
Self-Assembly of Faceted
Colloidal Particles



Cover: A mosaic, obtained from simulations of a binary mixture of hard squares and
triangles. The composition ratio of triangles to squares is 0.36. The particles are given
random colors.

PhD thesis, Utrecht University, the Netherlands, January 2015.
ISBN: 978-94-6108-881-9
A digital version of this thesis is available at https://web.science.uu.nl/SCM/



Self-Assembly of Faceted Colloidal Particles

Self-Assembly of Faceted Colloidal Particles
(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector
magnificus, prof. dr. G. J. van der Zwaan, ingevolge het besluit van het college voor promoties
in het openbaar te verdedigen op maandag 12 januari 2015 des middags te 12.45 uur

door

Anjan Prasad Gantapara
geboren op 23 maart 1983 te Dharmavaram, India



Promotor: Prof. dr. ir. M. Dijkstra



Contents

1 Introduction 1
1.1 Colloids 2
1.2 Polyhedral Colloidal Particles 3
1.3 Hard Particles 3
1.4 Simulations 4

1.4.1 Monte Carlo Simulations 5
1.4.2 Floppy-box Monte Carlo Simulations 6
1.4.3 Separating Axis Theorem 7
1.4.4 Free-Energy Calculations 8

1.5 Thesis Outline 9

2 Phase Behavior of a Family of Truncated Hard Cubes 11
2.1 Introduction 12
2.2 Simulation Model 12
2.3 Simulation Methods 13

2.3.1 Order Parameters and Correlations Functions 13
2.3.2 Free-Energy Calculations and Confining Potentials 14

2.4 Results 15
2.4.1 Determining the Close-Packed Structures 15
2.4.2 Close-Packed Structures 17
2.4.3 Equations of State and Mesophase Structures 21
2.4.4 Mesophase Lattice Vectors 22
2.4.5 Phase Diagram 23
2.4.6 Plastic Crystal Phases 28

2.5 Conclusions 32
2.6 Acknowledgments 33

3 Vacancies in Simple Cubic Crystals of Truncated Hard Cubes 35
3.1 Introduction 36
3.2 Methods 36

3.2.1 Free Energy of a Solid with Vacancies 36
3.3 Results 37
3.4 Cell Theory Calculations 39
3.5 Conclusions 42
3.6 Acknowledgments 43



6 CONTENTS

4 Phase Diagram of Colloidal Hard Superballs: from Cubes via Spheres
to Octahedra 45
4.1 Introduction 46
4.2 Model, Methods and Simulations 47
4.3 Results and Discussion 48

4.3.1 The Phase Behavior of Hard Octahedra 48
4.3.2 Octahedron-like Superballs (0.5 ≤ q < 1) 54
4.3.3 Cube-like Superballs (1 < q <∞) 55

4.4 Conclusion 57

5 Self-Assembly of Colloidal Hexagonal Bipyramid- and Bifrustum-Shaped
Nanoparticles into Two-Dimensional Superstructures 59
5.1 Introduction 60
5.2 Interfacial Adsorption 61
5.3 Monte Carlo Simulations 63
5.4 Conclusions 66
5.5 Acknowledgements 67

6 Phase Diagram of 2D Hard Triangles: A Novel Chiral Phase with Chiral
Holes 69
6.1 Introduction 70
6.2 Methods 71
6.3 Results 73
6.4 Conclusions and Summary 80
6.5 Acknowledgments 80

7 Dispersion Relations for Colloidal Crystals with Diffusion 81
7.1 Introduction 82
7.2 Theory and Methods 82

7.2.1 Method 1 83
7.2.2 Method 2 83

7.3 Results 84
7.3.1 Hard Spheres 85
7.3.2 Gaussian-Core Particles 85

7.4 Conclusions 89
7.5 Acknowledgments 89

References 91

Summary 102

Samenvatting 104

Acknowledgments 107

List of Publications 109



1

Introduction

In this chapter we give a brief introduction to colloids, the simulation methods that we
used in this thesis, and an overview of the results chapters. We start with a description of
colloids, anisotropic colloids and their self-assembly. We follow this by an overview of the
recent developments in the synthesis of anisotropic colloidal particles. Later, we briefly
describe the simulation methods used in this thesis followed by an outline to the rest of
the thesis.
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1.1 Colloids

Colloids are insoluble microscopic particles that are suspended in a substance. A colloid
is a particle for which at least one of its dimension is within the size range of a nanometer
to a micron [1]. Most colloidal particles are visible in an optical microscope although one
needs an electron microscope to visualize nanocolloids. We encounter colloids in our daily
life more often than we are aware off. For example butter, salad dressing, mayonnaise,
paints, toothpaste, and creams etc., fall into the realm of colloids. Also, colloids are widely
used in emerging technologies such as photonic materials, advanced ceramic processing,
and 3D-ink-jet technology. A better understanding of colloids not only contributes to the
advancement of above mentioned products and technologies but also to our fundamental
understanding of matter at micrometer and nanometer scales.

In 1905, Albert Einstein published, as part of his “Annus mirabilis” papers, his work
on Brownian motion of colloids [2]. The Brownian motion of a colloidal particle is due
to its collision with the surrounding fluid molecules, which are in constant motion be-
cause of the thermal energy they possess. Using the kinetic theory of fluids, Einstein
derived an expression for the mean square displacement for colloids suspended in a liquid.
During this process he also lent credence to Ludwig Boltzmann’s statistical mechanics,
which had been controversial at that time. In the following years, Jean Baptiste Perrin
performed sedimentation experiments [3, 4] on colloids (gamboge particles) and verified
Einsteins theoretical predictions that colloids should obey the gas laws. Furthermore,
Perrin calculated Avogadro’s number and Boltzmann’s constant, quantities relevant for
atomic systems, from his sedimentation experiments on colloids. Perrin won a Noble Prize
in Physics in 1926 for these experiments. Perrin’s experiments illustrated that studying
colloids can reveal information about atomic systems and that the behavior of colloids is
similar to that of atoms.

Brownian motion allows colloidal particles to explore phase space in a similar fashion as
thermal motion does for atomic systems. Colloidal particles suspended in a fluid interact
with each other in addition to the background interaction with the fluid atoms/molecules.
These interactions among the colloids let them exhibit phase behavior similar to that of
atomic systems. It is well known that colloids can exhibit rich phase behavior similar
to their atomic and molecular counterparts. For example colloids can self-assemble not
only into gas, liquid, solid phases but also nematic, smectic, biaxial, hexatic phases as
also found for atomic and molecular systems. The type of phases that could emerge in
a colloidal system not only depends on the interaction potential between the colloidal
particles but also on the shape of the colloidal particle itself. With the advancement of
synthesis techniques a wide variety of anisotropic colloids are available to perform self-
assembly experiments and to explore their complex phase behavior [5]. In this thesis we
study the effect of colloid shape on the phase behavior. In particular, we study the phase
behavior of experimentally available polyhedral particles using Monte Carlo simulations.
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1.2 Polyhedral Colloidal Particles
Anisotropic colloidal particles like rods [6–8] and discs [9] were long known. Recent break-
throughs in the experimental techniques to synthesize new anisotropic particles have
led to a plethora of anisotropic colloidal particles like triangles [10, 11], squares [12],
cubes [13, 14], tetrahedra [15], truncated cubes, octahedra [16], superballs [17], hexagonal
bi-pyramids [18], icosahedra [19], tetrapods [20], stars [21–23], clusters of spheres [24]
and Janus particles [25, 26]. Modern computer platforms have made it possible to per-
form simulations of these systems, which have resulted in an improved understanding of
the experimentally observed phenomenology in colloidal suspensions of these anisotropic
particles.

In this thesis we restrict ourselves to the phase behavior studies of polyhedron-shaped
building blocks, such as faceted nanocrystals and colloidal particles. Recent interests in
the synthesis and self-assembly of polyhedron-shaped particles [5, 13, 27–37] motivates
to study the phase behavior of these basic building blocks. The ability to perform self-
assembly experiments with these polyhedron-shaped particles [16, 37–43] have attracted
the interests of physicists, mathematicians, and computer scientists [44–50]. Predicting
the densest packings of hard polyhedra has intrigued mathematicians since the time of
the early Greek philosophers, such as Plato and Archimedes [51, 52].

We study the phase behavior of these experimentally available polyhedral particles
using hard-particle models. Hard-particle systems are toy model systems to realistic
systems, which captures the essential physics and are sufficient at times to understand
the experimentally observed self-assembled structures [16, 53, 54]. Simulating polyhedral
particles with more complex interactions than the hard-core interactions is interesting
and is necessary at times [55], however it lies beyond the scope of this thesis.

1.3 Hard Particles
Hard particles are simple model systems to investigate the role of shape on the phase
behavior. For two arbitrary objects R1 and R2 the hard-core interaction energy is given
as follows:

u(R1, R2) =
∞, if R1 and R2 overlap

0, otherwise
. (1.1)

This hard-core interaction mimics the strong repulsion between the atoms at close dis-
tances, due to the overlap of their outer electronic shells. A hard-core interaction is an
idealized representation of repulsive potentials. This explains why the hard-core potential,
e.g., the hard-sphere potential, is successful in modeling liquids, glasses and solids [56].
Similarly, hard-core interactions are used to explain the thermodynamics of colloidal sys-
tems [56–59]. Many colloidal particles behave like hard particles under certain condi-
tions. For example, long-range electrostatic repulsion between charged colloids are tuned
by adding salt to the solvent (increasing ionic concentration of the solvent) which will
effectively screen the interaction to be a short-range repulsion [60].



4 Chapter 1

Studies on entropy-driven disorder-order phase transitions in hard-particle systems
dates back to the 20th century. The earliest example of an entropy-driven ordering transi-
tion is described in a classic paper of Lars Onsager, where he showed that infinitely long
rigid rods exhibit an isotropic-nematic transition [61]. Similarly, John Kirkwood along
with his student Bernie Alder predicted that hard spheres crystallize at packing fraction
φ = 0.5 [62]. In 1957, Bernie Alder and Tom Wainwright showed using molecular dynam-
ics simulations, and William Wood and J. D. Jacobson using Monte Carlo simulations,
that hard spheres exhibit a first-order melting transition, see Ref. [63–65]. Following in
similar footsteps, Daan Frenkel, Henk Lekkerkerker and Alain Stroobants have shown
that hard rods of finite length exhibit nematic and smectic phases in addition to a crys-
talline phase [66]. Since then, several ordered phases have been observed for hard-particle
systems [16, 49, 50, 54, 67, 67–69].

Figure 1.1: Top arrow shows the family of truncated cubes studied in Chapter 2 and the
bottom arrow shows the superballs family studied in Chapter 4. These two families are bounded
by a cube and an octahedra.

1.4 Simulations
In this thesis we investigate the phase behavior of faceted nanocrystals and colloidal
particles shown in Fig. 1.1 and Fig. 1.2 using Monte Carlo simulations. The rest of this
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Figure 1.2: Other polyhedral and polygon-shaped particles studied in this thesis. (a) Hexag-
onal bi-pyramid, (b) truncated hexagonal bi-pyramid (c) hexagonal bi-frustum, (d) equilateral
triangle and (e) right-angled isosceles triangle.

introductory chapter is reserved for a brief introduction to the simulation methods used
to determine the phase behavior of the anisotropic particles followed by an outline for the
remainder of this thesis.

1.4.1 Monte Carlo Simulations
The Monte Carlo method is a powerful numerical technique to solve complex problems us-
ing random numbers. We use a Markov chain Monte Carlo method namely the Metropolis
algorithm, also called Metropolis-Hastings algorithm, to study the equilibrium phase be-
havior of many-body systems. Markov chain Monte Carlo simulations allow us to sample
the phase space according to a given probability distribution function.

In a canonical ensemble the probability of a configuration with particle positions r̄N
and Hamiltonian H

(
r̄N
)
is given by the Boltzmann distribution function as

P
(
r̄N
)

=
exp

(
−βH

(
r̄N
))

Q
, (1.2)

where β = 1
kBT

is the inverse temperature with kB the Boltzmann’s constant and T the
temperature, N is the number of particles and

Q =
∫
dr̄N exp

(
−βH

(
r̄N
))
, (1.3)
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is the configurational integral. The canonical ensemble is also called the NV T ensemble
as the number of particles N , the volume of system V , and the temperature T are kept
constant. Thus, the expectation value of a thermodynamic observable A is given by

〈A〉 =
∫
dr̄NA

(
r̄N
)
P
(
r̄N
)
. (1.4)

We use the Metropolis algorithm to compute the expectation value, which allows us
to do the calculation without computing Q. For this we first need to generate a Markov
chain of configurations using the Boltzmann probability distribution function in Eq. 1.2.
Once the system has reached equilibrium we compute the expectation value of A as

〈A〉 = 1
M

M∑
k=1

A
(
r̄N
)
, (1.5)

where M is the number of uncorrelated equilibrium configurations. The Metropolis algo-
rithm helps us to sample from the phase space region that corresponds to a high Boltz-
mann weight and hence will allow us to converge to the averaged values with small error
bars.

In a NV T ensemble, one can start with a random initial configuration in which there
are no overlaps between the hard particles. At each Monte Carlo step we either randomly
displace or rotate, a randomly chosen particle at a time. The implementation of Metropolis
algorithm for hard particles in an NV T ensemble is easier because the change in potential
energy at every Monte Carlo move is either ∞ or 0. Due to this reason, we accept every
random configuration with unit probability if there are no overlaps between the particles
and reject every configuration that has overlaps between the particles.

Similarly, in an NPT ensemble where pressure P is fixed instead of the volume, we can
use the Metropolis algorithm to perform volume moves in addition to particle moves. The
trial volume move from a volume V to a new volume V ′ = V + ∆V , with ∆V the change
in volume which is uniformly chosen over the interval [−∆Vmax,∆Vmax], is accepted with
probability min{1, exp− (β∆H)}. Here

∆H = ∆u+ P∆V − kBTN log (V ′/V ), (1.6)

is related to the change in enthalpy of the system due to scaling the particle coordinates
by a factor of f =

(
V ′

V

)1/3
, where ∆u is the associated change in potential energy. If the

move is rejected we restore the old coordinates and repeat the procedure in combination
with the particle moves. We use floppy-box NPT Monte Carlo simulations to compute
the equations of state. For a detailed description of the Monte Carlo simulation methods
see Ref. [70].

1.4.2 Floppy-box Monte Carlo Simulations
The floppy-box Monte Carlo (FBMC) simulation is an isothermal-isotensic NPT Monte
Carlo method to simulate colloidal particles in a stress-free environment [71, 72]. The
main difference between a regular NPT Monte Carlo method and FBMC method is that
the three vectors that span the simulation box are allowed to vary independently of each
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other in both their lengths and relative orientations. In a regular NPT simulation we scale
the whole box preserving the relative dimensions of the box vectors and their orientations.
This method in combination with the separating axis theorem is used to determine close-
packed structures as well as the equations of state for hard-anisotropic particles, for more
details see Ref. [71].

1.4.3 Separating Axis Theorem
The separating axis theorem (SAT), also known as the hyperplane separation theorem is
a widely used algorithm to detect overlaps of convex objects. The theorem states that
if two convex objects do not overlap then there exists at least one axis onto which the
projections of the objects do not intersect. For regular 3D convex polyhedra the number
of direction vectors one has to test to determine the separating axis is a finite set. That
set includes normal vectors to the faces of the polyhedra and vectors generated by a cross
product of two edges, one from each polyhedron. Similarly, for 2D convex polygons the
number of direction vectors one has to test consists of normal vectors to the edges of
the polygon. If none of the direction vectors from this finite set does not emerge as a
separating axis then the particles have an overlap. Figure 1.3 illustrates the separating
axis theorem method for two non-intersecting 2D polygons.

Separating axis

Se
pa

ra
tin

g 
lin

e

Figure 1.3: Visual illustration of SAT, for a pentagon and a triangle. The separating axis is
indicated by the horizontal black line. The vertical red line indicates the separating line (plane)
for the polygons. Note that the projections of the polygons, represented by double headed
arrows, onto the separating axis do not intersect indicating no overlap between the particles.

SAT is computationally expensive, especially if the objects under consideration for
overlap detection have a large number of edges and faces. The number of edges and
faces of a polyhedra (polygon) goes up with its asphericity, i.e., how strong the particle
shape deviates from that of a sphere (disk). Therefore the number of computations to
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determine a separating axis increases for particles with high asphericity. For fast overlap
detection one can avoid using parallel axes. To further speed up the procedure we use the
circumscribed and inscribed circle/sphere check before we switch to the more complex
SAT method to detect overlaps. We first check if the distance between the particles is
larger than twice the radius of the circumscribed circle, if so, there is no overlap. Then
we check if the distance is smaller than twice the radius of the inscribed circle, if so, there
is an overlap. If the distance between the particles is somewhere in between we use SAT
to check for overlap.

1.4.4 Free-Energy Calculations
The thermodynamic potential corresponding to a canonical ensemble is given by the
Helmholtz free energy

F = −kBT logZ, (1.7)

where Z is the partition function and is given by

Z = Q

N !ΛN
, (1.8)

with Λ the de Broglie wavelength. As there are no direct ways to calculate the partition
function for a many-body system, we resort to alternative techniques to compute the
free energy. There are many simulation methods in use to determine the free energy of
a thermodynamic system. For example, Wang-Landau method, multi-canonical Monte
Carlo method, Frenkel-Ladd method etc.. Here we use the Frenkel-Ladd method [70, 73,
74] in combination with thermodynamic integration of the equation of state to determine
the exact free energy of the crystals over a range of densities. The idea behind the Frenkel-
Ladd method is to convert the system of interest into an ideal non-interacting simple
harmonic crystal, quasi-statically. The amount of work done in this quasi-static process
is equal to the change in the free energy ∆F . The free energy of a simple harmonic crystal
FHarmonic, also referred as the Einstein crystal, is known analytically. The free energy of
the crystal under consideration, say F , is then given by

F = ∆F + FHarmonic. (1.9)

Once the free energy of the system is known at a given density ρ0 we can compute the
free energy for any density of interest using thermodynamic integration,

βF (ρ)
N

= βF (ρ0)
N

+
∫ ρ

ρ0

βP (ρ′)
ρ′2

d ρ′. (1.10)

Here N is the number of particles in the system and ρ is the number density.
In the case of fluids, the Helmholtz free energy at reference density ρ0 is obtained using

the Widom’s particle insertion technique [75]. More details about the implementation
details of both methods and the confining potentials to convert a crystal into an Einstein
crystal will be discussed in more detail in Chapter 2.
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1.5 Thesis Outline
Here we briefly outline the rest of the thesis. In Chapter 2, we present our study on the
phase behavior of a family of truncated cubes. In addition to the phase behavior, we
also study and compute the equilibrium vacancy concentration of these truncated cubes
in Chapter 3. Then we proceed to study the phase behavior of superballs in Chapter 4.
We then describe the phase behavior of hexagonal bi-pyramids and hexagonal bi-frustums
adhered at a liquid-air interface and compare our results to the experimentally obtained
structures in Chapter 5. In Chapter 6 we study the phase behavior of equilateral and
right-angled isosceles triangles in 2D. Finally, in Chapter 7 we compute the dispersion
relations for colloidal crystals which exhibit diffusion using a recently developed theoretical
technique.





2

Phase Behavior of a Family of
Truncated Hard Cubes

We discuss the thermodynamic phase behavior of a family of truncated hard cubes, where
the shape evolves smoothly from a cube via a cuboctahedron to an octahedron. We
used Monte Carlo simulations and free-energy calculations to establish the full phase di-
agram. Surprisingly, this phase diagram exhibits a remarkable diversity in crystal struc-
tures and distinct close-packed structures, including a fully degenerate crystal structure
and vacancy-stabilized crystal phases, all depending sensitively on the precise particle
shape. Our results are not only crucial for better understanding the relation between
phase behavior and building-block shape, but they are also of interest for guiding future
experimental studies on polyhedral-shaped nanoparticles.
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2.1 Introduction

Recent advances in experimental techniques to synthesize polyhedron-shaped particles,
such as faceted nanocrystals and colloidal particles [5, 13, 27–37], and the ability to per-
form self-assembly experiments with these particles [16, 37–43] have attracted the interests
of physicists, mathematicians, and computer scientists [44–48]. Modern computer plat-
forms have made it possible to perform simulations of these systems, which has resulted
not only in an improved understanding of the experimentally observed phenomenology in
colloidal suspensions of such particles, but also improved ansätze for the morphology of
their close-packed configurations [45, 50, 67, 76–78].

Recently, Henzie et al. [16] reported the shape-controlled synthesis of truncated cubes.
In their research the close-packed crystals of these particles were studied using sedimenta-
tion experiments and simulations. They created exotic superlattices and their results also
tested several conjectures on the densest packings of hard polyhedra [44, 46–48]. However,
Henzie et al. did not examine the finite-pressure behavior of the system. At finite pres-
sures the structures that form by self-assembly, may differ substantially from the packings
achieved at high (sedimentation and solvent-evaporation) pressures. For instance, liquid-
crystal, plastic-crystal, vacancy-rich simple cubic, and quasicrystalline mesophases are
obtained under non-close-packed conditions in similar systems [50, 67, 76–80].

