and ã = 1.7, the latter corresponding to stronger coupling. Note that we represent the
interaction energies in units of kBT , where kB is the Boltzmann constant and T = 293 K.

Concentrating first on VCDM (solid lines) only, we note that for both ã = 2.0 and
ã = 1.7, the configuration where the final three particles form an equilateral triangle is
stable, by typically 1.5kBT for ã = 2.0 and by 4kBT for ã = 1.7. However, the insets also
clearly show that, for all cases, a broad local minimum at θ = 0 is separated from the
global minimum at θ = 2π/3 by a maximum at θ ≈ 0.32π for ã = 2.0 and at θ ≈ 0.42π
for ã = 1.7. The barrier between the local and global minimum depends on the coupling
parameter ã: it is much smaller than kBT in the weak coupling case of ã = 2.0, while
it grows to almost 1kBT for N = 10 and ã = 1.7. Hence, in both cases, we expect
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Figure 5.1: The angle θ is defined as the angle between the line connecting the first two
particles and the line connecting the last two particles. The distance between two successive
particles is r. The situation here depicted is for N = 2.

thermal fluctuations to allow for relatively fast crossing of this barrier, such that the
linear configurations should be short-lived at best.

When comparing the results of the CDM to those of the HdB and AT methods, there
are several things to note. First of all, the accuracy of the approximation is dependent on
the interatomic distance: at weaker coupling, ã = 2.0, they are much more accurate than
at stronger coupling, ã = 1.7. We note, furthermore, that the accuracy is also dependent
on θ, higher values of which (more compact clusters) tend to produce a slightly better
agreement. Comparing the HdB and the AT, we note, first of all, that AT seems to
approximate the features of the CDM graph better than the HdB method, exhibiting a
local minimum at θ = 0, a barrier at θ ≈ 0.3π, and a global minimum at θ = 2π/3,
whereas the HdB method yields a monotonically decreasing function with its minimum at
θ = 2π/3. In passing, we can therefore note that many-body effects are clearly responsible
for creating a local minimum at the linear configuration. In terms of absolute numbers,
the accuracy depends on θ: AT produces better results for low angles, while the HdB
method actually beats AT for high angles. Both HdB and AT underestimate the effect
of adding a dipole to the chain: the graphs for the various values of N are very close
together for HdB and AT, while the CDM produces clearly separated graphs.

From a theoretical perspective, it is interesting to investigate the behavior of VCDM(θ)
for values of ã that are lower (i.e., stronger coupling) than the aforementioned value
of 1.7. For (large) lattices of atoms, the CDM fails for such low ã, since some of the
eigenfrequencies ωk become imaginary. In the specific case of three dipoles forming a
configuration as in Fig. 5.1, however, the lower limit is ã ≈ 1.435194. In Fig. 5.3(a),
we show what happens to VCDM(θ) when ã is lowered to this value. The HdB and AT
approximations, VHdB (θ) and VAT (θ), respectively, are not considered here since, for low
ã, they become increasingly inaccurate. We clearly see that both the potential well at
θ = 2π/3 (the triangular configuration) and the one at θ = 0 (the linear configuration)
deepen as ã is lowered, but that the θ = 0 well deepens more. Below the value ã ≈ 1.44332,
the well at the linear configuration becomes the deeper of the two. We note that, when
compared with the aforementioned lower limit, the range of values for ã for which a linear
configuration is favorable is extremely narrow. Note, however, that the barrier between
the metastable and the stable configurations grows significantly with decreasing ã, being
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Figure 5.2: Angular dependence of the interaction potential V (θ)/kBT , where T = 293 K, of
adding a particle to the end of a string of N particles at r = a (see Fig. 5.1), for dimensionless
lattice constant ã = 2.0 (a) and ã = 1.7 (b), and for N = 2 (blue), N = 3 (red), and N = 10
(yellow). The results of three calculation methods are shown: the Coupled Dipole Method (solid
lines), the Hamaker-de Boer method (dashed lines), and the Axilrod-Teller method (dotted
lines). The inset shows a magnification of the small-angle part of V (θ).

approximately 4kBT at ã = 1.5 and 14kBT at ã ≈ 1.44, which could cause long-lived
linear triplets. This is also visible in Fig. 5.3(b), where the depths ∆ of the wells at θ = 0
and θ = 2π/3 are plotted as a function of ã.

It should be noted that, throughout this subsection, we have varied the dimensionless
dipole-dipole distance ã = a/α

1/3
0 by fixing α0 and varying a. Another option is to

fix a and vary α0 instead. This affects the results, because ωk/ω0 depends on ã only,
and hence the eigenfrequencies ωk (and, thus, VCDM) are proportional to ω0 ∝ α

−1/2
0 .

Therefore, the shape of the graphs in Fig. 5.3(b), where ã is the variable, becomes
different, and the relative height of the various graphs of VCDM (Figs. 5.2(a) and (b), and
5.3(a)) with different ã change. However, as it turns out, these changes are not significant
enough to warrant reporting here (for the parameters of interest), and the same qualitative
conclusions apply.

Additional comparisons between the CDM, HdB, and AT approaches are presented in
Appendix C.

5.3.2 Clusters and Chains of Spherical Nanoclusters

We now focus on chains of spherical nanoparticles. We perform these calculations with
spherical nanoparticles made from silica atoms (α0 = 5.25 Å), which are positioned on a
face-centered cubic (fcc) lattice with ã = 2.0. To create a single nanoparticle of radius R
we start by placing the silica atoms on the grid and then remove all those located further
than a distance R away from the origin. Hence we obtain an approximately spherical
cluster with radius R. Furthermore, we use the same definition for r and θ as given in
Fig. 5.1 for the single particles. Now we fix r = 2R+ a and proceed in the same manner
as above to calculate the interaction energy between a cluster consisting of two spheres
and a third sphere as a function of the angle θ. It is again not a priori clear which is the
more stable orientation: the orientational dependence of the dipole-dipole attraction will
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Figure 5.3: (a): The CDM interaction energy VCDM , in room temperature (T = 293 K) kBT
units, of adding a third dipole with polarizability α0 = 5.25 Å3 to a chain of two, under an
angle θ (defined in Fig. 5.1). The dimensionless dipole-dipole distance is ã = r/α

1/3
0 = 1.50

(blue line), 1.44332 (red line), and 1.43573 (yellow line). (b): The well depth ∆, defined as the
difference in interaction energy at the well’s configuration and the maximal interaction energy
(here located at around θ ≈ 0.5π) of the linear (θ = 0) configuration (blue) and the triangular
(θ = 2π/3) configuration (red).

favor a linear arrangement (θ = 0), whereas the 1/r3 decay will favor the small distances
between the particles (θ = 2π/3).

The resulting angle-dependence of the potential is, for R = 3.85a (Nc = 321 particles
in each cluster), given in Fig. 5.4 for CDM, HdB, and AT. Also shown is the result when
we use Hamaker’s famous expression for the interaction energy between a pair of spheres
[58],

VHamaker (r, σ) = −π
2ρ2A

12

(
σ2

r2 − σ2 + σ2

r2 + 2 log
[
r2 − σ2

r2

])
, (5.11)

where σ is the diameter of the spheres, r is the center-to-center distance between the
spheres (given above), A is the London-VdW constant, in our case given by Eq. (5.8),
and ρ is the number density of atoms in the sphere, which can be obtained by noting
that, for an fcc lattice with a/α1/3

0 = 2,

ρ = 2√
2a3

= 1
4
√

2α0
,

so that π2ρ2A ≈ 42kBT at room temperature. Since our clusters are not exactly spherical
and the outer atoms are never exactly a distance R away from the sphere center, the value
to use for σ is nontrivial. We derive it by considering the dependence of the mean square
displacement 〈r′2〉ball of mass inside a solid sphere, with homogeneous mass density ρ, on
its diameter d, 〈

r′2
〉

ball
=
∫
dr′ρr′2∫
dr′ρ

= 4π
∫ d/2
r=0 dr

′r′4

4π
∫ d/2
r=0 dr

′r′2
= 3

20d
2,

where r′ is the distance of a mass element ρdr′ from the center of the sphere. We now
assume that the mean square displacement of atoms inside our spherical atom clusters,
〈r2
i 〉c = 1

Nc

∑Nc
i=1 r

2
i , where ri is the distance of atom i from the center of the sphere, obeys
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Figure 5.4: Interaction potential for three spherical nanoclusters of radius R = 3.85a, giving
321 silica particles each, with dimensionless lattice spacing ã = 2.0, as a function of the angle θ
between the line connecting the first and second and the line connecting the second and third
cluster. The results of four calculation methods are shown: the Coupled Dipole Method (solid
blue lines), the Hamaker-de Boer method (dashed blue lines), the Axilrod-Teller method (dotted
blue lines), and the result from Hamaker’s formula Eq. (5.11) (the solid red line).

the same relationship, 〈r2
i 〉c = 3

20σ
2, such that

σ =

√√√√ 20
3Nc

Nc∑
i=1

r2
i .

The numerical value for our clusters with R = 3.85a turns out to be

σ ≈ 7.55a ≈ 0.98× 2R.

The results of the CDM, HdB, and AT methods are similar to those observed for the
atomic chains above, i.e. there is a local minimum at θ = 0, when all three nanoclusters
line up, while the global minimum is in the triangle orientation (θ = 2π/3). The difference
between the local minimum at θ = 0 and the global minimum at θ = 2π/3 is of the order
of 3kBT . The main difference with the atomic chain are the additional wells at θ ≈ 0.25π
and θ ≈ 0.5π, separated by barriers of the order of 0.5kBT . This structure is caused
by the relatively small size of the spherical nanoclusters (only 321 particles each), which
renders the surfaces of the clusters not very smooth, causing the edges of the particles to
“coincidentally” be closer to each other for some values of θ than for others. Surprisingly,
the AT approximation, in this case, gives worse results than the HdB approximation.

The graph obtained from VHamaker (r, σ) is quite accurate in shape and displays a very
good quantitative agreement with the HdB approximation. This is remarkable because,
for values of σ so close to r, the effective interaction energy depends strongly on σ. The
graph does not contain local minima since, in this method, the spheres are assumed
to consist of a continuous, homogeneous material, and the atoms are not individually
modeled.
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Figure 5.5: Orientation of the system of interest for three cubic clusters of which two are lined
up and the third is a distance (x, y) away.
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Figure 5.6: Interaction potential for three cubic clusters of 125 particles each with lattice
spacing a = 2.0α1/3

0 , (a) as function of the y-coordinate of the third cluster for fixed x = 7.5a
and (b) as function of the x-coordinate of the third cluster for fixed y = 5a. The results of three
calculation methods are shown: the Coupled Dipole Method (solid lines), the Hamaker-de Boer
method (dashed lines), and the Axilrod-Teller method (dotted lines).

5.3.3 Clusters and Chains of Cubic Nanoclusters

Next, we consider L×L×L cubic nanoparticles of Nc = L3 atoms on a cubic lattice with
lattice spacing a. Similarly to the case above, we focus on a configuration of three particles:
two lined up and close together, forming essentially a single 2L× L× L particle, with a
third particle in its vicinity. We present results for clusters with L = 5. For the cubic
particles of interest we will use Cartesian coordinates instead of the polar coordinates used
before, with the x-direction parallel to the chain and y- and z-directions perpendicular,
as illustrated in Fig. 5.5.

Here we consider two cases, both for coupling constant ã = 2.0. First we vary y for
fixed x = 7.5a, such that the third particle can (just) slide “vertically” past the other
two on the right side. Note that this means that when y = 0, all three clusters lie on
the same line and are touching (i.e., this corresponds to the θ = 0 orientation of the
spherical clusters). Secondly, we fix y = 5a and vary x, such that the third particle slides
“horizontally” along x on top of the other two particles.
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The results are plotted in Fig. 5.6. Fig. 5.6(a) shows the potential V (x = 7.5a, y)
for the first, “vertical” case, revealing local minima at (roughly) y/a ≈ 0,±0.96, ±1.93,
and ±2.89, while a "pseudo-minimum" (inflection point) occurs at y/a ≈ ±3.82. These
correspond to alignment of horizontal sheets of atoms in the three 5× 5× 5 nanoclusters;
we interpret the small deviation from perfect alignment (which occurs at y/a = 0, ±1,
±2, etc.) as a finite-size effect. The global minimum in Fig. 5.6(a) occurs for the linear
chain characterized by y = 0. The energy barriers between adjacent local minima vary
from roughly 5.9kBT between y/a = ±0.96 and y/a = 0, and 2.7kBT from y/a = ±1.93
to y/a = ±0.962, to vanishingly small barriers for y/a ≥ 3. As a consequence, one could
expect (temporary) trapping in local minima at y/a = ±0.96 and ±1.93. Fig. 5.6b shows
the potential V (x, y = 5a) for the second, “horizontal” case. Again, we observe local
minima, near where vertical sheets of atoms align, in this case for x/a ≈ ±0.50, ±1.50,
±2.48, ±3.45, ±4.43, ±5.38. The six deepest ones (with |x/a| < 2.5) are essentially
degenerate and separated by barriers of about 15kBT . We note that the minima occur
closer to perfect alignment when the third cube is near the middle: here, the effect of the
edges of the first two cubes is smallest. For |x/a| & 7/2, we can still make out the points
where either 4, 3, 2, or 1 sheet(s) align(s).

Combining the information of Figs. 5.6(a) and 5.6(b) reveals that the global mini-
mum, for these 5× 5× 5 clusters, occurs in the vicinity of the "triangular" configuration,
since V (x = a/2, y = 5a) ≈ −97kBT , whereas the deepest linear-chain minimum is
V (x = 7.5a, y = 0) = −91kBT , the difference being about 6kBT . One should realize,
however, that the barrier(s) separating the two configurations are of the order of 100kBT ,
such that a chain, once formed, could essentially exist forever. It thus appears that the
main difference between the attachment potential of atomic triplets (treated in an earlier
section) and the 5× 5× 5 triplets here is the existence of local minima separated by bar-
riers due to the underlying atomic structure of the latter. These results are qualitatively
similar to those of 3× 3× 3 and 7× 7× 7 particles.

We note again that the HdB approximation gives better results than the AT approx-
imation, although the latter seems to better approximate the height of the inter-well
barriers. We note that both the shape of the graphs, which feature local minima induced
by the atomic structure, as well as the qualitative conclusion that HdB is more accurate
than AT, are similar to those presented in Ref. [70]. For this setup, we also calculated
the net force on the third ("moving") particle by considering the gradient of V , but no
interesting conclusions could be drawn from these calculations, except that the accuracy
of the HdB and AT approximations remained roughly the same.

5.4 Summary and Conclusion
In this chapter, we have addressed the question of whether nonadditive dispersion forces
can explain chain formation of nanoparticles. We have done this using the Coupled Dipole
Method (CDM), where we model the nanoparticles as built up out of atoms and take into
account all their many-body interactions. We have studied configurations of single atoms
and spherical and cube-shaped atomic clusters. For almost all of these systems, we have
found a local minimum of the potential energy at the linear configuration, but a global
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minimum at the triangular one, making the latter thermodynamically favorable. For
single dipoles, the energy difference between the two configurations is generally several
kBT and the barrier between the two only of the order of, at most, one kBT , such that
we do not expect linear configurations to be stable. For a small parameter subspace
with strong coupling we did find a stable linear configuration, which could indicate that
strongly polarizable particles (most of which the CDM is unable to model due to the
polarization catastrophe) indeed have a stable minimum at the linear configuration due
to dipole-dipole coupling. This is speculative, however, since the result was obtained for
point dipoles whereas real particles have nonvanishing dimensions and, furthermore, only
a small coupling region that the CDM could still handle displayed the stable linear config-
uration, such that judgments about the majority of the stronger-coupling regime are not
based on quantitative evidence. For spherical clusters of dipoles, we found only a stable
triangular configuration. For cubes, although the triangular configuration is the overall
minimum, the energy barrier between the linear and triangular configuration is so large
that, once formed, we expect either configuration to essentially exist forever. However,
this conclusion could have been reached using a Hamaker-de Boer (HdB) approach as
well, such that we have to conclude that it is the shape, rather than coupled dipoles, that
causes the local minimum at the linear configuration.

In many of the studied cases we have also investigated how accurate the Hamaker-de
Boer (HdB) and Axilrod-Teller (AT) methods of calculating the interaction energy are
when compared to the result given by the CDM. From the studied cases we can conclude
that for strings of single dipoles, many-body effects are significant, especially when the
coupling is strong. For the clusters consisting of many dipoles (i.e., spheres and cubes),
we found that the HdB method performs very well and, in fact, much better than the
AT method. A possible explanation for this is that, while both approaches are only exact
when (dimensionless) dipole-dipole distances are large, the AT method might be more
sensitive to dipoles being close together; and in a cluster of dipoles, each dipole has many
nearby neighbors. More research is required to test this hypothesis. For spheres, we
compared our results with Hamaker’s expression, which is obtained by integrating the
Van der Waals interaction over the volume of two spheres.

In the work by Schapotschnikow et al. [106], where simulation methods are used to
arrive at an effective three-body interaction energy between triplets of nanoparticles sta-
bilized by capping layers, it is suggested that linear chains are the overall most favorable
orientation. In our work, we find that the CDM, which includes many-body VdW inter-
actions between atoms but ignores steric interactions between the capping layers, shows
that many-body linear chains are metastable, whereas the two-body HdB method exhibits
no local minimum at the linear configuration. Still, in the CDM, the triangular configura-
tion is overall more favorable, and the linear configuration is not stable enough to predict
stable linear chains in a Brownian environment. From this we can conclude, as already
suggested by Schapotschnikow et al., that an important role in explaining chain formation
could be played by effective three-body interactions between the particles’ capping layers
that make triangular configurations unfavorable. Many-atom VdW interactions, while not
strong enough by themselves to make linear chains favorable, do provide a local minimum
at this configuration, making it the most favorable configuration if triangular ones are
excluded by steric interactions. This could provide an explanation for spontaneous chain



Can Nonadditive Dispersion Forces Explain Chain Formation of
Nanoparticles? 65

formation that does not include permanent dipole moments. It would be of interest to
include steric interactions in our calculations in the manner employed by Schapotschnikow
et al., or, using the CDM, allowing for many-body interactions between ligand segments
even during the simulation steps, thus calculating a full, many-body, effective average
interaction energy. This is left for future study.

Maarten Verdult is acknowledged for his part in the work presented in this chapter.
Even though his original data was lost, his work served as the backbone around which
this chapter was later fleshed out.
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The Self-Consistent Electric
Field-Induced Dipole Interaction
Energy of Particles in an External
Electric Field: Spheres, Cubes, and

Rods

When calculating the electric field-induced interaction between inducible dipoles, the
dipole moments of these inducible dipoles are often taken to be equal to their polarizability
multiplied by the external electric field. However, this approach is not exact, since it
does not take into account the fact that particles with a dipole moment affect the local
electric field experienced by the other particles. We employ the Coupled Dipole Method to
calculate the electric-field-induced dipole pair interaction self-consistently: that is, we take
into account many-body effects on the individual induced dipole moments. We present
an analytical expression for the self-consistent electric field-induced interaction of two
inducible dipoles. We also calculate interactions of particles with nonvanishing dimensions
by splitting them up into self-consistently inducible dipole chunks of polarizable matter.
For point dipoles, spheres, cubes, and rods, we discuss the differences and commonalities
between our self-consistent approach and the aforementioned approach of pre-assigning
dipole moments to either the point dipoles or, in the case of spatially extended particles,
to the chunks making up the particle.
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6.1 Introduction

Electric field-induced self-assembly of colloidal particles is an area with tremendous po-
tential for technical applications. Unsurprisingly, therefore, experimental studies in which
electric fields are used to orientationally and/or positionally organize particles are com-
monplace today [36–39, 109–111], as are simulation studies in this area [112–116]. The
simultaneous progress in particle synthesis [13, 15] continues to increase the diversity of
systems suitable for electric-field induced assembly. Nowadays, particles of many sizes,
materials, and anisotropic shapes can be synthesized and the problem of theoretically de-
scribing the interaction of these anisotropic particles with the electric field and with each
other under the influence of the electric field becomes less and less trivial. In fact, as we
will show in this work, even the dipolar interaction between a pair of spherical particles
is nontrivial.

We can roughly distinguish two processes by which an electric field can induce or-
ganization in a system of colloids that possess no permanent dipole, namely individual
alignment and interparticle interactions. Individual alignment occurs if a particle has an
anisotropic polarizability causing a potential-energy minimum at orientation(s) where the
induced dipole moment is strongest. Interparticle interactions are the result of interac-
tions between the induced dipole moments of two or more particles and are often crucial
for electric field-induced formation of spatially ordered structures.

Theoretically, these interactions have often been described by assigning a permanent
dipole moment, equal to the particle polarizability multiplied by the applied electric field,
to each particle and then making use of the well-known expression for the interaction
energy between two electric point dipoles [51]. This approach, which we will refer to as
the “single permanent dipoles” (SPD) approach, is nonexact for two different reasons.
The first is that a particle has a finite size and its polarization will therefore be spread
out over its volume instead of concentrated in a point. This problem can be overcome by
splitting up the particle into a sufficiently large number of “chunks” of matter, assigning
to each chunk a (smaller) polarization, and then summing the interactions between all
chunk pairs [117]. We dub this approach the “cluster of permanent dipoles” (CPD)
approach. The second nonexactness arises because we neglected the influence that the
particles have on each other’s induced dipole moment. Since each particle that gains a
dipole moment produces an electric field, it will affect the local electric field experienced
by all other particles, which is therefore no longer equal to the external (applied) electric
field. Calculating each particle’s (or particle chunk’s) dipole moment turns out to be a
system of linear equations that can be solved self-consistently within the framework of
the Coupled Dipole Method (CDM) [61, 62, 81, 83].

The CDM was proposed by Renne and Nijboer in the 1960s to self-consistently cal-
culate the eigenmodes of a system of inducible dipoles using large-matrix manipulation
and, by summing the frequencies of these eigenmodes, to calculate the Van der Waals
(VdW) interaction energy between clusters of atoms [61, 62, 64, 66–68]. Discrete dipoles
have also been used for scattering calculations within the Discrete Dipole Approximation,
which involves an incident oscillating electric field [71–74]. By considering a permanent
electric field instead, the polarizability of particles of various shapes has been investigated
as well [81, 83], resulting, where comparison was possible, in good agreement with polariz-
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ability calculations using continuum theory [86–90]. However, to our knowledge, prior to
our 2011 publication [83] a permanent electric field had never been included in the CDM’s
Hamiltonian and, as a consequence, the dipole-dipole interaction between particles in an
external electric field has not been calculated self-consistently until now.

To fit in with our naming scheme, we shall dub the approach that utilizes the CDM
the “cluster of self-consistent dipoles” (CSCD) approach. In the case where each “cluster”
in fact consists of only one dipole and hence the CDM is applied to only two interacting
dipoles, we reserve a separate name and acronym: the “single self-consistent dipoles”
(SSCD) approach. The reason for this distinction is that in the special case of two
interacting dipoles, the set of linear equations can be solved analytically such that, for
the SSCD, we use an analytical expression instead of numerical linear algebra algorithms.
To our knowledge, this expression, presented in Sec. 6.3, has not been presented before.
The widely used SPD approach turns out to be the dominant long-distance approximation
of our new (SSCD) expression.

In this Chapter, we first introduce the CDM in Sec. 6.2 and generalize its formulation
somewhat to allow for the description of systems split up into chunks of matter that
are not necessarily of atomic proportions. Although we provide the tools for calculating
VdW interactions, in this work we concentrate on the results for electric field-induced
interactions. In Sec. 6.4 we compare our numerical results for the electric field-induced
interaction energy for various particle shapes, namely spheres, cubes, and rods, using the
various calculation techniques discussed above; i.e., the SPD approach, the CPD approach,
the SSCD approach, and the CSCD approach (which we deem to be the “exact” result if
the number of dipoles is large enough). We also vary the number of dipoles per cluster to
investigate how many dipoles are required for an accurate description of the interaction
energy. We find that the accuracy of the various approaches depends mainly on the degree
of anisotropy in the particle shape, with the SSCD approach performing well for spheres
and cubes, even better than the CPD approach. For rods, however, both single dipole
approaches (SSCD and SPD) are severely lacking in accuracy and the cluster approaches
(CSCD and CPD) give better results. Here, an approach that uses clusters of a very
small number of self-consistent dipoles turns out to give very good accuracy. As for the
question of how many dipoles are enough to accurately describe the electric field-induced
interaction, we find that the answer depends strongly on the particle shape, with cubes
and rods generally needing a smaller number of dipoles than spheres do. The reason
might be that a spherical shape is hard to approximate using identical chunks whereas,
for cubes and rods (which are described as cuboids), this is trivial even with a very low
number of chunks.

6.2 The CDM
In previous work [61, 62, 83–85], when considering physical systems using the CDM, the
atoms were usually assumed to consist of a nucleus and one electron bound to it by a
harmonic force. In such a model, the charges making up the induced dipole are ±e, where
e is the elementary charge, and the mass of the vibrating part of the atom is the electron
mass me. If the harmonic force is defined to have the characteristic frequency ω0, the
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atomic polarizability then follows by [51, 93]

α0 = e2

meω2
0
. (6.1)

The Hamiltonian H of a system of N of these atoms, in an external electric field E0 can
be written as

H ({di} , {ki}) = 1
2me

N∑
i=1

k2
i + e2

2α0

N∑
i=1

di · (Iδij − α0Tij) · dj − e
N∑
i=1

di · E0. (6.2)

Here, I is the 3× 3 identity matrix, ki is the momentum of the electron associated with
atom i, and di is this electron’s distance vector to the atom nucleus. The matrix Tij is
the dipole tensor

Tij =

(
3rijrij/r2

ij − I
)
/r3

ij if i 6= j,

0 if i = j,

where rij = ri − rj, rij = |rij| and 0 is a 3 × 3 matrix filled with zero’s. We note
here that by a canonical transformation ({di} , {ki}) → ({pi} , {k′i}), where pi = eui
and k′i = meṗi/e2, we could write the Hamiltonian (6.2) such that only the atomic
properties α0 and e2/me would be input parameters. For simplicity, we will continue to
use ({di} , {ki}) as coordinates, but we note that the CDM thus depends on only two
atomic properties (α0 and e2/me).

We wish to model systems where the “atoms” in fact represent “chunks” of matter
instead of physical atoms. For this purpose, we generalize the three atomic properties:
the charge of oscillator i becomes qi, its massmi, and the polarizability becomes αi, which
we choose to be a 3 × 3 tensor in order to allow for anisotropic “chunk” polarizabilities.
In terms of these quantities, the Hamiltonian reads

H ({di} , {ki}) =
1
2

N∑
i=1

ki ·m−1
i · ki + 1

2

N∑
i=1

di · qi ·
(
α−1
i δij −Tij

)
· qj · dj −

N∑
i=1

(qi · di) · E0,

where we defined the matrices mi ≡ miI and qi ≡ qiI. We now introduce 3N -dimensional
vectors K, D and E0, which are built up out of the ki, di, and copies of E0, respec-
tively. Furthermore, we define the 3N × 3N -dimensional matrices M ≡ diag ({mi}),
Q ≡ diag ({qi}), A ≡ diag ({αi}), and, lastly, T , built up out of all the Tij. In terms of
these quantities, the Hamiltonian reads

H (D,K) = 1
2K ·M

−1 · K + 1
2D · Q ·

(
A−1 − T

)
· Q · D − (Q · D) · E0,

and, since all the matrices involved are symmetric, the square can be completed such that

H = H0 + UE.

Here, H0 is the Hamiltonian of a set of shifted harmonic oscillators,

H0 = 1
2K ·M

−1 · K + 1
2 (D −D0) · Q ·

(
A−1 − T

)
· Q · (D −D0) ,
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with D0 a (time-independent) 3N -dimensional vector that describes the shift of the equi-
librium positions, satisfying the equation(

A−1 − T
)
· Q · D0 = E0. (6.3)

The constant potential energy shift due to the electric field reads

UE ≡ −
1
2E0 ·

(
A−1 − T

)−1
· E0. (6.4)

We switched the Hamiltonian variable D to D − D0, which is allowed since K is also
D −D0’s conjugate momentum.

The equations of motion that follow from the Hamilton equations can be combined
into:

∂2 (D −D0)
∂t2

= −M−1Q ·
(
A−1 − T

)
· Q · (D −D0) , (6.5)

which describes oscillatory modes about the shifted equilibrium of the form

D −D0 = Ck exp [iΩkt] , (6.6)

where Ck is a 3N -dimensional vector of constants and Ωk is an angular frequency. Sub-
stituting Eq. (6.6) into Eq. (6.5), we arrive at the eigenvalue equation

Ω2
kCk = S · Ck, (6.7)

where we defined the 3N × 3N matrix

S ≡M−1 · Q ·
(
A−1 − T

)
· Q. (6.8)

Because of the dimensions of S, Eq. (6.7) has 3N solutions labeled by k = 1, 2, . . . , 3N ,
each corresponding to a mode frequency Ωk. It is worthwhile to note that it can be
shown that the eigenvalues of S are also the eigenvalues of the matrix Ssym = M−1/2 ·
Q · (A−1 − T ) · Q ·M−1/2, albeit with different eigenvectors. This gives a computational
advantage since Ssym is symmetric, whereas S may not be. As a further note, if we
had chosen to use the ({pi} , {k′i}) coordinate system, we would have obtained S ′ =
F · (A−1 − T ), or S ′sym = F1/2 · (A−1 − T ) · F1/2, where F = diag

({
q2

i

mi
I
})

. S ′ and S ′sym
have the same eigenvalues as S and Ssym.

As mentioned, the CDM depends on the fractions q2
i /mi of the CDM-“atoms”. For

physical atoms, these quantities could be obtained from ω0, but if our “atoms” represent
multiple physical atoms, it is not a priori clear which reasonable value to choose for
q2
i /mi. In Sec. 6.3 we show, using the example of pair interaction between particles in the
simplified case where each chunk is identical, that the chunks’ characteristic frequency
ωd = q2

d/mdαd should in fact equal the characteristic frequency ω0 of the material we wish
to model.

From a quantum mechanical point of view, the sum of the normal mode frequencies
is the ground-state potential energy U0 of the Hamiltonian H0,

U0 = 1
2~

3N∑
k=1

Ωk, (6.9)
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where ~ is the reduced Planck constant. This energy U0 stems from the zero-point motion
of the harmonic oscillators and contains the VdW interaction energy of the system.

Re-examining the trial solution of Eq. (6.6), we note that the equilibrium (“average”)
electron-nucleus distance is not zero, but D0. Physically, this means that each chunk’s
(ground state) electron cloud is shifted by a distance given by its associated 3-dimensional
vectors contained in D0, such that average position of the electrons no longer coincides
with their nucleus. This gives rise to an average chunk dipole moment P = Q · D0 that
satisfies, from Eq. (6.3), (

A−1 − T
)
· P = E0. (6.10)

Thus, in terms of P , the electrostatic energy UE as defined in Eq. (6.4) is

UE = −1
2P · E0, (6.11)

which is consistent with the form of the energy of an induced dipole in an electric field;
note that the factor 1

2 arises from the fact that the dipole is induced, not permanent [51].
We can simplify Eq. (6.11) further by reverting to 3-dimensional vectors:

UE = −1
2ptot · E0,

where ptot is the total polarization of the N chunks:

ptot =
N∑
i=1

pi,

where pi is the polarization of chunk i. As a final step, we note that, as long as E0 is
spatially homogeneous, it turns out that ptot can always be written in terms of a 3 × 3
matrix and the applied electric field:

ptot = α · E0.

We call the matrix α the polarizability matrix of the atom cluster. Mathematically, it is
given by α = ∑

ij Bij, where Bij are 3 × 3 blocks of the matrix (A−1 − T )−1. However,
since matrix inversion is computationally more expensive than finding the solution to a
linear system such as Eq. (6.10), it is in practice more feasible to infer α by calculating
the three ptot’s that result from applying the electric field in each of the three Cartesian
directions. In terms of α, UE can be written as

UE = −1
2E0 ·α · E0. (6.12)

Closely related to the polarizability matrix is the enhancement factor matrix, which we
define as

f =
(

N∑
i=1
αi

)−1

α.

The enhancement factor quantifies the influence of chunk-chunk interactions on the overall
polarizability, since ∑N

i=1αi is the polarizability one would expect if one were to ignore
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these interactions. Note that if each chunk has the same isotropic polarizability αi =
α0I, the enhancement factor reduces to αi/Nα0, which is the familiar expression used in
previous chapters and in Ref. [81].

The energies U0 and UE of Eqs. (6.9) and (6.12) are total potential energies and,
thus, contain the interactions between all atoms, including each atom’s self-energy, i.e.,
the energy that the atom would have if there were no other atoms in the system. In this
work, we are mainly interested in interactions between colloidal particles, which we treat
as clusters of atoms. To obtain the interaction energy between two clusters of atoms,
we calculate, for a given separation and orientation of the clusters, the total potential
energies U0 and UE and subsequently subtract the energy that the clusters would have if
their separation were infinite. This is equivalent to subtracting each cluster’s self-energy,
i.e. the cluster’s energy as if there were no other clusters. We can write the two-cluster
interaction energy V (2)

0 as [85]

V
(2)

0 = U
(2)
0 − U

(1)
0,1 − U

(1)
0,2 ;

V
(2)
E has a similar expression. Here, U (2)

0 is the total potential energy of this system of two
clusters of atoms and U (1)

0,1 and U (1)
0,2 are the self-energy of cluster 1 and 2, respectively. In

this work, we only consider pair interactions and intend to compare the results of various
calculation techniques. For clarity, we therefore now modify the notation somewhat, so
that the pair interaction between clusters of atoms with self-consistent dipole moments
will from now on be referred to as V (CSCD)

0,X (for VdW) and V
(CSCD)
E,X (for electric field-

induced interaction), where we replace “X” by the cluster type that we are considering
(i.e., “sphere”, “cube”, or “rod”). The pair interaction in the special case where the
“clusters” of atoms in fact consist of only one atom each, is denoted by V (SSCD)

0 (for VdW)
and V (SSCD)

E (for electric field-induced interaction).

6.3 Identical Inducible Dipoles with Isotropic Polar-
izability

We now turn our attention to the specific case of two identical colloidal particles, each with
polarizability αp. For simplicity, we assume αp to be isotropic; that is, αp = αpI, where
αp is a scalar constant. We note that rods do not have an isotropic polarizability; we shall
indicate how we deal with this complication in Sec. 6.4.4. The particles are separated by
a distance r and an external electric field E0 is applied such that E0 makes an angle θ with
the line connecting the particle centers. We will use our theoretical framework to derive
expressions for calculating the interaction energy between these two particles by modeling
each as a cluster of Nd/p inducible dipoles, each with isotropic polarizability αd = αdI,
with αd a scalar constant. We also discuss the special case where each cluster consists
of only a single inducible dipole, and derive an analytical expression for the interaction
energy in this case. The interaction energy has two parts, namely a VdW part, which is
present even in the absence of an external electric field, and an electrostatic part, which
is the result of the interaction between the induced dipole moments of the particles. We
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will discuss application of the CDM to both interaction energies but, for the numerical
results, we will focus only on the electrostatic interaction.

For both interaction energies, the polarizability of the dipoles composing the clusters
has to be tuned such that the polarizability αc (αd) of the cluster of dipoles is close to
the desired polarizability αp. We do this by finding the root of the function αc (αd)− αp
using Ridder’s bracketing algorithm [118]. In the special case that each cluster consists
of only one dipole, we can simply set αd = αp.

6.3.1 Van der Waals Interaction
Apart from their polarizability αd, two more quantities associated with the chunks com-
posing the particles are relevant for VdW interaction, namely the oscillator’s mass md

and charge qd associated with each chunk. In the aforementioned case where each dipole
chunk has the same isotropic polarizability αd, S, as defined in Eq. (6.8), simplifies to

S = ω2
d [I − αdT ] , (6.13)

where ωd is given by

ω2
d = q2

d

mdαd
,

in analogy with Eq. (6.1).
In the simple case that each particle is modeled as a single dipole, we have αd = αp,

and since S has dimensions of only 6 × 6 we can, without loss of generality, assume a
coordinate system and analytically calculate T and its eigenvalues. Summing their square
roots, we arrive at a total (ground state) potential energy

U
(SSCD)
0 = 1

2~ωd
[√

1 + 2r̃−3 + 2
√

1 + r̃−3 + 2
√

1− r̃−3 +
√

1− 2r̃−3
]
,

where r̃ = r/α
1/3
d is the dimensionless distance between the particles. We note that U0

becomes complex-valued for r̃ < 21/3, which is indicative of a polarization catastrophe
occurring for those distances [64, 93]. The energy of the system for r̃ →∞ is 3~ωd, which
we subtract from U0 to obtain the interaction energy between the particles:

V
(SSCD)

0 = U0 − 3~ωd.

Expanding V
(SSCD)

0 to second order for small r̃−3, and substituting back αd = αp, we
arrive at the expression

V
(SSCD)

0 ' −3
4~ωd

α2
p

r6

(
αpr

−3 � 1
)
, (6.14)

which is the Van der Waals interaction. For single atoms, ωd = ω0, where ω0 is the
characteristic atomic frequency associated with the atoms. Moreover, for large distances,
Eq. (6.14) is expected to hold for clusters composed of multiple atoms as well, and the
interaction energy should scale quadratically with the amount of matter (i.e., the number
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of atoms) involved. This leads us to conclude that, for any number of composing atoms,
ωd in Eq. (6.14) should satisfy

ωd = ω0.

We can reason in the inverse direction as well. Suppose we start with the problem of
modeling the Van der Waals interaction between two particles with polarizability αp. This
can be done by dividing up the particle in a number of dipoles Nd/p and, as mentioned,
carefully tuning their αd such that the resulting clusters have exactly the polarizability
αp. If we perform the calculation with various dipole numbers Nd/p, we expect each
approximation to yield the same result at large distances, that is, Eq. (6.14) is independent
ofNd/p. Since we have made sure that αp is the same for each calculation, it follows that ωd
should also be independent of Nd/p. In this thought experiment, we can moreover choose
Nd/p as large as we like, and can therefore make it equal to the number of physical atoms
in the particles (in practice, this would be computationally infeasible for most realistic
particle sizes given the available computer power). In that case, since each dipole now
represents a single physical atom, we know that ωd should equal the characteristic atomic
frequency ω0 so, since ωd is independent of Nd/p, it should have this value for any Nd/p.
Thus, the dipoles in our model should have the characteristic frequency of the atoms that
they are meant to represent.

This is a convenient solution to the problem of setting a correct q2
d/md for the dipoles:

if we want to know ωd (which, since αd is known, is equivalent to knowing the frac-
tion q2

d/md), we can suffice with calculating e/√meα0, where α0 is the material’s atomic
polarizability.

6.3.2 Induced-Dipole Interaction
The electrostatic interaction energy is conceptually more straightforward to calculate,
because it does not involve the problematic quantities md and qd. In fact, the interaction
energy depends only on the inverse of the matrix (A−1 − T ). This inverse can in principle
be calculated analytically for any number of dipoles, but this calculation already becomes
infeasible when the number of dipoles exceeds two. Therefore, if the number of dipoles
per particle Nd/p > 1, we solve Eq. (6.10) numerically for P and take its inner product
with E0 [Eq. (6.11)] (this circumvents having to calculate α). On the other hand, if each
particle is modeled as a single dipole (Nd/p = 1), we can simply plug αd = αp into the
expressions that follow.

For two inducible dipoles in the electric field E0, the potential energy is

U
(SSCD)
E = αdE

2
0
r̃3 (−r̃3 + 2− 3 cos2 θ)

(r̃3 − 2) (r̃3 + 1) ,

where r̃ = r/α
1/3
d is the dimensionless distance between the dipoles. The energy at infinite

separation is −αdE2
0 , which is reasonable physically, since both particles in this case are

induced dipoles with dipole moment αdE0 and, thus, they each have energy −1
2αdE

2
0 .

Subtracting the energy at infinite separation from UE, we arrive at the interaction energy

V
(SSCD)
E (r̃, θ) = αdE

2
0
r̃3 − 2− 3r̃3 cos2 θ

(r̃3 − 2) (r̃3 + 1) . (6.15)
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This is the self-consistent interaction energy between a pair of inducible point dipoles in
an external electric field where, by “self consistent”, we mean that the dipoles have a
dipole moment equal to their polarizability αd multiplied by the local electric field (the
external electric field plus the electric field due to the other dipole). A simpler and more
commonly used method for calculating the interaction energy of two inducible dipoles in
an electric field is to impose upon each dipole a “permanent dipole” moment αdE0 and
use this setup to calculate the well-known dipole-dipole interaction energy [51], resulting
in

V
(SPD)
E (r̃, θ) = αdE

2
0

1− 3 cos2 θ

r̃3 . (6.16)

As it turns out, V (SPD)
E (r̃, θ) is exactly the first-order approximation of V (SSCD)

E (r̃, θ) for
small r̃−3: Taylor expanding Eq. (6.15) yields

V
(SSCD)
E (r̃, θ)
E2

0αd
' V

(SPD)
E (r̃, θ)
E2

0αd
− 1 + 3 cos2 θ

r̃6 +O
([
r̃−3

]3)
.

We note that the first correction term is always negative, indicating that V (SSCD)
E (r̃, θ)

has a larger attractive region than V
(SPD)
E (r̃, θ). Indeed, the angle θ

(SSCD)
0 at which

V
(SSCD)
E

(
r̃, θ

(SSCD)
0

)
= 0 is given by

θ
(SSCD)
0 (r̃) = arccos

√
r̃3 − 2

3r̃3
,

whereas this angle for V (SPD)
E (r̃, θ) is the limit θ(SSCD)

0 (r̃ →∞), which is the well-known
“magic” angle θ(SPD)

0 = arccos
√

1/3 ≈ 54.7◦. We note that θ(SSCD)
0 (r̃) increases as r̃ de-

creases, with as limiting value θ(SSCD)
0

(
r̃ ↓ 21/3

)
= π/2, indicating an attractive interaction

for all angles except π/2. This limiting case coincides with the occurrence of the aforemen-
tioned polarization catastrophe: V (SSCD)

E

(
r̃ ↓ 21/3, θ

)
diverges for all θ except θ = θ

(SSCD)
0

(in which case the limiting value is αdE2
0/3). We deem the values produced by V (SSCD)

E

for r̃ < 21/3 unphysical. A further difference between V
(SSCD)
E (r̃, θ) and V

(SPD)
E (r̃, θ) is

the relative strength of the attraction and repulsion for θ = 0 and θ = π/2. The ratio
between these two is a constant in the SPD approach, V (SPD)

E (r̃, 0) /V (SPD)
E (r̃, π/2) = −2,

but in the self-consistent (SSCD) case it is given by

V
(SSCD)
E (r̃, 0)

V
(SSCD)
E (r̃, π/2)

= −2 r̃
3 + 1
r̃3 − 2 . (6.17)

For large distances, Eq. (6.17) goes to the constant −2, while for r̃ ↓ 21/3 it goes to −∞,
which reflects the fact that V (SSCD)

E

(
r̃ ↓ 21/3, 0

)
diverges but V (SSCD)

E

(
r̃ ↓ 21/3, π/2

)
does

not.
Fig. 6.1 is a contour plot of V (SSCD)

E (r̃, θ) as a function of the location of the second
dipole, with the first being kept at the origin. Also plotted in the same figure are the
contours of V (SPD)

E (r̃, θ), as well as the line denoting the 54.7◦ magic angle. In this case,
trivially, the V (SPD)

E (r̃, θ) = 0 contour coincides with this line. We see that for small



The Self-Consistent Electric Field-Induced Dipole Interaction Energy
of Particles in an External Electric Field: Spheres, Cubes, and Rods 77

Figure 6.1: Contour plot of the interaction energy V (SSCD)
E /αdE

2
0 , as given in Eq. (6.15), of a

pair of inducible point dipoles with polarizability αd subject to an external electric field E0 that
points along r‖ (the vertical axis of the plot), as a function of the location

(
r⊥, r‖

)
of the second

inducible dipole. The dipole moments are calculated self-consistently, taking into account the
influence that the inducible point dipoles have on each other’s dipole moments. The contour
lines of the function V

(SPD)
E /αdE

2
0 of Eq. (6.16), which is the result of the single permanent

dipole (SPD) approach where each dipole has a fixed dipole moment equal to αdE0, are shown as
see-through lines. The hatched area is excluded from the plot: at distances r/α1/3

d ≤ 21/3 ≈ 1.26,
a polarization catastrophe occurs and V (SSCD)

E (r̃, θ) /αdE2
0 is no longer valid.



78 Chapter 6

separation, the V (SPD)
E (r̃, θ) contours are very different in shape and location than their

V
(SSCD)
E (r̃, θ) counterparts. For large separation, the contours start to coincide more,

as expected, since the first-order approximation dominates the Taylor series for large
distances.

It is also possible to analytically calculate the interaction energy of particles with
anisotropic polarizability. The simplest example of such particles are particles with a
diagonal polarizability matrix with only two independent entries, αxx and αzz. All par-
ticles with at least a 4-fold rotational symmetry axis have a polarizability of this form;
examples include rods, dumbbells, platelets, and bowls. In the following, we assume that
the electric field is pointing in the z-direction and that both particles are perfectly aligned
with it. Thus, the Cartesian coordinate system is defined by the electric field direction
and not the symmetry axis of the particles. In fact, rods and dumbbells align their ro-
tational symmetry axis along the electric field (i.e., in the z-direction), whereas bowls
and platelets align their rotational symmetry axis perpendicular to the electric field (i.e.,
in the x-y plane) [83], meaning that for rods and dumbbells, αyy = αxx, but for bowls
and platelets, αyy = αzz. However, as the value of αyy turns out to be irrelevant for
the mathematical expression of the interaction energy, the result is valid in both cases.
Keeping the first particle at the origin and parametrizing the position of the second by
the distance r and the polar angle θ (the angle between the electric field and the line
connecting the particles), the interaction energy is

V
(SSCD)
E, anistropic (r̃, θ, ηα) = E2

0αzz
(r̃3 − 2ηα − 3r̃3 cos2 θ)

(r̃3 + 1) (r̃3 − 2ηα)− 3 (1− ηα) r̃3 cos2 θ
, (6.18)

where r̃ = r/α1/3
zz and ηα = αxx/αzz, which always satisfies ηα < 1. This function is

plotted for ηα = 0.44 in Fig. 6.2, along with the contours of its first-order approximation,
which equals V (SPD)

E (r̃, θ) with αd = αzz.a The plot looks similar to the one that was
shown in Fig. 6.1, albeit squished together along the horizontal (r⊥-)axis.

6.4 Interaction between Cluster Pairs

6.4.1 Methods
We now proceed to numerically calculate the induced-dipole interaction energy between
pairs of clusters of atoms, which we model to represent micron-sized particles. Before
presenting the numerical results, we discuss the applied methods in practical terms, which
are the same for each cluster shape we consider. First, we set a desired particle size and
use it, together with the number of dipoles Nd/p to be used to model a particle and the
lattice type, to infer the lattice spacing a of the dipoles. Having thus fixed the positions of
the dipoles, we proceed to tune the dipoles’ polarizability αd such that the polarizability
αc of the cluster of dipoles is close to the desired polarizability αp of the particle we wish
to model.

aThe choice of ηα = 0.44 was made because it coincides with the observed ηα of the particular rod-
shaped particles that we consider in Sec. 6.4.4.
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Figure 6.2: Contour plot of the interaction energy V (SSCD)
E /αzzE

2
0 , as given in Eq. (6.18), of

a pair of inducible point dipoles, each with anisotropic polarizability αd = diag (αxx, αyy, αzz)
satisfying αxx/αzz = 0.44, subject to an external electric field E0 pointing in the z-direction, as
a function of the location of the second inducible dipole relative to the first in the x-z plane.
Note that restricting ourselves to this plane makes the value of αyy irrelevant for the value of
V

(SSCD)
E . The dipole moments are calculated self-consistently, taking into account the influence

that the inducible point dipoles have on each other’s dipole moments. The contour lines (see-
through) of the function V (SPD)

E /αdE
2
0 of Eq. (6.16), which is the result of the single permanent

dipole (SPD) approach where each dipole has a fixed dipole moment equal to αzzE0, are shown
as well. The hatched area, within which a polarization catastrophe occurs and V

(SSCD)
E is no

longer valid, is excluded from the plot.
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In choosing the polarizability αp, it is important to beware of the polarization catas-
trophe. As αd increases, the dimensionless lattice spacing ã = a/α

1/3
d decreases, and αc

increases until, for a certain ã, the polarization catastrophe occurs, with αc diverging
into a (ã− ãcat.)−1-like peak, where ãcat. is the dimensionless lattice spacing at which the
polarization catastrophe occurs. For ã < ãcat., the function αc is characterized by many of
these divergences, with ranges between the divergences where αc seems well-behaved but
where the values for computed physical quantities like V (2)

E cannot be trusted. Another
point of interest is that the exact value of ãcat. is dependent on the number of dipoles in
the system and their arrangement with respect to each other. Therefore, even though the
first divergence in theory makes it possible to create a cluster of dipoles with an arbitrarily
high cluster polarizability (by choosing an αd such that ã is only just above ãcat.), when
two of these clusters are allowed to interact, the location of the catastrophe may shift
to higher ã such that the system’s dimensionless lattice spacing becomes ã < ãcat.. This
could easily remain unnoticed, since αc is well-behaved between its divergences, but the
numerical results are not reliable in this case. Therefore, it is prudent to choose αc such
that the resulting αd is low enough and, thus, ã is high enough to be comfortably above
ãcat..