In this Chapter we present our investigation of the full phase behavior of a family
of truncated hard cubes, which interpolates smoothly between cubes and octahedra (the
mathematical dual of the cube) via cuboctahedra. Our Monte Carlo simulation stud-
ies and free-energy calculations show that the phase diagram for this system exhibits a
remarkably rich diversity in crystal structures that depends sensitively on the particle
shape. We found distinct changes in phase behavior and crystal structures even for small
variations in the level of truncation. This is an unexpected result, since the particle shape
varies smoothly from that of a cube to that of an octahedron by truncation. Moreover,
we found that the equilibrium concentration of vacancies increases at a fixed packing frac-
tion φ upon increasing the level of truncation within the vacancy-rich simple cubic phase,
which will be discussed in detail in Chapter 3. Our results differ from the Monte Carlo
results for parallel cuboids, where the vacancy concentration remains constant, when the
shape is varied from a perfect cube to a sphere via rounded cubes (so-called cuboids) [80].
In this Chapter we describe in detail the different phases that we obtained, as well as the
nature of the phase transitions between these phases.

2.2 Simulation Model

The particles that we investigated are completely specified by the level of truncation of
a perfect cube, which we denote by s ∈ [0, 1], and the volume of the particle. We define
our family of truncated cubes using a simple mathematical expression for the location
of the vertices. The line segments that connect these vertices can only be assigned in
one (unique) way to obtain a truncated cube. The vertices of a truncated cube may be
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written as a function of the shape parameter s ∈ [0, 1]:

{v(s)} =


(
1− 4

3s
3
)(−1/3)

PD
(
±
(

1
2 − s

)
,±1

2 ,±
1
2

)T
if s ∈

[
0, 1

2

]
(

4
3 − 4λ3

)(−1/3)
PD (±(1− λ),±λ, 0)T if λ ≡ 1− s ∈

[
0, 1

2

] , (2.1)

where PD is a permutation operation that generates all permutations of each element in
the sets of 8 and 4 vertices spanned by the ±-operations, respectively. The duplicate
vertices evolving out of our definition are removed after letting PD act. The ‘T ’ indicates
transposition. The prefactors ensure that the truncated cubes are normalized to unit
volume. Several Platonic and Archimedean solids are members of this family: s = 0 a
cube, s = (2−

√
2)/2 ≈ 0.292893 a truncated cube, s = 1/2 a cuboctahedron, s = 2/3 a

truncated octahedron, and s = 1 an octahedron; these are depicted in Fig. 2.1a.

2.3 Simulation Methods

2.3.1 Order Parameters and Correlations Functions
In this subsection we describe different order parameters we have used to quantify the
positional and orientational order of particles in our isothermal-isobaric Monte Carlo
simulations also called NPT simulations (fixed pressure P , temperature T and number
of particles N ) of the truncated cubes. These order parameters play a crucial role
in identifying different phases exhibited by the truncated cubes. Truncated cubes have
cubatic symmetry. To quantify the orientational order for these particles the cubatic order
parameter S4 is appropriate as shown in earlier simulation studies on cubatic particles
[77, 81]. The cubatic order parameter is defined as

S4 = max
n

 1
14N

∑
i,j

(
35|uij · n|4 − 30|uij · n|2 + 3

), (2.2)

where N is the number of particles as above, uij is the unit vector of the jth axis of
particle i and n is a unit vector for which S4 is maximized. S4 values range from 0 for a
completely disordered system to 1 for perfect crystals.

To investigate the structural correlations in the particle orientations we use an orien-
tational correlation function g4(r) defined as

g4(r) = 3
14
〈
35[uaj(0).ubj(r)]4 − 30[uaj(0).ubj(r)]2 + 3

〉
, (2.3)

where 〈.〉 denotes the ensemble average over all the particle axes j ∈ {x, y, z} and particle
pairs a and b. For more details about the definitions and computation of these order
parameters we would refer the interested reader to Ref. [81].

To determine the translational order in the system we use the radial distribution
function g(r) defined as

g(r) = 1
ρ2

〈
N∑
i=1

N∑
j 6=i

δ (r− ri) δ (r′ − rj)
〉
, (2.4)
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with r = |r− r′|, δ(x) is the usual Kronecker δ-function, ri and rj are the positions of
the ith and jth particle, respectively and ρ = N

V
is the number density of the system.

The radial distribution function along with the order parameters is useful to distinguish
plastic crystal from crystal and isotropic fluid phases.

2.3.2 Free-Energy Calculations and Confining Potentials
We obtained the dimensionless free energy per particle f = βF/N as a function of packing
fraction φ = Nvp

V
, with vp the particle volume (φ = ρ, since vp = 1 in this Chapter), for

the entire density range by thermodynamic integration [70] over the equation of state (
EOS ), from reference density ρ0 to the density of interest ρ:

f(ρ) = f(ρ0) +
∫ ρ

ρ0

βP (ρ′)
ρ′2

d ρ′. (2.5)

Here f(ρ0) ≡ βµ(ρ0) − βP (ρ0)/ρ0 is the reduced Helmholtz free energy per particle at
density ρ0, with β = 1/kBT , T the temperature and kB the Boltzmann constant, µ(ρ0)
the chemical potential, and P (ρ0) the pressure. The Helmholtz free energy at reference
density ρ0 was obtained as follows.

1. In the fluid phase we used Widom’s particle insertion method [75] to obtain the free
energy. This method was employed at relatively low densities to obtain small error
bars. We performed the calculations at φ ≈ 0.2. We note that there were no finite
size effects within the computational accuracy for the particle insertion method.

2. In the crystal phase we used the Einstein integration method [70, 73, 74]. The
reduced Helmholtz free energy per particle f = βF/N of a crystal is given by:

f(ρ) = fEinst(λmax)− 1
N

∫ λmax

0
dλ
〈
∂βUEinst(λ)

∂λ

〉
, (2.6)

where fEinst denotes the reduced free energy per particle of the ideal Einstein crystal,
which is given by:

fEinst(λmax) = −3(N − 1)
2N log

(
π

λmax

)
+

log
(

Λ3
tΛr

vp

)
+ 1
N

log
(

vp
V N1/2

)
−

1
N

log
{ 1

8π2

∫
dθ sin (θ)dφdχ ×

exp
[
−λmax

kBT
(sin2 ψia + sin2 ψib)

]}
.

UEinst(λ) denotes the harmonic potential that fixes the particles to the respective
Einstein lattice positions:

βUEinst(λ) = λ
N∑
i=1

[(ri − ri,0)2/v2/3
p + (sin2 ψia + sin2 ψib)], (2.7)
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with (ri − ri,0) the displacement of particle i from its position in the ideal Einstein
crystal. The angles ψia and ψib are the minimum angles between vectors, a and
b, describing the orientations of the particles in the ideal Einstein crystal and the
equivalent vectors that describe the orientation of the particle in the actual crystal,
respectively. When λ is large the translational and orientational displacements of
the particles are frozen, while at lower λ’s the particles freely displace and rotate
not only to explore the possible states but also to explore the underlying degeneracy
coming from the symmetry of the particle itself. The translational and rotational
thermal wavelengths Λt and Λr are set to 1 in our calculations. We mostly used
the same system sizes of 700 to 1,500 particles to compute the free energies for the
(plastic) crystal phases. We found that finite-size scaling (FSS) was only necessary
in the octahedron regime, i.e., s ≈ 1, to establish the phase diagram. For such
high levels of truncation the free-energy differences between the various phases at
coexistence proved to be very small, see Ref. [77]. For the other phase transitions the
free energies obtained without FSS proved to be sufficient to accurately determine
the phase boundaries.

3. For the free-energy calculations of a plastic-crystal (rotator) phase, we followed the
approach of the authors of Ref. [82], who introduced a method, which allows for a
continuous transition from a non-interacting plastic-crystal to an interacting plastic-
crystal phase of hard truncated cubes. We used a tunable soft-to-hard interaction
potential between the particles

ϕ(i, j) =
{
γ[1− A(1 + ζ(i, j))] if ζ(i, j) < 0

0 otherwise , (2.8)

where ζ(i, j) is the overlap potential defined in Ref. [83], which is negative when two
particles i and j overlap and positive otherwise, and γ is the integration parameter,
which runs from γ = 0 (noninteracting) to γ = γmax, for which the system interacts
fully. In our calculations we have set A = 0.9 following Ref. [69]. The dimensionless
Helmholtz free energy per particle of the plastic crystal is given by:

f(ρ) = fEinst(λmax)−
1
N

∫ λmax

0
dλ
〈
∂βUEinst(λ)

∂λ

〉
γmax

+

1
N

∫ γmax

0
dγ
〈
∂
∑N
i 6=j βϕ(i, j)
∂γ

〉
λmax

.

2.4 Results

2.4.1 Determining the Close-Packed Structures
The simulations by which the close-packed structures were derived, are based on the
floppy-box Monte Carlo (FBMC) method [71, 72] in combination with the separating-
axis-based overlap algorithm [84]. We obtained the densest crystal structure and the
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Figure 2.1: (a) Five examples of truncated cubes (Platonic and Archimedean solids only) for
levels of truncation s corresponding to the orange lines: s = 0 a cube, s = (2 −

√
2)/2 ≈ 0.293

a truncated cube, s = 1/2 a cuboctahedron, s = 2/3 a truncated octahedron, and s = 1 an
octahedron. (b) The packing fraction φ for the close-packed structures as a function of s. The
values for the five solids shown in (a) are given by red dots. (c) The length vi (i = 1, 2, and 3) of
the three lattice vectors, indicated in red, green, and blue, that span the unit cell of the densest
crystal structure as a function of s. Not every line is clearly visible, since there is some overlap.
In the region where the black and gray dots are used (s ∈ (0.37, 0.40] and s ∈ (0.40, 0.42]),
appears to be a degeneracy in the crystal structures, as explained in the text. (d) The cosine of
the angles θij (i < j = 1, 2, and 3) between the three vectors that span the unit cell as a function
of s. Gray vertical lines partition the s-domain into 14 pieces with a ‘different’ crystal structure,
based on the discontinuities shown in the vi and cos θij results. These regions are numbered with
roman numerals in (b); only those regions large enough to accommodate a label are numbered,
but the numbering can be continued from left to right, in the unnumbered regions.

corresponding packing fraction φ as a function of the level of particle truncation s by
considering 1,000 equidistant points in s ∈ [0, 1]. For each point we prepared systems
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of truncated particles in a dilute phase, typically with packing fraction φ ≈ 0.001. We
increased the reduced pressure in 100 steps according to a geometric series from p = 1 to
p ≈ 105 over 4 × 106 Monte Carlo (MC) cycles in order to compress these systems to a
high-density crystalline state. This pressure increase was typically applied a total of 1,000
times for N = 1 particles in the unit cell and for each shape. We restricted ourselves to
N = 1 particles in the unit cell, because the truncated cubes are all centrosymmetric.
We only considered N = 2, . . . , 6 for 14 conveniently chosen values of s, located in the
center of the regions indicated in Fig. 2.1, as will be justified shortly. For these N > 1
systems we obtained roughly the same value of φ and also the same crystal structures.
The densest crystal-structure candidate was selected and allowed to compress further for
another 106 MC cycles at p = 106 to achieve 5 decimals of precision in φ. In practice, these
final cycles of compression did not improve the packing fraction substantially. Fig. 2.1b
shows φ as a function of s. Note that the packing fraction ‘curve’ is continuous, but has
discontinuities in its first derivative. To double check our result, we considered another
set of FBMC runs. We used several of the 1,000 densely-packed crystals as our initial
configuration and we varied s around these points at high pressure to study the evolution
of their structure. Steps of 10−5 in s were used and for each step the system is expanded
to remove any overlaps, before re-compressing it at p ≈ 105. The packing fractions we
obtained showed good correspondence with our original result, but this correspondence
failed for a transition between two crystal structures. The consecutive method would
often become stuck in the lower density structure that corresponded to the morphology
of the crystal phase it came from.

The unit cell for N = 1 truncated cubes can be specified by three vectors vi (i = 1,
2, 3) that are implicitly s dependent. The structure spanned by these three vectors can
also be described by the length vi = |vi| of the vectors and the angles θij (i < j = 1,
2, 3) between them. Note that we ignored the orientation of the particle with respect to
the unit cell here. In order to give an unbiased comparison of the different vectors we
used lattice reduction [85] to ensure that for each unit cell the surface to volume ratio is
minimal. These results are shown in Fig. 2.1(c,d). By analyzing the vi and θij, as well as
the location of the kinks in the φ-curve, we were able to partition the s ∈ [0, 1] domain
into 14 distinct regions. This is the reason behind our choice of 14 verification points for
N > 1 simulations. For a discussion of the crystal structures in the different regions, we
refer the reader to Sec. 2.4.2.

2.4.2 Close-Packed Structures
In this section we discuss the properties of the close-packed structures that are obtained
using the methods described in Sec. 2.4.1. Fig. 2.2 shows the crystal structure in the
center of each of the 14 regions that we found in Fig. 2.1. There is a strong difference
between the domains s < 1/2 and s > 1/2. Geometrically the cuboctahedron (s = 1/2)
is the transition point between shapes which have a more cube-like nature and shapes
which have a more octahedron-like nature. It is therefore not surprising that the crystal
structures in the two regions (s < 1/2 and s > 1/2) appear to have a deformed simple
cubic symmetry and a deformed body-centered tetragonal symmetry, respectively. We
illustrate this in Fig. 2.2 where we show the most orthorhombic unit cell: N = 1 for
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s < 1/2 and N = 2 for s > 1/2. A remarkable result is the stability of the Minkowski
crystal [48], which is the densest-packed Bravais-lattice structure for octahedra [46], under
variations in s. For all s ∈ [0.71, 1], we find a Minkowski structure in the dense-packed
limit, which can be inferred from the horizontal cos θij lines in Fig. 2.1d. The scaled
length of the vectors viφ−1/3 is also constant on this domain.

Let us now examine the crystal structures in the 14 regions identified by the disconti-
nuities in the vectors of the unit cell. In literature it has become commonplace to assign
atomic equivalents to structures observed in simulations or experiments. For example,
this is done for binary mixtures of spheres [72, 86], a family of truncated tetrahedra [67],
several faceted particles [50], and systems of nanoparticles [53, 54]. We attempted to
follow suit by determining the symmetry group of the structures in Fig. 2.2 using Find-
Sym [87] and by subsequently assigning an atomic equivalent [88]. However, we found
that a description in terms of atomic equivalents inadequately captures the richness in
crystal structure, since particle orientation is not taken into account. Moreover, for many
of our structures we are unable to determine a nontrivial space group using FindSym. We
therefore resorted to visual analysis and we used this to group the 14 regions in Fig. 2.1
based on similarities between the respective structures.

1. I In this region (s ∈ [0.00, 0.37]) we obtained a continuous and uniform distortion
of the simple cubic structure for cubes. For s = 0 the particles form a simple
cubic (SC) crystal, which has the same morphology as αPo (α-Polonium) [88]. The
uniformly distorted simple cubic (UDSC) structure we found for s > 0 is similar to
that of βPo [88]. We verified this distorted quality for values as low as s = 10−5.

2. II & III For these two regions (s ∈ (0.37, 0.40] and s ∈ (0.40, 0.42]) we found that
there is a degeneracy in the crystal-structure candidates that achieve the densest-
known packing. Although certain structures appear favored over others, there is no
clear relation between the structure and s. However, the packing fraction φ of the
close-packed crystals is continuous in these regions. The observed degeneracy can be
explained by the formation of sheets consisting of diagonally-interlocked columns,
which can slide up or down (in the direction of the columns) with respect to each
other, as shown in Fig. 2.3. For s = 0.387, the truncated cubes are arranged in a dis-
torted simple cubic (DSC) crystal lattice, where the particles form columns that are
interlocked in a diagonal way. These structures are referred to as mono-interlocking
distorted simple cubic (MI-DSC) crystals. This diagonal interlocking together with
the close-packing condition prevents lateral motion in the plane normal to the col-
umn’s direction. However, since the system is not fully interlocked, motion in the
direction of the columns is possible for the diagonally interlocked sheets. We refer
to these structures as mono-interlocking distorted simple cubic (MI-DSC) crystals.
This degeneracy is different from the degeneracy that occurs in structures consisting
of cubes or hexagonal prisms for instance, since such systems allow lateral freedom
of movement of columns or (perpendicular to the columns) of sheets of aligned par-
ticles. That is, there is possible freedom of motion in three directions, albeit not
necessarily at the same time. The interlocking nature of the MI-DSC phase only
allows for movement in one direction only, namely parallel to the columns, which
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Figure 2.2: Visual representations of the crystal structures obtained for the first 7 regions
(left) and the last 7 regions (right) of Fig. 2.1. From left to right each entry (row) contains a
bird’s eye view, the front view, the side view, and the top view of this structure. The Roman
numeral in the top-left corner gives the relevant domain in Fig. 2.1. The truncation parameter
s for these structures is given in the bottom-right corner.

may lead to strong rheological differences between this structure and, e.g., the SC
structure for cubes.

3. IV For this region (s ∈ (0.42, 0.49]) we find a DSC phase that is interlocking in two
directions: a bi-interlocking DSC (BI-DSC) phase. For each instance of interlocking
two degrees of translational motion are frozen out. This implies that the BI-DSC
structure is completely fixed, which is confirmed by the unicity of the vi and θij
results in Fig. 2.1(c,d).

4. V In this region (s ∈ (0.49, 0.50]) we observed a tri-interlocking DSC (TI-DSC)
phase.

5. VI - VIII Here (s ∈ (0.50, 0.51], (0.51, 0.52], and (0.52, 0.54]) we found structures
that are best described by a distorted body-centered tetragonal (DBCT) structure.
The truncated cubes in these crystals are not aligned with the axes of the unit cell.
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(a) (e)(c)

(b) (d) (f)

Figure 2.3: A visual representation of the degenerate crystal structure; we consider the value
s = 0.387 in this figure. Pairs of truncated cubes, for which the octahedral faces are aligned
(columns), are color-coded. Different viewpoints are displayed for a piece of crystal consisting of
8 particles: (a) Bird’s eye view, (b) side view, (c), front view, and (d) top view of this structure.
In (c) we use a magenta circle to indicate that the blue column is interlocking with the green
column in a diagonal way. (e) A diagonal view of the crystal structure, where the red columns
have been removed. Magenta circles show the interlocking. (f) The two red columns are not
interlocking with the blue and green column, allowing for freedom of motion in the direction of
the magenta arrows. The green column is made translucent to better illustrate the properties
of this crystal structure.

It is unclear to what extent structures in regions VI, VII, and VIII are the same.
The smooth flow of the φ-curve (Fig. 2.1b), as well as their appearance, s implies
continuity, but the jumps in the values of vi and θij [Fig. 2.1(c,d)] suggest otherwise.

6. IX - XI These structures (s ∈ (0.54, 0.56], (0.56, 0.59], and (0.59, 0.63]) have a
body-centered tetragonal (BCT) morphology, for which the particles are aligned
with the lattice vectors of the unit cell. It is surprising that the structures in region
XII exhibit a DBCT morphology, since regions IX - XII share the same smooth
piece of φ-curve, see Fig. 2.1b. This leads us to conclude that a smooth dependence
of φ on s is not indicative of uniformity in crystal structure. The strong similarity
between the crystal structures in regions IX - XI and the apparent smooth transition
between structures from region IX to X and from X to XI, also leads us to conclude
that discontinuities in the properties of unit cell are not indicative of discontinuities
in the properties of the crystal structure.

7. XII & XIII These two DBCT structures (s ∈ (0.63, 0.67] and s ∈ (0.67, 0.71]) are
different from the DBCT structures in regions VI - VIII, since the particles appear
to be aligned with the lattice vectors of the unit cell. Moreover, crystals in region
XIII are unusual, since there are large ‘voids’ in the structure. That is, for all other
structures we found that the largest facets of a particle are always in contact with
a facet of another particle. This is not the case in region XIII, because there is a
substantial gap between some of the hexagonal facets.
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8. XIV The Minkowski crystal of region XIV (s ∈ (0.71, 1.00]) is also peculiar. It
is the only structure which does not undergo some form of reorganization upon
varying the level of truncation. It is worthwhile to study the origin of this apparent
stability, which sharply contrasts with the immediate distortion found around s = 0.
However, this goes beyond the scope of the current investigation.

2.4.3 Equations of State and Mesophase Structures
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Figure 2.4: We show the reduced pressures P/(kBTρ) as a function of packing fraction φ,
where P is the pressure of the bulk system, ρ is the number density of the system and kBT is
the thermal energy. Equations of state of only selected shapes are shown. We have grouped the
equations of state into four sets depending upon their phase behavior. More details about the
figure are given in the main text.