Having thus determined the properties of the dipoles and the lattice, we place a copy
(or, in the case of the misaligned clusters of subsection 6.4.5, a rotated copy) of the cluster
at a certain relative position of the cluster and numerically compute the total electrostatic
potential energy U (2)

E and each cluster’s self energy U (1)
E,1 and U (1)

E,2 (these are equal in the
case of identical clusters that are not rotated with respect to each other), and subtract this
from U

(2)
E to gain the interaction energy V (CSCD)

E at that relative position. We then modify
the relative position to calculate a new V

(CSCD)
E , and repeat this process until the desired

sample points have been run through. To generate a contour plot, we additionally have
to interpolate in order to gain approximate values for locations between sample points.
This occasionally creates slight artifacts in the plots and so, generally, features in the plots
smaller than the distance between the sample points should be ignored. The interpolation
method is always a 2nd-order spline, chosen because it smooths out the function the best
(judged by eye).

We can contrast the CDM’s self-consistent manner (i.e., the CSCD approach) of cal-
culating the induced-dipole interaction energy with the more usually applied method, in
which each dipole is assigned a permanent dipole pd = αpE0/Nd/p, and the total interac-
tion energy can be calculated by summing over pairs of dipoles that are not in the same
cluster:

V
(CPD)
E =

α2
pE

2
0

N2
d/p

∑
(ij)

1− 3 cos2 θij
r3
ij

,

where rij is the length of the vector (ri − rj), θij is the angle between r̃ij and E0, and
the sum, as mentioned, is assumed to run over the appropriate pairs (there are N2

d/p/2 of
these pairs).

In the next subsections, we will be comparing numerical results of various methods of
calculation. Apart from qualitative comparisons, we also wish to compare the methods
in a quantitative way. Suppose we wish to compare a numerically computed function
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g
(
r⊥, r‖

)
to another function h

(
r⊥, r‖

)
. We can then define a relative deviation

σ [g, h] =

√√√√√√
∫
S dr

[
g
(
r⊥, r‖

)
− h

(
r⊥, r‖

)]2
∫
S dr

[
h
(
r⊥, r‖

)]2 , (6.19)

where S is some integration area and dr = dr⊥dr‖ is an infinitesimal area element, as
a measure of how “wrong” g is, compared to h. If g is very close to h for all locations
in S, σ [g, h] will be much smaller than unity, whereas σ [g, h] will be of the order of,
or greater than, unity if g is off by amounts that are of the same order as h itself. Of
course, σ [g, h] has some limitations, such as the fact that, even if g is wrong in only a
small area, it may still receive a high σ [g, h] if its discrepancy in this area is large enough.
σ [g, h] also does not work well if h has divergences that g does not. For example, if S is
taken to be an infinite plane of which a disk of radius R around the origin is excluded,
σ
[
V

(SPD)
E , V

(SSCD)
E

]
goes to unity as R/α1/3

d ↓ 21/3. We can therefore not use σ to compare
V

(SSCD)
E and V (SPD)

E , because the obtained value would depend strongly on R. However,
most of the results that follow do not contain such divergences, such that σ is a useful
comparison tool.

As a last remark before moving on to the numerical results, we note that even though,
from the theory, αpE2

0 is a naturally occurring unit of measure for VE, we have chosen to
measure the interaction energy in the familiar units of kBT at room temperature (T =
293 K) instead, and have chosen specific experimental parameters, including an electric
field strength of E0 = 300 V mm−1, in order to gain numerical values for the energy. Since
VE is exactly quadratic in E0, the obtained numbers can be straightforwardly adapted to
other electric field strengths. Moreover, we note that VE is an extensive quantity, that is,
if we multiply all distances by a value λ1/3 and, simultaneously, the polarizability of the
particles αp by λ, the resulting interaction potential is scaled by the same factor. To see
this, we note that the polarizability of the system is α = Nαdf

({
ri/α1/3

d

})
, where f is

the enhancement factor of the system, only dependent on the dimensionless coordinates{
ri/α1/3

d

}
of the inducible point dipoles. Multiplying the dipole chunk polarizability αd

by λ and the coordinates ri by λ1/3, we note that the dimensionless coordinates, and
hence the enhancement factor of the system, remain invariant. Less trivially, we note
that the enhancement of each individual particle (cluster of dipole chunks) also remains
the same, such that we must have αp ∝ αd (for constant

{
ri/α1/3

d

}
). We note that our

scaling scheme has kept the polarizability per unit volume of the particles constant. A less
trivial dependence appears when we scale αp or the dimensions of the particle individually.
In general, we can say that, the lower the particles’ polarizability per unit volume, the
closer the CSCD interaction energy gets to the CPD interaction energy, which scales
quadratically in αp.

6.4.2 Numerical Results for Spheres
For spheres of diameter l, we put the dipoles on an fcc lattice and remove any dipoles that
are more than a distance l/2 away from the origin. IfNd/p is large enough, this will produce
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(a) (b)

(c) (d)

Figure 6.3: The interaction energy VE/kBT , at T = 293 K, of spherical particles with diameter
l = 1 µm and polarizability αp = 0.1 µm3, in an external electric field E0 = 300 V mm−1 along
the r‖-axis, as a function of the location of the second particle with respect to the first, calculated
using (a) CSCD with 959 dipole chunks per sphere, (b) SSCD, (c) SPD, and (d) CSCD with
225 dipole chunks per sphere (each approach is discussed in the text). Each plot uses the same
contour lines and color coding provided in the legend. The dashed lines represent the 54.7◦
“magic angle”. The contour lines of (a) are reproduced as see-through lines in panels (b-d). A
cross-section of the 959-chunk sphere is displayed in the center of panels (a-c), and that of a 225-
chunk sphere in panel (d). The hatched area, within which the spheres overlap, is excluded from
the plots. The dots in panels (a) and (d) represent the sample points at which the interaction
energy was explicitly calculated.
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σ
VE,min

kBT

VE,max

kBT

CSCD 0 −81.2 20.5
SSCD 0.15 −61.8 22.5
SPD 0.28 −49.4 24.7

CSCD(225) 0.086 −67.12 21.3

Table 6.1: Numerical quantities associated with the various calculation techniques for the
interaction energy between two spheres, as plotted in Fig. 6.3. VE,min and VE,max refer, respec-
tively, to the minimum and maximum value achieved by the calculation technique mentioned
in the leftmost column. σ is the relative deviation, as defined in Eq.(6.19), where h is always
V

(CSCD)
E,sphere and g is the VE associated with the technique given in the leftmost column. The last

entry, “CSCD(225)”, refers to the CSCD approach with spheres composed of 225 dipole chunks
each, instead of 959.

an approximately spherical cluster shape, while if it is smaller, the resulting cluster will
be more faceted. In Fig. 6.3(a), we plot the interaction energy V (CSCD)

E,sphere between a pair of
spheres as a function of the position of the second sphere, with the first being kept at the
origin. The spheres have a diameter l = 1 µm and a polarizability αp = 0.1 µm3. The
number of dipoles in each sphere is Nd/p = 959 (i.e., there are 1918 dipoles in the system),
the electric field is E0 = 300 V mm−1, and the energy is scaled with the thermal energy
at room temperature (T = 293 K). In Table 6.1, we give the maximum and minimum of
the interaction energy for the various approaches, and also give the relative deviation σ
of each approach compared to the CSCD approach. As integration area for σ, we use a
disk of radius 2.075l (which is also the plotted range), with an excluded region that is a
disk of radius l around the origin.

In Fig. 6.3(b), we plot the single self-consistent dipole potential V (SSCD)
E , while the

contour lines of V (CSCD)
E,sphere are shown in the same plot. We note that the single-dipole

approximation V (SSCD)
E is remarkably accurate, especially at angles perpendicular to the

electric field. The accuracy also increases with the distance between the spheres, a distance
of 2l already exhibiting an excellent agreement for all angles. The approximation is worst
near the zero-contour, i.e. the boundary between the attractive and repulsive regions of
the plot. While both calculation methods predict a θ0 greater than the magic angle of
54.7◦ (also denoted in the plot), the V (SSCD)

E result seems to consistently underestimate θ0,
its zero-contour at contact being about halfway between the zero-contour of V (CSCD)

E,sphere and
the 54.7◦-line. From Table 6.1, we see that the SSCD approach gives a good approximation
for the maximum repulsion but underestimates the maximum attraction strength.

In Fig 6.3(c), we judge the accuracy of V (SPD)
E by plotting it together with the contour

lines of V (CSCD)
E,sphere. We note that the contour lines of V (SPD)

E coincide less well with those
of V (CSCD)

E,sphere than do the contour lines of V (SSCD)
E in every region of the plot. From Table

6.1, we see that the SPD approach underestimates attractions even more than the SSCD
does, while also overestimating repulsions. Its σ-value is almost a factor 2 higher than
that of the SSCD approach.
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Figure 6.4: A comparison of the SPD and CPD approaches for calculating the sphere interac-
tion energy of Fig. 6.3. Plotted is the difference between the CPD and the SPD result, in units
of kBT .

Next, we compare our calculations using Nd/p = 959 spheres with those using Nd/p =
225 spheres. In Fig. 6.3(d), we plot V (CSCD)

E,sphere for Nd/p = 225, while showing the contours
of V (CSCD)

E,sphere with Nd/p = 959 in the same figure. We see that the agreement is in general
very good for large distances and depends on θ. The agreement is bad for θ = 0 at close
distances but improves as θ increases, with the best agreement at roughly θ ≈ π/4 for
close distances and θ ≈ π/6 for large distances. For values of θ beyond the zero-contour,
the agreement gradually deteriorates again but remains much better than the θ = 0 case
at close distance. This approach yields a σ-value that is about half of that of the SSCD
approach, but still underestimates attractions.

When we compare V (CPD)
E,sphere to the single permanent dipole approximation V

(SPD)
E , it

turns out that, perhaps surprisingly, the contours coincide so well that it makes more
sense to show the comparison by a difference plot (V (CPD)

E,sphere − V
(SPD)
E ), which is done in

Fig. 6.4. For the experimental values chosen, the difference between V (CPD)
E,sphere and V (SPD)

E

is much smaller than kBT for all values of r and θ, and σ
[
V

(SPD)
E , V

(CPD)
E,sphere

]
≈ 0.00095.

This implies that modeling a sphere by a number of dipoles and using the permanent
dipole approximation to calculate the interaction energy is equivalent to simply modeling
it as one dipole, i.e., using V (SPD)

E . We note, though, that both approximations are more
or less wrong, depending on r and θ, and that V (SSCD)

E is a better approximation than
both, while it is only slightly more complicated to compute than V (SPD)

E .
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Figure 6.5: The sphere interaction energy V (CSCD)
E,sphere (solid lines) and V (CPD)

E,sphere (dashed lines) of
the setup described in Fig. 6.3, (a) as a function of the angle θ between the electric field and
the line connecting the sphere centers, for various center-to-center distances (indicated to the
left, as multiples of the sphere diameter l = 1 µm), and (b) as a function of the center-to-center
distance r, for various angles θ, indicated in the plot.

To gain more quantitative data, we also plot V (CSCD)
E,sphere and V

(CPD)
E,sphere as a function of θ for

various r in Fig. 6.5(a), and as a function of r for various θ in Fig. 6.5(b). We again note
the bad agreement for small distances; e.g., from Fig. 6.5(a) we see that, at contact and at
θ = 0, V (CPD)

E,sphere underestimates the interaction energy by about a factor 1.6, corresponding
to about 30kBT for the experimental values used. V (CPD)

E,sphere also underestimates the angle
at which the crossover from attraction to repulsion occurs, as noted before. The agreement
becomes better as the distance increases, as evident by the curves coinciding more and the
crossover being more localized to 54.7◦ in the inset graph. In Fig. 6.5(b), the interaction
energy is plotted as a function of r for θ = 0, 0.3π (an angle close to the magic angle) and
0.5π. As expected, V (CPD)

E,sphere at θ = 0.3π is almost exactly zero for all distances, whereas
its V (CSCD)

E,sphere counterpart displays a significant attraction for close distances, up to roughly
14kBT .

In conclusion, for spheres, it seems unnecessary to use the SPD (or CPD) approach,
since the SSCD approach gives a better result and is not (significantly) more expensive
computationally. The CSCD approach with 225 chunks per sphere gives a better ap-
proximation than the SSCD approach but is also more computationally expensive and
still underestimates attractions at close distances, making it impractical for most applica-
tions. For spheres, the SSCD approach is therefore usually to be preferred over the other
approaches.

6.4.3 Numerical Results for Cubes

We now turn our attention to cubic-shaped particles with a rib length of l = 1 µm, which
we model by a simple cubic lattice of Nd/p = nl×nl×nl dipoles. The lattice spacing a is
given by a = 1 µm/nl. We fix the particle polarizability at αp = 0.2 µm3, about twice that
of the sphere, a value chosen because the cubes have about twice as much volume as the
spheres. In Table 6.2, we give some relevant quantities associated with each calculation
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technique plotted in Figs. 6.6 and 6.7. In the case of cubes, the integration area used in
the calculation of σ is given by |r⊥|, |r‖| < 2.6l.

In Fig. 6.6(a), we plot V (CSCD)
E,cube . We first note that the interaction strength is higher

than that of the spheres, presumably due to the fact that the cubes have a higher polariz-
ability but also due to their shape, which allows the cubes to bring many of their surface
dipoles very close together.

In Fig. 6.6(b) we plot V (SSCD)
E with the appropriate αp while also showing the contours

of V (CSCD)
E,cube . We see differently shaped contour lines and different levels of agreement

between the two functions for the attractive and repulsive regions of the plot. In the
attractive region, the contour lines of V (CSCD)

E,cube are flattened and seem to “wrap” around
the corner of the cube and V (SSCD)

E , which does not account for any anisotropy and thus
does not display these features, does not agree well with V

(CSCD)
E,cube , especially for small

distances. As can be seen from Table 6.2, the SSCD overestimates the attraction at close
distances. In the repulsive region of the plot, however, the contour lines of V (CSCD)

E,cube are
much more rounded and coincide better with V (SSCD)

E , although the latter underestimates
the repulsion at larger distances and overestimates it at smaller distances, as can also be
seen from Table 6.2.

The V (SPD)
E approximation is evaluated by plotting it together with the contour lines

of V (CSCD)
E,cube , in Fig. 6.6(c). The question of whether V (SSCD)

E or V (SPD)
E is a better approxi-

mation has a mixed answer. The contour lines of V (SSCD)
E follow the shape of the contours

of V (CSCD)
E,cube better around the boundary between the attractive and repulsive region, but

V
(SPD)
E better approximates the attractions at small and large distances and repulsions at

larger distances, while V (SSCD)
E does better for the repulsions at close distance (see also

Table 6.2). SPD’s value for σ is of the same order of magnitude, but slightly smaller than
that of SSCD.

Interestingly, splitting up the cube into 10×10×10 permanent dipoles does not improve
the approximation. In Fig. 6.6(d) we plot V (CPD)

E,cube with the contour lines of V (CSCD)
E,cube . Some

notable discrepancies are the fact that the zero-contour is bent in the wrong direction with
respect to the 54.7◦ line. Furthermore, the contour lines in the repulsive region do not
bend “inward” enough, whereas the ones in the attractive region bend inward too much.
Away from the corners (near θ = 0 and π/2), V (CPD)

E,cube makes up for these faults somewhat
by being a better approximation for the maximum attraction strength than V (SSCD)

E,cube and
a better approximation for the maximum repulsion than V (SPD)

E,cube. Still, with its σ in the
same ballpark as those of the latter two but with a significantly higher computational
cost, the CPD should not be the preferred approach for cubes. The difference between
V

(CPD)
E,cube and V (SPD)

E (not shown explicitly) is much larger in this case than in the case of
spheres, giving discrepancies of up to about 30kBT at close distance.

A major downside of V (CSCD)
E,cube is that it is computationally expensive to calculate

due to the high number of dipoles per particle (Nd/p = 1000). In Fig. 6.7(a) we plot
V

(CSCD)
E,cube (L = 5) and the contours of V (CSCD)

E,cube (L = 10), the former being the outcome of
the calculation if the number of dipoles is reduced by a factor of 8 (2 in each dimension).
Surprisingly, the accuracy of V (CSCD)

E,cube (L = 5) is very good; much better than the accuracy
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(a) (b)

(c) (d)

Figure 6.6: The interaction energy VE/kBT , at T = 293 K, of cubic particles with rib length
l = 1 µm and polarizability αp = 0.2 µm3 in an external electric field E0 = 300 V mm−1 along
the r‖-axis, as a function of the location of the second cube with respect to the first, calculated
using (a) CSCD with 1000 dipole chunks per cube, (b) SSCD, (c) SPD, and (d) CPD (each
approach is discussed in the text). Each plot uses the same contour lines and color coding
provided in the legend. The dashed lines represent the 54.7◦ “magic angle”. The contour lines
of (a) are reproduced as see-through lines in panels (b-d). A cross-section of the 1000-chunk
cube is displayed in the center of the plots. The hatched area, within which the cubes overlap,
is excluded from the plots. The dots in panels (a) and (d) represent the sample points at which
the interaction energy was explicitly calculated.
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(a) (b)

Figure 6.7: The interaction energy of the same setup as in Fig. 6.6, but now calculated using
the CSCD approach with (a) 125 and (b) 27 dipole chunks per cube. As in Fig. 6.6(b-d), the
contour lines resulting from the CSCD approach with 1000 chunks are displayed in the same
plots. Cross-sections of the 125- and 27-dipole cubes are displayed in the center of panels (a)
and (b), respectively.

σ
VE,min

kBT

VE,max

kBT

CSCD 0 −234.7 70.9
SSCD 0.29 −329.6 82.4
SPD 0.24 −197.8 98.9
CPD 0.25 −171.0 85.5

CSCD(125) 0.028 −252.8 71.0
CSCD(27) 0.086 −282.7 70.5

Table 6.2: Numerical quantities associated with the various calculation techniques for the
interaction energy between two cubes, as plotted in Figs. 6.6 and 6.7. VE,min and VE,max
refer, respectively, to the minimum and maximum value achieved by the calculation technique
mentioned in the leftmost column. σ is the relative deviation, as defined in 6.19, where h is
always V (CSCD)

E,cube , and g is the VE associated with the technique given in the leftmost column.
The approaches labeled as “CSCD(125)” and “CSCD(27)” refer to the CSCD approach with
5× 5× 5 and 3× 3× 3 dipoles per cube, respectively.
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of the Nd/p = 225 sphere versus the Nd/p = 959 one. As can be seen from the values in
Table 6.2, the 125-dipole cube has a low σ and approximates the maximum and minimum
well.

Inspired by the good agreement between the L = 5 cube and the L = 10 cube, we
also investigate a cube with an even smaller number of dipoles. In Fig. 6.7(b), we plot
V

(CSCD)
E,cube (L = 3) together with the contours of V (CSCD)

E,cube . The agreement is significantly
worse than that of the L = 5 case, with the L = 3 contour lines lying somewhere in-
between those of the L = 10 case and the single dipole case. However, its σ is still
a factor 4 lower than the SSCD, SPD, and CPD techniques, so it may be useful as a
relatively cheap alternative to using 125 dipoles per cube.

We have seen that for cubes, neither the SSCD nor the SPD approach gave very good
results, the former significantly overestimating attractions and somewhat overestimating
repulsions, and the latter underestimating attractions and significantly overestimating
repulsions. The CPD at first seems to be a compromise solution, underestimating at-
tractions somewhat more than the SPD does, but giving a better result for repulsions.
However, the CPD approach does not have a better σ-value and it comes at the cost of
computational speed, making any gain probably not worth it for most applications. If
accuracy is required, more can be gained by using the CSCD approach with smaller cubes.
These overestimate attractions somewhat, but are very accurate for repulsions.

6.4.4 Numerical Results for Rods
We model rods as Nd/p = nt × nt × nl cuboids of dipoles on a simple cubic lattice. The
shape of the rod is controlled by the parameter nt/nl, which we fix at 0.2. Because this
particle has different dimensions in different Cartesian directions, its polarizability matrix
is no longer proportional to the identity matrix, but has different values on the diagonal.
For a 5 × 5 × 25 rod, it turns out that αt ≈ 0.44αl, where αt is the polarizability in
the transverse direction and αl is the polarizability in the longitudinal direction. For a
3× 3× 15 rod, we have αt ≈ 0.43αl, i.e., the proportionality is almost identical to the one
for the 5 × 5 × 25 rod, which is in line with expectations since the enhancement factor
is only weakly dependent on the number of dipoles and instead depends mainly on the
particle shape [83]. For an even smaller rod, 1×1×5, the ratio is αt ≈ 0.40αl. We choose
αd such that αl = 0.3 µm3, and choose the length of the rod to be l = 3 µm, such that
its volume is 1.08 µm3. As for cubes and spheres, we calculate the relative deviation σ,
with an integration area given by |r⊥|, |r‖| < 1.72l, and list the result in Table 6.3.

In Fig. 6.8(a), we plot V (CSCD)
E,rod for nL = 25. Qualitatively, we see that the contours

seem stretched out in the longitudinal direction with respect to the case of cubes. As with
cubes, the zero-contour meets the excluded region near the tips of the particle, meaning
that in the case of rods, θ0 < 54.7◦, contrary to the case of cubes and spheres.

In Fig. 6.8(b) we plot V (SSCD)
E, anisotropic (r̃, θ, ηα) (where ηα ≈ 0.44) with the contours of

V
(CSCD)
E,rod visible in the same graph. We note that the agreement is very bad at the distances

plotted. Qualitatively, we note that the contours of V (SSCD)
E, anisotropic seem far more focused on

the center than those of V (CSCD)
E,rod , suggesting that the source of the disagreement is the fact

that with the former we try to describe a spatially anisotropic particle as a point dipole.
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(a) (b)

(c) (d)

Figure 6.8: The interaction energy VE/kBT , at T = 293 K, of rods with length l = 3 µm,
aspect ratio 0.2, and longitudinal polarizability αl = 0.3 µm3, in an external electric field E0 =
300 V mm−1 along the r‖-axis, as a function of the location of the second rod with respect to
the first, calculated using (a) CSCD with 625 dipole chunks per rod, (b) SSCD, (c) SPD, and
(d) CPD (each approach is discussed in the text). Each plot uses the same contour lines and
color coding provided in the legend. The dashed lines represent the 54.7◦ “magic angle”. The
contour lines of (a) are reproduced as see-through lines in panels (b-d). A cross-section of the
625-chunk rod is displayed in the center of the plots. The hatched area, within which the rods
overlap, is excluded from the plots. The dots in panels (a) and (d) represent the sample points
at which the interaction energy was explicitly calculated.
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(a) (b)

Figure 6.9: The interaction energy of the same setup as in Fig. 6.8, but now calculated using
5 dipole chunks per rod in (a) the CPD and (b) the CSCD approach. As in Fig. 6.8(b-d),
the contour lines resulting from the CSCD approach with 625 chunks are displayed in the same
plots. Cross-sections of the 5-dipole rods are displayed in the center of the plots.

The function could not be calculated at locations close to the origin, since these points lie
inside the forbidden region of V (SSCD)

E, anisotropic. Plotted in Fig. 6.8(c) is a comparison between
V

(CSCD)
E,rod and V (SPD)

E , which displays a similarly bad agreement. Note that in both of these
plots, the minimum of the potential is no longer located at the tip of the rod but near the
center instead, such that both the SSCD and the SPD predict that two dipolar rods to
prefer to lie side-by-side instead of head-to-toe, which is clearly unphysical. Due to the
problematic nature of both these functions, σ could not be evaluated for V (SSCD)

E, anisotropic and
is very large for V (SPD)

E , and hence neither was included in Table 6.3.

In Fig. 6.8(d), we plot V (CPD)
E,rod for nl = 25, together with the contours of V (CSCD)

E,rod (also
for nl = 25). The agreement is much better than in panels (b) and (c), such that we zoom
in on the upper right quadrant in order to be able to make out the differences better. We
see a similar type of disagreement as the one we saw for cubes: the zero-contour, although
this time on the correct side of the 54.7◦ line, gets bent too much to small angles and,
in general, V (CPD)

E,rod seems to underestimate attractions. We notice that V (CPD)
E,rod ’s contours

bend inwards too much in the attractive region, and do not bend enough in the repulsive
region. Repulsions at high θ are about right, except for close distances, where, as can be
seen from Table 6.3, the CPD approach overestimates repulsions.
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σ
VE,min

kBT

VE,max

kBT

CSCD 0 −108.6 68.4
CPD 0.23 −124.0 85.9

CPD(5) 0.25 −123.3 105.8
CSCD(5) 0.15 −147.0 87.9

Table 6.3: Numerical quantities associated with the various calculation techniques for the
interaction energy between a pair of rods, as plotted in Figs. 6.8 and 6.9. VE,min and VE,max
refer, respectively, to the minimum and maximum value achieved by the calculation technique
mentioned in the leftmost column. σ is the relative deviation, as defined in 6.19, where h is
always V (CSCD)

E,rod , and g is the VE associated with the technique given in the leftmost column.
The approaches labeled as “CSCD(5)” and “CPD(5)” refer to the CSCD and CPD approach,
respectively, with 1× 1× 5 per rod, respectively.

After drastically reducing the number of dipoles to 1 × 1 × 5, we note that V (CPD)
E,rod ’s

accuracy remains the same, as illustrated in Fig. 6.9(a), where V (CPD)
E,rod for nL = 5 is plotted

together with V (CSCD)
E,rod for nL = 25. From Table 6.3 we can confirm that the accuracy is

similar, although the CPD with nL = 5 overestimates repulsions at close distances.
The best agreement for the nl = 5 case is reached when we plot V (CSCD)

E,rod for nl = 25
with the contours of V (CSCD)

E,rod for nl = 5, in Fig. 6.9(b). We note a good agreement,
especially considering the low number of dipole chunks. As can be seen in Table 6.3,
while this approximation overestimates the maximum attraction, its σ is somewhat lower
than the other two reviewed approximations, such that it is the best approximation found
for rods.

We see that in the case of rods, to gain any good results, we need to use a technique
that employs multiple chunks per rod. The cheapest of these is the CPD approach with
5 dipoles per rod. This approach, however, significantly overestimates repulsions and, if
more accuracy is required, the SSCD with 5 chunks will provide improvement. Increasing
the number of dipole chunks in the CPD approach will not improve the accuracy much.

6.4.5 Numerical Results for Misaligned Particles
So far, we have only considered the interaction energy between aligned cubes and rods. For
rods, the reason for this choice is that, if the electric field is strong enough, even a single
rod will align along the field due to its anisotropic polarizability. However, situations
where misaligned rods interact may still occur, for example if the electric field is weaker.
Cubes do not individually align in an electric field [83] and therefore interaction between
misaligned cubes seems plausible.

Investigating the interaction between misaligned clusters, however, causes the practical
problem that the parameter space becomes very large, making it impossible to discuss
all the possible orientations here. We therefore restrict ourselves to particles that are “as
misaligned as possible”. For rods, this means that we rotate one rod with respect to the
other by a 90◦ angle around an axis perpendicular to the rod. Thus, in our plots, the rod
at the origin is still pointing in the direction of the electric field (along the r‖-axis of the
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plots), but the rod being moved is lying horizontally (along the r⊥-axis of the plots). For
cubes, we first rotate the second particle by a 45◦ angle around the axis parallel to r⊥,
and subsequently by an angle equal to arctan

(√
2/2

)
around the axis perpendicular to

both r⊥ and r‖. This way, we obtain a setup where, if the line connecting the centers of
the particle is either approximately perpendicular or parallel to the electric field, a corner
of the second cube is turned towards a face of the first.

The particles considered in this subsection are the same as the cubes and rods con-
sidered above; i.e., cubes with a rib length of 1 µm and a polarizability of 0.2 µm3, and
rods with an aspect ratio of nt/nl = 0.2, a length of 3 µm, and a polarizability in the
longitudinal direction of 0.3 µm3.

Misaligned Rods

An analytical expression for the self-consistent interaction energy of point dipoles with
anisotropic polarizabilities diag (αt, αt, αl) and diag (αl, αt, αt), where, for rods, αt and
αl are the transverse and longitudinal polarizabilities, respectively, such that αt < αl, is
given in Appendix D. Taylor-expanding this expression to first order, we gain the SPD
variant,

V
(SPD)
E,misal. (r̃, θ, ηα) = E2

0αl
ηα − 3ηα cos2 θ

r̃3

= E2
0αtαl

1− 3 cos2 θ

r3 , (6.20)

where ηα = αt/αl. Eq. (6.20) is also the expression to be used for the pair interactions
composing the CPD approach. Alternatively, we can continue to use Eq. (6.16) with
αd = αl/Nd/p for the pair interactions and multiply the end result by αt/αl. We note here
that to gain αt/αl, we have to use the CDM, which causes the SPD and CPD methods
to no longer be entirely independent of the CDM. For our rods, αt/αl ≈ 0.44, such that
excluding this extra factor would make the CPD a very bad approximation. As previously,
we calculate the relative deviation σ with an integration area given by |r⊥|, |r‖| < 1.38l,
and list the result in Table 6.4.

In Fig. 6.10(a), we plot V (CSCD)
E, misal. rod as a function of the location of the second rod. One

feature we note are the flattened contour lines in the attractive region at small distances,
which correspond to the second rod “sliding” over the first which, if the ends are relatively
far away, does not change the interaction energy significantly. Another feature is the fact
that the zero-contour starts out coinciding almost exactly with the 54.7◦-line, but at
longer distances bends towards higher θ. At even larger distances, the line does go back
to 54.7◦. Lastly, we also note the extreme inward bending of the contour line closest to
contact in the repulsive region. We speculate that if r‖ is somewhat above zero and the
rods are touching, a significant part of the stationary rod, the “lower” part, is located
such that its dipolar interaction with the tip of the moving rod is attractive (because the
dipole moments of the interacting chunks lie approximately head-to-toe), such that the
overall interaction becomes less repulsive. If the second rod is moved somewhat away,
however, the angle between the line connecting the lower part of the stationary rod and
the tip of the second rod becomes larger and the interaction between these parts becomes
less attractive or even repulsive, making the overall interaction more repulsive.
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(a) (b)

(c) (d)

Figure 6.10: The interaction energy VE/kBT , at T = 293 K, of “misaligned” rods (explained
in the text) with length l = 3 µm, aspect ratio 0.2, and longitudinal polarizability αl = 0.3 µm3,
in an external electric field E0 = 300 V mm−1 along the r‖-axis, as a function of the location
of the second rod with respect to the first, calculated using (a) CSCD with 625 dipole chunks
per rod, (b) SSCD, (c) SPD, and (d) CPD (each approach is discussed in the text). Each plot
uses the same contour lines and color coding provided in the legend. The dashed lines represent
the 54.7◦ “magic angle”. The contour lines of (a) are reproduced as see-through lines in panels
(b-d). A cross-section of the 625-chunk rod is displayed in the center of the plots. The hatched
area, within which the rods overlap, is excluded from the plots. The dots in panels (a) and (d)
represent the sample points at which the interaction energy was explicitly calculated.
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σ
VE,min

kBT

VE,max

kBT

CSCD 0 −69.4 10.2
SSCD 0.49 −35.2 15.8
SPD 0.51 −32.7 16.3
CPD 0.15 −53.9 13.1∗

CSCD(5) 0.071 −71.3 13.5
CSCD(5, mod) 0.12 −78.6 14.9
CSCD(135) 0.018 −69.5 11.1

CSCD(135, mod) 0.018 −71.2 11.4

Table 6.4: Numerical quantities associated with the various calculation techniques for the
interaction energy between two misaligned rods (where the second rod is rotated by a 90◦ angle
with respect to the first), as plotted in Figs. 6.10 and 6.11. VE,min and VE,max refer, respectively,
to the minimum and maximum value achieved by the calculation technique mentioned in the
leftmost column. σ is the relative deviation, as defined in 6.19, where h is always V (CSCD)

E,misaligned rod,
and g is the VE associated with the technique given in the leftmost column. The approaches
labeled as “CSCD(5)” and “CSCD(135)” refer to the CSCD approach with 1×1×5 and 3×3×15
dipole chunks per rod, respectively. The “CSCD(5, mod)” and “CSCD(135, mod)” techniques
are the same except that, at the end of the calculation, the interaction energy is multiplied
by a correction factor. The maximum value predicted by the CPD (marked by an asterisk) is
attained not at r‖ = 0 but at r‖ ≈ 0.38l. The value of the interaction energy predicted by the
CPD at location

(
r⊥, r‖

)
= (0.6, 0) l is approximately 10.8kBT .

In Fig. 6.10(b), we plot V (SSCD)
E, misal. rod together with the contour lines of V (CSCD)

E, misal. rod. The
agreement is fair for larger distances but becomes bad at low distance. As is also clear
from Table 6.4, at close distances the SSCD underestimates attractions and overestimates
repulsions.

In Fig. 6.10(c), we plot V (SPD)
E, misal. rod together with the contour lines of V (CSCD)

E, misal. rod. We
note that this plot looks very similar to the one for V (SSCD)

E, misal. rod. This is not very surprising,
because, due to the misaligned nature of the rods, the center-to-center distance is always
relatively large such that the SSCD and SPD agree well. The numerical quantities listed
in Table 6.4 are also very similar when comparing the SSCD and SPD approaches.

Fig. 6.10(d) displays V (CPD)
E, misal. rod, again with the contour lines of V (CSCD)

E, misal. rod. Here we
see a behavior similar to the one observed with cubes: the zero-contour bends towards
the attractive region, the contours in the attractive region bend inwards too much, and,
on the repulsive side, the contours do not bend inwards enough. We also note that the
CPD predicts the strongest repulsions at locations where the center of the second rod is
almost at the same r‖ as the tip of the first rod. The CPD approach does a better job
at predicting the maximum attraction and repulsion strength than the SPD and SSCD
approach, as can be seen in Table 6.4, and is therefore rewarded with a σ that is lower
by more than a factor 3. We note here that, while not shown explicitly, our numerical
results show that the CPD with 1 × 1 × 5 chunks per rod has a similar accuracy as the
CPD with 5× 5× 25 chunks per rod.
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(a) (b)

(c) (d)

Figure 6.11: The interaction energy of the same setup as in Fig. 6.10, but now calculated
using the CSCD approach with (a) 135 and (b) 5 dipole chunks per rod. In (c) and (d), the
interaction energies of (a) and (b), respectively, were multiplied by a constant correction factor.
As in Fig. 6.10(b-d), the contour lines resulting from the CSCD approach with 625 chunks are
displayed in the same plots. Cross-sections of the 135- and 5-dipole rods are displayed in the
center of panels (a) and (c), and (b) and (d), respectively.
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In Fig. 6.11, we investigate the accuracy when reducing the number of dipole chunks
per rod. In Fig. 6.11(a), we plot the interaction energy for V (CSCD)

E, misal. rod (nl = 5) with
1 × 1 × 5 dipoles per rod, together with the contour lines of V (CSCD)

E, misal. rod (nl = 25) (i.e.,
the 5 × 5 × 25 rod used in Fig. 6.10(a)). From the plot it appears as if the agreement
is not very good; much worse than was the case for aligned rods with 5 dipoles per rod.
However, the numerical values of Table 6.4 contradict this assessment, showing a σ twice
as low as the one for CPD and a good approximation of the interaction energy at close
distances.

If we do not reduce the number of dipole chunks as dramatically, the agreement be-
comes better. In Fig. 6.11(b), we plot the interaction energy V (CSCD)

E, misal. rod (nl = 15), which
corresponds to a 3× 3× 15 rod, together with the contour lines of V (CSCD)

E, misal. rod (nl = 25).
Clearly, the agreement is much better, which can also be seen from the fact that σ has
decreased almost by a factor 4 and that the maximum attraction and repulsion are even
closer to those of V (CSCD)

E, misal. rod (nl = 25) (see Table 6.4). We note that in both Figs. 6.11(a)
and 6.11(b), we see some “bumps” in the interaction energy, which is due to the discretiza-
tion.

The relatively good agreement of the CPD of Fig. 6.10(d) was achieved by using the
correct fraction αt/αl as an overall multiplier of the interaction energy. We note, in con-
trast, that this fraction is slightly different for nl = 5 and nl = 15 rods than for nl = 25
rods. It is not hard to see that therefore, at large distances, the results of the low-Nd/p

CSCD approaches are off by approximately a factor 0.40/0.44 for nl = 5 rods and 0.43/0.44
for nl = 15 rods (the ratios αt/αt, as mentioned, being 0.40, 0.43, and 0.44 for nl = 5, 15
and 25, respectively). Dividing the results by these factors significantly improves their ac-
curacy as perceived from the plots, as can be seen in Figs. 6.11(c) and (d), which plot the
“modified” interaction energies V (CSCD, mod)

E, misal. rod (nl = 5) and V
(CSCD, mod)
E, misal. rod (nl = 15), respec-

tively, both with the contour lines of V (CSCD)
E, misal. rod (nl = 25). We see that the contour lines

of V (CSCD, mod)
E, misal. rod (nl = 5) now lie very close to those of V (CSCD)

E, misal. rod (nl = 25), while those
of V (CSCD, mod)

E, misal. rod (nl = 15) are almost indistinguishable from those of V (CSCD)
E, misal. rod (nl = 25).

Still, at contact, our approximation has become worse, and σ has even increased some-
what in the case of nl = 5 rods. This is entirely due to the discrepancies at close distance:
if we integrate only over an area that does not include the smaller relative distances, the
σ-values quickly become much better in the modified than in the unmodified case.

In conclusion, we see that for misaligned rods, similarly to aligned ones, the single-
dipole approaches SSCD and SPD do not give good results and we therefore need to
split up the particles into multiple chunks. Using the CPD will give fair results and is
cheap if not many dipoles are used (which, as mentioned, has little influence on accuracy).
However, the CPD has the problematic property that the location of maximum repulsion
is situated in the wrong place. If more accuracy is needed, the CSCD with 5 dipoles seems
the best option. If long-range interactions are more important than short-range ones, it is
advisable to include the extra correction factor mentioned, but this will negatively affect
the accuracy at (very) short range.
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(a) (b)

(c) (d)

Figure 6.12: The interaction energy VE/kBT , at T = 293 K, of “misaligned” cubes (explained
in the text) with rib length l = 1 µm and polarizability αl = 0.2 µm3, in an external electric
field E0 = 300 V mm−1 along the r‖-axis, as a function of the location of the second cube with
respect to the first, calculated using (a) CSCD with 1000 dipole chunks per rod, (b) SSCD, (c)
SPD, and (d) CPD (each approach is discussed in the text). Each plot uses the same contour
lines and color coding provided in the legend. The dashed lines represent the 54.7◦ “magic angle”.
The contour lines of (a) are reproduced as see-through lines in panels (b-d). A cross-section of
the 1000-chunk cube is displayed in the center of the plots. The hatched area, within which the
cubes overlap, is excluded from the plots. The dots in panels (a) and (d) represent the sample
points at which the interaction energy was explicitly calculated.
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Misaligned Cubes

In Fig. 6.12(a), we plot the interaction energy V (CSCD)
E, misal. cube that is the result of an CSCD

calculation with 10×10×10 cubes. Apart from the differently-shaped excluded region, the
plot looks similar to the ones shown for spheres, showing a similarly expanded attractive
region. However, we note that the plot has lost one of its symmetries: instead of being
invariant under 90◦ rotations, it is now only invariant under 180◦ degree rotations. This is
not only due to the shape of the excluded region but also because the shape of the contour
lines is slightly different. For instance, the zero-contours to the upper left and lower right
take much longer to close in on their respective 54.7◦ lines than the zero-contours to the
upper right and lower left. Another difference with the spherical plots is that repulsions
seem to be somewhat stronger relative to the attractions, which can also be seen from
Table 6.5, where the minimum and maximum value for the interaction energy are listed
for each calculation approach, as well as each approach’s value of σ, which is calculated
using an integration area defined by |r⊥|, |r‖| < 3.15l.

When comparing the CSCD result with the SSCD result by plotting V (SSCD)
E, misal. cube with

the contour lines of V (CSCD)
E, misal. cube, as done in Fig. 6.12(b), we note, first of all, a rather

good agreement. The only areas where the SSCD is off is close to the lower left and upper
right edges of the excluded region, where the CSCD zero-contours bend inwards more.
We note that, because the SSCD result is 4-fold symmetric, we can also more clearly
make out the asymmetries in the CSCD result. Examining the values in Table 6.5, we
note that the SSCD approximates the attraction and repulsion strengths at contact rather
well, such that it has a low σ-value.

In Fig. 6.12(c), we plot the result from the SPD approach, V (SPD)
E, misal. cube, again together

with the contour lines of V (CSCD)
E, misal. cube. As could be expected, the SPD does not capture the

behavior of the contour lines near the zero-contours well. However, as is clear from Table
6.5, it also gives a bad approximation for the maximum attraction. Its approximation for
the repulsion is somewhat better but still further off than the SSCD approximation. The
overall σ-rating is therefore a factor two higher than that of the SSCD result.

In Fig. 6.12(d), we also examine V (CPD)
E, misal. cube, i.e., the result from the CPD approach.

Both by eye and by the values in Table 6.5, we can see that the CPD certainly does not
improve the approximation but rather makes it somewhat worse.

In Figs. 6.13(a) and 6.12(b), we examine the accuracy of CSCD approaches with low
numbers of dipole chunks per cube (5×5×5 and 3×3×3, respectively). In both plots, the
contour lines of the CSCD approaches with low dipole numbers almost exactly coincide
with those of the CSCD with 10× 10× 10 dipole chunks, showing that their accuracy is
very good. This is confirmed by the values in Table 6.5, which shows small values for σ
and good agreement with the maximum and minimum interaction energy.

In conclusion, we note that for misaligned cubes, while all the approximations did
relatively well, the self-consistent approaches clearly outperformed their permanent-dipole
counterparts. In particular, the SSCD did remarkably well, especially considering its
relatively weak performance for aligned cubes. The CSCD approaches with low dipole
numbers also did very well but we note that, because of the SSCD’s excellent performance,
the former seem necessary (for rotated cubes) only if a high level of precision is required.
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(a) (b)

Figure 6.13: The interaction energy of the same setup as in Fig. 6.12, but now calculated
using the CSCD approach with (a) 125 and (b) 27 dipole chunks per cube. As in Fig. 6.12(b-d),
the contour lines resulting from the CSCD approach with 1000 chunks are displayed in the same
plots. Cross-sections of the 125- and 27-dipole cubes are displayed in the center of panels (a)
and (b), respectively.

σ
VE,min

kBT

VE,max

kBT

CSCD 0 −95.2 36.0
SSCD 0.071 −92.0 39.8
SPD 0.18 −77.6 43.3
CPD 0.19 −74.9 41.2

CSCD(125) 0.0092 −94.6 36.2
CSCD(27) 0.022 −94.3 36.1

Table 6.5: Numerical quantities associated with the various calculation techniques for the
interaction energy between two misaligned cubes (where the second cube is rotated such that,
at polar angles θ = 0 and π/2, one of its corners points into a face of the first cube), as plotted
in Figs. 6.12 and 6.13. VE,min and VE,max refer, respectively, to the minimum and maximum
value achieved by the calculation technique mentioned in the leftmost column. σ is the relative
deviation, as defined in 6.19, where h is always V (CSCD)

E, misal. cube, and g is the VE associated with
the technique given in the leftmost column. The approaches labeled as “CSCD(125)” and
“CSCD(27)” refer to the CSCD approach with 5×5×5 and 3×3×3 dipoles per cube, respectively.
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6.5 Conclusion

We have introduced and generalized the Coupled Dipole Method (CDM) to include polar-
izable matter chunks that are not necessarily of atomic proportions. We used the CDM
to derive an expression for the self-consistent interaction energy for two inducible point
dipoles. We compared this result to the commonly used method of pre-assigning dipole
moments to calculate the interaction energy. We found that the expression derived for
the latter method is a first-order Taylor approximation in r−3 of the “full” expression
obtained using the self-consistent method.

We then proceeded to numerically evaluate the accuracy of various techniques for cal-
culating the electric-field interaction energy of various particle shapes. The techniques
considered were the SPD, where the particles are treated as point dipoles with pre-assigned
dipole moments, the SSCD, where the particles are still treated as point dipoles but have
self-consistent dipole moments, the CPD, where the particles are split up into chunks
with pre-assigned dipole moments, and the CSCD, where the chunks instead have self-
consistent dipole moments, calculated using the CDM. The particle shapes considered
were spheres, cubes, and rods. For cubes and rods we considered the case where the par-
ticles are aligned with respect to each other and the electric field, and the case where the
particles were “as misaligned as possible”. For each shape and technique, the CSCD with
the most dipole chunks was considered to be the “exact” result and the other techniques
were judged according to their agreement with it.

We found that, for spheres, the SSCD approach does better than the other techniques,
except the CSCD approach with a reduced number of dipoles. However, the latter is
computationally expensive for the limited improvement it provides. The SPD and the
CPD were found to give almost identical results, such that, if the permanent dipole
approximation is used, there is no point in splitting up the sphere into multiple chunks.
For aligned cubes, neither the SSCD, SPD, nor CPD gave very satisfactory results. In this
case, the SPD and CPD approaches do not give identical results, but the CPD approach
is not more accurate than the SPD, such that, if using a permanent dipole approach,
splitting up a cube into multiple chunks is not advisable. If using a self-consistent dipole
approach, however, splitting up the cube into multiple chunks does improve the accuracy
significantly, with a 3×3×3 cube already giving decently accurate results (when compared
to a 10 × 10 × 10 cube). For misaligned cubes, the SSCD did better than the SPD and
CPD (where, again, the latter is not more accurate than the former). Rods are the
only particle studied for which the CPD is worthwhile. In fact, splitting up the rod into
multiple chunks is absolutely crucial for gaining accurate results, regardless of whether a
permanent or a self-consistent dipole approach is used. However, if using the CPD, the
lowest possible number of chunks that gives the correct aspect ratio should be preferred,
because splitting up the rod into more chunks does not improve the accuracy of the CPD.
For the CSCD, we saw good agreement even if using the lowest possible number of chunks.

Speculating on the effects of using the interaction energy obtained from the SSCD
approach instead of the result from the usual SPD for simulations, we note that the SSCD
approach in general gives stronger attractions and weaker repulsions, especially at close
distances. Therefore, it seems not unreasonable to assume that the SSCD would result
in a widening of the parameter regime for which crystal phases such as body-centered
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tetragonal and body-centered orthorhombic lattices, which are based on shifted strings,
are stable. On the other hand, because repulsions are weaker, it becomes less important
for a string to be shifted exactly half a unit cell with respect to its neighbors. As a
consequence, we might also see more stable string fluids, where the particles form strings
in the direction of the electric field, but where the strings are positionally disordered with
respect to each other. Another interesting direction of research might be to study one
of the interaction energies resulting from the CSCD or CPD [119]. The most obvious
particle shape to investigate this for is the rod, since the effect of splitting up this particle
into multiple chunks is significant even if the number of chunks is low, given the very bad
agreement between the single dipole approaches (SSCD and SPD) and the CSCD result
and the comparatively good accuracy of the cluster approaches (CPD and CSCD with a
low number of chunks).

We note here that the SSCD and CSCD approaches, though they use self-consistent
dipole moments, have, in this chapter, only been used to study interactions between
particle pairs in the absence of other particles. It is of interest to investigate what effect
the presence of other particles would have on these interactions; in other words, to study
the many-body interactions between polarizable particles in an external electric field.
This might be done in simulations, although the large-matrix manipulation involved in
the CDM would make such simulations rather cumbersome, but the many-body effects
might also be investigated by, for example, simply studying the interaction between a pair
of particles in the presence of a third particle. This is left for future study.
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Miscellaneous

We discuss three studies with a promising basis for further research. We first study
the density of states of chains of Lorentz atoms, and investigate whether specific modes
might be responsible for the interaction between two of these chains. We also derive
theoretically a density of states function that agrees with the numerical results. Next,
we discuss modes in interacting squares of Lorentz atoms and investigate what type of
modes is responsible for the energy difference when moving one square with respect to the
other. The results indicate that the responsible modes are those that concentrate their
amplitude of vibration near the gap between the squares. However, we also show that
“ordinary” modes can transform into such surface modes and vice versa, such that it does
not appear to be possible to predict which modes will become surface modes. Lastly, we
discuss the interaction of an inducible dipole and a chain of inducible dipoles (a rod) with
a conducting plate under the influence of an electric field. To this end, we extend the
CDM somewhat to include image dipoles, which are similar to image charges.
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7.1 Introduction

The three sections of this chapter correspond to three separate studies. Sec. 7.2 describes
a study into the density of states of dipole polymers: i.e., it addresses the question of
which mode frequencies are more and which are less prevalent in chains of Lorentz atoms.
It also investigates the effect of a second nearby polymer, which could potentially have
allowed us to identify modes that change the most and, hence, contribute most to the
interaction energy. Unfortunately, no such modes could be identified. We proceed to
theoretically calculate the density of state function of an infinite dipole chain.