We used the close-packed crystal structures obtained from the FBMC calculations
as initial configurations for variable-box-shape isothermal-isobaric (NPT ) Monte Carlo
simulations, to study the phase behavior at intermediate pressures. Initial configurations
of 300 to 600 particles were prepared and melted to determine the equations of state
(EOSs) for the various phases. Typical equilibration times were around 1.2× 106 Monte
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Carlo sweeps (MCS) and the production times around 2× 106 MCS. One MCS is defined
as N Monte Carlo trial moves (translation, rotation, volume change, or deformation of
the box, respectively), where N is the number of particles in the system. We sampled
the lattice vectors, as well as the average positions and orientations of the particles as a
function of packing fraction and for fixed truncation parameter s. The sampling was done
on an interval of 100 MCS to avoid correlated configurations. Using these results we set up
regular NPT simulations (possibly with a triclinic box shape) to more accurately sample
the EOSs for all phases with larger system sizes of 1,000 to 2,000 particles, including the
liquid phase.

In Fig. 2.4 we show the EOS obtained from our FBMC simulations as a function of the
packing fraction. We show only EOSs for only selected shapes. The liquid EOS branches
are obtained by compressing dilute systems (φ ≈ 0.1) while the crystalline branches of
the EOS are obtained by melting the close-packed structures. We grouped the EOSs into
groups depending on their phase behavior. EOSs for truncated cubes with truncation s ≤
0.30 are shown in Fig. 2.4a. These systems exhibit an isotropic liquid phase and a simple
cubic phase separated by a first-order phase transition. During ourNPT compression runs
we observed that these systems crystallize easily with relatively less hysteresis compared
to systems with s > 0.7. In Fig. 2.4b we show EOSs for s = 0.35 and 0.40. These two
shapes, surprisingly, exhibits one isotropic phase and three crystalline phases. The rest
of the EOSs in Fig. 2.4.(c,d) show three phases: liquid, plastic crystal and crystalline
phase. More details about the phase behavior and individual (plastic-)crystalline phases
of these systems will be given in the phase diagram Section 2.4.5. These EOSs are used to
calculate the Helmholtz free energies at different packing fractions using thermodynamic
integration as explained in the Section 2.3.2.

2.4.4 Mesophase Lattice Vectors
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Figure 2.5: Averaged lattice vectors vi and vj and the angles between them θij vs averaged
packing fraction φ as obtained from our NPT simulations for s = 0.750. The index i,j runs over
all the x,y,z components of the box as described in Section. 2.4.1. θij values are in degrees

Before we turn our attention to the phase diagram section we explain how the NPT
simulations data is used to compute free energies and to determine the crystal structure
of the mesophases. To compute the free energies and also to determine the structure
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of the mesophases we need to determine the inherent ideal lattice at each pressure or
packing fraction. To determine the ideal lattice we need to average out the box vectors
of the floppy box containing the particles and the angles between these vectors during
the NPT simulations at each given pressure. Using these averaged box vectors and the
angles between them we reconstruct an ideal lattice. Visual inspection of the ideal lattice
helps us to determine the crystal structure. We also use the ideal lattice in the free-energy
calculations as the reference Einstein crystal.

For illustration, we show such an averaging procedure for s = 0.750 as a function of
packing fraction φ in Fig. 2.5. The dots in the plots represent the average values from
the NPT simulations at each pressure, while the thick lines represent lattice vectors and
their angles from the close-packed structure. For s = 0.750, the close-packed structure
is the Minkowski lattice. For the Minkowski lattice vi/vj = 1 and the angle between
the vectors is θij ≈ 93.1847° and for the BCC lattice vi/vj = 1 and θij = 90°. From
the Fig. 2.5 we can see that the lattice vectors and the angles show a sharp transition
from the close-packed Minkowski lattice to the BCC lattice. In a similar fashion we also
average out the orientations and positions of individual particles in our NPT simulations
to construct the ideal lattice.

2.4.5 Phase Diagram
As explained in the above sections, using the FBMC results in combination with regular
isothermal-isobaric (NPT ) simulations and free-energy calculations we were able to es-
tablish the full phase diagram for our hard truncated-cubes system. Fig. 2.6 shows the
phase diagram for the family of truncated cubes in the packing fraction φ versus the level
of truncation s representation. For s < 1/2 the particles are essentially ‘cubic’ in shape
and we found high-density simple-cubic-like phases. The phase diagram for truncated
cubes with shape parameter s ∈ [0.00, 0.35] displays three stable bulk phases. At very
high pressures, we observed a distorted simple cubic (DSC) crystal phase, which is C1-like
in nature, see Ref. [76] for the definition of the C1 structure. This phase melted either via
a weak first-order or via a second-order phase transition into a simple cubic (SC) crystal
phase. At even lower pressures, the SC crystal is found to coexist with the fluid phase via
a first-order phase transition. The effect of vacancies on the SC-fluid coexistence densities
is not taken into account as the shift is minute. We will discuss the vacancy-rich SC phase
in Chapter 3. For s ∈ (0.35, 0.422] the phase diagram exhibits four stable phases, which
are separated by three two-phase coexistence regions. At low pressures, we observed
a liquid phase, which transformed into a plastic crystal phase with a hexagonal close-
packed crystal structure (the PHCP phase) upon increasing the pressure. With further
increasing the pressure the system underwent a first-order transition to a deformed simple
cubic crystal (DSC) phase, which has a C0-like morphology, also see Ref. [76]. Finally,
the system self-assembled at sufficiently high pressure into the respective densest-packed
structures, i.e., for s ∈ (0.35, 0.374] the system self-assembled into a C1-like structure
and for s ∈ (0.374, 0.422] a mono-interlocking deformed simple cubic (MI-DSC) phase
is formed, as discussed in the close-packed structures. We found a triple point (SC/C0
− PHCP − liquid) at s ≈ 0.374. For s ∈ (0.422, 0.5] we observed higher orders of the
interlocking of the DSC crystal phase at sufficiently high pressures: a bi-interlocking DSC
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Figure 2.6: (a) Truncated cubes for five different values of the truncation parameter s.
Truncated corners are shown in red. (b) Phase diagram for the family of truncated hard cubes in
the packing fraction φ versus shape parameter s representation. In the dark-gray area φ exceeds
the maximum packing fraction. The light-gray areas indicate the two-phase coexistence regions.
The solid square symbols denote the bulk coexistence densities as obtained from free-energy
calculations, while the open circles indicate those derived from the equations of state (EOSs).
Coexistence lines that follow from free-energy calculations are represented by solid lines, and
those that connect EOS derived points are given by dashed lines. The various labels stand
for: distorted simple cubic (DSC), (distorted) body-centered tetragonal ((D)BCT), plastic BCT
(PBCT), (plastic) body-centered cubic ((P)BCC), and plastic hexagonal close packed (PHCP).
The prefixes MI-, BI-, TI- stand for mono-, bi-, and tri-interlocking, and the numbers that
follow the DBCT label signify that these DBCT phases are distinct. The two DSC phases have
different morphologies, one is C0-like, the other is C1-like. Finally, the two white arrows in the
forbidden region connect the label TI-DSC to the small region between the green and purple
dashed line and the label BCC with the turquoise line, respectively.

(BI-DSC) and a tri-interlocking DSC (TI-DSC) crystal, respectively. These phases melted
into the PHCP phase and subsequently into the isotropic liquid phase upon lowering the
pressure, again via first-order phase transitions in both instances. For s ∈ [0.35, 0.5] we
did not perform free-energy calculations, because there are significant fluctuations in the
mean position of the particles and the averaged box vectors even for systems as large as
N ≈ 1,000, which interfered with obtaining a proper Einstein crystal as reference system
for the thermodynamic integration method [69, 73], as described in the methods section.
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Figure 2.7: Cubatic order parameter S4 for the family of truncated cubes. (a) Here we plot
S4(s, φ) as a function of shape s and packing fraction φ. The original data is displayed in black
squares. We have used the original data to interpolate and create this surface plot. The surface
plot is colored according to the values of S4(s, φ) as shown in the color map. (b) We have
replotted the phase diagram with a color function displayed in the color map beside the figure.
The colors indicate the value of S4 at a given point. The white regions in the plot denote the
coexistence regions.
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(c)

(b)(a)

(d)

Figure 2.8: Several snapshots of our isothermal-isobaric (NPT ) simulations showing the
various crystal structures that form in our family of truncated cubes. (a) Equilibrium vacancy-
rich simple cubic crystal for a truncation of s = 0.25 at packing fraction φ = 0.56. The simulation
was performed for N = 3,235 particles. In this system the vacancy concentration was found to be
α = 0.032. (b) Plastic hexagonal-close-packed (PHCP) phase for s = 0.411 and φ = 0.6 in a box
containing N = 216 particles. (c) Plastic body-centered-tetragonal (PBCT) phase for s = 0.607
and φ = 0.58 in a box containing N = 512 particles. (c) Plastic body-centered-cubic (PBCC)
phase for s = 0.900 and φ = 0.52 in a box containing N = 250 particles. The coloring used here
indicates the level of alignment of these particles with the lattice vectors of the Einstein crystal,
as explained in the text.

For s > 0.5 the shape is ‘octahedron-like’, and we found body-centered-tetragonal-like
(BCT-like) structures at close packing. For s ∈ [0.5, 0.54] the close-packed distorted BCT
(DBCT) phase melted into a plastic BCT (PBCT) phase upon lowering the pressure via a
first-order phase transition. At lower pressures, we found two-phase coexistence between
the PBCT and the fluid phase. In the region s ∈ (0.54, 0.636] we obtained a regular
BCT phase at high pressures, which underwent a first-order phase transition into the
PBCT phase for intermediate pressures. For s ∈ (0.636, 0.712] we found two different
DBCT crystal structures (DBCT1 and DBCT2 in Fig. 2.6). The transition between
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DBCT1 and DBCT2 is located at s = 2/3, where the particle shape is such that all sides
are of equal length (the mathematical truncated octahedron; a space-filling polyhedron).
Remarkably, the s = 2/3 system exhibits a body-centered-cubic (BCC) crystal structure,
which exists only for this exact value of the truncation parameter. All crystal structures
in the region s ∈ (0.636, 0.712] melt directly into a liquid phase via a first-order phase
transition upon decreasing the pressure. Further increasing the truncation leads to more
octahedron-like shapes. In the region s ∈ (0.712, 0.95] we found a Minkowski lattice [48]
at high pressures. At intermediate pressures, this system melted into a stable plastic
BCC (PBCC) phase before melting into fluid. However, for s ∈ (0.95, 1.0] we found
that the PBCC phase became metastable with respect to the solid-liquid phase transition
(also see Ref. [77]), such that at s = 0.95 a triple point (isotropic liquid − PBCC −
Minkowski crystal) appeared in the phase diagram. The straight lines separating the
phase boundaries for s ∈ [0.374, 0.712] at high packing fractions are a continuation of the
subdivision that followed from the FBMC simulations. Several simulations close to the
boundaries (on either side) are performed, to show that within the numerical accuracy
there is no deviation from the vertical phase boundaries shown in Fig. 2.6.

Now that we have described the mesophases in the phase diagram in detail, we will
turn our attention to the order in these mesophases. We have computed the cubatic
order parameter S4 defined in Eq. 2.2 as a function of packing fraction φ and shape
s. For this we first calculated the S4(s, φ) for selected values of s at all pressures or
packing fractions and in turn used this data to interpolate and determine the cubatic
order S4(s, φ) in the entire range of s ∈ [0.05, 0.95] and φ ∈ [0.4, 0.8]. We show S4(s, φ)
in Fig. 2.7a using a color function. The color function is set as follows: blue is used for
S4(s, φ) ≈ 0, green for S4(s, φ) ≈ 0.4 and red for S4(s, φ) ≥ 0.9 and above, where as the
remaining intermediate values are colored with the gradients of the above mentioned colors
smoothly. The original S4(s, φ) data is also plotted for comparison using black squares.
From this three-dimensional plot we observe that the crystal structures of truncated cubes
with shape parameter s < 0.35 develop global orientational order at relatively low packing
fractions compared to the ones in the s > 0.35 region. For truncated cubes s ∈ [0.35, 0.65]
the cubatic order parameter S4(s, φ) of the plastic crystal phases are similar to those of
the isotropic fluid phase. Near s ≈ 0.58 the cubatic order S4 is less than 0.1 even for
packing fractions as high as φ ≈ 0.69.

For better illustration, we replotted the phase diagram in Fig. 2.7b with a background
color depending on the S4. The colors in the Fig. 2.7b have the same meaning as in
Fig. 2.7a. The white regions in the Fig. 2.7b represents the coexistence regions. The
black dots in the Fig. 2.7b are the exact coexisting densities calculated from the free
energies. From this plot we can infer how the order develops from the freezing densities
to all the way up to the close-packed densities. We would like to point out that some of
the regions near the space filling-truncated octahedra, i.e., s ≈ 0.666, close to coexistence
show cubatic order values that are as low as in a plastic-crystal phase. Our results agree
with the presence of low cubatic order values for s = 0.666 as observed by the authors
of Ref. [78, 89]. However we did not indicate these particles as plastic crystals since
there is no first-order phase transition between the dense crystal and the mesophase.
Several typical configurations of crystalline phases slightly above fluid-solid coexistence
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are displayed in Fig. 2.8 to give an impression of the mesophases that occur in the systems
we studied.

2.4.6 Plastic Crystal Phases
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Figure 2.9: Plasticity parameter Π as a function of the shape parameter s, which defines the
level of truncation of a cube. The minimum at s = 0.58 denotes the possibly best plastic crystal
for the truncated cubes family. Depending on our observations of the phase behavior of the
truncated cubes we divided the Π into three regions R1, R2 and R3. Properties of truncated
cubes belonging to different regions are explained in the main text.

Plastic crystals are characterized by long-ranged positional order but short-ranged ori-
entational order [90–92]. Recent simulation studies on hard anisotropic colloidal systems
have shown the existence of intriguing plastic crystalline phases [49, 50, 77, 78]. These
studies showed that the particle shape plays an important role in the formation of these
plastic crystals for hard-particle systems. In addition, various physical quantities were
calculated to quantify the shape of a given colloidal particle with respect to a sphere
and to predict whether or not the particles will form a plastic crystal phase. Some of
the quantities that were used are the asphericity and the isoperimetric coefficient, see
Refs. [50, 77, 78]. The definition of the asphericity reads

A = 1− π1/3 [6V (s)]2/3

S(s) , (2.9)

and that of the isoperimetric coefficient

I = 36πV (s)2

S(s)3 , (2.10)

where V (s) and S(s) are the volume and surface area of a truncated cube with truncation
parameter s. Combining these definitions in Eq. 2.9 and Eq. 2.10 along with the moment
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of inertia of the particle we define the plasticity parameter Π to quantify the shape of a
given particle with respect to a unit sphere. Plasticity

Π =

√√√√(1− I(s)
Isph

)2 + (1− M(s)
Msph

)2 + (1− A(s)
Asph

)2, (2.11)

where I(s), M(s) and A(s) are the isoperimetric coefficient, moment of inertia and
asphericity of a truncated cube with shape parameter s, respectively, and Isph = 1,
Msph ≈ 0.1539 and Asph = 1 are the values of a sphere with unit volume. The mo-
ment of inertia is calculated using the freely distributed code by the author of Ref. [93].
The plasticity parameter Π of truncated cubes as a function of the shape parameter is
shown in Fig. 2.9. We have divided the plasticity Π plot into three different regions based
on our observations of the phase behavior of truncated cubes (Fig. 2.6) and the cubatic
order parameter S4(s, φ) values (Fig. 2.7) close to the fluid-crystal and fluid-plastic-crystal
phase coexistence regions. The three divisions are as follows.

1. R1 Truncated cubes falling in this region freeze into a crystal phase with the cubatic
order S4(s, φ) ≥ 0.7 when compressed from a fluid phase.

2. R2 In this region, we observed that the truncated cubes can form plastic crystals
with S4(s, φ) ≈ 0.3− 0.4 when compressed from a fluid phase.

3. R3 The region with lowest asphericity values in the family of our truncated cubes.
Truncated cubes in this region can form plastic crystals with S4(s, φ) < 0.1 near the
fluid-plastic-crystal phase coexistence densities.

In the remainder of this section we describe the properties of the plastic crystals
found in the phase diagram in the region s ∈ [0.35, 0.95]. We found three different plastic
crystal regimes namely HCP, BCT and BCC in the phase diagram of truncated cubes.
To study and understand the properties of these different plastic crystal phases we have
chosen three representative particle shapes s = 0.457, 0.572 and 0.750. We also like to
point out that s = 0.457 and s = 0.750 belong to the R2 region, while s = 0.572 lie
inside the R3 region and is close to minimum value of the plasticity parameter Π as
shown in Fig. 2.9. We calculated the orientational distribution functions for these three
systems at fixed pressures. Surprisingly, our results show that the plastic-crystal phase
exhibits an inhomogeneous orientational distribution on a unit sphere. The orientational
distributions show well-defined peaks for a few specific orientations dictated by the shape
of the particle in combination with the crystal structure. We also find that some of the
peaks in the orientational distribution function increase with increasing packing fraction
and that some peaks, corresponding to non-cubatic symmetry, disappear when the system
undergoes a transition from a plastic crystal to a solid phase.

The three particle shapes considered for this study are displayed in Fig. 2.10(a,d,g)
with their orientational distribution either projected on the surface of a unit sphere or
plotted as contour plot in Fig. 2.10(b,e,h) and Fig. 2.10(c,f,i), respectively. These orienta-
tional distribution functions are computed just above the fluid-plastic crystal coexistence
region. In the orientations projected on the surface of a sphere we identified different
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Figure 2.10: Various truncated cubes and their orientational distribution functions in
the plastic crystal phase. Panels (a,d,g) show the particle shapes at truncations s =
0.457, 0.572 and 0.750. We have chosen these shapes to represent three different plastic crystals
in the phase diagram of truncated cubes. Panels (b,e,h) show the orientations projected on the
surface of a unit sphere for the particle shapes shown in (a,d,g), respectively, just above the
fluid-plastic crystal phase coexistence. We have colored different clusters with different random
colors. The clusters are obtained using the "FindClusters" routine in Mathematica. Panels (c,f,i)
show contour plots of the corresponding orientational distribution functions in θ and ϕ repre-
sentation. The contour plots are color coded as follows: We have used CMYK (cyan, magenta,
yellow and black) color coding to explicitly show the probability density of the orientational
distribution functions. Low probability regions are colored cyan and high probability regions
are colored black, and the intermediate probability regions in magenta and yellow.

clusters using the Mathematica "FindClusters" routine in combination with visual obser-
vations. These clusters are randomly colored for visual clarity as shown in Fig. 2.10(b,e,h).
The corresponding contour plots for the three particle shapes are shown in the (θ, ϕ) rep-
resentation in Fig. 2.10(c,f,i). The contour plots of the orientational distribution functions
are colored using four different colors (cyan (c), magenta (m), yellow (y) and black (k))
and their gradients. The order of the colors CMYK is used to determine the probability
of the region i.e., cyan is used to color the low probability region, while black is used
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to color regions with a high probability and the remaining two colors are used for the
intermediate probabilities. Most of the peaks in the contour plots are clearly visible in
Fig. 2.10(c,f,i). However, we would like to note that some peaks are overshadowed by
other peaks and sometimes new peaks appear due to the periodicity in θ and ϕ in our
method of plotting. By visual observations of the orientational distribution functions
along with the "FindClusters" routine we found that there are 8, 18 and 6 different peaks
in the orientational distribution functions for s = 0.457, 0.572 and 0.750, respectively. We
also note that truncated cubes with Π ∈ R2 (s = 0.457 and 0.750) have a smaller number
of peaks compared to the ones with Π ∈ R3 (s = 0.572). Additionally, we found that
the cubatic order is inversely proportional to the number of peaks in the orientational
distribution function, i.e., more peaks in the orientational distribution functions gives
rise to a lower cubatic order.

Now that we have described the three different plastic crystals we will study the
orientational distribution of a plastic crystal as a function of packing fraction φ. We
have chosen s = 0.572 for this study as this particle shape corresponds to the lowest
plasticity Π value among the particles we simulated. We show the particle shape along
with its correlation function and orientational distribution functions in Fig. 2.11. We have
chosen three packing fractions, to calculate the correlation functions and orientational
distributions:

1. φ = 0.547, which is just above the liquid-plastic crystal coexistence region,

2. φ = 0.659 is slightly below the plastic-crystal-crystal coexistence region,

3. φ = 0.715, in the stable crystal region.

In Fig. 2.11b, we show the positional correlation functions g(r) for a system of truncated
cubes with s = 0.572 for the above mentioned three packing fractions. We clearly see
that g(r) shows long-range positional order for all the chosen packing fractions. However,
the g4(r) shown in Fig. 2.11c, exhibit long-range orientational correlations only in the
crystal regime, i.e., for φ = 0.715. In the plastic-crystal phase (φ = 0.547 and 0.659),
the orientational correlations vanish at a distance smaller than one lattice spacing as
expected. With increasing packing fraction the orientational distribution of the particles
in the plastic-crystal phase display long-range orientational order as shown in Fig. 2.11.
The probability density in the crystal phase (φ = 0.715) show the same 18 peaks as in the
plastic-crystal phase. However the peaks close to the initial state show a high probability
as the crystal exhibits orientational long-range order.