Sec. 7.3 studies in detail the modes of interacting squares of Lorentz atoms, looking at
what distinguishes modes that contribute more to the interaction energy from modes that
contribute less. It is found that modes that are localized near the gap between the squares
contribute most but, unfortunately, since the modes develop as a function of distance, any
mode can transform into such a surface mode and it is not clear how to predict which
modes will do so.

Sec. 7.4 investigates the effect of a conducting plate near coupled Lorentz atoms.
It shows that the method of image charge (in our case, image dipoles) can readily be
extended to the CDM, such that the interaction between an electric field-induced dipole
and the conducting plate can be easily calculated. We derive an expression for a single
dipole interacting with its image and proceed to also investigate the interaction of rods
with their images. We find that, under certain circumstances, rods near a metal plate lie
down on the latter’s surface if an electric field is applied in the direction perpendicular to
the plate.

7.2 Density of States of Dipole Polymers

In this section, we present a study into the density of states of “dipole polymers”, i.e.,
straight chains of Lorentz atoms. Calculations on dipole cubes have also been performed
but these will not be presented here. The work was inspired by the desire to speed up
the process of calculating Van der Waals interactions between clusters of atoms. One
possibility for speed increase, we reasoned, could possibly be provided by calculating only
a few eigenfrequencies of the dipole clusters instead of all of them. If we were to find only a
small number of “interaction modes” (i.e., modes that change their frequency significantly
as a result of moving one cluster with respect to the other) while the rest of the modes do
not significantly contribute to the interaction (i.e., change their frequency significantly),
then we would have to compute only the interaction modes for a good estimate of the
interaction energy. We will find, however, that it is not the case that only certain modes
change. It seems more accurate to say that many modes change their frequency and
predicting which one will change most appears to be impossible. We will first present
numerical calculations on finite polymers. We found densities of states that do not look
overly complicated, which inspired us to theoretically calculate a density of state function
D (ω) for an infinite polymer in Sec. 7.2.1.
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Numerically calculating the density of states for a set of N dipoles is conceptually very
straightforward. The Hamiltonian in terms of 3N × 3N vectors of the system is

H = K
2

2m + 1
2mω

2
0D2 +D · T · D,

where T is the 3N × 3N matrix built up of 3× 3 matrices Tij, which are given by

Tij = (1− δij)
e2

2r3
ij

(
I− 3rijrij

r2
ij

)
.

The eigenfrequencies ωk are now found by simply calculating the eigenvalues λk of T , and
hence

ωk = ω0

√
1 + α0λk,

where
α0 = e2

meω2
0

is the atomic polarizability. The eigenfrequencies can then be binned and plotted as a
histogram displaying how many of the ωk are in the range (ω, ω + ∆ω), where ∆ω is the
bin width.

Finite Polymers

In Fig. 7.1 the density of states for an L = 3000 polymer with a/α1/3
0 = 2 is displayed.

Some interesting properties of the histogram include: the fact that the ω are limited to a
quite narrow range around ω0; the profound peaks in the histogram, apparently denoting
certain preferred frequencies (resonance); the apparent discontinuities in the plot; the low
frequency “tail”; and the fact that, on both edges of the nonzero part of the histogram,
the number of ω’s per bin rises before suddenly dropping to zero. We can also calculate
the mean of all the found frequencies. For any L, this lies very close to ω0. For example,
for the L = 3000 case, the mean is 0.991344× ω0.

The general shape of the plot is only weakly dependent on the number of dipoles;
for example, Fig. 7.2 displays the histogram for an L = 10 polymer. This plot already
shares many of its properties with the L = 3000 histogram, such as the limited range of
found ω’s, the low-frequency tail, and the two middle peaks. In this case, the mean of
the frequencies is 0.992299× ω0.

We can also calculate the density of states for two polymers. The result for two
L = 1500 polymers lying head-to-toe, separated by a gap of width r/a = 50, is displayed
in figure 7.3. This histogram is almost indistinguishable from that for a single polymer.a
No significant difference in the shape of the histogram is expected (and, indeed, observed)
for different distances because, for larger distances, the polymers look more and more
like two single polymers, such that the resulting histogram will simply be the sum of two
individual L = 1500 histograms, which are very similar to the L = 3000 case because,
as mentioned, the shape hardly depends on the number of dipoles (i.e., two L = 1500

aVisible by eye, in fact, are some slight differences in the relative height of the bins at frequencies near
ω ≈ 0.75ω0, just below the resonance at ω ≈ 0.88ω0 and just above ω ≈ ω0.
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Figure 7.1: Histogram displaying the number of modes N (ω) with a frequency between ω ±
1
2∆ω, where ∆ω = 0.01ω0, as a function of ω, for an L = 3000 chain of dipoles with lattice
constant a = 2α1/3
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Figure 7.2: Histogram displaying the number of modes N (ω) with a frequency between ω ±
1
2∆ω, where ∆ω = 0.08ω0, as a function of ω, for an L = 10 chain of dipoles with lattice constant
a = 2α1/3
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Figure 7.3: Histogram displaying the number of modes N (ω) with a frequency between ω ±
1
2∆ω, where ∆ω = 0.01ω0, as a function of ω, for two L = 1500 polymers with lattice constant
a = 2α1/3

0 lying head-to-toe, separated by a distance r/a = 50.

histograms summed together give a L = 3000 histogram); for smaller distances, the
two polymers simply look more and more like a single polymer with L = 3000 dipoles.
Therefore, it is not possible to single out certain frequency ranges where much change
happens as a result of moving the polymers with respect to each other and, thus, it does
not seem that only a small number of modes is responsible for the change in interaction
energy when the polymer is displaced. From similar calculations done for cubes, we note
the same behavior: the change of shape of the histograms happens over the whole range,
not only in a small subrange.

7.2.1 Theoretical Calculation for an Infinite Polymer

Because the ω-dependence of the density of states looks relatively simple (as compared
to, for example, cubes, for which the density of states looks very capricious), we can try
to calculate the density of states for an infinite polymer. The Hamiltonian of the system
is the total energy:

H =
∑
i

k2
i

2me

+
∑
i

meω
2
0d2

i

2 +
∑
ij

di ·Tij · dj,

where ki is the momentum of the electron associated with atom i and di is the deviation
from the equilibrium position of the electron at position i. Choosing the coordinate system
such that the dipole chain is directed in the x-direction, the interaction matrix Tij can
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be written in terms of each dipole’s x-position xi = ai as

Tij = α0meω
2
0

2 |xi − xj|3


 1 0 0

0 1 0
0 0 1

− 3
|xi − xj|2

 (xi − xj)2 0 0
0 0 0
0 0 0




= α0meω
2
0

2 |xi − xj|3

 −2 0 0
0 1 0
0 0 1

 ,
for i 6= j, and for i = j we set

Tij = 0.

Hamilton’s equations of motion are

∂H

∂ki
= ḋi,

∂H

∂di
= −k̇i.

Substituting our Hamiltonian, we obtain

ki = meḋi,
meω

2
0di + 2

∑
j

Tij · dj = −k̇i,

which can be combined into

meω
2
0di + 2

∑
j

Tij · dj = −med̈i.

We now insert a wave solution of the form

di =

 ux exp (ikx,ixi − iωx,i (kx,i) t)
uy exp (iky,ixi − iωy,i (ky,i) t)
uz exp (ikz,ixi − iωz,i (kz,i) t)

 ,
where ux,i, uy,i, and uz,i are the wave amplitudes, kx.i, ky.i, kz.i are the wave numbers, and
ωx,i, ωy,i, and ωz,i are the frequencies in each Cartesian direction, which are allowed to
be different for different i. Because the matrix Tij is diagonal in our case, the resulting
equations decouple into the dispersion relations

ω2
x,i (k)
ω2

0
= 1− 2α0

∑
j 6=i

1
|xi − xj|3

exp [ik (xj − xi)] ,

ω2
y,i (k)
ω2

0
= 1 + α0

∑
j 6=i

1
|xi − xj|3

exp [ik (xj − xi)] ,

ω2
z,i (k)
ω2

0
= 1 + α0

∑
j 6=i

1
|xi − xj|3

exp [ik (xj − xi)] ,

where we dropped the subscript of the k’s because the equations are decoupled, such that k
is only a dummy variable in each. Note that ωy,i (k) and ωz,i (k) have the same expression,
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which makes intuitive sense because the y- and z-direction are equivalent in this problem.
For further simplification, we eliminate the i-dependence by assuming periodic boundary
conditions, such that each dipole is identical. Thus, we ignore boundary effects but note
that they are negligible for large N : numerical calculations shows that a ring of N = 3000
dipoles produces almost exactly the same density of state histogram as is shown in Fig.
7.1 for a straight chain of N = 3000 dipoles.

We use a variable substitution m = i− j in the sum, such that it takes the form

∑
j 6=i

1
|xi − xj|3

exp (xj − xi) =
∑
m 6=0

1
a3 |m|3

exp (ikx−m)

=
∑
m 6=0

exp (−iakm)
a3 |m|3

= 2
a3

∞∑
m=1

cos (akm)
m3 ,

where we used xm = am. Unfortunately, the sum does not have a closed analytical
form, but it can be expressed in so-called polylogarithmic functions, allowing for its fast
numerical evaluation. We continue by defining

f (ak) ≡ 2
∞∑
m=1

cos (akm)
m3 ,

such that our dispersion relations become

ω̃x (ak) =
√

1− 2ã−3f (ak),

ω̃y (ak) =
√

1 + ã−3f (ak),

ω̃z (ak) =
√

1 + ã−3f (ak),

where ω̃x,y,z = ωx,y,z/ω0 is a dimensionless frequency and ã = a/α
1/3
0 is the dimensionless

lattice constant. The dispersion relations are plotted in Fig. 7.4(a). In a moment, it will
become clear that the derivative of the ω’s to k is also of importance. The mathematical
expressions for these derivatives are

∂ω̃x (ak)
∂ak

= − ã−3f ′ (ak)√
1− 2ã−3f (ak)

,

∂ω̃y (ak)
∂ak

= ã−3f ′ (ak)
2
√

1 + ã−3f (ak)
,

∂ω̃z (ak)
∂ak

= ã−3f ′ (ak)
2
√

1 + ã−3f (ak)
,

with
f ′ (ak) = −2

∞∑
m=1

sin (akm)
m2 .
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Figure 7.4: The dispersion relation ωi (ak) /ω0 (a), where i = x (blue) or i = y (red) and the
absolute value of the inverse of its derivative (b) for an infinite dipole chain with lattice constant
a = 2α1/3

0 and periodic boundary conditions.

We plot the absolute value of the inverse of these derivatives in Fig 7.4(b). We note that,
physically, the maximum k = π/λ allowed in the problem is the one where the wave length
λ is minimal. It makes physical sense to choose λmin = a, so ak ∈ [−π, π].

To calculate a density of states D (ω) from the dispersion relation, we suppose that
D (ω) satisfies an equation that looks like

D (ω) dω = c (k) dk,

i.e., for each infinitesimal interval dω there is an interval dk that corresponds to this
interval, and the number of solutions (modes) D (ω) dω in the interval should be equal to
the number of solutions c (k) dk in the corresponding interval. It seems logical that the
k inserted on the right-hand side should be the k that produces the requested ω on the
left-hand side. However, this is problematic, since we see from the dispersion relations
that multiple k might produce the same ω and, moreover, we have not one but three
dispersion relations and each might produce the frequency that we are looking for. We
therefore modify our equation to

D (ω) =
∑

i∈{x,y,z}

Ni(ω)∑
j=1

∣∣∣∣∣∂ω∂k
∣∣∣∣∣
−1

k=kj(ω)
,

where ki,j (ω) are the solutions (for k) to the equation

ωi (k) = ω,

where i ∈ {x, y, z} and j ∈ [1, Ni (ω)] ∩ N, where Ni (ω) is the number of such solutions.
Graphically, we might imagine drawing a horizontal line in Fig. 7.4(a) at the height
associated with the ω that we want to calculate D (ω) for. Then, for each intersection of
our horizontal line with one of the functions ωi (k) (i ∈ {x, y, z}), we calculate |∂ωi/∂k|−1

(plotted in Fig. 7.4(b)) at the intersection point. Finally, we sum each of these |∂ωi/∂k|−1

to obtain D (ω). We see that, thus, ω’s where |∂ωi/∂k|−1 is large (in other words, ω’s
at heights where an intersecting ωi (k) is nearly level) will get a higher D (ω). Note



Miscellaneous 111

0.8 1.0 1.2 1.4

Ω

Ω0

50

100

150

200

250

300

DHΩL

Figure 7.5: The density of states D (ω) of an infinite chain of dipoles with lattice constant
a = 2α1/3

0 and periodic boundary conditions.

that we take the absolute value of ∂ωi/∂k because negative contributions to D (ω) seem
unphysical.

The resultingD (ω) of the infinite chain is plotted in Fig. 7.5. We note thatD (ω) bears
a very strong qualitative resemblance to the histogram plotted in Fig. 7.1, including the
low-frequency tail and the peaks at ω ≈ 0.63ω0, ω ≈ 0.88ω0, ω ≈ 1.14ω0, and ω ≈ 1.20ω0.

7.2.2 Summary and Conclusion
Creating a density of states histogram is rather straightforward for any cluster shape and,
for dipole polymers, the histogram looks relatively simple. However, the original goal
of finding out which frequencies, if any, are responsible for interaction between clusters
was not reached: it appears that all frequencies shift as the polymers are moved with
respect to each other, rather than only a select few frequencies. We proceeded with the
theoretical exercise of finding a density of state function, as opposed to a histogram of
numerical data. In this, it appears that we have succeeded, since the obtained function
displays all the features of the numerically calculated histograms: the support of the
function, the location of the resonances, and the relative height in the ranges in-between
are all correct. We note that we also know, mathematically, why these resonances happen:
because ω (ak) is level at those frequencies. Interpreting ∂ω/∂k as the propagation speed
(group velocity) of our wave solution, it thus seems that resonances occur for standing
waves, which seems physically reasonable.

7.3 Modes in Interacting Square Plates
In this section, we will investigate the behavior of vibrational modes in two interacting
20×20 squares of dipoles. This study was inspired by a 1968 publication by Van Kampen
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et al. [120], in which the Van der Waals force between two half-spaces separated by a gap
is calculated by considering only vibrational surface solutions of the Poisson equation, i.e.,
the bulk modes are disregarded as they are independent of the gap. If only surface modes
contribute to the interaction energy, this could possibly lead to a quicker algorithm for
calculating Van der Waals forces within the CDM, since not all eigenvalues would need
to be calculated. In this section, we will visualize the evolution of the vibrational modes
as a function of the distance between two clusters of atoms. We will not consider half-
spaces (because their infinite size makes them impossible to study numerically using the
CDM), nor will we consider three-dimensional clusters (because the modes become hard
to visualize in that case). Instead, we will restrict ourselves to the relatively simple case
of two 2-dimensional clusters, namely two 20 × 20 square lattices of 400 Lorentz atoms
each (so that the total number of dipoles N = 800). The lattice constant of these square
lattices is given by ã = a/α

1/3
0 = 2, where a is the lattice constant in ordinary units and

α
1/3
0 is the atomic polarizability. As usual, we denote the characteristic frequency of the

Lorentz atoms by ω0. Starting with the two squares touching (such that they effectively
form a 40 × 20 square lattice), we slowly move one away from the other and study the
evolution of individual modes.

7.3.1 Methods
To compute the modes for a given setup, our computer algorithm needs to be modified
only slightly. Whereas, before, we were only interested in the eigenvalues of the (I − α0T )
matrix, we now require the program to also output the corresponding eigenvectors. These
eigenvectors represent the amplitude of the oscillation of each dipole in the mode of
interest and, by plotting the amplitudes of a given mode in 2D, we can study the spatial
properties of an eigenvector, e.g., we can see whether the eigenvector represents vibrations
of all the dipoles or of only a small subset of dipoles. The only problem here is that
the collection of these eigenvectors (3N = 2400 vectors of 3N = 2400 values each) for
the various distances considered can take up significant storage space, so using a simple
data compression algorithm is advisable, but apart from this detail, computing modes is
relatively straightforward.

The most significant problem comes after the calculation and is posed by tracking the
modes as a function of distance. By default, the computed modes are ordered according
to the magnitude of their eigenvalues. Since these eigenvalues change as a function of dis-
tance, the order of the modes changes and tracking a single mode through each successive
step in distance becomes a nontrivial task. The solution to this problem is to take very
small steps in distance and, for each step, identify modes that bear the largest resemblance
to each other. In mathematical terms, if a certain setup characterized by a distance d out-
puts a collection of eigenvectors (modes) {U1,U2, . . . ,U2400} and the successive setup with
distance d+ ∆d (with ∆d sufficiently small) outputs the collection {V1,V2, . . . ,V2400}, we
could calculate the square distance between each pair of these 3N -dimensional vectors,
(Ui − Vj)2 for each i and j, and identify each Ui with the Vj for which this square distance
is smallest. Since the eigenvectors are normalized, however, this boils down to calculating
their inner products Ui · Vj and identifying vector pairs with the largest inner product.
In practice, the inner product indeed turns out to be a very good measure for the cor-
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relation between two vectors. On the other hand, calculating all the inner products by
using ordinary computer algorithms turns out to be a lengthy process, but one that can
be sped up tremendously by using the parallel capabilities of a graphics card. In terms of
matrices build up from the eigenvectors, the matrix product

− V1 −
− V2 −

...
− V2400 −


 | | |
U1 U2 . . . U2400
| | |



produces a matrix with all the inner products. Since graphics cards excel at multiplying
matrices, this problem is ideal for graphics card calculations, which we therefore used to
infer all the correlations.

The results of these calculations can be visualized by plotting, in a movie, the spatial
configuration of each mode as a function of distance as well as the frequency associated
with the mode and the variance of the square norm of the polarization of each dipole,

σ2
d2 = 1

N

N∑
i=1

(
d2
i − µd2

)2
,

with
µd2 = 1

N

N∑
i=1

d2
i = 1

800 ,

and where the last equality follows because the eigenvector that contains the di is nor-
malized and N = 800. The quantity σ2

d2 can be expected to be a measure for the degree
to which the mode is localized.

7.3.2 Results
The number of output modes is 2400. This is a huge number to study, so we will restrict
ourselves to some examples that, in our view, reflect some interesting physics. Further-
more, exactly one third of the modes vibrates in the direction orthogonal to the plates.
We will disregard these modes and only focus on the in-plane vibrations.

First of all, let us investigate the frequencies of all the modes collectively. Since it is
infeasible to plot 2400 frequencies as a function of distance, we only plot, in Fig. 7.6, the
difference ∆ω between the maximum and minimum frequency associated with a mode over
the distances considered, as a function of the value of this frequency ω at contact. Clearly,
there is no specific frequency band for which there is more variation than for other bands.
Furthermore, the number of frequencies for which no, or very little, variation occurs at
all seems to be low compared to the number of frequencies that do change significantly.

The most obvious mode to study first would be the one that changes most, which is
located (when the plates are touching) at ω ≈ 1.099ω0. Snapshots of this mode for various
distances are displayed in Fig. 7.7. One property that immediately catches our attention
is that the frequency of this mode decreases as a function of distance rx. Since the energy
associated with a mode is simply ~ωk, this means that this mode actually contributes a
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Figure 7.6: The difference ∆ω/ω0 between the maximum and minimum frequency achieved
by each normal mode in a system of two interacting parallel-oriented 20× 20 squares of coupled
Lorentz atoms, with center-to-center distances between the squares in the range 20 ≤ rx/a .
26.3155. Here, ω0 is the characteristic frequency of the atoms, a is the lattice constant of the
square lattices, and ∆ω/ω0 is plotted as a function of the value of the mode’s initial frequency
ω/ω0.

repelling force to the total force (which is attractive). The mode starts out nonlocalized.
This means that part of the mode is at the surface, which explains the mild change in
frequency at small distances. At rx/a ≈ 20.09, the mode transforms into a surface mode,
with virtually all of its amplitude near the facing edges of the squares. This lasts until
rx/a ≈ 20.34, when the mode abruptly collapses back into a nonlocal mode, which does
not change significantly afterwards. We note that the plotted variance seems to do well
when it comes to describing the localization of the mode.

In Fig. 7.8, we plot the strongest attractive mode (where by “attractive” we mean that
its frequency change is positive, and by “strongest” we mean that its frequency change
is largest), located at contact at ω ≈ 0.847ω0. This mode starts out much the same
as the mode that we discussed above, a nonlocal mode with a significant contribution
at the facing square edges and a nonlevel ω, although in this case the dependence is
stronger and results in a change in ω of about 0.007ω0, which is already above what most
modes achieve (see Fig. 7.6). At rx/a ≈ 20.32, the mode undergoes a transformation,
first displaying two vertical “bands” across each square (not shown), and then, around
rx/a ≈ 20.377, transforming into a surface mode (in this frame, the vertical bands are
still vaguely visible), which becomes very localized after this frame (not shown). However,
from around rx/a ≈ 20.57, the vibrations near edges other than the ones near the gap
become stronger, to the point were, near rx/a ≈ 20.92, the mode seems to be more
localized near the edges that do not face than near the edges that do face the gap. After
this frame, the mode develops a bulk component again, and does not change significantly
afterwards.

Not all modes that develop into surface modes do so only once in the studied distance
interval. In Fig. 7.9, we show an example of a mode (initially located at ω ≈ 0.803ω0)
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Figure 7.7: Snapshots of the normal mode identified by index i = 1628 (frequency at contact:
ω/ω0 ≈ 1.09996). (a, b): The dependence of this mode’s frequency ω1628/ω0 (a) and the variance
σ2 of the square norm of each dipole’s amplitude (b) on the distance rx/a between the squares,
with labels (c)-(h) referring to the snapshots given in panels (c) through (h). (c-h): snapshots
of the amplitudes of each dipole for various distances rx/a, plotted as black vector arrows, with
larger arrows indicating a larger (relative) magnitude of the amplitude. The vectors are placed
at the locations of the dipole with which they are associated while, in yellow, an outline of the
squares comprising the dipoles is given.
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Figure 7.8: Snapshots of the normal mode identified by index i = 592 (frequency at contact:
ω/ω0 ≈ 0.847098). (a, b): The dependence of this mode’s frequency ω592/ω0 (a) and the variance
σ2 of the square norm of each dipole’s amplitude (b) on the distance rx/a between the squares,
with labels (c)-(h) referring to the snapshots given in panels (c) through (h). (c-h): snapshots
of the amplitudes of each dipole for various distances rx/a, plotted as black vector arrows, with
larger arrows indicating a larger (relative) magnitude of the amplitude. The vectors are placed
at the locations of the dipole with which they are associated while, in yellow, an outline of the
squares comprising the dipoles is given.



Miscellaneous 117

rx � a

Ω

4
2
3

�
Ω

0

HcL

HdL

HeL HfL HgL HhL

HaL
20.0 20.5 21.0 21.5 22.0

0.775

0.780

0.785

0.790

0.795

0.800

0.805

rx � a

1
0

6
Σ

2

HcL

HdL

HeL HfL
HgL

HhL

HbL
20.0 20.5 21.0 21.5 22.0

1.0

10.0

5.0

2.0

3.0

1.5

15.0

7.0

rx�a = 20., Ω
423

�Ω
0

= 0.775057

HcL x � a

y
a

-10 0 10 20 30

-10

-5

0

5

10

rx�a = 20.1163, Ω
423

�Ω
0

= 0.780582

HdL x � a

y
a

-10 0 10 20 30

-10

-5

0

5

10

rx�a = 20.3771, Ω
423

�Ω
0

= 0.801029

HeL x � a

y
a

-10 0 10 20 30

-10

-5

0

5

10

rx�a = 20.6323, Ω
423

�Ω
0

= 0.801923

HfL x � a

y
a

-10 0 10 20 30

-10

-5

0

5

10

rx�a = 20.9155, Ω
423

�Ω
0

= 0.802177

HgL x � a

y
a

-10 0 10 20 30

-10

-5

0

5

10

rx�a = 26.3155, Ω
423

�Ω
0

= 0.805921

HhL x � a

y
a

-10 0 10 20 30

-10

-5

0

5

10

Figure 7.9: Snapshots of the normal mode identified by index i = 423 (frequency at contact:
ω/ω0 ≈ 0.775057). (a, b): The dependence of this mode’s frequency ω423/ω0 (a) and the variance
σ2 of the square norm of each dipole’s amplitude (b) on the distance rx/a between the squares,
with labels (c)-(h) referring to the snapshots given in panels (c) through (h). (c-h): snapshots
of the amplitudes of each dipole for various distances rx/a, plotted as black vector arrows, with
larger arrows indicating a larger (relative) magnitude of the amplitude. The vectors are placed
at the locations of the dipole with which they are associated while, in yellow, an outline of the
squares comprising the dipoles is given.
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that becomes a surface mode twice. The mode starts out much the same as the previous
two modes studied, but with a rather steep ω-dependence. It soon develops into a surface
mode at around rx/a ≈ 20.105 (shown is the fully developed surface mode at a somewhat
longer distance), which collapses at around rx/a ≈ 20.234; the mode shape that ensues
is shown. This gradually changes, around rx/a ≈ 20.786, from a vibration in many
directions to a mainly horizontal vibration. Then, at rx/a ≈ 21.075, the mode abruptly
becomes a surface mode for the second time, although it seems somewhat less localized
than the first time. The mode then gradually decays into the bulk mode shown in the
last frame.

Not all modes that develop into surface modes near the gap do so at small rx/a.
Shown in Fig. 7.10 is the mode that starts out at ω ≈ 1.050ω0 as a bulk mode across both
squares, which results in a strong component near the gap. Almost as soon as the squares
become separated, however, the mode splits into two and the surface component vanishes.
At around rx/a ≈ 20.42, the mode transforms into a surface mode concentrated not near
the gap but on the lower and upper edges of the squares. This lasts until rx/a ≈ 20.54
and is accompanied by a strong dependence of ω on distance. Then follows a region where
the mode is a bulk mode again, with almost level ω, until around rx/a ≈ 21.41, where
it finally becomes a surface mode concentrated near the gap. This subsequently very
gradually transforms into the mode shown in the last frame: a mode concentrated at all
of the edges of both squares. Thus, we see that modes can also become surface modes
in the long-range limit. Note that for this mode, ω and σ2

d2 are plotted over a longer
distance range.

7.3.3 Summary and Conclusion
We have succeeded in tracking the modes as a function of the distance between the
squares. Plotting the change of frequency of each mode as a function of the mode’s starting
frequency did not result in any identifiable pattern by which it could be predicted which
modes will change their frequency the most. We then proceeded to plot the amplitudes of
several in-plane modes as a function of the distance between the squares. From snapshots
of the resulting movies, it is clear that modes that have a surface component near the
gap between the squares contribute most to the change in energy when the squares are
moved. However, it was found that most modes are surface modes only temporarily,
which seemingly makes it impossible to predict which modes will be important for the
interaction energy. The situation is complicated further by the fact that the contributions
to the interaction energy of some modes are opposite in sign to those of other modes. We
have seen that the variance of the square amplitude of each dipole is a good measure
of the degree of localization of the mode, but it does not provide information regarding
whether or not the localization is near the gap between the squares, and a more specialized
parameter would be appropriate. Such a parameter would also help to objectively quantify
whether a mode is a “gap-surface” mode because, in this section, we have judged this
mostly by eye. We note also that, in this section, we have ignored modes that vibrate
in the direction perpendicular to the squares, which should be rectified in future study,
because these modes make up a third of all the modes. Further directions for future study
would be to link the results in this section to those in Sec. 7.2, perhaps deriving a density
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Figure 7.10: Snapshots of the normal mode identified by index i = 1445 (frequency at contact:
ω/ω0 ≈ 1.04980). (a, b): The dependence of this mode’s frequency ω1445/ω0 (a) and the variance
σ2 of the square norm of each dipole’s amplitude (b) on the distance rx/a between the squares,
with labels (c)-(h) referring to the snapshots given in panels (c) through (h). (c-h): snapshots
of the amplitudes of each dipole for various distances rx/a, plotted as black vector arrows, with
larger arrows indicating a larger (relative) magnitude of the amplitude. The vectors are placed
at the locations of the dipole with which they are associated while, in yellow, an outline of the
squares comprising the dipoles is given.
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of states function for infinite squares or investigating the amplitudes of the modes of the
polymers in a similar fashion as in this section.

7.4 Coupled Dipoles near a Conducting Plate

In this section, we discuss what happens when dielectric particles are placed near a con-
ducting plate and an electric field is applied. In particular, we will investigate the potential
energy of rods in such a setup as a function of the location and orientation of the rod.

7.4.1 Theory

The method of image charges is a useful application of the uniqueness theorem of electro-
statics, which states that a volume containing a given charge distribution and a given set
of boundary conditions will have a uniquely defined electric field inside it. This means
that even if two systems are different outside a certain volume of interest, if the boundary
conditions on the surface of the volume and the charge distribution inside the volume
are the same, so will the electric field inside the volume be. Thus, if we encounter an
electrostatic problem that seems difficult to solve, it is sometimes possible to instead solve
a different, simpler problem that has the same boundary conditions and in this way find
the solution to the more difficult problem as well.

The most well-known example of the method of image charges is the one where we are
asked to calculate the force on a point charge q a distance d from a conducting half-space
at zero potential. This problem may at first seem hard to solve: since the field inside a
conductor is zero, the conducting plate will accumulate a charge distribution at its surface
to exactly compensate for the electric field due to the charge q and this charge distribution
will subsequently exert a force on the point charge. We can solve this problem by looking
at a different setup. In a system where we have a charge q and a charge −q separated by
a distance 2r, the plane in the middle (i.e., a distance r from both charges) will have zero
potential. Thus, in these two problems, the half-space that contains the charge q has the
same charge distribution (a single point charge q) and boundary condition (zero potential
at its edge), hence the electric field in the half-space that contains q is the same in both
problems. Thus, the force on the charge q in both problems would be −q2/4r2 (in CGS).
Note that the solutions in the other half-space, i.e., the one that in the original problem
contains the conductor and in the simplified problem contains charge −q, will not be the
same.

It is not hard to see that we can apply the method of image charges to any charge
distribution near a planar conductor. By placing image charges with opposite sign and
a mirrored position on the “conductor side” of the dividing plane, we can always ensure
that the potential on the surface of the half-space of interest is zero. By picturing electric
dipoles as a pair of charges of opposite sign a certain distance apart, we can also work
out what an image dipole should look like; explicitly, if the surface of the conductor is in
the x-y plane and we have a point dipole d at location r, the image dipole should have a
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dipole moment d′ and location r′ given by

d′ =

 −1 0 0
0 −1 0
0 0 1

d, r′ =

 1 0 0
0 1 0
0 0 −1

 r. (7.1)

We now proceed to incorporate image charges in the CDM. Given a set of N inducible
dipoles indexed by i = 1, 2, . . . , N , we include a set of corresponding image dipoles indexed
by i = −1,−2, . . . ,−N , such that each dipole di located at ri has an image dipole d−i
located at r−i. The “real” dipoles still follow the relation di = α0Ei, where Ei is the
local electric field at ri, whereas the image dipoles gain a dipole moment not due to any
external electric field: instead, their dipole moments are supposed to follow from di by
Eq. (7.1). For positive i, we now have that the electric field at site i is given by the
external electric field plus the contributions from the real as well as the image dipoles:

Ei = E0 +
N∑

j=−N
Tij · dj (i > 0) ,

where Tij is the dipole-dipole tensor if i 6= j, and Tii = 0. We now plug in the propor-
tionality of di with Ei and rearrange the terms,

di − α0

N∑
j=−N

Tij · dj = α0E0 (i > 0) ,

and then eliminate the part of the sum that runs over negative indices:

di − α0

N∑
j=1

Sij · dj = α0E0 (i > 0) , (7.2)

where

Sij ≡

Tij + Ti,−j

 −1 0 0
0 −1 0
0 0 1


 . (7.3)

Eq. (7.2) can be solved in exactly the same manner as done in previous chapters, with
the only difference that the 3× 3 interaction matrices are somewhat modified. Once the
collection of di is found, the potential energy of the system follows easily by

UE = −1
2

N∑
i=1

di · E0,

where we take note not to sum over negative indices, since the image dipoles do not
experience an electric field (and are, furthermore, not actually physically “real” objects).

7.4.2 Results and Discussion
A simple example system is one where an inducible dipole with polarizability α0 is a
distance r away from a conducting half-space, and an electric field of strength E0 is
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applied in the direction perpendicular to the surface of the half-space, here defined as
the z-direction. The interaction energy of this problem can be found analytically. Sij [as
defined in Eq. (7.3)] has to be calculated only for i = j = 1, meaning that its first term
vanishes; the remaining term gives

S11 = α0

8r3

 1 0 0
0 1 0
0 0 2

 .
Inverting I− S11 and multiplying by α0E0ẑ gives

p1 = α0E0

1− α0/4r3 ẑ.

Taking the dot product with −1
2E0ẑ gives us UE, from which we subtract UE (r →∞) =

−1
2α0E

2
0 to gain the interaction energy

VE = −1
2
α0E

2
0

4r̃3 − 1 ,

where r̃ = r/α
1/3
0 is a dimensionless distance. We plot VE/

(
1
2α0E

2
0

)
in Fig 7.11. For long

distances, the interaction energy goes as

VE ' −
1
8
α0E

2
0

r̃3 (r̃ � 1) ,

while at short distances, the interaction is enhanced by the −1 term in the numerator.
At distances r̃3 ≤ 1/4 (r/α1/3

0 . 0.63), the system undergoes a polarization catastrophe
and the result is no longer valid.

Motivated by recent (unpublished) experiments [121], we now turn our attention to
rods, which we model as strings of Lorentz atoms. We will discuss here the example
of a single rod of length 3.3 µm and width 0.55 µm, which we model as a string of 6
inducible dipoles, spaced a distance of a0 = 0.55 µm apart. Each inducible dipole is given
a polarizability of 0.030 µm3, which results in the rod having a longitudinal polarizability
of 0.62 µm3 and a transverse polarizability of 0.135 µm3. We then place the tip of the rod
a distance r from the x-y plane and orient it such that it makes an angle θ with the z-axis.
The setup is depicted in Fig. 7.12, from which it can be seen that the smallest allowed
distance between the tip dipole and the plate is a0/2, such that we define a gap length
h = r− a0/2, which vanishes if the rod is touching the plate. From the figure, we also see
that the maximum allowed θ is π/2. We apply an electric field of E0 = 300 V/mm in the
z-direction and calculate the potential energy of the rod. We then subtract the energy
that the rod would have if it were an infinite distance away from the plate and oriented
in the direction of the electric field (θ = 0) to gain the interaction energy of the rod with
the plate. The result is plotted in Fig. 7.13 for several gap sizes h as a function of θ.

Clearly, the situation where the rod is pointing in the ẑ-direction is the most favorable
and, furthermore, the rod feels an attraction to the plate because a lower distance results
in a lower potential energy. For small distances, however, we also observe a local minimum
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of an inducible dipole with polarizability

α0 with a conducting half-space at zero potential, as a function of the dimensionless distance
rα
−1/3
0 between the dipole and the half-space, in the presence of an external electric field of

magnitude E0 pointing perpendicular to the half-space.

at θ = π/2, where the rod is oriented in the x-y plane. For the chosen parameters, this
local minimum at contact is about 30kBT deep, such that a rod, once caught in this
situation, can lie flat on the conducting plate almost indefinitely. Moreover, starting from
a sample of more or less randomly oriented rods and no electric field, one expects any
rod touching the plate and oriented such that θ & 0476π to be pulled into the lying-down
position once the electric field is turned on, the mentioned value being the maximum of
the h = 0 graph of Fig. 7.13. The height of the graph depends quadratically on the
electric field strength, such that higher field strengths create deeper potential minima
and barriers, while lower field strengths make them more shallow, meaning that stronger
electric fields will be better able to retain rods in the local potential minimum, where
they are lying down. The local minimum at θ = π/2 quickly becomes less shallow if the
gap length is increased, being already mostly negligible at h = 0.33 µm. Simultaneously,
the maximum shifts to higher θ with increasing gap lengths, suggesting that a smaller
percentage of rods will be trapped in the local minimum even for arbitrarily high electric
fields. However, since the gap lengths are smaller than the rod length, it can be expected
that, when the electric field is turned on, the motion of the rod towards the plate and a
resulting shift of the local maximum to smaller θ will play a significant role. For instance,
a rod starting at h = 0.165 µm and θ = 0.48π starts out with an angle smaller than the
angle at which the maximum occurs for the given gap length, meaning that, if its distance
to the plate does not change, it is most likely to eventually end up in the global minimum
at θ = 0. However, if the rod moves towards the plate much quicker than it orients itself
along the field, it may end up touching the plate before rotating significantly and fall into
the θ = π/2 minimum after all.
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Figure 7.12: Depiction of the setup for which the electrostatic interaction energy is calculated
and plotted in Fig. 7.13. A “rod”, consisting of a chain of six inducible point dipoles a distance
a0 away from each other, is positioned near a conducting half-space at zero potential, while
an electric field E0 is applied normal to the surface of the half-space. The rod’s position and
orientation are defined by the distance h between its tip and the surface of the conducting half-
space and the angle θ between the director of the rod and the line normal to the surface of the
half-space.
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Figure 7.13: (a): Interaction energy between the rod depicted in Fig. 7.12 and the conducting
half-space, with an applied electric field strength of E0 = 300 V/mm at room temperature, as a
function of the angle θ between the rod director and the line normal to the surface of the half-
space, for gap lengths h = 0 µm, 0.055 µm, 0.165 µm, 0.33 µm, and 0.55 µm. (b): A close-up
of the local minimum observed at high θ (i.e., rods lying flat on the surface of the conductor).
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7.4.3 Summary and Conclusion
We have seen that the CDM can be rather straightforwardly extended to include image
dipole interaction. We have derived an analytical expression for the interaction of a single
induced dipole with its image. We then proceeded to investigate the case of rods near a
conducting surface and concluded that, when an electric field is applied, rods experience a
local minimum near the orientation where they lie down flat on the surface. This minimum
becomes more shallow if the distance between the rod and the plate is increased, and if
the electric field is reduced. We note that the setup we investigated was rather specific,
such that, for future study, it would be interesting to investigate other cluster shapes and
polarizabilities. Furthermore, we studied only a single particle: it would be interesting
to also study the effect of multiple particles near a conducting plate, which could include
many-body interactions.





A

Proof that the Cluster
Polarizability is a Symmetric

Matrix

In this appendix, we prove that the polarizability of a cluster of Lorentz atoms with equal
atomic polarizability is a symmetric matrix, as asserted in Chapter 2.
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A.1 Introduction
In this appendix, we prove that a cluster of N Lorentz atoms has a symmetric polariz-
ability matrix αc if each Lorentz atom has the same polarizability α0. We also assume
the applied electric field to be homogeneous, which, as we shall see, is a requirement for
a quantity such as αc to be well-defined.

Our starting point will be the equation for the 3N -dimensional vector P , which con-
tains the individual polarizations pi of each Lorentz atom, from Eq. (2.11),

P = (I + α0T )−1 α0E0, (A.1)

where I is the 3N×3N identity matrix, E0 is a 3N -dimensional vector containing N copies
of the applied electric field E0, and T is a 3N × 3N matrix containing all the dipolar
tensors Tij, which describe the dipole-dipole interaction between atom i and j [see Eq.
(2.2)]. As shown already in Chapter 2, under Eq. (2.13), the cluster polarizability can
always be written as a 3N×3N matrix. Explicitly, dividing (I + α0T )−1 into 3×3 blocks
Yij, we have

αc = α0
∑
i,j

Yij. (A.2)

Note that the structure of (I + α0T )−1 plays no role in the reasoning leading to A.2,
apart from the fact that we assume (I + α0T )−1 and, hence, αc, to exist. We do require
that E0 not depend on the location, such that E0 will be a vector with repeating elements.

A.2 Proof of the Symmetry of the Polarizability Ma-
trix

To prove that αc is symmetric, we do need to look at the structure of (I + α0T )−1. First,
note that if we assert

Yij = YT
ji, (A.3)

we have

αc = α0

N∑
i=1

Yii +
i−1∑
j=1

(Yij + Yji)


= α0

N∑
i=1

Yii +
i−1∑
j=1

(
Yij + YT

ij

) .
The obtained expression is clearly symmetric, since Yii is symmetric (this follows from
the assertion of Eq. A.3), and an expression of the form

(
Yij + YT

ij

)
is always symmetric.

Thus, we see that we sum a number of symmetric matrices, leading to a symmetric result.

A.2.1 Proof of the Assertion Yij = YT
ji.

To complete the proof, we still have to prove the assertion of Eq. (A.3). This proof now
follows. First of all, we define the matrix S ≡ (I + α0T ), and call its 3× 3 subblocks Sij.
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Note that the Sij matrices have the same symmetry properties as Tij, namely Sij = Sji
and Sij = STij.

Our aim is now the following. Given is a 3N × 3N dimensional matrix S, built up
from 3× 3 symmetric matrices Sij, for which also Sij = Sji, as follows:

S =


S11 S12 . . . S1N
S21 S22 . . . S2N
... ... . . . ...

SN1 SN2 . . . SNN

 .

We want to show that the inverse of this matrix, S−1, is built up from 3× 3 blocks Yij,
which obey Yij = YT

ji. To do this, we are going to use induction in combination with the
following identity for the inverse of a matrix built up from blocks A, B, C, and D (see,
e.g., Ref. [122]):

(
A B
C D

)−1

=
(

A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)
.

(A.4)
We start with an N = 2 matrix, S (2). According to Eq. (A.4), we have

S−1 (2) =
(

S11 S12
S21 S22

)−1

= S−1
11 + S−1

11 S12
(
S22 − S21S−1

11 S12
)−1

S21S−1
11 −S−1

11 S12
(
S22 − S21S−1

11 S12
)−1

−
(
S22 − S21S−1

11 S12
)−1

S21S−1
11

(
S22 − S21S−1

11 S12
)−1

 .

We can easily check, using the symmetries of Sij, that

Y11 (2) = S−1
11 + S−1

11 S12
(
S22 − S21S−1

11 S12
)−1

S21S−1
11 = YT

11 (2) ,

Y22 (2) =
(
S22 − S21S−1

11 S12
)−1

= YT
22 (2) ,

Y12 (2) = −S−1
11 S12

(
S22 − S21S−1

11 S12
)−1

= YT
21 (2) ,

and hence

Yij (2) = YT
ji (2) .

Even though not strictly necessary for the proof to work, we are also going to explicitly
discuss the N = 3 case, because it clarifies some notation that will be used in the case of



130 Appendix A

general N . We define the blocks of the matrix to be as follows:

S (3) =

 S11 S12 S13
S21 S22 S23
S31 S32 S33



=


[

S11 S12
S21 S22

] [
S13
S23

]
[

S31 S32
]

[S33]


≡

(
S (2) B (2)
C (2) S33

)
.

The inverse of this matrix is, according to Eq. (A.4),

S−1 (3) =
(
S−1 (2) + S−1 (2)B (2) K (2) C (2)S−1 (2) −S−1 (2)B (2) K (2)

−K (2) C (2)S−1 (2) K (2)

)
,

where we have defineda

K (2) ≡
(
S33 − C (2)S−1 (2)B (2)

)−1
.

We see that we have four blocks in the matrix for which we have to prove our assertion.
First of all, we note that B (2) = CT (2). With this, the symmetry of the lower right (3×3)
block is trivial to show,

KT (2) =
[(

S33 − C (2)S−1 (2)B (2)
)−1

]T
=

(
ST33 − BT (2)

[
S−1

]T
(2) CT (2)

)
=

(
S33 − C (2)

[
S−1

]
(2)B (2)

)
= K (2) ,

hence the block is symmetric. For the upper right and lower left blocks, we note that

−S−1 (2)B (2) K (2) = −
(

Y11 (2) S13K (2) + Y12 (2) S23K (2)
Y21 (2) T13K (2) + Y22 (2) T23K (2)

)
,

while

−K (2) C (2)S−1 (2) = −
(

K (2) S31Y11 (2) + K (2) S32Y21 (2) ,

K (2) S31Y12 (2) + K (2) S32Y22 (2)
)
.

aThe matrix M (2) ≡ S33 − C (2)S−1 (2)B (2) is called the Schur complement of S (2),
and it has to be invertible for our proof to work. Note, however, that det [S (3)] =
det [S (2)] det

[
S33 − C (2)S−1 (2)B (2)

]
= det [S (2)] det [M (2)], such that, if M (2) is not invertible (i.e.,

det [M (2)] = 0), then S (3) is also not invertible, meaning that αc does not exist, contrary to the
assumption made at the start. Therefore, M (2) must be invertible and hence K (2) exists.
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For our assertion [Eq. (A.3)] to hold true, we must thus have

Y11 (2) S13K (2) + Y12 (2) S23K (2) = [K (2) S31Y11 (2) + K (2) S32Y21 (2)]T ,
Y21 (2) S13K (2) + Y22 (2) S23K (2) = [K (2) S31Y12 (2) + K (2) S32Y22 (2)]T .

Both are easily shown to be true if we use STij = Sij = Sji and the result from the N = 2
case, Yij (2) = YT

ji (2). The last block to prove our assertion for is the upper left block.
Of this block, only the second term is important since the first term has been shown to
already obey our assertion. It follows that our task is to examine the expression

L (2) ≡ S−1 (2)B (2) K (2) C (2)S−1 (2) .

We define 3× 3 matrices Lij (2) of which L (2) is built up. Furthermore we define G (2),
representing all the factors in L (2) to the right of S−1 (2):

G (2) ≡ B (2) K (2) C (2)S−1 (2)

=
(

S13
S23

)(
K (2) (S31Y11 (2) + S32Y21 (2)) , K (2) (S31Y12 (2) + S32Y22 (2))

)
=

(
S13K (2) (S31Y11 (2) + S32Y21 (2)) S13K (2) (S31Y12 (2) + S32Y22 (2))
S23K (2) (S31Y11 (2) + S32Y21 (2)) S23K (2) (S31Y12 (2) + S32Y22 (2))

)
.

We see that G (2) is built up from matrices Gij(2), where

Gij (2) =
2∑
l=1

Si3K (2) S3lYlj (2) .

Therefore, since L (2) = S−1 (2)G (2), we have for the Lij (2):

Lij (2) =
2∑

k=1
Yik (2) Gkj (2)

=
2∑

k=1

2∑
l=1

Yik (2) Sk3K (2) S3lYlj (2) ,

and for their transpose:

LT
ij (2) =

2∑
k=1

2∑
l=1

YT
lj (2) S3lK (2) Sk3YT

ik (2)

=
2∑

k=1

2∑
l=1

Yjl (2) S3lK (2) Sk3Yki (2)

=
2∑
l=1

2∑
k=1

Yjk (2) S3kK (2) Sl3Yli (2) ,

where in the last equality we replaced the dummy indices k and l. Since S3k = Sk3 and
Sl3 = S3l, we thus see that

Lij (2) = LT
ji (2) .
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Thus, the upper left block of S−1 (3) obeys our assertion, and hence we have shown that
for the entire matrix S−1 (3),

Yij (3) = YT
ji (3) .

To be exhaustively complete, we now move on to the induction step. We suppose
Yij (n) = YT

ji (n), and show that it then follows that Yij (n+ 1) = YT
ji (n+ 1). To save

some space, we define m ≡ n+ 1. Our matrix S (m) has the following form:

S (m) =
(
S (n) B (n)
C (n) Smm

)
.

I.e., the expression for B (n) is

B (n) =


S1m
...

Snm

 ,
and similarly for C (n). The inverse of the matrix S (m) is

S−1 (m) =
(
S−1 (n) + S−1 (n)B (n) K (n) C (n)S−1 (n) −S−1 (n)B (n) K (n)

−K (n) C (n)S−1 (n) K (n)

)
,

where
K (n) =

(
Smm − C (n)S−1 (n)B (n)

)−1
,

which is a symmetric matrix because B (n) = CT (n). This immediately implies that the
lower right block obeys the assertion. The off-diagonal blocks also obey our assertion,
because

−S−1 (n)B (n) K (n) = −


∑n
k=1 Y1k (n) SkmK (n)

...∑n
k=1 Ynk (n) SkmK (n)


and

−K (n) C (n)S−1 (n) =
( ∑n

k=1 K (n) SmkYk1 (n) , . . .,
∑n
k=1 K (n) SmkYkn (n)

)
,

the blocks of which are each other’s transpose, that is, for the transpose of block i of
−S−1 (n)B (n) K (n) we have:[

n∑
k=1

Yik (n) SkmK (n)
]T

=
n∑
k=1

KT (n) STkmYT
ik (n)

=
n∑
k=1

K (n) SmkYki (n) ,

which is equal to block i of −K (n) C (n)S−1 (n). Here we made use of the induction
assumption Yij (n) = YT

ji (n) and of the symmetries in the Sij. Only the upper left block
of S−1 (m) is left for us to examine, of which only the second term is of interest,

L (n) ≡ S−1 (n)B (n) K (n)−1 C (n)S−1 (n)
≡ S−1 (n)G (n) .