To conclude, the orientational distribution function of plastic crystals of hard anisotropic
particles can be highly anisotropic and can be strongly peaked for specific orientations.
These orientational directions depend not only on the crystal structure of the particle but
also on the shape of the particle. Our results show that hard particle plastic crystals are
different in nature to that of plastic crystals constituted with particles which have long-
range interactions [90]. Systems with long-range interactions tend to form plastic crystals
with uniform orientational distribution functions unlike the hard particles as studied. Ad-
ditionally, we have shown that crystals can have many preferred orientations like plastic
crystals however the probability of residing at different directions differ substantially.
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Figure 2.11: Analysis of particle shape s = 0.572 as a function of packing fraction. (a) Shows
the particle shape. (b) and (c) show the positional and orientational correlation functions, re-
spectively for three different packing fractions. We have chosen three packing fractions such
that φ = 0.547 is just above the liquid-plastic crystal coexistence region while the second one
φ = 0.659 is slightly below the plastic-close-packed crystal coexistence region and the third one
φ = 0.715 is in close-packed crystal region. In (d,e,f) we show the orientational distributions
for s = 0.572 at φ = 0.547, 0.659 and 0.715, respectively. Different clusters of orientations are
colored with random colors for better illustrations. We have found that there are 18 possible
directions where the particle resides. Panels (g,h,i) show the density of the orientational distri-
bution in θ and ϕ representation. The color code in (g,h,i) is as follows: We have used CMYK
(cyan, magenta, yellow and black) color coding to explicitly show the probability density of the
orientational distributions. Low probable regions are colored cyan and high probable regions
are colored black with the intermediate regions with magenta and yellow.

2.5 Conclusions
In conclusion, we have determined the full phase diagram for a family of truncated cubes,
which interpolates smoothly from a cube via a cuboctahedron to an octahedron, using
Monte Carlo simulations and free-energy calculations. The phase diagram shows a re-
markable diversity in crystal structures. Of particular interest is the discovery of a fully
degenerate crystal phase for a truncation parameter s ≈ 0.4, in which diagonally inter-
locked sheets of particles can move with respect to each other in only one direction. The
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latter system is remarkable in more than one way, since it also exhibits a fluid state and
three different bulk crystals upon increasing the pressure. Both these qualities may make
similarly shaped nanoparticles suitable for the creation of highly tunable functional mate-
rials, for which optical, electrical, and rheological properties vary strongly with the bulk
pressure of the system. We also calculated the cubatic order parameter S4 for truncated
cubes with varying truncation level and have shown that the values of S4 is related to
the number of preferred particle orientations in the plastic-crystal phase. Additionally,
we observed and studied the properties of various plastic-crystal phases observed for the
truncated-cubes family. We have introduced a new parameter called plasticity parameter
Π which we used to understand different plastic crystals as a function of shape. Our
present results provide a solid basis for future studies of anisotropic particle systems and
pave the way for a full understanding of the recent experimental studies performed on
systems of nanoscopic truncated cubes.
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Vacancies in Simple Cubic Crystals
of Truncated Hard Cubes

Point defects and line defects play an important role in the stability of crystal structures.
Recent simulation studies on colloidal hard cubes and hard parallel cuboids have revealed
that these systems exhibit roughly three orders of magnitude more vacancies than the
simple hard-sphere systems. In this chapter we extend the equilibrium vacancy concen-
tration calculations to truncated cubes. Our results show that at a given packing fraction
φ the number of vacancies increases with increasing truncation. Using a simple cell the-
ory we show that the increase in vacancy concentration is due to a gain in orientational
entropy.



36 Chapter 3

3.1 Introduction
Colloidal crystals are known to exhibit vacancies, interstitials and dislocations. Point
defects are the most common of these. Recent studies [79, 80] have shown that colloidal
hard cubes and hard parallel cuboids exhibit a large number of vacancies close to the
fluid-crystal coexistence region. These studies have shown that the above mentioned sys-
tems can have vacancy concentrations as high as three orders of magnitude more than
the vacancy concentration of the well-studied hard-sphere systems [94, 95]. Apart from
the theoretical interests to compute the equilibrium vacancy concentrations for different
colloidal systems, it is also interesting to study systems with vacancy-rich phases to de-
sign smart materials with self-healing properties. Also, scientists around the world are
working with various crystal structures which have lattice constants comparable to that
of the wavelength of visible light to create photonic materials. Since truncated cubes
can be synthesized at various sizes [16, 36, 37] and the fact that the equilibrium number
of vacancies can influence the nature of photonic states, it is interesting to study the
equilibrium vacancy concentrations of these truncated cubes.

Here we use an Einstein integration method with slight modifications, following Ref. [79],
to compute the free energies of crystals with vacancies. The modifications are mainly done
to the confining potential which will be explained in the Methods section in detail. We
compute the free energies of the truncated cubes at a fixed packing fraction φ = 0.56 with
varying shape parameter s as defined in Eq. 2.1. Our results show that the equilibrium
vacancy concentration increases with increasing shape parameter s for a given packing
fraction close to the coexistence densities. In addition, we use a simple cell theory to
explain the increase in vacancy concentration at fixed packing fraction. Our results show
that the increase in vacancy concentration with truncation of a cube is due to a gain in
orientational entropy.

3.2 Methods

3.2.1 Free Energy of a Solid with Vacancies
We calculate the free energy of a solid phase at a fixed vacancy concentration α = (NL−
N)/NL, with N the number of particles and NL the number of lattice sites. We use the
Einstein integration method as explained in Chapter 2 to determine the free energy of a
solid. The main difference in the Einstein integration method to compute the free energy
of the solid with and without vacancies is the confining potential. While calculating the
free energy of a system with vacancies we attach the particles to their nearest lattice site
rather than to a specific lattice site. To achieve this Eq. 2.7 in Chapter 2 is modified to

βUEinst(λ) = λ
N∑
i=1

[(ri − r0 (ri))2/v2/3
p + (sin2 ψia + sin2 ψib)], (3.1)

where r0(ri) is the position of the lattice site nearest to the current position ri of particle.
The dimensionless free energy per particle fvac

Einst = FV ac
Einst

NkBT
of a non-interacting Einstein
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crystal with vacancies is given by:

fvac
Einst(λmax) = fEinst(λmax) + frot(λmax) + fcomb, (3.2)

where fEinst and frot are the translational and rotational free energies of an ideal Einstein
crystal, while fcomb is the combinatorial entropy associated with placing N particles on
NL lattice sites. All terms read as follows:

fEinst(λmax) = −3(N − 1)
2N log

(
π

λmax

)
+ log

(
Λ3
tΛr

vp

)
, (3.3)

frot(λmax) = − 1
N

log
{ 1

8π2

∫
dθ sin (θ)dφdχ × (3.4)

exp
[
−λmax

kBT
(sin2 ψia + sin2 ψib)

]}
,

and
fcomb = − 1

N
log

(
NL!

N !(NL −N)!

)
. (3.5)

We would like to point out that the free-energy calculations are done without fixing the
center of mass of the whole system unlike the traditional Einstein integration method [96].
To account for this change we introduce a Monte Carlo move that collectively displaces
the entire system which allows to sample the entire phase space of the center of mass
of the system. In addition we have also implemented a Monte Carlo move in which a
particle may hop onto an adjacent lattice site in order to equilibrate faster the vacancy
distribution in the crystal. Both, the Monte Carlo move to translate the entire system
and the particle hopping move are attempted with 50% probability in every Monte Carlo
sweep (MCS), where a MCS consist of N/2 translational and N/2 rotational moves. For
more details about the implementation of the free-energy calculations, we refer to the
methods section of Ref. [79]. We used NL = 153 = 3, 375 lattice sites for the free-energy
calculations of a simple cubic (SC) crystal phase of truncated hard cubes with shape
parameter s = 0.05, 0.15, and 0.25 and packing fraction φ = 0.56 and varying vacancy
concentrations α = (NL −N)/NL as described above.

In Chapter 2, we presented the phase diagram of truncated cubes in Fig. 2.6. In this
phase diagram we did not take into account the shift in coexisting densities due to the
presence of vacancies in the simple cubic phase. We feel justified in this omission, since
the presence of vacancies lead to a minute change in the location of the phase boundaries
for the SC-fluid coexistence densities as was already shown for hard cubes by Smallenburg
et al. [79].

3.3 Results
We have used the above mentioned free-energy method to determine vacancies in the
vacancy-rich SC phase for s ∈ [0.00, 0.374]. We define the vacancy concentration α as
the fraction of unoccupied sites in the SC crystal lattice. To determine the equilibrium
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vacancy concentration, we calculated the dimensionless free energy f(α) as a function
of α for s = 0.05, s = 0.15, and s = 0.25, at packing fraction φ = 0.56. The free
energy as a function of vacancy concentration α is shown in Fig. 3.1 for several levels of
truncation s along with the particle shapes. The s = 0 (perfect cubes) data is obtained
from Ref. [79]. For each shape we have indicated the equilibrium vacancy concentration
with a vertical red dotted line. Fig. 3.1 shows that the minimum in the free energy shifts to
higher vacancy concentrations upon increasing the level of truncation s at a fixed packing
fraction. This result is surprising and is in contrast to the behavior observed for parallel
cuboids [80], which exhibit a constant vacancy concentration at φ = 0.5 and 0.55 with
increasing roundness. It is known already from Ref. [79] that the vacancies are delocalized
along rows in the crystal lattice, since the particles can easily move with respect to each
other and fill up the vacated space.
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Figure 3.1: (a): Free-energy differences per particle f (α) − f (0) = F (α)−F (0)
NkBT

between a
system with vacancies f(α) and the one without vacancies f(0) as a function of the fraction of
vacancies α for truncations s = 0, s = 0.05, s = 0.15, and s = 0.25 at packing fraction φ = 0.56.
For s = 0 we took the results from Ref. [79]. The actual data points are plotted in thick blue,
the black line is a polynomial fit to the data. The dashed (red) vertical lines show the location
of the minimum in the free energy, i.e., the equilibrium vacancy concentration α. (b): All the
particle shapes considered for the free-energy calculations along with their truncation values are
shown.
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Figure 3.2: The reduced free energy per particle fdef(α) as a function of vacancy concentration
α for a simple cubic crystal phase of truncated cubes with shape parameter s = 0, 0.05, 0.15,
and 0.25 and packing fraction φ = 0.56. fdef(α) does not account for the combinatorial entropy,
i.e., fdef(α) = f (α)− fcomb(α).

In Fig. 3.2, we present the dimensionless free energy per particle fdef as a function of α
without taking into account the combinatorial entropy, i.e., fdef(α) = f(α)−fcomb(α). In
accordance with the observations of Ref. [79], fdef vs α in Fig. 3.2 shows a linear behavior
suggesting that the vacancies are only weakly interacting. Assuming the vacancies to be
non-interacting, which allows one to write the free energy of a crystal phase as

fdef(α) = f(0)− αf1 (3.6)

where f(0) is the dimensionless free energy per particle of a crystal with no vacancies and
f1 is the reduced free-energy cost to create a single vacancy (without the combinatorial
component). Fitting the results as displayed in Fig. 3.2 with Eq. 3.6, we determined f1
for truncated cubes as a function of shape parameter s. The results are tabulated in
Table 3.1. Surprisingly, we find that the free-energy cost to create a vacancy f1 decreases
with increasing s at packing fraction φ = 0.56. Hence, we find that the equilibrium
vacancy concentration increases with particle truncation s.

3.4 Cell Theory Calculations

In order to explain our free-energy calculations and observations, we estimate the
free-energy cost to create a single vacancy at a specific lattice point using a simple cell
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Table 3.1: The dimensionless free energy per particle for a simple cubic crystal of truncated
cubes with shape parameter s = 0, 0.05, 0.15, and 0.25 and packing fraction φ = 0.56. From
left to right we specify the truncation parameter s, the packing fraction of the densest crystal
structure φcp, the dimensionless free energy for a system with zero vacancies f(0), the free-
energy cost to create a single vacancy f1 (without the combinatorial contribution) as obtained
by Monte Carlo simulations and free-energy calculations, f1 obtained from cell theory for parallel
truncated cubes f cell

1 , and as obtained from cell theory for freely rotating cubes f cell,or
1 .

Simulations Cell theory
s φcp f(0) f1 f cell

1 f cell,or
1

0.00 1.00000 7.5077 4.52640 4.63638 4.63638
0.05 0.99987 7.4354 4.36892 4.63699 4.48311
0.15 0.99649 7.2762 4.06024 4.65291 4.16535
0.25 0.98370 7.1788 3.81633 4.71465 3.85161

Figure 3.3: Depiction of the insertion in a two-dimensional (2D) simple square lattice of a
rotated truncated square. The three dimensional (3D) case of insertion of a truncated cube into
a simple cubic crystal is analogous.

theory. We first ignore the orientational degrees of freedom of the cubes and consider N
parallel truncated cubes in a simple cubic crystal phase with volume V . In addition, we
assume the particles to be confined in Wigner-Seitz (WS) cells centered around the ideal
lattice positions. In a simple cubic crystal phase with a lattice constant a, the particles
are confined to cubic cells with a volume v = a3 = V/N as illustrated in Fig. 3.3. At
close packing the volume of the cubic cell is given by vcp = σ3 with σ the side length of
the outscribed cube of the particle. We will use these results in the following calculation.
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To determine the free-energy change of a crystal due to the creation of a vacancy, one
can also consider the change in free energy by removing a single vacancy at a specific
lattice point using the particle insertion method [95]. To this end, we consider a crystal
containing a single vacancy and determine the free volume that is available for the center-
of-mass of a particle in the WS cell surrounding that vacancy. It is straightforward to see
that the free volume reads

vfree = (a− σ)3. (3.7)
Using the packing fraction φ = vpN/V and the packing fraction at close packing φcp, we
find that the reduced free-energy cost f1 to create a vacancy reads

f cell
1 = − log

(
vp
Λ3
t

)
− 3 log

(
1
φ1/3 −

1
φ

1/3
cp

)
, (3.8)

where Λt is the thermal wavelength of the system. We note that the packing fraction
φcp at close-packing decreases upon increasing the truncation parameter s from zero in
the (D)SC phase. In Table 3.1, we list this maximum packing fraction φcp as well as
the reduced free-energy cost to create a vacancy f1 as obtained from our cell theory
(Eq.3.8). We clearly observe that f1 as obtained from cell theory for non-rotating cubes
increases with truncation in contrast with our free-energy calculations using Monte-Carlo
simulations. Our model is therefore oversimplified.

a

σ

θ

Figure 3.4: The maximal angle θ that a truncated square can rotate in the center of its Wigner-
Seitz (WS) cell. The side length of the WS cell is given by a, the diameter of the outscribed
square by σ.

Let us now consider truncated cubes that are allowed to rotate. For a visual repre-
sentation of the cell-theory method we present two-dimensional (2D) schematic pictures
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in Figs. 3.3 and 3.4. If we assume the rotations to be small and take only into account
rotations around either the x-, y-, or z-axis, the maximal angle θ(s) that a truncated cube
in the center of the WS cell can rotate is approximately

θ(s) = a− σ
(1− s)σ . (3.9)

This is easily derived with the help of Fig. 3.4. The change in reduced orientational free
energy of a truncated cube in a WS cell w.r.t that of a cube (s = 0) is

∆for(s) = log
[
θ(0)
θ(s)

]3

≈ 3 log (1− s), (3.10)

using our model. The reduced free-energy cost f1 to create a vacancy in a simple cubic
crystal of freely rotating truncated cubes with shape parameter s is therefore approxi-
mated by

f cell,or
1 (s) = − log( vp

Λ3
tΛr

)− 3 log( 1
φ1/3 −

1
φ

1/3
cp

) + 3 log (1− s). (3.11)

Table 3.1 displays the results, which show remarkably good agreement with the ‘exact’
f1 that was obtained using Monte Carlo simulations and free-energy calculations. The
decrease in the free-energy cost f1 to create a vacancy with increasing s is therefore due
to an increase in orientational entropy, and the increased rotational entropy consequently
explains the increase in the vacancy concentration at fixed packing fraction φ. More
importantly, our results show that a simple cell theory can give accurate predictions for
the equilibrium vacancy concentration for truncated cubes, and can perhaps be used as
a predictive tool for a wider class of particle shapes. However, one should notice that
our cell theory is oversimplified and we caution the reader to extend the results to other
systems with care.

3.5 Conclusions
To conclude, we have determined the free energies of truncated cubes as a function of
vacancy concentration using a modified Einstein integration method. From our calcula-
tions we found that the equilibrium vacancy concentration of truncated cubes increase
with increasing truncation at a fixed packing fraction φ = 0.56. Using simple cell theory
calculations we have shown that the increase in vacancy concentrations with truncation s
is due to the increase in orientational entropy with truncation. It would be interesting to
study in more detail the effect of particle shape on the equilibrium vacancy concentration
for other colloidal systems which form simple cubic crystal structures.

Finally, we note that the cell theory model is oversimplified. As it is known that the
vacancies are delocalized for cubes and truncated cubes one has to take that into account
to perform cell theory calculations. Instead of taking one particle in a cell one could take
a row of truncated cubes and use insertion moves to determine f1. These considerations
will be implemented in future work.
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Phase Diagram of Colloidal Hard
Superballs: from Cubes via

Spheres to Octahedra

The formation of a wide variety of fascinating crystal and liquid-crystal phases is accom-
plished by entropy alone. A better understanding of these entropy-driven phase transitions
of hard anisotropic particles will shed light on the self-assembly of nanoparticles, how-
ever, there are still many open questions in this regard. In this work, we use Monte Carlo
simulations and free-energy calculations to determine the phase diagram of colloidal hard
superballs, of which the shape interpolates between cubes and octahedra via spheres. We
found not only a stable face-centered cubic (fcc) plastic-crystal phase for near-spherical
particles, but also a stable body-centered cubic (bcc) plastic crystal close to the octa-
hedron shape. Moreover, coexistence of these two plastic crystals is observed with a
substantial density gap. The plastic fcc and bcc crystals are, however, both unstable in
the cube and octahedron limit, suggesting that the low asphericity ratio of the superballs
in combination with local curvature, i.e. rounded corners and curved faces, of superballs
play an important role in stabilizing the rotator phases. In addition, we observe a two-
step melting phenomenon for hard octahedra, in which the Minkowski crystal melts into
a metastable bcc plastic crystal before melting into the fluid phase.
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4.1 Introduction

Recent breakthroughs in particle synthesis have resulted in a spectacular variety of anisotropic
nanoparticles such as cubes, octapods, tetrapods, octahedra, ice cones, etc. [5]. A natural
starting point to study the self-assembled structures of these colloidal building blocks is to
view them as hard particles [5]. Not only can these hard-particle models be used to pre-
dict properties of suitable experimental systems, but such models also provide a stepping
stone towards systems where soft interactions play a role [14, 60]. Moreover, the analysis
of hard particles is of fundamental relevance and raises problems that influence fields as
diverse as (soft) condensed matter, [5, 78, 97, 98] mathematics, [98, 99] and computer
science [100]. In this light the concurrent boom in simulation studies of hard anisotropic
particles is not surprising [78, 79, 81, 98, 99, 101–107].

The best-known hard-particle system consists of hard spheres, which freeze into close-
packed hexagonal (cph) crystal structures, [100] of which the ABC-stacked cph crystal,
better known as the face-centered cubic (fcc) crystal phase, is thermodynamically sta-
ble [108]. Hard anisotropic particles can form liquid-crystalline equilibrium states if they
are sufficiently rod- or disc-like, [104, 107] but particles with shapes that are close-to-
sphere tend to order into plastic-crystal phases, also known as rotator phases [105–107].
In fact, simple guidelines were recently proposed to predict the plastic- and liquid-crystal
formation only on the basis of rotational symmetry and shape anisotropy of hard poly-
hedra [78]. In this Chapter we will take a different approach, based on free-energy calcu-
lations, and address the question whether and to what extent rounding the corners and
faces of polyhedral particles affects the phase behavior. Such curvature effects are of direct
relevance to experimental systems, in which sterically and charged stabilized particles can
often not be considered as perfectly flat-faced and sharp-edged [17]. For instance, recent
experiments on nanocube assemblies show a continuous phase transformation between
simple cubic and rhombohedral phases by increasing the ligand thickness and hence the
particle sphericity [14]. In this work we construct an accurate phase diagram of these col-
loidal hard superballs between the cube and the octahedra and thereby try to understand
the role of curvature in the formation of plastic-crystal phases at intermediate pressures.