Proof that the Cluster Polarizability is a Symmetric Matrix 133

The matrix G (n) is now built up from blocks Gij (n) given by

Gij (n) =
n∑
l=1

SimK (n) SmlYlj (n) ,

where we made use of the expressions for B (n) and C (n). Thus, the 3× 3 blocks in L (n)
have the following form:

Lij (n) =
n∑
k=1

Yik (n) Gkj (n)

=
n∑
k=1

n∑
l=1

Yik (n) SkmK (n) SmlYlj (n) ,

and therefore their transpose is

LT
ij (n) =

n∑
k=1

n∑
l=1

YT
lj (n) SmlK (n) SkmYT

ik (n)

=
n∑
k=1

n∑
l=1

Yjl (n) SmlK (n) SkmYki (n)

=
n∑
l=1

n∑
k=1

Yjk (n) SmkK (n) SlmYli (n)

= Lji (n) .

Therefore, the upper left block of S−1 (m) obeys Yij (n) = YT
ji (n). It follows that for the

entire matrix S (m),
Yij (m) = YT

ji (m) .
Thus, we have done the following:

• We have proven that the assertion holds for N = 2 and for N = 3,

• We have proven that if the assertion holds for N = n, it must then also hold for
N = n+ 1.

Therefore, we conclude that the assertion must hold for all N ≥ 2.b

bOf course, trivially, the assertion is also true for N = 0 and N = 1.





B

Exploiting Spatial Symmetries in
Large Cubes and Spheres

In this appendix, we show explicitly how to exploit spatial symmetries in the CDM,
making it possible to calculate the polarizability of very large cubes and spheres, as done
in Chapter 3.
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In Chapter 3, it is mentioned that one of the ways to simplify the problem of finding
the polarizability αc of a cluster of N Lorentz atoms of polarizability α0 is to exploit the
symmetries of the cluster. In particular, cubic and spherical cluster of atoms on a simple
cubic lattice are invariant under 90◦ rotations around a Cartesian axis.

In this appendix, we use a slightly different notation to index the atoms of the cluster.
Instead of using a single index i, we use three indices n = (nx, ny, nz), counting atoms
along each of the cubic lattice vectors, starting at the origin, which we always place in the
center of the cluster. For example, if we consider a cube with an even number of atoms
along each rib and with lattice spacing a, the atom at location r = (a/2, 0, 0) is denoted by
n = (1, 0, 0), the one at r = (3a/2, 0, 0) by (2, 0, 0), and the one at r = (−5a/2, a/2,−a/2)
by n = (−3, 1,−1). The polarization of the atom at n is denoted by p (n). Using this
notation, Eq. (2.11) becomes, in terms of 3-dimensional objects,

p (n′) + α0
∑

n
T (n,n′) · p (n) = α0E0, (B.1)

where T (n,n′) is the dipole tensor for the interaction between the atoms at n and n′.
Assuming that the electric field is directed along the x-axis, the symmetries of the polar-
izations can be seen to be:

p (−nx, ny, nz) =

 1 0 0
0 −1 0
0 0 −1

p (nx, ny, nz) ,

p (nx,−ny, nz) =

 1 0 0
0 −1 0
0 0 1

p (nx, ny, nz) ,

p (nx, ny,−nz) =

 1 0 0
0 1 0
0 0 −1

p (nx, ny, nz) .

From these, we can also infer that

p (−nx,−ny, nz) =

 1 0 0
0 1 0
0 0 −1

p (nx, ny, nz) ,

p (−nx, ny,−nz) =

 1 0 0
0 −1 0
0 0 1

p (nx, ny, nz) ,

p (nx,−ny,−nz) =

 1 0 0
0 −1 0
0 0 −1

p (nx, ny, nz) ,

p (−nx,−ny,−nz) = p (nx, ny, nz) .

We now assume that our cluster is a cube with an even number of atoms L along each
rib. A sphere can be treated similarly, by noting that it is a cube of which the atoms
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further than a certain distance from the origin have been removed. We can expand the
sum in equation (B.1) as follows:

∑
n

T (n,n′) · p (n) =
l∑

nx=1

l∑
ny=1

l∑
nz=1

[T ({nx, nynz} ,n′) · p (nx, ny, nz)

+T ({−nx, ny, nz} ,n′) · p (−nx, ny, nz)
+T ({nx,−nynz} ,n′) · p (nx,−ny, nz)
+T ({−nx,−ny, nz} ,n′) · p (−nx,−ny, nz)
+T ({nx, ny,−nz} ,n′) · p (nx, ny,−nz)
+T ({−nx, ny,−nz} ,n′) · p (−nx, ny,−nz)
+T ({nx,−ny,−nz} ,n′) · p (nx,−ny,−nz)
+T ({−nx,−ny, nz} ,n′) · p (−nx,−ny,−nz)] .

If we now use the symmetry relations, we can rewrite this as

∑
n

T (n,n′) · p (n) =
l∑

nx=1

l∑
ny=1

l∑
nz=1

A (n,n′) · p (nx, ny, nz) ,

where we defined the 3× 3 matrix

A (n,n′) ≡ T ({nx, nynz} ,n′) + T ({−nx,−ny,−nz} ,n′)

+ {T ({nx,−nynz} ,n′) + T ({−nx, ny,−nz} ,n′)}

 1 0 0
0 −1 0
0 0 1



+ {T ({−nx,−ny, nz} ,n′) + T ({nx, ny,−nz} ,n′)}

 1 0 0
0 1 0
0 0 −1



+ {T ({−nx, ny, nz} ,n′) + T ({nx,−ny,−nz} ,n′)}

 1 0 0
0 −1 0
0 0 −1

 .
Thus, our set of linear equations becomes

p (n′) + α0

l∑
nx=1

l∑
ny=1

l∑
nz=1

A (n,n′) · p (n) = α0E0.

We see that, in the sum, only l3 = L3/8 dipoles are referenced and that the problem can
thus be solved self-consistently by only solving for these first l3 dipoles. Afterwards, the
rest of the polarizations can be inferred using the symmetry relations. We have gained a
factor 1/8 in memory usage and this means that our cubes and spheres can now be twice
as large in each dimension.





C

Additional Mathematical and
Numerical Comparisons

In this appendix, we show a few more calculations relevant to Chapter 5. We derive an
analytical expression for the interaction energy for three Lorentz atoms in the special
case where the distance between the first and the second atom is the same as the distance
between the second and the third. We investigate the accuracy of the Hamaker-de Boer
and Axilrod-Teller approaches compared to this many-body expression.
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For the atomic configuration described in Fig. 5.1 and subsection 5.3.1, it is possible
to calculate the CDM interaction energy exactly. The eigenfrequencies of the system are
given by

ωk = ω0

√
1 + λk,

where the λk are the nine eigenvalues of a 9× 9 matrix. These can be expressed in terms
of the functions

A1 (x) = 1 + 512x6 − 384x8,

A2 (x) = 192
√

3x6
(
2− 3x2

)2
,

B1 (x) = 1 + 128x6 + 384x8,

B2 (x) = 1728
√

3x8
(
1− x2

)
,

f1 (x) =

√
A

3/2
1 (x) + A2 (x)√

A
3/2
1 (x)− A2 (x)

,

f2 (x) =

√
B

3/2
1 (x) +B2 (x)√

B
3/2
1 (x)−B2 (x)

and

T1 (x) = 3 + 2
√

3A1 (x) cos
[2
3 arctan (f1 (x))

]
,

T2,3 (x) = 3−
√

3A1 (x)
(

cos
[2
3 arctan (f1 (x))

]
±
√

3 sin
[2
3 arctan (f1 (x))

])
= 3− 2

√
3A1 (x) cos

[2
3 arctan (f1 (x))∓ π

3

]
,

T4 (x) = −3− 2
√

3B1 (x) cos
[2
3 arctan (f2 (x))

]
,

T5,6 (x) = −3 +
√

3B1 (x)
(

cos
[2
3 arctan (f2 (x))

]
±
√

3 sin
[2
3 arctan (f2 (x))

])
= −3 + 2

√
3B1 (x) cos

[2
3 arctan (f2 (x))∓ π

3

]
by

λk (r̃, θ) =
Tk
(
cos

[
θ
2

])
24r̃3 cos3

[
θ
2

] (k = 1, . . . , 6) ,

λ7,8 (r̃, θ) =
1±

√
1 + 512 cos6

[
θ
2

]
16r̃3 cos3

[
θ
2

] ,

λ9 (r̃, θ) = − 1
8r̃3 cos3

[
θ
2

] .
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Here, r̃ is the dimensionless distance r/α1/3
0 . The total CDM interaction energy VCDM (r̃, θ)

between the three dipoles is given by:

VCDM (r̃, θ) = 1
2~ω0

[ 9∑
k=1

√
1 + λk − 9

]
.

This can be approximated for small λk (or, equivalently, large r/α0) by a Taylor expansion
of the square root:

VCDM '
1
2~ω0

9∑
k=1

(1
2λk −

1
8λ

2
k + 1

16λ
3
k

)
.

It can be straightforwardly shown that ∑9
k=1 λk = 0, while it can also be (less straightfor-

wardly) calculated that

9∑
k=1

λ2
k = 3

16r̃6 cos6
[
θ
2

] + 24
r̃6 ,

9∑
k=1

λ3
k =

9
(
1 + 3 cos2

[
θ
2

]
− 6 cos4

[
θ
2

])
4r̃9 cos3

[
θ
2

] .

It follows that

1
2~ω0

9∑
k=1

(
−1

8λ
2
k

)
=
∑
(ij)

v(L) (rij) ,

1
2~ω0

9∑
k=1

( 1
16λ

3
k

)
= v(AT ) (ri, rj, rk) ,

as defined in Eqs. (5.7) and (5.10), thus confirming that, in this case, the London and
AT approximations follow from a Taylor expansion of the CDM result.

The accuracy of the HdB and AT approximations depends on the angle θ, but also
greatly on the interatomic distance r. In Fig. C.1, we illustrate this for the three-dipole
case of Fig. 5.1 (section 5.3.1), for a few values of θ, by plotting the absolute difference
∆ between VCDM and VHdB, VCDM and VAT , and VCDM and VcHdB, where VcHdB is the
result obtained by only considering pair interactions in CDM but not Taylor-expanding
the result in r̃−3 (as is done for VHdB). For large r̃, we observe that the AT approximation
becomes the best of the three plotted methods; however, for smaller r̃, this is not always
the case. The AT performs best for a straight line of dipoles (θ = 0), but even here there
is a region (r̃ . 1.8) where it is beaten by VcHdB. For θ = π/3, VcHdB outperforms VAT
up until r̃ ≈ 3.75. The straight-angled case (θ = π/2) is interesting in that each of the
three methods has a region where it has the best accuracy: VcHdB for r̃ . 1.9, VL for
1.9 . r̃ . 2.6, and VAT for r̃ & 2.6. In the case of the equilateral triangle (θ = 2π/3),
VHdB beats VAT in the region r̃ . 2.1. We note that, with the exception of the straight-
line case, AT only starts giving more accurate results than the other two methods in the
regime r̃ > 2.1, which was not considered in the main body of the present work.
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Figure C.1: The absolute difference |∆| between VCDM and VHdB (blue), VCDM and VAT
(red), and VCDM and VcHdB (yellow), corresponding, respectively, to Hamaker-de Boer, Axilrod-
Teller and “corrected HdB” (or, rather, Hamaker-de Boer with unapproximated pair potentials)
methods of approximation, for three dipoles positioned as in Fig. 5.1, as a function of the
dimensionless distance r̃ = r/α

1/3
0 between the first two and the last two dipoles in the chain.

We consider θ = 0 (a), θ = π/3 (b), θ = π/2 (c), and θ = 2π/3 (d).



D

Additional Analytical Expressions
for the Self-Consistent Electric

Field-Induced Dipolar Interaction
Energy

In this appendix, we give two more analytical expressions for the self-consistent electric
field-induced dipolar interaction energy between point dipoles, as discussed in Chapter
6. The first is an expression that is actually used in numerical calculations in Chapter
6 and gives the interaction energy between two anisotropically inducible dipoles that are
rotated by a 90◦ angle with respect to each other. The second gives the interaction energy
between point dipoles that have different, but isotropic polarizabilities.
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In Chapter 6 (Sec. 6.4.5), we use an analytical expression for the interaction between
a point dipole with polarizability α1 = diag (αt, αyy, αl) and one with polarizability α2 =
diag (αl, αyy, αt) in an external electric field pointed in the z-direction. This expression is
given in terms of the dimensionless dipole-dipole distance r̃ = r/α

1/3
l , the ratio ηα = αt/αl,

and the angle θ between the electric field and the line connecting the dipoles, by

V
(SSCD)
E,misal. (r̃, θ, ηα) = αlE

2
0

2
A (r̃, θ, ζ)
B (r̃, θζ) , (D.1)

where

A (r̃, θ, ζ) =
(
r̃6 − 4ηα

) (
2r̃3 − 1− ηα

)
ηα

−3
[
2ηα

(
r̃6 − 2ηα

)
+ r̃3 (1 + ηα)

(
ηα + 3 (1− ηα)2 sin2 θ

)]
r̃3 cos2 θ

and
B (r̃, θ, ζ) =

(
r̃6 − 4ηα

) (
r̃6 − ηα

)
− 9r̃6 (1− ηα)2 cos2 θ sin2 θ.

Note that these expressions do not depend on αyy. The first-order Taylor expansion of
Eq. (D.1) for small r̃ yields Eq. (6.20). V (SSCD)

E,misal. (r̃, θ, ηα) is, together with the contour
lines of its permanent-dipole counterpart of Eq. (6.20), plotted in Fig. D.1 for η ≈ 0.44.

We can also derive an expression for the interaction energy of a dipole with polariz-
ability α1I with one with polarizability α2I. The result is:

V
(SSCD)
E (r̃, θ, ζ) = E2

0α1ζ

2 (r̃6 − 4ζ) (r̃6 − ζ)
[(
r̃6 − 4ζ

) (
2r̃3 − ζ − 1

)
−3r̃3

(
2r̃6 + r̃3 (ζ + 1)− 4ζ

)
cos2 θ

]
,

where ζ = α1/α2, r̃ = r/α
1/3
1 and θ is, as before, the angle between the electric field and

the line connecting the dipoles. The first-order Taylor approximation of this expression
for small r̃−3 is

V
(SPD)
E (r̃, θ, ζ) = E2

0α1ζ
1− 3 cos2 θ

r̃3

= E2
0α1α2

1− 3 cos2 θ

r3 ,

which seems physically reasonable. V (SSCD)
E (r̃, θ, ζ) is not applied in Chapter 6 but might

be useful for future study.
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Figure D.1: The interaction energy V (SSCD)
E,misal./αlE

2
0 , as given in Eq. (D.1), of a pair of inducible

point dipoles, the first with polarizability α1 = diag (αt, αyy, αl) and the second with polarizabil-
ity α2 = diag (αl, αyy, αt), satisfying αt/αl ≈ 0.44, subject to external electric field E0 pointing
in the direction of r‖, as a function of the location of the second inducible dipole relative to the
first in the r⊥ − r‖ plane. Note that restricting ourselves to this plane makes the value of αyy
irrelevant for the value of V (SSCD)

E,misal.. The dipole moments are calculated self-consistently, taking
into account the influence that the inducible point dipoles have on each other’s dipole moment.
The contour lines of the function V (SPD)

E,misal./αdE
2
0 of Eq. (6.20), which is the result if the dipole

moments are instead fixed to values equal to αlE0 and αtE0, respectively, are shown as well.
The hatched area, within which a polarization catastrophe occurs and V (SSCD)

E is no longer valid,
is excluded from the plot.
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Summary

In this thesis, we studied colloids and nanoparticles, which are particles of sizes below
roughly 1 µm. Because these particles exhibit Brownian motion - erratic motion due
to the constant bombardment by solvent molecules - they can efficiently sample phase
space. Thus, due to the random “kicks” that characterize Brownian motion, a system
of particles can overcome potential barriers and reach its thermal equilibrium position
without getting stuck in local equilibria on the way there. Under the right conditions,
this thermal equilibrium is an ordered structure and, in these cases, the random process
of Brownian motion helps systems of particles to spontaneously assemble into states with
a high degree of order. If such an assembly occurs as a result of only Brownian motion
and interparticle interactions, we speak of “self-assembly”. In practice, self-assembly is
not always feasible, or even desirable, and experimentalists often assist the assembly by,
for example, applying external electric fields in order to align the particles, or to induce
interparticle interactions that help the assembly.

External electric fields cause insulating matter to polarize, which means that its atoms’
electron clouds get shifted with respect to their nuclei, such that each atom becomes an
induced electric dipole with a dipole moment dependent on the strength of the electric
field. For small electric fields, an atom’s dipole moment is, in fact, exactly proportional
to the local electric field at the site of the atom, where the proportionality constant
between the atom’s dipole moment and the local electric field is the atomic polarizability.
The polarization of a cluster of atoms (e.g., a colloid) is also linear with the applied
electric field but, in this case, the polarizability of the cluster is a tensor. A polarized
atom in turn creates an additional electric field in its surroundings, which is felt by all
the other atoms and, in this way, multiple atoms can enhance or reduce each other’s
polarization and calculating a cluster’s polarizability is therefore a many-body problem.
The enhancement factor is defined as the ratio of the “full” cluster polarizability (i.e.,
taking into account interatomic interactions) to the cluster polarizability if interatomic
interactions are ignored, and is thus a measure of the degree to which these interactions
enhance or reduce the total polarizability.

In this thesis, we employed the Coupled Dipole Method (CDM) to calculate the polar-
izability of anisotropic (i.e., nonspherical) particles while taking into account the influence
that the atoms exert on each other. As we have shown in this thesis, it is also possible to
use the CDM to calculate the potential energy of a configuration of atoms in an external
electric field, such that the orientational energy of single clusters as well as the interaction
between multiple clusters induced by the external electric field can be calculated. The
results of these calculations are described in this thesis.

We also studied the so-called London-Van der Waals force between various particles.
This force is a result of the collective ground-state vibrations of the atoms’ dipole moments
and is present even in the absence of an external electric field. In a way, it is therefore
somewhat of a separate subject from induced polarization and the interaction between
polarized particles, which are phenomena occurring only in the presence of an electric
field. On the other hand, the London-Van der Waals force does share the property that
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it involves interacting induced dipoles (albeit fluctuating ones) and the feature that, like
polarizability, it can be calculated using the CDM.

In Chapter 2, we used the CDM to calculate the polarizability and enhancement factor
tensor of cuboid-, bowl-, and dumbbell-shaped particles. Using a Hamiltonian approach,
we were able to straightforwardly calculate the potential energy of the particles in an
external electric field, such that we could investigate their alignment properties. For the
various particles, we calculated the potential energy difference between perfect alignment
and a perpendicular orientation as a function of the number of atoms composing the
particle. We found that this relation is linear, which implies that the difference of the two
independent enhancement factor elements is only dependent on the shape of the particle
and the material that it is composed of. We found that, for rods and dumbbells, it is
energetically favorable to align their rotational symmetry axis along the electric field, while
platelets and bowls prefer to align this axis perpendicular to the electric field. Cubes, on
the other hand, have no preferred orientation.

In Chapter 3, we focused on spherical and cubic particles, studying their global and
local enhancement factor in detail. The global enhancement factor of cubes first increases
as a function of the number of rib atoms, then reaches a maximum, and finally decreases
again, seemingly decaying to the value predicted by continuum electrostatics. For large
cubes, the local enhancement factor was found to vary only as a function of scaled co-
ordinates inside the cube, such that the graphs for different cube sizes collapse on the
same curve if the rib length is scaled out of the coordinates. For spheres, the global en-
hancement factor also seemed to decay to the value predicted by continuum electrostatics
but, for the sphere sizes studied, did not come as close as was the case for cubes. The
local enhancement factor of the spheres was found to be constant throughout the interior
of the sphere, in accordance with continuum electrostatics. Some variation was found at
and near the surface, but we were unable to determine whether this dependence would
scale with the sphere size, as it did for cubes. In conclusion, using the discrete dipoles
of the CDM, the sphere seemed a somewhat more problematic shape to model than the
cube but, for both shapes, the CDM and continuum theory did seem to agree well for
large cluster sizes. This is a promising result, since it suggests that solving problems for
complex electrostatic arrangements could be possible using the CDM.

In Chapter 4, we exploited the linear relation between the orientational energy differ-
ence and the atom number in order to extrapolate quantities found for small clusters to
much larger clusters. In this way, we could calculate, for typical experimental parameters,
the size for which the orientational energy first becomes of the order of the thermal en-
ergy, i.e., for which particle size alignment by an electric field first becomes possible. The
answer to this question depends on the shape of the particle, but also on the definition of
“size”. If it is meant to refer to the number of atoms (or, equivalently, the volume of the
particle), it turns out that the more anisotropic the particle, the smaller the size (number
of atoms) required for alignment. However, a very anisotropic particle, even though it
contains a low number of atoms, may still be very large (e.g., larger than colloidal scales)
along one or two of its dimensions. As it turns out, if we define “size” as the length of a
particle when measured along the direction of the electric field while the particle is per-
fectly lined up (i.e., it is in its most favorable orientation), the dependence of the required
size for alignment on the particle shape is nontrivial. This is because of a competition be-
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tween particle anisotropy, which leads to a high orientational energy difference per atom,
and particle bulkiness, which allows more atoms to fit in a particle with a certain size
(according to the last-mentioned definition), thus increasing the polarizability and, hence,
the orientational energy difference. For each particle type (cuboid, bowl, and dumbbell),
we determined the “optimal shape,” i.e., the shape for which the required size parameter
for alignment is smallest. The answer was in each case found to lie more or less halfway
between extreme anisotropy and extreme bulkiness.

We subsequently turned our attention to interparticle interactions, starting with Van
der Waals (VdW) interactions in Chapter 5. In the absence of an electric field, we inves-
tigated whether particles, under the influence of only their VdW interactions, prefer to
form strings or more compact structures. This is a nontrivial question, since the former
could be favorable because dipoles (even fluctuating ones) prefer to lie head-to-toe, while
the latter could be favored because it minimizes the distance between pairs of particles.
It turned out that, although a local minimum arises at the linear configuration, compact
structures are energetically preferred in almost all circumstances. The only setup for
which a linear configuration was stable was that of three very strongly interacting in-
ducible point dipoles. We noted that it is not unreasonable to suppose that linear chains
are also preferable for interaction strengths higher than the CDM can handle, i.e., beyond
the polarization catastrophe.

In Chapter 6, we generalized the CDM somewhat to allow for Lorentz atoms that
are not necessarily of atomic proportions. Subsequently, we studied the other type of
interparticle interaction that can be calculated using the CDM: the induced dipolar inter-
action between particles in an external electric field. We gave a formula for the interaction
energy between a pair of inducible point dipoles in an external electric field, taking into
account the effect one dipole has on the other’s dipole moment. We compared this ex-
pression to its first-order Taylor approximation, which turned out to be the result one
gets when treating the electric field-induced dipoles as permanent. We then proceeded to
calculate the interaction energy of cluster pairs of various shapes in an external electric
field, namely spheres, cubes, and rods, and compared the results given by the CDM to
those given by various other calculation techniques, in the end arriving at a number of
recommendations on which calculation technique to use in which situation.

Chapter 7 contains three separate studies. In the first of these, we investigated the
density of states of a straight chain of Lorentz atoms by plotting the number of modes
in each frequency interval. We found that the range of frequencies is limited to between
0.6 and 1.2 times the characteristic frequency of the composing Lorentz atoms, and that
certain frequencies are preferred over others. We then investigated how this distribution
changes when a second chain of atoms is allowed to interact with the first, in order to
discover whether certain frequency ranges contribute more to VdW interaction than oth-
ers. Unfortunately, we were not able to distinguish a pattern indicating which frequencies
change and which do not. We proceeded instead to theoretically calculate the density
of states of an infinite chain of Lorentz atoms, the result of which agrees well with the
numerical results for finite chains.

In the second study of Chapter 7, we investigated the amplitude of vibration of indi-
vidual modes on interacting squares of Lorentz atoms, and visualized the evolution of the
modes as a function of the distance between the squares. As suspected, mainly modes
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concentrated near the opposing edges of the squares turned out to contribute to the in-
teraction. However, it was found that as, a function of distance, a mode can transform
from an ordinary to a surface mode and vice versa. Therefore, if a mode is found to be
a surface mode (and is thus an interacting mode) at one distance, it is not guaranteed
that it will still be a surface mode at another distance, such that we again were unable
to make predictions about which modes will contribute most to VdW interaction.