A superball is defined by the inequality

|x|2q + |y|2q + |z|2q ≤ 1, (4.1)

where x, y and z are scaled Cartesian coordinates with q the shape parameter, and we
use radius a of the particle as our unit of length. In this work we limit q ∈ [0.5,∞) where
the shape of the superball interpolates smoothly between two Platonic solids, namely the
octahedron (q = 0.5) and the cube (q = ∞) via the sphere (q = 1) as shown in Fig. 4.1.
To quantify curvature of these particles we use asphericity A which is defined as

A = 1− π1/3 [6v(q)]2/3

S(q) , (4.2)
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where S(q) is the surface area of the particle. The volume of the superball v(q) is given
by

v(q) = 8a3
∫ 1

0

∫ (1−x2q)1/2q

0
(1− x2q − y2q)1/2qd y dx

= 8a3 [Γ (1 + 1/2q)]3

Γ (1 + 3/2q) , (4.3)

where a = 1 is the radius of the particle. This asphericity definition is similar to the
one used in Refs. [109, 110]. According to Eq. 4.2, we have A = 0 for a sphere and
A > 0 for nonspherical objects. For the superball the asphericity increases smoothly and
substantially by letting q deviate from q = 1. The asphericity of superballs as a function
of 1/q is shown in Fig. 4.1. By determining the phase diagram of these superballs as a
function of q, we discovered a thermodynamically stable body-centered cubic (bcc) plastic-
crystal phase for octahedron-like superballs. A bcc rotator phase has also recently been
reported in simulations of truncated and perfect octahedra parallel to our work [67] and
for truncated cubes in Ref. [49] and Chapter 2. However, the thermodynamic stability of
the bcc rotator phase using free-energy calculations has not been examined in Ref. [67].
Moreover, we demonstrate using free-energy calculations that bcc and fcc plastic-crystal
phases are unstable for hard octahedra and hard cubes, respectively. Therefore in the
case of superballs defined in the interval q ∈ [0.5,∞], rounded faces and edges may play
an important role in stabilizing rotator phases, while flat faces tend to stabilize crystals.

The remainder of this Chapter is organized as follows: We first briefly discuss the mod-
els and the simulation methods. Subsequently, we present the phase behavior of the exact
octahedra q = 0.5 in detail. We then present the phase diagram of the octahedron-like
q ∈ [0.5, 1) and cube-like superballs q ∈ (1,∞). Finally we move on to draw conclusions
on the phase behavior of superballs as obtained from our free-energy calculations.

4.2 Model, Methods and Simulations
Following Refs. [72, 101], we first calculate the close-packed structures for systems of
hard superballs q ∈ [0.5,∞). We use these close-packed structures to perform NPT
Monte Carlo simulations with variable box shape at fixed pressure P , number of particles
N , and temperature T to determine the equation of state (EOS) of the crystal phase
upon expanding the system. At the same time we also compress dilute superball systems
using NPT simulations and determine the equations of state upon compression. We then
calculate the free energy for the various phases observed in our NPT simulations using
the Einstein integration method as explained in Section 2.3.2 of Chapter 2. We then use
thermodynamic integration and common-tangent constructions to determine the stability
and the phase boundaries for the various phases.

In order to detect the overlaps between superballs we employ the algorithm described
in Ref. [77]. This algorithm is unstable for superballs with large curvatures i.e., for q < 0.7
and q > 3. To avoid the stability problems in the algorithm we simulated perfect faceted
octahedra using the separating axis theorem [84]. The phase diagram of hard cubes which
is already known is taken from Ref. [79] to construct the complete phase diagram.
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Figure 4.1: The asphericity A as a function of the shape parameter q as defined in Eq. 4.1,
where the shape of superballs interpolates between octahedra (q = 0.5) and cubes (q =∞) via
spheres (q = 1).

4.3 Results and Discussion

4.3.1 The Phase Behavior of Hard Octahedra
We first determined the equations of state for octahedra using the floppy box NPT Monte
Carlo simulations [72]. When we compressed a system of hard octahedra from a dilute fluid
phase, we did not observe the spontaneous formation of a crystal phase in our simulation
box within our simulation time. When we expanded the Minkowski crystal, which is
the close-packed structure of octahedra [48], in NPT MC simulations by decreasing the
pressure quasi-statically, the system melts into a bcc plastic-crystal phase. The equations
of state obtained during the compression and expansion runs are shown in Fig. 4.2a. We
used N = 1458 particles in our NPT MC simulations to obtain the equations of state.
These equations of state for various phases are used to determine the free energy as a
function of packing fraction (or equivalently density) using thermodynamic integration as
explained in Section 2.3.2 in Chapter 2.

Typical simulation snapshots of the fluid, rotator and crystal phases in the NPT
Monte Carlo simulations of octahedra are shown in Fig. 4.2 c,d, and e. The fluid and the
bcc crystal phase configurations in Fig. 4.2 c,d, respectively, contain N = 128 particles
while the Minkowski crystal displayed in Fig. 4.2e contains N = 250 particles. For the
sake of visual clarity we have chosen smaller system sizes to display. The particles in
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Figure 4.2: (a): The equation of state for hard octahedra obtained from our NPT Monte
Carlo simulations. The reduced pressure Pυp/kBT is plotted as a function of packing fraction
φ. Here υp is the volume of the particle. The equation of state (EOS) for the crystal branch
is obtained by melting from an ideal Minkowski lattice, which is the close-packed structure
for octahedra. The fluid branch of the EOS is obtained by compressing the dilute fluid. (b):
The cubatic order parameter S4(φ) is plotted as a function of φ. (c,d,e): Typical simulation
snapshots of hard octahedra in the three different phases observed in the NPT simulations. (c)
fluid, (d) bcc rotator phase and (e) crystal phase. In the inset of (d) we show the unit cell of
a bcc rotator phase. The color of the particle is based on their orientation with respect to the
particles in the close-packed crystal. Particles in an ideal Minkowski lattice will have dark blue
color according to our coloring scheme and green when the orientations deviate significantly
from the ideal orientation.

the snapshots are colored depending on their orientation with respect to the particles in
the ideal close-packed Minkowski crystal. In the close-packed Minkowski crystal phase
all octahedra are colored blue as their orientations are arrested. In the fluid and the bcc
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rotator phase one can see that the orientations of the particles are random and so are
their colors.

In order to quantify the orientational order as a function of packing fraction φ = Nvp

V
,

with vp the volume of a particle, for different phases, we calculate the cubatic order
parameter S4 defined in Eq. 2.2 of Chapter 2. We plotted S4(φ) as a function of φ in
Fig. 4.2 b. We observe that the orientational order is negligible (S4 ≤ 0.1) in the fluid
state, but has a finite value in the bcc rotator phase. The S4(φ) in the bcc rotator phase
increases linearly with increasing φ. In the Minkowski crystal the cubatic order S4(φ) ≈ 1
suggesting a fully orientationally ordered system as expected for a crystal phase.

(a) (b)

Figure 4.3: Orientations of octahedra in the bcc rotator phase: (a) Orientations of octahedra
projected on the surface of a unit sphere in a bcc rotator phase and (b) the orientational distribu-
tions are clustered based on their orientations. We have found six most probable directions which
are indicated with a colored sphere. The color of the sphere indicates the probability of finding
the particle with that orientations. We have used 20 simulation snapshots each containing 250
particles at packing fraction φ = 0.526 to obtain these plots.

In order to study in more detail the orientations of the octahedra in the bcc rotator
phase, we present in Fig. 4.3 the orientations of the octahedra in the bcc phase projected
onto the surface of a unit sphere. We clearly observe that the orientations of the oc-
tahedra are not homogeneous in the plastic-crystal phase and that there are preferred
orientations. We used a cluster algorithm in Mathematica to determine the most proba-
ble orientations of the octahedra and have shown them in Fig. 4.3 b. The most probable
orientations of octahedra in the bcc rotator phase are the symmetry orientations that
leave the octahedron invariant under rotation. In other words these orientations indicate
the cubatic symmetry of the particle. From these observations we conclude that the octa-
hedra in the plastic-bcc-rotator phase jump from one symmetry orientation to the other
rather than that they rotate smoothly around their centers of mass. We also observed
that with increasing packing fraction the orientations of the octahedra get more and more
arrested and at high enough density the system undergoes a first-order phase transition
to a Minkowski crystal phase where particle orientations are largely frozen in.
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Figure 4.4: Correlation functions for octahedra. (a): Positional correlation functions g(r)
for all the three different phases observed for octahedra close to the coexisting densities. (b):
Orientational correlation functions g4(r) for the same densities and phases as in Fig. 4.4a. At
large r, g4(r) ≈ S4(r)2 unlike the g(r) which goes to one. Here r is the radial distance and υp
is the volume of the particle which is set to unity.

We computed positional and orientational correlation functions close to the coexisting
densities of the three different phases of the octahedra. The positional correlation func-
tion g(r) and the orientational correlation function g4(r) are shown in Fig 4.4 a and b,
respectively. The g(r) calculated for a fluid close to freezing, a rotator bcc phase close
to melting and the crystal phase show almost similar behavior in all the three phases.
However the orientational correlation function g4(r) shows some interesting features. The
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g4(r) generally goes to a plateau at large r which is proportional to S2
4 , with S4 the cubatic

orientational order in the bulk. Here g4(r) shows that the fluid and bcc rotator phase has
weak orientational correlations with respect to that of the crystal phase. The orientational
correlation functions in the fluid and bcc phase decay rapidly at short distance r, showing
that the neighboring particle orientations are not coupled to each other. However the bcc
phase exhibit slightly more orientational order compared to the fluid phase at large r. In
the crystal phase the orientational correlations appear to be long range, as expected for
the system sizes we considered.
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Figure 4.5: F ex/NkBT + lnN/N as a function of 1/N for a system of hard octahedra in a
Minkowski crystal (a) and in a bcc plastic-crystal phase (b) at packing fraction φ = 0.71052 and
0.5, respectively.
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Finally, we calculated the free energies for all the three phases to determine the phase
boundaries for hard octahedra. We used the Einstein integration method to calculate the
free energies for the crystal phases and the Widom insertion method [96] for the fluid
phase. For more details regarding the methods for calculating free energies for different
phases see Section 2.3.2 of Chapter 2. To eliminate the finite-size system effects in the
free energies of the crystal and the rotator phases, we computed the free energies for
system sizes N = 1024, 1458, and 2000 particles and used them to determine the free
energy in the limit of N → ∞. We used the finite-size scaling method as proposed by
Frenkel et al. [96] to determine the free energy for N →∞.

The excess free-energy density defined as

Fex

NkBT
= F

NkBT
− Fid

NkBT
(4.4)

is plotted as a function of 1/N , for hard octahedra in a Minkowski crystal and in a bcc
plastic-crystal phase, in Fig. 4.5. Following the finite-size scaling method in Ref. [96] we
have fitted a straight line through the data points and determine the excess Helmholtz
free energy per particle in the limit of N → ∞ as shown in Fig. 4.5. The Helmholtz
free energy per particle for the Minkowski crystal phase (at φ = 0.71052) and the bcc
plastic-crystal phase (at φ = 0.5) are 12.3491 kBT and 6.2259 kBT , respectively.
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Figure 4.6: Free energy for octahedra: F/V −ρµc−Pc is plotted as a function of packing fraction
φ. Here F and V are the Helmholtz free energy and the volume of the system respectively; µc and
Pc are the chemical potential and pressure at bulk coexistence respectively with ρ the number
density of the particles. This plot shows clearly that the bcc rotator phase is metastable with
respect to the coexistence between the fluid and the Minkowski crystal phase.

We estimated the statistical errors in the free-energy calculations to be on the order of
10−3kBT per particle. These calculated free energies along with the equations of state are
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used to compute the free-energy density as a function of packing fraction using thermo-
dynamic integration [96]. These calculated free-energy densities for all the three phases
are shown in Fig. 4.6. Employing common-tangent constructions, we found that there is
only phase coexistence between a fluid phase and a Minkowski crystal phase, while the
bcc plastic-crystal phase is metastable. From our calculations we determine the coexist-
ing densities of the fluid and Minkowski crystal to be at φf = 0.493 and φm = 0.589,
respectively. We have plotted the scaled free-energy densities in Fig. 4.6 which clearly
shows the co-existing densities.

In a similar fashion, we compute the phase boundaries for the remaining particles in
the range q ∈ [0.5,∞] and map out the phase diagram. The phase diagram can be divided
into two broad regions based on their shape, namely (1) octahedron-like and (2) cube-like
superballs. We discuss the two parts of the phase diagram below.

4.3.2 Octahedron-like Superballs (0.5 ≤ q < 1)
We first turn our attention to octahedron-like superballs. We used floppy-box MC sim-
ulations with a small number of particles to compress the system to a high pressure
state in order to find the best-packed crystal structures. For shape parameter val-
ues 0.79248 < q < 1, we obtained a denser structure than the predicted O0 lattice of
Refs. [102, 103]. For instance, after compressing the system to pressures around P ∗ = 107

at q = 0.85, we obtained a body-centered-tetragonal (bct) crystal with φ = 0.7661. This
is denser than the O0 crystal, which achieves φ = 0.7656 at q = 0.85. Note however
that these two crystals are very similar to each other, since O0 is also a form of a bct
lattice. The only difference is that the orientation of the particles in the O0 crystal is
the same as the symmetry of the axes in the crystal lattice, while in our bct crystal
there is a small angle between these two orientations in the square plane of the crys-
tal. Furthermore, for q < 0.79248, we also found a crystal with denser packing than the
predicted O1 crystal in Refs. [102, 103]. For q = 0.7, we also performed floppy-box MC
simulations to determine the close-packed structures. We found a deformed bcc (dbcc)
crystal shown in Fig. 4.8, which is an intermediate form between the bcc lattice and the
Minkowski crystal [111]. The lattice vectors are e1 = 0.912909i + 0.912403j− 0.912165k,
e2 = −0.271668i+1.80916j−0.288051k, and e3 = 0.28834i−0.272001j−1.80882k, where
i, j, and k are the unit vectors along the axes of the particle. Our dbcc crystal is close to
the predicted O1 crystal, whose lattice vectors are e1 = 0.912492i+0.912492j−0.912492k,
e2 = −0.2884i + 1.80629j− 0.2884k, and e3 = 0.2884i− 0.2884j− 1.80629k. However, it
has a packing fraction of φ = 0.832839 which is denser than the predicted O1 crystal with
φ = 0.824976 in Refs. [102, 103] by roughly 1%. In Refs. [102, 103], the O0 and O1 phases
are found to switch at q = 0.79248. We also observed that the bct and dbcc crystals both
transform into the bcc phase at q = 0.79248.

As shown in Fig. 4.8, when the shape of the superballs is close to spherical, i.e.,
0.7 < q < 3 corresponding to an asphericity A . 0.08 for cube-like and A . 0.03 for
octahedron-like superballs, there is always a stable fcc plastic-crystal phase. Surprisingly,
when the shape of superballs is octahedron-like, we find a stable bcc plastic-crystal phase.
Moreover, around q = 0.8 we even find a fairly broad two-phase regime where a low-density
fcc plastic crystal coexists with a high-density bcc plastic-crystal phase.
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Figure 4.7: Cubatic order parameter S4 as a function of packing fraction φ for a bcc and a
(metastable) fcc plastic-crystal phase of hard superballs with q = 0.7. The inset shows a typical
configuration of a bcc plastic crystal of hard superballs with q = 0.7 at φ = 0.54.

In order to quantify the orientational order in the bcc phase we calculate the cubatic
order parameter S4. We show S4 in Fig. 4.7 as a function of packing fraction φ for the
bcc plastic-crystal phase of superballs with q = 0.7. For comparison, we also show S4 for
the (metastable) fcc plastic-crystal phase for which the cubatic order is always very low
S4 . 0.2. We observe that S4 ' 0.2 at low packing fractions, which means that there is a
very weak orientational order in the system [112]. With increasing packing fraction, the
cubatic order parameter increases monotonically to around 0.65 at a packing fraction of
0.7, which is indicative of a medium-ranged orientationally ordered system. This suggests
that the entropic repulsion due to the rotation of the octahedron-like superballs stabilizes
the bcc lattice. Moreover, as a bcc-like phase is the best-packed crystal structure for these
superballs, the translational entropy gained in the bcc rotator phase outweighs the loss
in orientational entropy compared to the fcc rotator phase at the same packing fraction.

4.3.3 Cube-like Superballs (1 < q <∞)
The other part of the phase diagram concerns the cube-like superballs. The best-packed
crystal structures are determined in Ref. [113] and are given by C0 and C1 crystals. The
lattice vectors for C0 crystals are given by e1 = 21−1/2q i + 21−1/2q j, e2 = 2 k, and e3 =
−2si+2(s+2−1/2q)j+k, where i, j and k are the unit vectors along the axes of the particle,
and s is the smallest positive root of the equation (s+ 2−1/2q)2q + s2q + 2−2q − 1 = 0. The
lattice vectors for C1 crystals are given by e1 = 21−1/2q i+21−1/2q j, e2 = 21−1/2q i+21−1/2q k,
e3 = 2(s + 2−1/2q) i − 2s j − 2sk, where s is the smallest positive root of the equation
(s + 2−1/2q)2q + 2s2q − 1 = 0, and there is only one particle in the unit cell [102, 103].
For instance, in a C1 crystal of superballs with q = 2.5, one finds that 〈e1, e2〉 = 0.5,
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Figure 4.8: Phase diagram for hard superballs in the φ (packing fraction) versus 1/q (bottom
axis) and q (top axis) representation where q is the deformation parameter. Here the C1 and
C0 crystals are defined in the main text and in Refs. [102, 103], where the particles of the same
color are in the same layer of stacking. The solid diamonds indicate the close packing, and the
locations of triple points are determined by extrapolation as shown by the dashed lines. The
phase boundaries for hard cubes are taken from Ref. [79].

〈e1, e3〉 = 〈e3, e2〉 = 0.60552, |e2| / |e1| = 1, and |e3| / |e1| = 0.825737, where 〈ei, ej〉 is
the cosine of the angle between ei and ej. Our simulation results show that both the
C0 and the C1 crystals deform with decreasing density. The calculated angles and the
length ratios between lattice vectors as a function of packing fraction φ for the cube-like
particles with q = 2.5 are shown in Fig. 4.9. We find that at packing fractions approaching
close packing, the crystal remains in the C1 phase. With decreasing packing fraction, the
crystal lattice deforms towards an fcc structure: 〈e1, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0.5 and
|e2| / |e1| = |e3| / |e1| = 1.

Moreover, when 1 < q < 3, it is found that the deformed C0 and deformed C1 crys-
tal melt into an fcc plastic-crystal phase. By Einstein integration, we calculated the
Helmholtz free-energy as a function of packing fraction for both the fcc plastic crystal
and the deformed C1/C0 crystal phases [96]. Combined with the free-energy calcula-
tions for the fluid phase done by Widom’s particle insertion method, we obtain the phase
boundaries in the phase diagram shown in Fig. 4.8. The part of the phase diagram for
hard cube-like superballs roughly agrees with the empirical phase diagram by Batten et
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Figure 4.9: The deformation of the crystal unit cell with lattice vectors ei as a function of
packing fraction φ in a system of hard superballs with q = 2.5. The dashed lines in the figures
indicate the values for the C1 crystal.

al. [81]. At high packing fractions, there are stable deformed C0 and C1 phases. When
q > 1.1509, the close-packed structure is the C1 crystal, whereas it is the C0 crystal
whenever 1 < q < 1.1509 [102, 103]. To determine the location of the transition from
the deformed C0 crystal to the deformed C1 crystal, we performed two series of NPT
MC simulations with increasing value of q for the first series and decreasing q for the
second series of simulations at pressure P ∗ = Pυp/kBT ' 250, with υp the volume of the
particle [104]. The first series started from a C0 crystal phase, while the second series of
simulations started from a C1 crystal phase. Our simulations show that the phase transi-
tion occurred around q = 1.09 at packing fraction φ = 0.736 as shown by the asterisk in
Fig. 4.8. Moreover, for hard cubes (q = ∞) the C1 crystal is a simple cubic (sc) crystal.
Although it was found that for hard cubes there is a significant number of vacancies in the
simple cubic crystal, it only shifts the phase boundary by ∼ 2% in packing fraction [79].
In our simulations, we did not observe any vacancies in the crystals of hard superballs
with q ≤ 3, we therefore assume that the possible presence of vacancies would not shift
the phase boundary significantly.

4.4 Conclusion
In conclusion, using free-energy calculations we have determined the full phase diagram of
hard superballs with shapes interpolating between cubes and octahedra, i.e., 0.5 ≤ q <∞.
In systems of cube-like superballs (q > 1), we find a stable deformed C1 phase at high
packing fraction, except close to the sphere-limit (q = 1) where a deformed C0 crystal is
stable. For q < 3 the crystal phase melts into an fcc plastic crystal before melting into a
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fluid phase of cube-like superballs. In systems of octahedron-like superballs (0.5 < q < 1),
we find a stable bct or a deformed bcc crystal phase upon approaching close packing, with
a crossover at q = 0.79248. Moreover, a stable fcc plastic crystal appears at intermediate
densities for 0.7 < q ≤ 1. Interestingly, for q < 0.85, we find a novel stable bcc plastic-
crystal phase, which can even coexist with the fcc plastic-crystal phase at around q = 0.8.
It is worth noting that phase coexistence between a bcc and an fcc plastic-crystal phase
have been predicted for particles interacting with soft potentials, e.g., for simple water
models [114]. More surprisingly, the bcc and fcc rotator phases are unstable for the
flat-faced and sharp-edged hard octahedra and hard cubes, respectively, which suggests
that the asphericity A as defined in Eq. 4.2 and the curvature of superballs may play an
important role in stabilizing rotator phases. As the asphericity A increases smoothly by
deviating from q = 1, as shown in Fig. 4.1, it is hard to define a stability criterion for the
plastic-crystal phases based on a threshold value of A. However, we find stable rotator
phases for the shape parameter range 0.7 < q < 3, which corresponds to an asphericity
A . 0.08 for cube-like and A . 0.03 for octahedron-like superballs. It is important for the
particles in the rotator phase to switch from one symmetry direction to the other. This
might depend on factors like shape of particle, crystal structure, and packing fraction.
Hence, it is hard to make a definite statement that explains the formation of rotator
phases. Here we find that particles with low asphericity ratio A << 1 tend to form
rotator phases.

Finally, it is interesting to compare the present phase diagram to that of hard truncated
cubes as described in Chapter 2 and Ref. [49] for which the shape interpolates from cubes
to octahedra, but via cuboctahedra instead of sphere. Although there are similarities
between the two phase diagrams, such as stable plastic crystal phases in the center of the
phase diagram, there are also striking differences. (i) The stable plastic crystal regimes
are much smaller for polyhedral particles than for superballs. (ii) The phase behavior as
a function of shape parameter is much smoother for hard superballs than for truncated
cubes. These observations lead to the idea that the more spread-out local curvature of
the superball tend to favor the formation of rotator phases and have a smoother phase
behavior whereas the polyhedral particles with flat faces and sharp edges prefer to align
flat faces to form crystals and have sharp transitions even though the shape parameter
s varies smoothly. In conclusion, nanoparticle self-assembly is surprisingly sensitive to
particle shape.
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Self-Assembly of Colloidal
Hexagonal Bipyramid- and

Bifrustum-Shaped Nanoparticles
into Two-Dimensional

Superstructures

We present a combined theoretical and simulation study on the self-assembly of colloidal
hexagonal bipyramid- and hexagonal bifrustum-shaped nanoparticles in two dimensions.
The self-assembled structures as obtained in simulations are in good agreement with
those observed in experiments on colloidal nanocrystals. Our work shows that the self-
assembly of the hexagonal bipyramid- and bifrustums in experiments is primarily driven by
minimization of the interfacial free energies and maximization of the packing density. Also,
our study shows that a small truncation of the hexagonal bipyramids is sufficient to change
the symmetry of the resulting superlattice from hexagonal to tetragonal, highlighting the
crucial importance of precise shape control in the fabrication of functional metamaterials
by self-assembly of colloidal (or nano) particles.
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5.1 Introduction

Self-assembly of colloidal nanocrystals (NCs) into ordered superlattices (NC solids) is
emerging as a versatile approach to design and fabricate novel metamaterials with tailored
optoelectronic properties, which are promising for a variety of devices, such as solar cells,
LEDs, photodetectors, and lasers [115–124]. The collective properties of NC solids arise
from the intrinsic characteristics of the building blocks and the synergistic interactions
between them and can thus be engineered by a judicious choice of the colloidal NCs
(composition, size, shape, surface), and the stoichiometry and spatial symmetry of the
resulting self-assembled superstructure [115–118, 125, 126]. Nevertheless, a comprehensive
set of design rules for NC superstructures has yet to emerge, although the concerted
efforts of experimentalists and theoreticians worldwide have led to great advances in
recent years [49, 115, 116, 127–133].

Single- and multicomponent superlattices of isotropic, nearly spherical NCs have been
extensively investigated over the last two decades, producing a remarkable variety of su-
perstructures and greatly advancing the fundamental understanding of the self-assembly
process [115, 116, 127–133]. Recent advances in the synthesis of colloidal NCs have
dramatically extended the ability to control not only the shape but also the compo-
sition of the NC, yielding a wealth of complex anisotropic NCs and hetero-NCs [134].
Moreover, novel theoretical and simulation techniques have been developed in recent
years, allowing more complex problems to be solved [49, 135, 136]. This has led to a
surge of experimental and simulation interest on superlattices of anisotropic NC building
blocks [5, 50, 67, 67, 98, 117, 131, 137–152]. In particular, two-dimensional (2D) super-
structures of anisotropic NCs are attracting increasing attention, because their properties
may be substantially different from those of three-dimensional (3D) NC superstructures,
making them suitable for the fabrication of functional ultrathin films and membranes that
take full advantage of the shape-dependent and directional properties of anisotropic NCs.
For example, nanorods have been shown to form both 2D superlattices [150, 151] and
3D mesoscopic supercrystals [152]. The formation of 2D and 3D self-assembled super-
structures has also been studied for other anisotropic colloidal NCs, such as nanoplates,
truncated cubes, octahedra, or octapods, both experimentally and by theory and simula-
tion [131, 142–148]. Although these studies provided valuable insight in the self-assembly
behavior of anisotropic colloidal NCs, the driving forces behind the self-organization pro-
cess are still not fully understood. For instance, the relationship between the NC shape
and the symmetry of the self-assembled superlattice has not yet been investigated in de-
tail. This is particularly relevant not only from a fundamental viewpoint, but also as a
step towards the development of a framework that allows the design and fabrication of
tailored NC superstructures.

Here, we report a simulation study on the self-assembly of hexagonal bipyramid and
hexagonal bifrustum-shaped NCs into 2D superlattices (see Fig. 5.5 for a graphical il-
lustration of the shapes). Experimentally, superstructures of these building blocks can
be obtained by slow evaporation of the solvent on a dense liquid surface as shown in
Fig. 5.1 using a cartoon. To this end, a concentrated NC solution is brought onto a
very dense liquid surface. Then the solvent is allowed to evaporate slowly resulting into
the formation of 2D superstructures of nanocrystals. We study this self-assembly pro-
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Figure 5.1: Cartoon to describe the experimental procedure to self-assemble NCs at the
liquid-air interface. A concentrated NC solution is brought onto a very dense liquid surface. The
solvent is allowed to evaporate slowly , resulting in the formation of a continuous membrane at
the liquid-air interface.

cess by modeling the NCs as hard anisotropic polyhedral nanoparticles at a planar 2D
solvent-air interface. The minimum free-energy configurations (the equilibrium position
and orientation) of individual NCs at the interface were theoretically calculated [49, 153]
and used in isothermal-isobaric Monte Carlo simulations [49, 71, 72] to determine the
phase behavior of the ensemble of NCs. We found that the resulting NC superstructures
as obtained from our simulations show good agreement with those observed experimen-
tally. Our results show that the experimental self-assembly process is primarily driven
by minimization of the interfacial free energies and maximization of the packing density.
Interestingly, the simulations show that the small truncation observed at the tips of the
hexagonal bipyramid-shaped NCs has a dramatic impact on the symmetry of the resulting
superlattice, changing it from hexagonal to tetragonal. This highlights the pivotal role of
precise shape control in the design and fabrication of functional materials by self-assembly
of colloidal NCs.

5.2 Interfacial Adsorption
In this section we explain the interfacial free-energy calculations of the nanoparticles at
the liquid-air interface. In order to compare out results with the experiments we consider
toluene to be the liquid phase. Following Pieranksi [154], we write the interfacial free
energy of a nanoparticle with its center of mass at a height z (with respect to the planar air-
toluene interface) and with angles φ (the polar angle with respect to the interface normal,
see Fig. 5.2) and ψ (the internal Euler angle about the long axis of the nanoparticle, see
Fig. 5.2), as

F (z, φ, ψ) = γaSa(z, φ, ψ) + γtSt(z, φ, ψ)− γatSat(z, φ, ψ) + const (5.1)
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Figure 5.2: Definition of different orientational angles of the hard particles with respect to the
interface used in Eq. 5.1.

Here Sa and St denote the area of the particle surface that is in contact with air and
toluene, respectively, and Sat is the surface area taken out from the air-toluene interface
by the particle. All three areas Sa, St, and Sat depend non-trivially on the position and
orientation of the particle and need to be calculated numerically. The particle-toluene
tension is denoted by γt, the particle-air tension by γa, and the arbitrary constant in
Eq. 5.1 is chosen such that F = 0 for a particle that is completely immersed in toluene.
The adsorption free energy of Eq. 5.1 ignores capillary deformations and line tension
contribution for simplicity. In fact, given that the total particle surface area Sa + St is a
constant, one easily checks that F (z, φ, ψ) does not depend on γt and γa separately but
only on their difference through the contact angle θ defined by Young’s equation,

cos θ = (γa − γt)/γat = 0.8, (5.2)

where the numerical value is an estimate based on the observed favorable (low free-energy)
configurations. It should be noted that although ignoring capillary deformations of the
toluene-air interface gives rise to a violation of the force balance on the toluene-air-particle
contact line, we expect this to have a negligible effect on the optimal configuration since
the sharp edges of the flat facet adsorbed to the interface cause a rapid variation of the
surface curvature to which the air-toluene interface can adapt without any substantial
deformation.

Using a triangular tessellation technique to calculate the surface areas Sa, St, and Sat,
we obtain the equilibrium configuration from minimizing F with respect to the particle
configuration. For three nanoparticle shapes of interest, Fig. 5.3 shows these equilibrium
configurations, as well as their coordinates and free energies as a function of the polar
angle φ (minimized with respect to z and the internal angle ψ). The perfect hexagonal
bipyramid has minimum free energy when one of its triangular facets is completely adhered
to the interface (Fig. 5.3A). For this configuration, a local minimum of −200 kBT is found.
It is interesting to note that the particle remains completely immersed in the liquid phase,
except for the facet that is adhered to the interface (whereas the particle pays a free-energy
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Figure 5.3: Minimum free-energy configurations (and their coordinates and minimal free
energy) for three particle shapes in a planar air-toluene interface as obtained from Eq. 5.1 and
triangular tessellations of the surfaces, (A) perfect hexagonal bipyramid, (B) slightly truncated
hexagonal bipyramid, and (C) hexagonal bifrustums. The right panels give the interfacial free
energy of the particle as a function of the polar angle φ minimized with respect to the particle
height z and the internal Euler angle about the long axis of the nanoparticle, ψ.

penalty of F ≈ 104kBT if it is completely in air). The colloidal NCs used in the self-
assembly experiments are, however, not perfect hexagonal bipyramids, but instead have
slightly truncated tips (5% of their length). Nevertheless, according to our calculation
this small truncation does not affect the single-particle equilibrium configuration at the
interface, which remains essentially the same as that of a perfect hexagonal bipyramid
(Fig. 5.3B). By contrast, according to our calculations a hexagonal bifrustum nanoparticle
has two possible equilibrium configurations in which either 1 of the 12 trapezoidal facets or
1 of the 2 hexagonal facets is adhered to the interface (Fig. 5.3C). Both free-energy minima
are sufficiently deep to make the adhesion irreversible (Fig. 5.3C), and consequently the
hexagonal bifrustum nanoparticles have multiple options for interfacial adhesion.

5.3 Monte Carlo Simulations
Once the equilibrium adsorption configurations of individual nanoparticles at the air-
toluene interface are theoretically determined, we predict the self-assembled structures
by using the floppy-box Monte Carlo (FBMC) method [71, 72] in combination with the
separating-axis-based overlap algorithm [84]. In the FBMC method, we perform Monte
Carlo simulations in the isothermal-isobaric ensemble (NPT ) and compress the system
from the isotropic fluid phase to the solid phase using a variable shape of the simulation
box. The immersion depth z and the polar angle φ of the nanoparticle with respect to the
air-toluene interface are kept fixed according to the values determined for the equilibrium
adsorption configurations, and the particles are only allowed to translate and rotate in
the plane of the interface. Because of the symmetry of the hexagonal bifrustums (33 nm
in all directions), the orientation of the NC is not important for the overall self-assembly
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Figure 5.4: Equations of State (EOS), reduced pressure Pυ
2/3
p

kBT
versus scaled number density

ρ∗ = ρυ
2/3
p , obtained using floppy-box Monte Carlo (FBMC) simulations. Perfect hexagonal

bipyramids (BPs) undergo a first-order transition with coexisting densities ρ∗ ≈ 0.56 and 0.57
from the isotropic fluid phase to a hexagonal lattice, while slightly truncated hexagonal BPs show
a weak first-order transition around ρ∗ ≈ 0.58 from an isotropic phase to a tetragonal lattice.
Hexagonal bifrustums (BFs) crystallize via a first-order phase transition from the isotropic fluid
into a hexagonal lattice with coexisting densities ρ∗ ≈ 0.50 and 0.52.
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Figure 5.5: Top panel: Schematics of the particle geometries used in the Monte Carlo sim-
ulations. From left to right: the perfect hexagonal bipyramid, slightly truncated hexagonal
bipyramid, and the hexagonal bifrustum. Second row from top: SEM images of self-assembled
superlattices of (A) hexagonal bipyramid-shaped ZnS NCs, and (B) hexagonal bifrustum-shaped
ZnS NCs. The insets give the fast Fourier transform patterns of the corresponding experimen-
tal images of superlattices . The scale bars correspond to 20 nm (0.2 nm−1 in the insets).
Bottom two rows. Snapshots of the isothermal-isobaric Monte Carlo simulations showing the
various structures that form during the 2D self-assembly of hexagonal bipyramids (C,D,F,G) and
hexagonal bifrustums (E,H) adhered to an air-toluene interface. The corresponding reciprocal
space patterns of the center of mass of the particles in the simulated NC superlattice are also
displayed (bottom right insets). The orientation of the particles with respect to the interface is
fixed based on the equilibrium configurations obtained from the interfacial free-energy calcula-
tions (see Fig. 5.3). The relative orientation of the particles is color coded. (C-E) Simulation
snapshots at a reduced density ρ∗ = ρυ

2/3
p = 0.69 with υp the particle volume. (F-H) Simulation

snapshots at ρ∗ = 0.65.
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behavior, because the NC can occupy a hexagonal site in the array regardless of whether
a trapezoidal or hexagonal facet is adsorbed to the interface. Therefore, for simplicity
only the hexagonal adhered surface is considered in the FBMC simulations. The volume
of the nanoparticles υp is set to unity in all cases.

Subsequently, we use the predicted orientations of the particles from interfacial ad-
sorption calculations in Monte Carlo simulations to determine the phase behavior of an
ensemble of nanoparticles. To this end, we calculate the equations of state (EOS) in
Monte Carlo simulations by compressing a dilute fluid state to very high pressures, which
we show in Fig. 5.4. The simulations show that perfect hexagonal bipyramids crystal-
lize via a first-order phase transition with coexisting densities ρ∗ ≈ 0.56 and 0.57 into
a hexagonal superlattice (Fig. 5.5C). Hexagonal bifrustums also crystallize via a first-
order transition from the isotropic fluid into a hexagonal lattice with coexisting densities
ρ∗ ≈ 0.50 and 0.52 (Fig. 5.5E). In contrast, slightly truncated bipyramids show a weak
first-order transition from the isotropic phase to a tetragonal phase around ρ∗ ≈ 0.58
(Fig. 5.5D). This is remarkable because the equilibrium configuration of the single NC
adhered to the air-toluene interface was not significantly affected by the truncation (see
above, Fig. 5.3). This can be rationalized by considering that the truncation allows the
NCs to come in closer proximity, thereby leading to a higher packing density, and hence a
tetragonal rather than hexagonal lattice. The crystal structures can be determined from
the reciprocal space pattern of the center of mass of the particles in the simulated NC
superstructure. Fig. 5.5 shows the reciprocal space patterns and the real space config-
urations of the NC superlattices formed during the FBMC simulations at two different
reduced densities ρ∗ = ρυ2/3

p = 0.65 and 0.69 with υp as the particle volume, ρ = N/A is
the areal number density, N is the number of particles, and A is the surface area of the
interface. The experimentally observed NC superlattices are also included for comparison
(Fig. 5.5A-B).

5.4 Conclusions

In conclusion, our work shows that the experimentally observed self-assembly behavior of
hexagonal bipyramid- and bifrustum- shaped nanocrystals at a liquid-air interface is well
described by a combination of theoretical adsorption free-energy calculations and Monte
Carlo simulations. Our results show that the superlattice formation is driven primarily
by minimization of the interfacial free energies and maximization of the packing densities.
Moreover, our results show that truncation of the tips of hexagonal bipyramids by as little
as 5% is sufficient to change the symmetry of the resulting superlattice from hexagonal
to tetragonal. This demonstrates that precise shape control is of crucial importance in
the fabrication of functional materials by self-assembly of colloidal NCs. Also, it is very
comfortable to note that the relatively simple Pieranski potential of Eq. 5.1 combined
with Monte Carlo simulations actually has quantitative predictive power, which may be
further exploited in the study of other particle shapes and material parameters.
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Phase Diagram of 2D Hard
Triangles: A Novel Chiral Phase

with Chiral Holes
We determine the phase diagram of hard equilateral and right-angled isosceles colloidal
triangles in two dimensions using Monte Carlo simulations. Simple hard equilateral tri-
angles undergo a continuous isotropic-triatic liquid crystalline phase transition at area
fraction φ = 0.70. Similarly, hard right-angled isosceles triangles exhibit a first-order
phase transition from an isotropic fluid phase to a rhombic liquid crystalline phase with
φc = [0.733, 0.782]. These liquid crystal phases of the triangular systems undergo a contin-
uous phase transition to their respective close-packed crystal structure at high pressures.
Although the particles and their close-packed crystals are both achiral, the solid phases
of equilateral and right-angled triangles exhibit spontaneous chiral symmetry-breaking
at sufficiently high area fractions. The colloidal triangles spontaneously rotate either in
clockwise or anti-clockwise direction with respect to one of the lattice vectors for area
packing fractions higher than φχ. As a consequence, these triangles arrange themselves in
such a way that they form a regular lattice of chiral holes surrounded with six triangles
for equilateral triangles and four or eight triangles for right-angled triangles. These chi-
ral holes are either right- or left-handed. Moreover, our simulations show a spontaneous
entropy-driven demixing transition of the right- and left-handed chiral phases.
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6.1 Introduction

Chirality plays an important role in nature, chemistry, and materials science. An ob-
ject is chiral if it is not identical to its mirror image. The most well-known example of
a chiral object is the human hand, where the left hand cannot be superimposed on its
mirror image, the right hand. Also many biologically active molecules are chiral, e.g.,
amino acids are left-handed, whereas sugars are right-handed. The microscopic chiral-
ity of the constituent particles may subsequently lead to a macroscopic chirality of the
self-assembled higher-ordered structures, e.g., left-handed amino acids form right-handed
helical protein structures, and right-handed sugars lead to right-handed DNA double he-
lices. Additionally, chirality is present in so-called cholesteric phases, which are nematic
liquid crystals with a helical structure of the director field and which are frequently used
in optoelectronic applications, such as liquid crystal displays of laptop computers, cell
phones, and flat screen televisions. Recently, chiral nanostructured materials have also
received much attention due to their intriguing optical properties such as a huge optical
activity, strong circular dichroism, photonic band gaps, and negative refractive indices
[155–157]. However, despite the huge amount of work devoted to chirality, the under-
lying microscopic features of the building blocks responsible for the formation of chiral
self-assembled structures is extremely subtle and not well-understood.

Even the most basic question if particle shape alone can lead to macroscopic chiral
structures is still unknown. For instance, it has been theoretically demonstrated that
an entropy-driven isotropic-cholesteric phase transition exist for hard helical particles,
but these predictions have never been verified experimentally or by computer simulations
[158–160]. A more intriguing question would be whether or not achiral particles can self-
assemble into chiral structures. Very recent experiments by Mason et al. on equilateral
triangular colloidal platelets show an entropy-driven phase transition from the isotropic
liquid to a triatic liquid crystal phase that displays three-fold symmetric orientational
order [11]. Surprisingly, at sufficiently high densities, small domains of chiral dimer pairs
that are laterally shifted in one or the opposite direction, appear spontaneously in the tri-
atic phase. The authors conjectured that the spontaneous local chiral symmetry breaking
is due to an increase in rotational entropy and may be explained by a simple rotational
cage model [11, 161]. However, a recent simulation study explained the emergent chi-
rality observed in these experiments by the rounded corners of the particles which lead
trivially to two degenerate crystal lattices of chiral dimer pairs at close-packing, thereby
casting doubts on the role of rotational entropy on the chiral symmetry breaking [162].
In addition, these simulations showed that the chiral symmetry breaking is absent for
perfect triangles, i.e., no particle corner rounding, which is to be expected as the close-
packed structure of perfect triangles is an achiral triangular lattice. These findings are
also consistent with a previous simulation study on perfect equilateral triangles, which
shows only a simple transition from the isotropic to a liquid crystal phase at area fraction
φ = Nap/A = 0.57 with N the number of particles, A the area, and ap the particle area
[163].