In the last study of Chapter 7, we turned our attention to induced dipoles in the
presence of a conducting plate. We slightly modified the CDM to include “image dipoles”
(in analogy with image charges) and calculated the interaction of a single inducible dipole
as well as a chain (rod) of these dipoles with the conducting plate when an external
electric field is applied normal to the plate. For the single dipole case, we were able to
derive an analytical expression while, for the rod, we found from numerical calculations
that, at short distances from the plate, the rod is in a local minimum when lying flat on
the plate, although the global minimum is still at the orientation where the rod is aligned
with the electric field. This implies that in a system of rods with random orientation near
a conducting plate, if an electric field perpendicular to the plate is switched on, and this
field is strong enough, a certain percentage of rods near the plate will be captured in this
local minimum and will lie flat on the plate, while the rest will align with the electric
field.



Samenvatting

In dit proefschrift hebben we colloïden en nanodeeltjes bestudeerd: deeltjes met een
grootte beneden ruwweg 1 µm. Deze deeltjes ondergaan Brownse beweging - onregel-
matige beweging teweeg gebracht door het continue bombardement van de moleculen
in het oplosmiddel - en kunnen daardoor hun faseruimte efficiënt verkennen. Door de
willekeurige duwtjes die typerend zijn voor Brownse beweging kan een deeltjessysteem
dus potentiaalbarrières overwinnen en zijn thermisch evenwicht bereiken zonder vast te
komen zitten in een metastabiel evenwicht. In de juiste omstandigheden is het thermisch
evenwicht een geordende structuur, en in deze gevallen helpt de willekeurige Brownse be-
weging systemen zich spontaan te schikken in een toestand met een hoge mate van orde.
Als zo’n assemblage zich voordoet als gevolg van alleen Brownse beweging en interactie
tussen de deeltjes spreken we van zelfassemblage. In de praktijk is zelfassemblage niet
altijd realiseerbaar, of zelfs gewenst, en experimentatoren helpen de assemblage vaak een
handje, bijvoorbeeld door externe elektrische velden aan te leggen om de deeltjes in een
bepaalde richting te laten wijzen of om interacties tussen de deeltjes teweeg te brengen
die de assemblage bevorderen.

Externe elektrische velden zorgen dat isolerende materie polariseert. Dat betekent
dat de elektronenwolken van de atomen verschoven worden ten opzichte van hun nu-
cleus, zodat elk atoom een geïnduceerde elektrische dipool wordt met een dipoolmoment
afhankelijk van de elektrische veldsterkte. Voor lage veldsterktes is het dipoolmoment
van een atoom zelfs precies evenredig met het lokale elektrische veld op de locatie van het
atoom. De evenredigheidsconstante tussen het dipoolmoment van het atoom en het lokale
elektrische veld heet de atoompolariseerbaarheid. Ook de polarisatie van een cluster van
atomen (bijvoorbeeld een colloïde) is lineair evenredig met het aangelegde elektrische veld,
maar in dit geval is de polariseerbaarheid van het cluster een tensor. Een gepolariseerd
atoom brengt op zijn beurt een extra elektrisch veld teweeg in zijn omgeving, hetgeen
gevoeld wordt door alle andere atomen. Op deze manier kunnen meerdere atomen dus
elkaars polarisatie versterken of verzwakken en het uitrekenen van een clusterpolarisatie is
daarom een veeldeeltjesprobleem. De versterkingsfactor is gedefinieerd als de verhouding
tussen de ‘volledige’ clusterpolariseerbaarheid (die rekening houdt met wisselwerkingen
tussen atomen) en de clusterpolariseerbaarheid als interatomaire interacties genegeerd
worden. Hij meet dus in hoeverre deze interacties de totale polariseerbaarheid versterken
of verzwakken.

In dit proefschrift hebben we de Coupled Dipole Method (CDM) gebruikt om de
polariseerbaarheid van anisotrope (dat wil zeggen niet-bolvormige) deeltjes te berekenen
waarbij we rekening hielden met de invloed die de atomen op elkaar uitoefenen. Zoals
we lieten zien in dit proefschrift is het ook mogelijk om de CDM te gebruiken om de
potentiële energie van een configuratie van atomen in een extern elektrisch veld uit te
rekenen, zodat de oriëntationele energie van enkele clusters alsook de interactie tussen
meerdere clusters geïnduceerd door het externe elektrische veld berekend kan worden; de
resultaten hiervan staan beschreven in dit proefschrift.
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We hebben ook de zogenaamde London-Vanderwaalskracht tussen verscheidene deelt-
jes bestudeerd. Deze kracht is het gevolg van de collectieve grondtoestandsvibraties van
de dipoolmomenten van de atomen en bestaat zelfs in afwezigheid van een extern elek-
trisch veld. Zodoende is het dus min of meer een afzonderlijk onderwerp van geïnduceerde
polarisatie en de interactie tussen gepolariseerde deeltjes, welke fenomenen zich alleen vo-
ordoen in de aanwezigheid van een elektrisch veld. Met de interactie tussen gepolariseerde
deeltjes deelt de London-Vanderwaalskracht echter wel de eigenschap dat interagerende
geïnduceerde dipolen (ofschoon fluctuerend) erbij betrokken zijn, alsook het kenmerk dat
hij uitgerekend kan worden met behulp van de CDM.

In Hoofdstuk 2 gebruikten we de CDM om de polariseerbaarheid en versterkingsfactor
van balk-, kom-, en dumbbellvormige deeltjes uit te rekenen. Met behulp van de Hamil-
toniaan van het systeem waren we in staat eenvoudig de potentiële energie van de deeltjes
in een extern elektrisch veld te berekenen, zodat we eigenschappen met betrekking tot het
richten van deze deeltjes konden onderzoeken. Voor verscheidene deeltjes hebben we het
verschil in potentiële energie uitgerekend tussen de oriëntatie waarbij het deeltje perfect
gericht is door het elektrisch veld en een oriëntatie loodrecht hierop, als functie van het
aantal atomen in het deeltje. We ontdekten dat deze relatie lineair is, hetgeen erop wijst
dat het verschil tussen de twee onafhankelijke versterkingsfactorelementen alleen afhangt
van de vorm van het deeltje en het materiaal waar het deeltje uit bestaat. We vonden
ook dat het voor staven en dumbbells energetisch voordelig is om hun rotatiesymmetrieas
te richten naar het elektrisch veld, terwijl platen en kommen deze as liever loodrecht op
het elektrisch veld richten. Kubussen hebben helemaal geen voorkeursoriëntatie.

In Hoofdstuk 3 richtten we onze aandacht op bolvormige en kubusvormige deeltjes en
bestudeerden we hun globale en lokale versterkingsfactor grondig. De globale versterk-
ingsfactor van kubussen wordt eerst groter als functie van het aantal atomen op de rib,
bereikt een maximum en wordt dan weer kleiner, schijnbaar afvallend naar de waarde
voorspeld door continuümelektrostatica. Voor grote kubussen bleek de locale versterk-
ingsfactor alleen te variëren als functie van geschaalde coördinaten in de kubus, zodat
de grafieken voor verschillende kubusgrootten op dezelfde curve vallen als de riblengte
uit de coördinaten wordt geschaald. Voor bollen leek de globale versterkingsfactor ook
af te vallen naar de waarde die continuümelektrostatica voorspelt, maar kwam voor de
bestudeerde bolgroottes niet zo dichtbij als het geval was voor kubussen. De locale ver-
sterkingsfactor van de bollen bleek binnenin constant, hetgeen in overeenstemming is met
continuümelektrostatica. We vonden wel wat variatie op en nabij het oppervlak van de
bol, maar we konden niet bepalen of deze afhankelijkheid voor grote bollen zou meeschalen
met de bolgrootte, zoals het geval was bij kubussen. We kunnen dus concluderen dat,
gebruik makend van de discrete dipolen van de CDM, de bolvorm ietwat problematischer
te modelleren was dan de kubus maar dat voor beide vormen de CDM en continuümthe-
orie goed overeenkomen voor grote clusters. Dit is een hoopgevend resultaat omdat het
erop wijst dat het oplossen van problemen voor complexe elektrostatische opstellingen
mogelijk zou kunnen zijn met behulp van de CDM.

In Hoofdstuk 4 maakten we gebruik van het lineaire verband, gevonden in Hoofdstuk
2, tussen het oriëntationele-energieverschil en het aantal atomen, om grootheden gevonden
voor kleine clusters te extrapoleren naar veel grotere clusters. Op deze manier konden
we voor typische experimentele parameters de deeltjesgrootte uitrekenen waarvoor het
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oriëntationele-energieverschil voor het eerst van de orde van grootte van de thermische
energie wordt, dat wil zeggen, voor welke deeltjesgrootte het voor het eerst mogelijk
wordt het deeltje te richten met een elektrisch veld. Het antwoord op deze vraag hangt
af van de vorm van het deeltje, maar ook van de gebruikte definitie van ‘grootte’. Als
met deze term het aantal atomen bedoeld wordt (gelijkwaardig aan deze definitie is de
inhoud van het deeltje) dan blijkt: hoe anisotroper het deeltje, hoe kleiner de grootte
(aantal atomen) noodzakelijk voor het richten. Een zeer anisotroop deeltje kan echter
zeer grote (groter dan colloïdaal) fysieke afmetingen hebben gemeten langs één of twee
richtingen, ook al is het aantal atomen klein. Als we de ‘grootte’ definiëren als de lengte
van het deeltje gemeten langs de richting van het elektrisch veld terwijl het deeltje perfect
gericht is naar het elektrisch veld (dus als het deeltje de meest gunstige oriëntatie heeft),
blijkt dat het verband tussen de benodigde grootte voor het richten van het deeltje en
de vorm van het deeltje niet meer triviaal is. Dan ontstaat namelijk rivaliteit tussen een
hoge anisotropie, hetgeen leidt tot een hoog verschil in oriëntationele energie per atoom,
en een grote dikte, hetgeen ervoor zorgt dat meer atomen in een deeltje met een bepaalde
grootte (volgens de laatstgenoemde definitie) passen, waardoor de polariseerbaarheid en
dus het oriëntationele-energieverschil verhoogd wordt. Voor elk deeltjestype (balk, kom
en dumbbell) hebben we bepaald wat de ‘optimale vorm’ is, namelijk de vorm waarvoor de
benodigde grootte (volgens de laatstgenoemde definitie) voor het richten van het deeltje
zo klein mogelijk is. Het antwoord lag voor elk deeltjestype min of meer halverwege tussen
extreme anisotropie en extreem grote dikte.

Vervolgens richtten we ons op wisselwerkingen tussen deeltjes, beginnend met de Van-
derwaalsinteracties (VdW) in Hoofdstuk 5. In afwezigheid van een elektrisch veld onder-
zochten we of deeltjes onder invloed van alleen hun Vanderwaalsinteracties liever kettingen
vormen of compactere structuren. Dit is geen triviale vraag aangezien kettingen gunstiger
zouden kunnen zijn omdat dipolen (zelfs fluctuerende) liever kop-staart liggen, terwijl de
compactere structuren gunstiger zouden kunnen zijn omdat ze de afstand tussen deelt-
jesparen minimaliseren. Hoewel een lokaal minimum zich voordoet bij de lineaire con-
figuratie, bleken compacte structuren bijna altijd energetisch gunstiger te zijn. De enige
situatie waarvoor we een stabiele lineaire configuratie vonden was er één met drie zeer
sterk interagerende induceerbare puntdipolen. We merkten op dat het niet onredelijk is
om te veronderstellen dat lineaire kettingen ook de voorkeur hebben bij interactiesterktes
hoger dan ondersteund door de CDM, dus voorbij de polarisatiecatastrofe.

In Hoofdstuk 6 generaliseerden we de CDM enigszins om Lorentzatomen toe te laten
die niet noodzakelijkerwijs atomaire afmetingen hebben. Vervolgens bestudeerden we
de andere deeltjesinteractie die uitgerekend kan worden met de CDM: de geïnduceerde
dipoolinteractie tussen deeltjes in een extern elektrisch veld. We leverden een formule
voor de interactie-energie tussen twee induceerbare puntdipolen in een extern elektrisch
veld, waarbij we rekening hielden met de invloed die het ene dipool uitoefent op het
dipoolmoment van het andere. We vergeleken deze uitdrukking met zijn eerste-orde Tay-
lorbenadering, welke het resultaat bleek te zijn dat men verkrijgt door de geïnduceerde
dipolen te behandelen alsof ze permanente dipolen zijn. Vervolgens berekenden we de
interactie-energie van clusterparen van verscheidene vormen in een extern elektrisch veld,
namelijk bollen, kubussen en staven, en vergeleken de resultaten gegeven door de CDM
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met resultaten uit allerlei andere rekenmethoden, om uiteindelijk te komen tot een aantal
aanbevelingen, welke methode te gebruiken in welke situatie.

Hoofdstuk 7 bevat drie afzonderlijke onderzoeken. In het eerste onderzochten we de
toestandsdichtheid van een ketting van Lorentzatomen door het aantal normale trillingsmodes
in elk frequentie-interval te plotten. We vonden dat het bereik van de frequenties beperkt
is tot een interval tussen ongeveer 0.6 en 1.2 keer de karakteristieke frequentie van de
Lorentzatomen, en dat bepaalde frequenties de voorkeur hadden boven andere. Daarna
onderzochten we hoe deze distributie verandert als we een tweede ketting van atomen
laten interageren met de eerste, om uit te vinden of bepaalde frequentie-intervallen meer
bijdragen aan VdW-interactie dan andere. Helaas waren we niet in staat een patroon
te vinden dat voorspelt welke frequenties veranderen en welke niet. In plaats daarvan
berekenden we vervolgens theoretisch de toestandsdichtheid van een oneindige ketting
van Lorentzatomen, waarvan het resultaat goed overeen komt met de numerieke resul-
taten voor eindige kettingen.

In het tweede onderzoek van Hoofdstuk 7 bestudeerden we de vibratieamplitude van
individuele modes op interagerende vierkanten van Lorentzatomen, en brachten we de
evolutie van deze modes in beeld als functie van de afstand tussen de vierkanten. Zoals al
werd vermoed bleken vooral modes die geconcentreerd waren nabij de tegenoverliggende
randen van de vierkanten bij te dragen aan de interactie. We ontdekten echter ook dat
als functie van de afstand een mode kan transformeren van een gewone mode tot zo’n
randmode en vice versa. Als gevonden wordt dat een mode een randmode (dus een inter-
actiemode) is bij een bepaalde afstand, kunnen we dientengevolge dus niet garanderen dat
de mode ook een randmode is bij een andere afstand, zodat het alweer niet mogelijk was
om voorspellingen te doen welke modes het meest aan VdW-interactie zullen bijdragen.

In het laatste onderzoek van Hoofdstuk 7 richtten we ons op geïnduceerde dipolen in de
nabijheid van een geleidende plaat. We pasten de CDM een weinig aan om ‘beelddipolen’
(in analogie met beeldladingen) te omvatten en rekenden de interactie uit tussen een
enkele induceerbare dipool alsook een ketting (staaf) van deze dipolen en de geleidende
plaat. Voor het enkele dipool leidden we een een analytische uitdrukking af voor de
interactie-energie, terwijl we voor de staaf met numerieke berekeningen ontdekten dat bij
kleine afstanden van de plaat de staaf zich in een lokaal minimum bevindt als hij plat
op de plaat ligt; het globale minimum doet zich echter wel nog steeds voor als de staaf
gericht is naar het elektrisch veld. Dit wijst erop dat als in een systeem van staven met
een willekeurige oriëntatie en een geleidende plaat een elektrisch veld aan wordt gezet
loodrecht op de plaat, en dit veld sterk genoeg is, een bepaald percentage van de staven
dichtbij de plaat gevangen zal worden in dit lokale minimum en dus plat op de plaat zal
liggen, terwijl de rest zich zal richten naar het elektrisch veld.



Acknowledgments

Well, here I am, writing the last few paragraphs of my PhD thesis. After four years of
research in the SCM group (and ten at Utrecht University), my days here are drawing to
an end. A good opportunity, therefore, to thank a number of people who have helped me
along the way, and without some of whom this thesis would never have been written in
the first place.

First on the list of people to thank, naturally, come my supervisors, René van Roij
and Marjolein Dijkstra. René I encountered first, him being the lecturer for the Thermal
Physics course I followed in my second year as a Bachelor student. I met him again at
the Soft Condensed Matter Theory Masters course, but he only met me when I asked him
to be my supervisor for my Masters research. He did not disappoint as a supervisor and
so, when he offered me a PhD position, I quickly accepted. One sometimes hears that
people can be very different as lecturers and as supervisors, but for René this is not the
case. The inspiring enthusiasm and vitality he displays when he lectures are there just
as much when he supervises, making him a very motivating person to be around; add a
pinch of grand (sometimes unattainable) vision, and you have “idea machine” René.

Marjolein taught a part of my third-year Thermal Physics course, but I only really met
her when I started my PhD research. In some ways, her supervisory style is complementary
to René’s: with her practical, down-to-earth approach she helps projects move along;
moreover she is more of a listener than a talker: in our joint meetings, René and I would
usually do most of the talking while she would be listening and regularly interjecting
remarks both smart and knowledgeable to move our discussion along or to correct mistakes
we were making. She has an extensive knowledge of the scientific literature and is very
skilled at connecting different studies. She was the supervisor nearest to my office and
hence the person I would go to with various small questions that popped up and, if she
did not happen to be in some other meeting, she literally always made time for me, which
I very much appreciate.

I would furthermore like to thank Alfons van Blaaderen, Arnout Imhof, and Laura
Filion for the various useful discussions, Judith Wijnhoven for putting up with my chem-
ical garden in the Lab, Peter Helfferich for technical support, Marijn van Huis for getting
me to present at the nanoseminar, and all the staff in general for making the SCM group
the productive scientific group that it is.

Of the (former) (PhD or postdoc) students in the group, I would like to thank a lot
of people. Joost de Graaf for steering me in the direction of soft condensed matter in
the first place, for the excellent dinners I have enjoyed at his place at various times, for
all the wine brought to my place every time he came over, for his help here and there
during my PhD, and just for being my friend. Matthieu Marechal for his help in the first
few months of my PhD. Teun Vissers for the legendary road trip to Granada, for which I
also would like to thank the other participants Laura (again) and Niels Boon; and for the
various times we played squash and subsequently had beer at Olympos, for the climbing
frenzy that ensued after that, for the various beers we had with no sport preceding it, and
for the humor we shared; thank you, also in name of the wife of Aariel Vrets. Kristina



164 Acknowledgments

Milinković, for the good times at the pub or over dinner, and for introducing me to your
various friends, one in particular. Anjan Gantapara, Thijs Besseling, and Simone Dussi
for occasionally dragging me out of my office to lunch. Henriëtte Bakker, Anjan (again),
and John Edison for the fun times at the frisbee competition.

A special thanks goes out to my office mates Peter van Oostrum, Bo Peng, Linh
Tran, Matthew Dennison, Henriëtte Bakker, and Rik Koster for making my office such
a pleasant place to work in. Sorry for my messy desk, I will clean it up soon. Bo I
would additionally like to thank for sharing his experience with the ins and outs of the
promotion trajectory, for being my office mate for such a very long time, for our joint
(sadly, failed) chemical garden project, and for the various interesting conversations we
had about Chinese and Dutch culture. Matthew also gets an extra thanks for the spent
pub time and for completing the “bridge club” of him, Kristina, Marina, and me, even
though little bridge was played.

All of the above, as well as Johan, Marlous, Bart, Frank, Michiel, Anke, Marjolein van
der Linden, Wessel, Nina, Simone Belli, Jissy, Nick, Wiebke, Arjen, Ahmet, Rao, Ran,
Carlos, Ernest, Guido, and Thomas are thanked for the coffee breaks, lunches, and/or
pub times we shared.

I would also like to thank all of my friends in (or from) Utrecht, Leiden, and abroad
for the good times. My family, and especially my dad, mother, and brother are thanked
for the help and support they could offer. My mom I would like to thank again for editing
the Dutch summary of this thesis. And last, but most certainly not least, I would like
to thank Marina Peneva, for editing the entirety of this thesis: there is not an English
sentence in it that is not edited by her. But most of all I thank her for her love, support,
understanding, patience, and generally for being so bubbly.



About the Author

Bas Kwaadgras was born in Dordrecht on August 2, 1985. He attended primary school
De Driehoek there, until moving to Voorschoten at age 7, where he finished his primary
education at Nutsbasisschool Voorschoten. After graduating from Stedelijk Gymnasium
Leiden in 2003, he enrolled in the Physics & Astronomy Bachelor’s program at Utrecht
University, which he finished (cum laude) in 2006. At the same university, he went on to
follow the Master’s program Theoretical Physics, where he obtained his degree in 2009.
His Master’s research project on the subject of charge-patterned surfaces in a dielectric
solvent was supervised by Prof. Dr. R. van Roij at the Institute for Theoretical Physics.
Following this, in September 2009, he started his PhD research under the supervision of
Prof. Dr. Ir. M. Dijkstra and Prof. Dr. R. van Roij at the Soft Condensed Matter Group
of the Debye Institute for Nanomaterials Science. The result of this research is this thesis.
At the time of writing, Bas has published three papers on the subject matter of this thesis
in a peer-reviewed scientific journal, while more are in preparation. During his time as a
PhD student, Bas has given oral and poster presentations at national and international
conferences. He has also served as a teaching assistant for an undergraduate Statistical
Physics course.


	Introduction
	Colloids and Nanoparticles
	Polarization
	Van der Waals Interactions
	Coupled Dipole Method 
	Thesis Outline

	Polarizability and Alignment of Dielectric Nanoparticles in an External Electric Field: Bowls, Dumbbells, and Cuboids
	Introduction
	Formalism of the CDM: Potential Energy, Polarizability, and Orientational Energy
	Static Polarizability and Orientational Energy of Dipole Clusters in an External Electric Field
	Rotationally Symmetric Clusters
	Fourfold Rotationally Symmetric Clusters
	Units of Distance
	Comparison with Continuum Theory

	Dielectric Rods and Platelets
	Dielectric Bowls and Dumbbells
	Bowls
	Dumbbells

	Conclusions and Outlook

	Global and Local Enhancement Factor of Cubes and Spheres
	Introduction
	Theoretical Predictions
	Numerical Methods
	Exploiting Symmetry
	The Gauss-Seidel Method

	Numerical Results for Cubes
	Global Enhancement Factor
	Local Enhancement Factor
	Polarization Charge

	Numerical Results for Spheres
	Global Enhancement Factor
	Local Enhancement Factor

	Conclusions and Outlook

	The Optimal Shape for Alignment in an External Electric Field: Bowls, Dumbbells, and Cuboids
	Introduction
	Theory
	Rods and Platelets
	Bowls and Dumbbells
	Conclusion

	Can Nonadditive Dispersion Forces Explain Chain Formation of Nanoparticles?
	Introduction
	Methods 
	The Coupled Dipole Method
	The Hamaker-de Boer Potential
	The Axilrod-Teller Potential
	A Note on Notation

	Chains versus Compact Clusters 
	Atomic Chains and Clusters
	Clusters and Chains of Spherical Nanoclusters
	Clusters and Chains of Cubic Nanoclusters

	Summary and Conclusion

	The Self-Consistent Electric Field-Induced Dipole Interaction Energy of Particles in an External Electric Field: Spheres, Cubes, and Rods
	Introduction
	The CDM
	Identical Inducible Dipoles with Isotropic Polarizability
	Van der Waals Interaction
	Induced-Dipole Interaction

	Interaction between Cluster Pairs
	Methods
	Numerical Results for Spheres
	Numerical Results for Cubes
	Numerical Results for Rods
	Numerical Results for Misaligned Particles

	Conclusion

	Miscellaneous
	Introduction
	Density of States of Dipole Polymers
	Theoretical Calculation for an Infinite Polymer
	Summary and Conclusion

	Modes in Interacting Square Plates
	Methods
	Results
	Summary and Conclusion

	Coupled Dipoles near a Conducting Plate 
	Theory
	Results and Discussion
	Summary and Conclusion


	Proof that the Cluster Polarizability is a Symmetric Matrix
	Introduction
	Proof of the Symmetry of the Polarizability Matrix
	Proof of the Assertion Yij=YjiT.


	Exploiting Spatial Symmetries in Large Cubes and Spheres
	Additional Mathematical and Numerical Comparisons
	Additional Analytical Expressions for the Self-Consistent Electric Field-Induced Dipolar Interaction Energy
	References
	Summary
	Samenvatting
	Acknowledgments
	About the Author