In this chapter, we reexamine the phase behavior of hard equilateral triangles by
extensive Monte Carlo simulations. We find the spontaneous formation of a novel chiral
crystal phase, where the individual particles spontaneously undergo either a clockwise or
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anti-clockwise twist with respect to one of the lattice vectors which gives rise to a regular
lattice of anti-clockwise or clockwise chiral holes. A sketch of the positive and negative
chiral holes is shown in Fig. 6.7a. We find a similar chiral crystal phase in a system of
right-angled triangles. More surprisingly, we also observe a spontaneous entropy-driven
demixing transition of the "enantiomers" into left-handed and right-handed chiral phases.

(a)

(c)(b)

Figure 6.1: Candidate close-packed structures: (a) Equilateral triangles with two particles in
the unit cell forming a hexagonal dimer lattice or a triatic crystal. Right-angled triangles with
a rhombic lattice with two and four particles in the unit cell in (b) and (c), respectively. We
show four unit cells for all the candidate close-packed structures particles and we used red color
to indicate a single unit cell.

6.2 Methods
Hard equilateral and right-angled isosceles triangles tile the space in infinitely many ways
as the rows and the columns of these triangles can be shifted without effecting their
maximum packing density. However under finite pressures hard equilateral triangles form
a triangular lattice with two particles in the unit cell as shown in Fig. 6.1a. For the
right-angled triangles we employ a rhombic lattice with either two or four particles in the
unit cell, which are shown in Fig. 6.1b and Fig. 6.1c, respectively. Here, we determine
the phase behavior of hard equilateral and right-angled triangles using Monte Carlo (MC)
simulations and free-energy calculations. We perform simulations of N = 3000 − 13000
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Figure 6.2: (a,b): Equations of state for hard equilateral and right-angled triangles, respec-
tively. Both compression and expansion runs are obtained for a system size of N = 3200 particles
for equilateral triangles and N = 1600 particles for right-angled triangles using rectangular box
NPT simulations. (c): Six-fold bond-orientational (ψBO6) and molecular orientational (ψMO6)
order parameters as a function of area fraction φ for a system of hard equilateral triangles. Both
the order parameters show a transition around φ = 0.7 indicating a phase transition between
the liquid and triangular crystal phase. (d): Eight-fold bond-orientational ψBO8 and molecular
orientational ψMO8 order parameters as a function of area packing fraction φ for right-angled
triangles. The coexisting densities calculated using free energies for the right-angled triangles
are φ = 0.733 and 0.782, and are indicated by the dotted vertical lines. We have used NV T sim-
ulations with N = 12800 to compute the order parameters for both equilateral and right-angled
triangles. Figures (e,f) show the symbolic phase diagram for the two particle shapes using differ-
ent colors as indicated. TLCP and RLCP represent the triatic and rhombic liquid crystal phase
while Tχ and Rχ represent their chiral triangular and rhombic crystal structures, respectively.
The white region between the fluid and the RLCP in Fig.6.2(f) indicates the coexistence region.

particles and use the separating axis theorem to detect particle overlaps [84]. We use the
candidate close-packed crystal structures in Fig. 6.1 as initial configurations for variable-
rectangular-box isothermal-isobaric (NPT ) Monte Carlo simulations to determine the
equations of state (EOS) from expansion runs. Similarly, we also obtain the EOS by
compressing an isotropic fluid at low density.
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In order to determine the positional and orientational order at different packing frac-
tions φ we measure the n-fold bond-orientational and molecular orientational order pa-
rameters. The n-fold bond-orientational order parameter is given by

ψn =
∣∣∣∣∣∣
〈

1
N

N∑
i=1

nn∑
j=1

exp (inθij)
〉∣∣∣∣∣∣ , (6.1)

where θij is the angle between the vector, connecting particle i and its nearest neighbor
j, and an arbitrary reference axis. Here nn = 3, is the number of nearest neighbors. The
n-fold molecular orientational order reads

φn =
∣∣∣∣∣
〈

1
N

N∑
i=1

exp (inθi)
〉∣∣∣∣∣ , (6.2)

where θi is the angle between particles i and the fixed reference axis, here we use the
x-axis as the reference axis. Depending on the local symmetry of neighboring particles
around a single particle in their corresponding close-packed structures we have chosen
n = 6 for equilateral triangles and n = 8 for right-angled triangles. We calculated these
order parameters at different packing fractions using NV T simulations of N = 12800
triangles.

We used the Einstein integration method to determine the free energy of the crystal
and the Widom insertion technique to determine the free energy of the isotropic fluid. We
obtained the free energy per particle f as a function of packing fraction φ for the entire
density range by thermodynamic integration [70] and used them to determine the coex-
isting densities . For more details regarding the confining potentials and implementation,
see Ref. [164] and Chapter 2.

6.3 Results
In Fig. 6.2, we show the equations of state (EOS) and order parameters for pure equilat-
eral and right-angled triangles. Fig. 6.2(a,b) displays both the compression and expansion
EOS. For the equilateral triangles we observed that the system undergoes a continuous
phase transition from isotropic (I) to a triatic or triangular liquid crystal phase (TLCP)
under compression without showing any hysteresis. With further compressing the tri-
angles we find that the equilateral triangles go to their close-packed triangular crystal
structure via a continuous phase transition. The right-angled triangles exhibit hysteresis
during our NPT compression runs and within our simulation times they never crystal-
lized. However, we find small crystal domains with either two particles and four particles
in the unit cell, which are shown in Fig. 6.1(c,d). Before doing the NPT expansion runs
we computed free energies as described in Chapter 2 at area packing fraction φ = 0.91 for
the right-angled triangles to determine the stable thermodynamic phase among the two
candidate crystal structures. We show the excess free energy fex as a function of number
of particles N in Fig. 6.3 for both the candidate crystal structures. We observe that the
rhombic lattice with four particles in the unit cell has a lower free energy for all the system
sizes we considered and also for the projected free energy of the system in the thermody-
namic limit (N → ∞). Using the thermodynamically stable rhombic crystal phase with
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Figure 6.3: Excess free energies fex = f − fid of the two candidate crystal structures for
right-angled triangles as a function of system size at area packing fraction φ = 0.91. Here f is
the free energy per particle and fid free energy of the ideal gas at the same packing fraction.
We observed that the rhombic lattice with four particles in the unit cell has lower free energy
compared to the rhombic lattice with two particles in the unit cell.

four particles in the unit cell we computed the expansion EOS for right-angled triangles
shown in Fig. 6.2b. We observed that the rhombic crystal phase with four particles in
the unit cell melts continuously into rhombic liquid crystal phase (RLCP), which in turn
undergoes a first order phase transition to isotropic fluid phase at lower pressures.

In addition, we also computed the free energies for equilateral triangles at packing
fraction φ = 0.91. We used Widom particle insertion technique to determine chemical
potential and hence the free energy of the isotropic phase for both the shapes at fixed
density. Using thermodynamic integration Eq.2.5 we computed the free energy per particle
f as a function of packing fraction and used it to determine the coexisting densities. We
first computed the chemical potentials (µ) of both the systems from the free energies
and plotted it as a function of scaled pressure as shown in Fig. 6.4. The equilateral
triangles does not exhibit any crossover in the chemical potentials as they undergo a
continuous phase transition. For the right-angled triangles we find a crossover of the
chemical potentials and we find the coexisting packing fractions φc = [0.733, 0.782]. We
have indicated the coexisting densities for the right-angled triangles in Fig. 6.2b using
black points connected by a black line.

The n−fold bond-orientational order parameters ψBOn and molecular orientational
order parameters ψMOn as a function of packing fraction obtained from our NV T sim-
ulations for both the triangular systems are shown in Fig. 6.2(c,d). For the remainder
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Figure 6.4: We show the chemical potentials (µ) as a function scaled pressure (PA/kBT ) for
both the equilateral with two particles in unit cell and right-angled triangles with four particles
in the unit cell in (a) and (b), respectively. Here A is the area of the system, kB is Boltzmann
constant and T is the temperature. The chemical potential of the isotropic phase are shown
using blue triangles while the triatic liquid crystalline phase (TLCP) and the rhombic liquid
crystalline phase (RLCP) are shown using red squares. The chemical potentials crossover for
right-angled triangles indicating a first-order phase transition, however equilateral triangles does
not show any crossover within the numerical precision of our data.

of the Chapter we have used n = 6 and n = 8 for equilateral triangles and right-angled
triangles, respectively. The bond order in both systems decays faster than the molecular
orientational order. The order parameters ψBO6 and ψMO6 for the equilateral triangles
show that the systems develop bond-orientational and molecular orientational order for
φ > 0.7 indicating the isotropic-triatic crystal phase transition. For the right-angles tri-
angles we compute ψBO8 and ψMO8 and are shown in Fig. 6.2 (right column). The order
parameters ψBO8 and ψMO8 for the right-angled triangles show that the system develops
bond-orientational and molecular-orientational order for φ > 0.73, which is in agreement
with the coexisting packing fraction obtained from free-energy calculations. We indi-
cate different transitions using dotted vertical lines as a guide to the eye across different
graphs. In Fig. 6.2(e,f) we summarized the phase behavior using different colors. The Tχ

and Rχ represent the chiral triatic phase and the chiral rhombic phases respectively. We
will come back to the chiral phases later, we first describe the correlation functions for
the triangular systems around their isotropic and crystalline phase transition points.

Correlation functions for translational, bond-orientational and molecular orientational
order for various packing fractions around the isotropic-liquid crystal phase transition for
both the equilateral triangles and right-angled triangles are shown in Fig. 6.5. All the plots
are in log-log scale. The radial distribution function g(r) which indicates the correlations
in the translational order decay rapidly in both the isotropic and solid phase. Next
we turn to n−fold bond-orientational gBO

n (r) and n−fold molecular orientational gMO
n (r)

correlation functions. The bond order and molecular orientational order correlations
for area packing fractions above the isotropic-crystal phase transition go to a constant
value confirming the emergence of a long-range orientational order within the system
sizes we used. The presence of long-range or quasi-long range bond order and molecular
orientational correlations in these systems and the absence of long-range order in the
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Figure 6.5: Translational, bond-orientational and molecular orientational correlation functions
for different packing fractions around I − LCP transition for both the triangular systems. The
left column contains the correlation functions for equilateral triangles and the right column is for
right-angled isosceles triangles. All the plots are in log-log scale. (a,d): radial distribution func-
tion g(r)− 1 decays algebraically for all the packing fractions.(b,e): n−fold bond-orientational
order correlation functions where n = 6 and n = 8 for equilateral and right-angled triangles
respectively. (c,f) n− fold molecular orientational order correlations with similar values for n’s
as above. Both the bond orders and molecular order show long range correlations for packing
fractions greater than I − LCP transition.

translational correlations are characteristic of liquid crystalline phases [11]. However
these liquid crystal phases continuously go to a crystalline phase at higher packing fraction
without showing any discontinuities in the first derivative of the free energy within the
system sizes we used. This allow us to conclude that the triatic and rhombic crystal
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phases of equilateral and right-angled triangles, respectively, melt into their respective
liquid crystal phases before melting into an isotropic fluid as observed in experiments [11].
All these correlations are computed for a system size N > 5000 and N < 12000 in an
NV T ensemble.

We show the projections of the center of mass of the equilateral triangles in Fig. 6.6 at
φ = 0.91 (in the crystal regime), at which we computed the free energies, taken from 20
equilibrated NV T configurations each separated by 100 Monte Carlo sweeps (MCS). Here
one MCS contains N translational or rotational Monte Carlo moves. This projection of
center of mass of the equilateral triangles from different equilibrated configurations shows
that equilateral triangular systems exhibit crystalline phase behavior at φ = 0.91 allowing
us to use the Frenkel-Ladd method [70] to compute the free energies.

Figure 6.6: Projection of the center of mass of the equilateral triangles taken from 20 different
equilibrium configurations at φ = 0.91. The hexagons are drawn to guide the eye to see the
inherent hexagonal lattice. We have carved this small picture from a larger system of N = 5000
for visual clarity.

The isotropic-to-liquid-crystal phase transition point in equilateral triangles as deter-
mined in experiments and simulations [11, 163] are 15% off from our simulation results.
Additionally, the EOS shown in Fig. 1 of Ref. [163] does not match with our EOS ob-
tained from isotensic NPT Monte Carlo simulations. We attribute this discrepancy with
earlier simulation results [163] to the fact that these molecular dynamics simulations were
performed with a fixed box shape, which may lead to non-zero stress. We verified this by
Monte Carlo simulations of hard triangles in a fixed box shape, which indeed shows that
the isotropic-to-liquid-crystal phase transition happens at lower packing fraction com-
pared to simulations with a variable box shape. The mismatch with the experimental [11]
isotropic-liquid-crystal phase transition point is due to the fact that the pair interactions
between triangles are much more complex than simple hard particles. The experimental
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Figure 6.7: Chiral crystal phases. (a,b): Sign notation for anti-clockwise and clockwise ori-
entational displacements ∆θ of the molecules around the nematic axis. The nematic axis is
indicated with thick black line. The orientation vectors of the triangles are indicated by a
dashed line followed by a arrow ahead at the end. The particles which have anti-clockwise orien-
tational displacement are colored blue (+ve sign) and the particles with clockwise orientational
displacement are colored red (−ve sign). (b): Probability distribution of the ∆θ of the colloidal
equilateral hard triangles for φ > 0.85 . For φ >= 0.89, we find the distribution developing a
tri-modal distribution. Different peaks are explained in the text.

self-assembly of triangles [11] suffer from depletants, charges on the particles and poly-
dispersity. For a detailed discussion see Ref. [165].

(a) (b)
Figure 6.8: Color coded configuration at φ = 0.97 and φ = 0.98 in (a) and (b) respectively
for equilateral triangles. The coloring of the individual particles is same as above. Left-handed
enantiomers are colored blue while right-handed enantiomers are colored red. The remaining
particles are colored green. A clear phase boundary can be seen separating the two enantiomers
rich regions.
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(d)

Figure 6.9: Close-up of the chiral enantiomers. The snap shots are taken at φ = 0.97. Top
panel shows typical left-handed and right-handed chiral phases from equilateral triangles and the
bottom panel contains the same for right-hand triangles. Left-handed enantiomer are colored
blue while the right-handed enantiomer are colored red.

Now that we have established the phase behavior of hard equilateral and right-angled
triangles at area packing fractions below φ < 0.8, we will turn our attention to the high
density phases. We calculate the orientational distribution function of the triangles with
respect to a fixed axis (x-axis) as shown in Fig. 6.7a at high density to investigate the
local chiral symmetry breaking observed in experiments [11]. In our calculations, the
anti-clockwise ∆θ are given a positive sign (blue color) while the clockwise orientational
displacements around the one of the lattice vectors are given a negative sign (red color)
as shown in Fig. 6.7(a,b). The computed probability distributions p(∆θ) are shown in
Fig. 6.7(c). Since p(∆θ) = p(−∆θ) we averaged the distribution over the negative and
positive side of ∆θ to get smooth probability distributions. From Fig. 6.7 it can be
noticed that the unimodal distributions splits in to three distinct peaks at φ = 0.89 for
equilateral triangles. The central peak corresponds to particles orienting along the lattice
vector while the remaining two peaks correspond to a particle which have either anti-
clockwise or clockwise orientational displacements. These particle rotations in the entire
system gives to a regular lattice of chiral holes as shown in Fig.6.9.

In our NV T simulations with N = 5000 and N <= 12000 we found that the entire
system can have anti-clockwise (positive) or clockwise (negative) twist with equal prob-
abilities. We attribute this phase separation only for some simulations to the large auto
correlation times present in simulating the hard particle systems at such a high packing
fraction. Typical phase separated configurations are shown in figures 6.8. Similar be-
havior is observed in right-angled triangles as well. The transition for the right-angled
triangles from an achiral to a chiral phase happens at φ = 0.87. A close-up look of
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these chiral configurations for both the equilateral and right-angled triangles is shown in
Fig. 6.9. We used curved arrows to indicate clockwise and anti-clockwise holes in Fig. 6.9.
It is worth mentioning that for long simulation times the system should display either a
pure left-handed or right-handed chiral phase, as it costs interfacial free energy to have
a phase-separated configuration. Due to the long equilibration times the phase separated
system can remain in that state for times greater than our Monte Carlo runs.

In addition, we also computed the lateral shifts between the neighboring triangles at
high densities computed by the authors of Ref.[11, 162]. Our results are in agreement
with the earlier simulation results of Ref. [162] that there is no split in the probability dis-
tributions of these lateral shifts. However, in this work we show that equilateral triangles
and right-angled triangles exhibit a regular lattice of chiral holes with either a clockwise
twist or anti-clockwise twist at high packing fractions. We also show that at large enough
densities the chiral holes can phase separate and coexist. At the same time we would like
to remind the reader that the phase separation could be due to the large auto-correlation
times of the hard triangles at high packing fractions.

6.4 Conclusions and Summary
In summary, we have computed the phase diagram of hard equilateral and right-handed
triangles using large-scale Monte Carlo simulations in combination with free-energy cal-
culations. Using our simulations we show that hard equilateral triangles and hard right-
angled triangles undergo a phase transition from an isotropic phase to a triatic and
rhombic liquid-crystal phases, respectively. With increasing pressures these liquid crystal
phases continuously go to their respective close-packed crystal structures. These close-
packed crystalline phases at high enough packing fractions give rise to a regular lattice
of chiral holes. The observed chiral enantiomers in both the systems exhibit entropic
demixing at large enough densities. It is tempting to say that the observed phase separa-
tion is similar to phase separation in 2D Ising model, where the two phases form stripes
to minimize the interfacial free energy. Formation of such chiral phases and their phase
separation from achiral building blocks in simulations is observed for the first time.
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Dispersion Relations for Colloidal
Crystals with Diffusion

Real crystals exhibit point defects and interstitials. The presence of these defects leads
to diffusion in the system, which affect the mechanical properties of solids. Elastic co-
efficients and dispersion relations of crystals are computed generally using a microscopic
approach which needs the displacements of the particles around their mean position as
input. However, this method fails if there is diffusion in the solid. Using a recently
developed theoretical technique based on the Fourier space components of the density
fluctuations near a lattice point, we compute the dispersion relations of colloidal crystals
which exhibit diffusion. We compare our results with density functional theory and find
agreement with those results. Our results suggest that the new approach based on density
fluctuations is a robust method to compute dispersion relations for real crystals.
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7.1 Introduction

Studying the mechanical properties of colloidal systems is important to understand the
stability of colloidal systems. Recent developments in confocal microscopy techniques have
enabled experimentalists to image colloidal systems with high precision both in time and
space. Simultaneously, single-particle tracking algorithms are developed to track various
anisotropic particles [90]. Combining these two, one can track single-particle motion in a
colloidal solid. Using the displacement information of individual particles in a colloidal
crystal one can compute the dispersion relations, normal modes and elastic coefficients.
Experimental works which have combined these two developments have successfully de-
termined the thermal and mechanical properties of colloidal systems [166–169].

Point defects and interstitials are quite common in colloidal solids. For the well-studied
hard-particle crystals, the defect density of vacancies and interstitials is as low as 10−4

and 10−8, respectively [94]. With increasing polydispersity the density of interstitials
can increase to 0.02 in hard-sphere crystals [95]. Interstitials in hard-sphere crystals are
found to be quite mobile leading to diffusion in these colloidal crystals. In addition, recent
simulation studies of hard cubes and truncated cubes have shown that cube-like particles
exhibit large defect densities as high as 0.064 close to coexistence [49, 79, 80]. These
colloidal crystals with high defect concentrations exhibit diffusion. Similarly, colloidal
particles with soft repulsive potentials like super-Gaussian core particles exhibit diffusion
in their multiple-occupancy crystal phases [170–173]. The presence of diffusion in these
colloidal crystals affect their thermal and mechanical properties and also makes it difficult
to compute the dispersion relations using the classical microscopic theory which needs
the particles confined to their local cages. To overcome this limitation of the classical
microscopic theory, we employ here a recently developed theoretical technique [174] to
compute the dispersion relations for crystals even in the presence of diffusion. We use
two test systems to compute the phonon dispersion relations using both the methods and
show that the new technique is impervious to diffusion.

The rest of this chapter is organized as follows. First we describe the two microscopic
approaches to compute the dispersion relations. Later we use these methods to compute
the dispersion relations for hard-sphere systems and for the Gaussian-core model (GCM).
We then discuss the results and compare our results with those obtained from a density
functional theory. We will not discuss the density functional theory as it is beyond the
scope of this thesis but refer the interested reader to Ref. [175].

7.2 Theory and Methods

To compute the dispersion relations for a system we first need to determine the dynamical
matrix D . The eigenvalues λ(q) of the dynamical matrix as a function of the wave vector
q are called dispersion relations. The dynamical matrix D is inversely proportional to
the correlations in the displacement field u. The two different methods we use in this
Chapter to compute the dispersion relations differ in the definition of the displacement
field. We describe both the methods below:
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7.2.1 Method 1
According to the traditional microscopic approach [169], the dynamical matrix reads

D(q) = kBT

〈uq∗uq〉
, (7.1)

where the angular bracket 〈.〉 indicate the canonical ensemble average, kB is the Boltzmann
constant, T is the temperature, q is the wave vector and

uq(t) = 1√
N

N∑
i=1

exp[iq.̄ri]ui(t), (7.2)

is the Fourier transform of
ui (t) = ri (t)− r̄i, (7.3)

is the displacement vector of the ith particle from its mean position r̄i at a given time t,
ri (t) is the current position of the particle and N is the number of particles. To have
meaningful results, this method demands to have fixed and non-diverging r̄i which in turn
needs the particle displacements ui (t) confined to a cage as can be seen from Eq. 7.2.

7.2.2 Method 2
To overcome the problem of diffusing particles in a crystal while computing the dispersion
relations a new theory based on density fluctuations is proposed by Fuchs et al. [176, 177].
According to this theory the dynamical matrix is given as follows:

D(q) = kBT

〈δuq∗δuq〉
, (7.4)

where the displacement field uq = δuq−〈uq〉, in equilibrium the ensemble average of the
displacements 〈uq〉 = 0. The displacement field

uq(t) = iN −1∑
g
n∗ggδρg(q, t)/

√
V , (7.5)

where V is the volume of the system and N = ∑
g |ng|2 gg is a normalization matrix and

ng are the Debye waller factors given as

ng = 1
V

N∑
i=1
〈exp (−ig.ri)〉 , (7.6)

and
δρg = ρ(g + q, t)− ngV δq,0, (7.7)

is the Fourier transform of the spatial fluctuations in density ρ close to the reciprocal
lattice vector g. The Fourier transform of the density reads

ρ (k, t) =
∫
d3r e−ik.rρ(r, t), (7.8)
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and the density is given as

ρ(r, t) =
N∑
i

δ(r− ri(t)). (7.9)

Here, the general wave vector k is divided up into the reciprocal lattice vector g and
wave vector q, which lies within the first Brillouin zone.

For more details about the theory see Ref. [177].
Unlike Method 1, Method 2 does not depend on the mean position of a particle. For

this method we only need the density fluctuations in Fourier space close to the reciprocal
lattice vectors. In the presence of local defects or in the case of particles diffusing from
one lattice site to another only the magnitudes of ng and δρ(g) will be affected. As a
result this method is useful to compute the dispersion relations for real crystals which
exhibit diffusion either in the presence of vacancies or interstitials.

The aim of this project is to compute the dispersion relations for crystals using both the
methods explained above and compare them with respect to each other. For this purpose
we use two different test systems, namely the hard-sphere model and the Gaussian core
model. Pure hard spheres exhibit no diffusion in the crystalline phase, while the Gaussian
core model exhibit tremendous amount of diffusion in the multiple occupancy crystal
phase [170–173, 178]. Finally, we also compare our results obtained for Gaussian core
model with those calculated by a time-dependent density functional theory.

7.3 Results
To compute the dispersion relations we first need to compute the displacement fields de-
fined in Eq. 7.2 and Eq. 7.5 and then later calculate the ensemble average of the displace-
ment correlations 〈uq

∗uq〉. Here we determine 〈uq
∗uq〉 using Monte Carlo simulations.

We generate an ensemble of equilibrium configurations of the systems under consideration
using standard NV T Monte Carlo simulations (where N is the number of particles, V
is the volume of the system and T is the temperature). These configurations are then
used to compute the ensemble average of the displacement correlations. We have taken
care to avoid correlated configurations by taking configurations which are separated by
100 Monte Carlo sweeps, where one Monte Carlo sweep contains N particle translational
moves.

More detailedly, in the case of Method 1 we first compute the mean position of particles
r̄i. Later, we compute the displacements of individual particles ui using Eq. 7.3 and
substitute it into Eq. 7.2 to compute the Fourier transform of displacement field uq for one
configuration. Now using this displacement field uq for all the equilibrium configurations
we compute 〈uq

∗uq〉 and substitute it into Eq. 7.1 to compute the dynamical matrix
D (q). We diagonalize the dynamical matrix D(q) and determine the eigenvalues λ (q),
which are the dispersion relations.

For Method 2, we initially calculate the Debye waller factors ng and the density fluc-
tuations directly in Fourier space δρg using Eq. 7.6 and Eq. 7.8, respectively, where we use
27 reciprocal lattice vectors g which lie with in the first Brillouin zone and q is the direc-
tional wave vector of interest. By substituting these two quantities into Eq. 7.5 we obtain
the displacement field uq for each configuration separately. Using the displacement fields
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for all the equilibrium configurations we compute the ensemble average of the displace-
ment fields 〈uq

∗uq〉 (here δuq = uq, since 〈uq〉 = 0 in equilibrium) and then substitute it
into Eq. 7.4 to compute D(q) and determine the dispersion relations as mentioned above.

7.3.1 Hard Spheres
Hard-sphere systems are well studied and serve as a perfect model systems to test new
methods in statistical physics. Here we use hard spheres as the first test system to
compute dispersion relations. We first generate an ensemble of configurations using NV T
Monte Carlo simulations and then use the configurations to compute the displacement
fields according to Eq. 7.2 and 7.5. We have used 1500 equilibrated configurations to
reduce the statistical error in computing the displacement field. Later, we compute the
dynamical matrix D according to the two methods as described above and then calculate
their respective eigenvalues λ(q).

We show the dispersion relations for a hard-sphere system in Fig. 7.1 at a packing
fraction φ = 0.57 and N = 4000. We show ωja =

√
λja as a function of wave vector qa

in Fig.7.1, where ωj is the frequency with the subscript j indicating the polarization and
a is the lattice constant of the face centered crystal (fcc) structure of hard spheres. Our
results in Fig. 7.1 show that the dispersion relations computed using both methods agree
with each other for all the directions. We used system sizes N = 4000 and 32, 000 to
compute the dispersion relations and found no finite-size effects in the dispersion relation
calculations.

7.3.2 Gaussian-Core Particles
The next system we use is the Gaussian-core model. The pair potential between two
Gaussian-core particles is given by

U(r) = ε exp [− (r/σ)n], (7.10)

where ε and σ set the energy and length scale in the system. Here we set both of them
to unity while n = 4 in our studies. Simulations and theoretical phase behavior studies
of Gaussian-core particles can be found in Refs. [170–173, 178].

Gaussian-core particles exhibit rich phase behavior like stable multiple occupancy crys-
tal phases, i.e., more than one particle at a lattice site, face centered and body centered
cubic crystals [171]. Here we calculate the phonon dispersion relations for the multiple
occupancy face centered cubic crystal of Gaussian-core particles using the methods de-
scribed above. In a multiple occupancy crystal of Gaussian-core particles appreciable
diffusion is present, which makes this a perfect test system for Method 2 to compute the
dispersion relations.

We have generated an ensemble of configurations for the Gaussian-core particles at
temperature kBT/ε = 0.01, density ρσ3 = 0.5 and the average density of particles per
lattice site is ρ

l
σ3 = 1.01407 using NV T Monte Carlo simulations. We have used N =

4056 particles on NL = 4000 lattice points for these simulations. As simulating Gaussian-
core particles is computationally expensive we have restricted ourselves to small system
sizes. We show in Fig. 7.2 the dispersion relations for the Gaussian-core particles using
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Figure 7.1: Dispersion relations for a defect-free face centered cubic crystal phases of hard
spheres at packing fraction φ = 0.57 using the two methods as described in the main text.
Different direction vectors for which we computed the dispersion relations are indicated on the
top of each plot. We indicate different frequencies by different colors as indicated in the legend.
The open squares denote the results obtained using Method 1 and the filled squares correspond to
Method 2. We have rescaled the dispersion relations with (βm)0.5 to make them dimensionless,
where m = 1 is the mass of the particle, β = 1/kBT . Here kB is Boltzmann’s constant and T is
the temperature and β is set to unity in our simulations.

both methods. Method 1 fails to calculate physically meaningful dispersion relations.
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Figure 7.2: Dispersion relations for a multiple occupancy face centered cubic crystal phases of
Gaussian-core particles using the two methods as described in the main text. Here the density
ρσ3 = 0.5, the average density at a lattice site ρ

l
σ3 = 1.01407, temperature kBT/ε = 0.01,

number of particles N = 4056 distributed over NL = 4000 lattice sites. The real space method
fails to calculate the dispersion relations while the reciprocal space method successfully computes
the dispersion relations even in the presence of diffusion. Different polarizations are indicated
on the top of each plot.
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Figure 7.3: Dispersion relations for a multiple occupancy face centered cubic crystal of
Gaussian-core particles from simulations using Method 2 and density functional theory [175].
Here the density ρσ3 = 0.5, the average density at a lattice site ρ

l
σ3 = 1.01407, temperature

kBT/ε = 0.01, number of particles N = 4056 distributed over NL = 4000 lattice sites. Both
the simulation results and density functional theory results are shown as explained in legend.
Different polarizations are indicated on the top of each plot.
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However Method 2 succeeds in calculating dispersion relations even in the presence of
diffusion.

In the multiple occupancy crystal, the number of particles sitting at a given lattice
site fluctuates even though the global density is fixed. These particles move from one
lattice site to the other by hopping. Because of this diffusion the average position of the
particle r̄i diverges. The average position r̄i needs to be a conserved quantity in Eq. 7.2,
to calculate accurately the displacement field uq in Eq. 7.2 for Method 1. Because of this
reason the dispersion relations computed by Method 1 failed, while the second method is
impervious to the diffusion and depends only on the density fluctuations at each lattice
site. Method 2 is hence successful in computing the dispersion relations as shown in
Fig. 7.2.

In addition, we also compare our results for Gaussian-core particles obtained using
Method 2 with those obtained from a density functional theory [175] in Fig. 7.3. Our
results are in good agreement with the theoretical results. More details about the density
functional theory can be found in Ref. [175]. We will not discuss the density functional
theory here as it is out of scope for this thesis.

7.4 Conclusions
Using a recently developed theory to compute dispersion relations [176] and Monte Carlo
simulations we have computed the dispersion relations for colloidal crystals with diffusion.
We compared this method with the traditional microscopic approach and showed that the
traditional approach fails in computing the dispersion relations if there is diffusion in the
crystals under investigation. Our results are in agreement with the result obtained using
a density functional theory. This new method can be used in confocal microscopy to
compute the elastic coefficients and the dispersion relations for colloidal crystals without
worrying about the diffusion of the particles. In addition, the computer codes written
to compute the dispersion relations can be used to obtain the dispersion relations for
experimental data sets very easily.
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Summary

A colloidal dispersion consists of insoluble microscopic particles that are suspended in a
solvent. Typically, a colloid is a particle for which at least one of its dimension is within
the size range of a nanometer to a micron. Due to collisions with much smaller solvent
molecules, colloids perform Brownian motion, which allows them to explore all possible
configurations available to them. Colloidal particles suspended in a fluid interact with
each other in addition to the background interaction with the solvent atoms/molecules.
As a result colloids can exhibit rich phase behavior similar to that of atomic and molecular
systems. For example, colloids can self-assemble, not only into gas, liquid, solid phases,
but also nematic, smectic, biaxial, hexatic phases. The type of phases that can emerge
in a colloidal system depends not only on the interaction potential between the colloidal
particles but also on the shape of the colloidal particle itself.

In this thesis we study the effect of colloid shape on its phase behavior. In particular,
we investigate the phase behavior of experimentally available polyhedral particles using
Monte Carlo simulations and free-energy calculations both in bulk and at an interface.

In Chapter 2, we present our study on the thermodynamic phase behavior of a family
of truncated hard cubes, where the shape evolves smoothly from a cube via a cuboctahe-
dron to an octahedron. We use Monte Carlo simulations and free-energy calculations to
establish the full phase diagram. Surprisingly, this phase diagram exhibits a remarkable
diversity of non-close-packed and close-packed crystal structures, including a fully degen-
erate crystal structure and vacancy-stabilized crystal phase, all depending sensitively on
the precise particle shape. In addition, we examine the nature of the plastic-crystal phases
that appear for intermediate densities and levels of truncation. Our results show that the
orientational distribution function of plastic crystals of hard anisotropic particles can be
highly anisotropic and can be strongly peaked for specific orientations. These orienta-
tional directions depend not only on the crystal structure of the particle but also on the
shape of the particle. Our results show that the nature of plastic crystals of hard particles
is different from that of plastic crystals formed of particles with long-range interactions.
Our results allowed us to probe the relation between phase behavior and building-block
shape and to further the understanding of rotator phases.

In addition to the phase behavior, we also study and compute the equilibrium vacancy
concentration of these truncated cubes in Chapter 3. We determine the free energies of
truncated cubes as a function of vacancy concentration using a modified Einstein integra-
tion method. From our calculations we find that the equilibrium vacancy concentration of
truncated cubes increases with increasing truncation at a fixed packing fraction φ = 0.56.
Using simple cell theory calculations we show that the increase in vacancy concentrations
with truncation is due to the increase in orientational entropy with truncation.

We study the phase behavior of rounded truncated cubes, namely superballs, in Chap-
ter 4. In this Chapter, we use Monte Carlo simulations and free-energy calculations to
determine the phase diagram of colloidal hard superballs, of which the shape interpolates
between cubes and octahedra via spheres. We found not only a stable face-centered cu-
bic (fcc) plastic-crystal phase for near-spherical particles, but also a stable body-centered
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cubic (bcc) plastic crystal close to the octahedron shape. Moreover, coexistence of these
two plastic crystals is observed with a substantial density gap. The plastic fcc and bcc
crystals are, however, both unstable in the cube and octahedron limit, suggesting that the
low asphericity ratio of the superballs in combination with local curvature, i.e. rounded
corners and curved faces, of superballs plays an important role in stabilizing the rotator
phases. In addition, we observe a two-step melting phenomenon for hard octahedra, in
which a Minkowski crystal melts into a metastable bcc plastic crystal before melting into
the fluid phase.

In Chapter 5, we present a combined theoretical and simulation study on the self-
assembly of colloidal hexagonal bipyramid- and hexagonal bifrustum-shaped nanoparticles
in two dimensions. The self-assembled structures as obtained in simulations are in good
agreement with those observed in experiments on colloidal nanocrystals. Our results show
that the superlattice formation is driven primarily by minimization of the interfacial free
energies and maximization of the packing densities. Moreover, our results show that
truncation of the tips of hexagonal bipyramids by as little as 5% is sufficient to change the
symmetry of the resulting superlattice from hexagonal to tetragonal. This demonstrates
that precise shape control is of crucial importance in the fabrication of functional materials
by self-assembly of colloidal nanocrystals.

In Chapter 6, we determine the phase diagram of hard equilateral and right-angled
isosceles colloidal triangles in two dimensions using Monte Carlo simulations and free-
energy calculations. Using our simulations we show that hard equilateral triangles and
hard right-angled triangles undergo a phase transition from an isotropic phase to a tri-
atic and rhombic liquid-crystal phase, respectively. With increasing pressures these liquid
crystal phases continuously go to their respective close-packed crystal structures. These
close-packed crystalline phases at high enough packing fractions give rise to a regular lat-
tice of chiral holes. The observed enantiomers in both systems exhibit entropic demixing
at large enough densities. The observed phase separation is similar to phase separation
in the 2D Ising model, where the two phases form stripes to minimize the interfacial free
energy. This chapter thus describes the first observation of the formation of such chiral
phases and their phase separation in simulations of achiral hard particles.

Computing dispersion relations for colloidal crystals with diffusion, like truncated
cubes in Chapter 2, is a challenging problem as the traditional method is developed for
ideal systems where particles are always localized. In Chapter 7, we compute dispersion
relations for colloidal crystal with diffusion using a recently developed theory in combi-
nation with Monte Carlo simulations. We compare the new theoretical method with the
traditional microscopic approach and show that the traditional approach fails in comput-
ing the dispersion relations if there is diffusion in the crystals under investigation. Our
results are in agreement with the result obtained using a density functional theory. The
new method can be used in confocal microscopy to compute the elasticity coefficients and
the dispersion relations for colloidal crystals without worrying about the diffusion of the
particles. In addition, the computer codes written to compute the dispersion relations
can be used to obtain the dispersion relations for experimental data sets very easily.



Samenvatting

Een colloïdale dispersie bestaat uit onoplosbare microscopische deeltjes die in een oplos-
middel gesuspendeerd zijn. Doorgaans wordt met de term "colloïde" een deeltje aangeduid
waarvan tenminste één dimensie binnen het groottebereik van een nanometer tot een mi-
crometer valt. Als gevolg van botsingen met veel kleinere oplosmiddelmoleculen vertonen
colloïden Brownse beweging, hetgeen hen toestaat alle voor hen mogelijke beschikbare
configuraties te verkennen. Behalve deze achtergrondwisselwerking met de atomen of
moleculen van het oplosmiddel, wisselwerken in een fluïdum gesuspendeerde colloïden ook
met elkaar. Als gevolg daarvan kunnen colloïden een rijk fasegedrag vertonen gelijk-
soortig aan dat van atomaire en moleculaire systemen. Colloïden kunnen bijvoorbeeld
zelfassembleren tot niet alleen gas-, vloeistof- en vastestoffasen, maar ook tot nematische,
smectische, biaxiale en hexatische fasen. Het soort fasen dat zich kan voordoen in een
colloïdaal systeem hangt niet alleen af van de interactiepotentiaal tussen de colloïdale
deeltjes maar ook van de vorm van het colloïdale deeltje zelf.

In dit proefschrift bestuderen we het effect dat de colloïdevorm heeft op zijn fasege-
drag. In het bijzonder onderzoeken we het fasegedrag van experimenteel verkrijgbare
veelvlakkige deeltjes met behulp van Monte-Carlosimulaties en vrije-energieberekeningen,
zowel in de bulk als aan een oppervlak.

In Hoofdstuk 2 presenteren we ons onderzoek naar het thermodynamische fasegedrag
van een familie afgeknotte harde kubussen waarvan de vorm geleidelijk overgaat van een
kubus via een kuboctaëder tot een octaëder. We gebruiken Monte-Carlosimulaties en
vrije-energieberekeningen om een volledig fasediagram vast te stellen. Verrassend ge-
noeg vertoont dit fasediagram een opmerkelijke diversiteit aan niet-dichtgestapelde en
dichtgestapelde structuren, inclusief een volledig ontaarde kristalstructuur en een kristal-
fase gestabiliseerd door vacatures; dit alles fijngevoelig afhankelijk van de precieze deelt-
jesvorm. Daarnaast onderzoeken we de aard van de plastische kristalfases die zich voor-
doen voor middelhoge dichtheden en maten van afknotting. Onze resultaten laten zien
dat de oriëntationele distributiefunctie van plastische kristallen van harde anisotropische
deeltjes zeer anisotroop kan zijn, en zeer sterk gepiekt voor bepaalde oriëntaties. Deze
oriëntaties hangen niet alleen af van de kristalstructuur van het deeltje maar ook van de
vorm van het deeltje. Onze resultaten laten zien dat de aard van plastische kristallen van
harde deeltjes anders is dan die van plastische kristallen gevormd uit deeltjes met lange-
drachtswisselwerkingen. Onze resultaten maakten het mogelijk voor ons om het verband
tussen fasegedrag en bouwblokvorm te onderzoeken en om het inzicht in rotatorfasen te
verbeteren.

Behalve het fasegedrag bestuderen en berekenen we, in Hoofdstuk 3, ook de even-
wichtsdichtheid van vacatures voor deze afgeknotte kubussen. Met behulp van een aangepaste
Einsteinintegratiemethode bepalen we de vrije energieën van afgeknotte kubussen als func-
tie van vacaturedichtheid. Uit onze berekeningen blijkt dat de evenwichtsdichtheid van
vacatures van afgeknotte kubussen toeneemt met toenemende mate van afknotting bij een
vaste pakkingsfactor van φ = 0.56. Met behulp van eenvoudige celtheoretische berekenin-
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gen laten we zien dat de toename van vacaturedichtheid met de mate van afknotting komt
doordat de oriëntationele entropie toeneemt met toenemende mate van afknotting.

We bestuderen het fasegedrag van afgeronde afgeknotte kubussen, ook wel superballen
genoemd, in Hoofdstuk 4. In dit Hoofdstuk gebruiken we Monte-Carlosimulaties en vrije-
energieberekeningen om het fasegedrag te bepalen van colloïdale harde superballen waar-
van de vorm interpoleert tussen kubussen en octaëders via bollen. We vonden niet alleen
een stabiel vlakgecentreerd kubisch (fcc) plastisch kristal voor bijna-bolvormige deeltjes,
maar ook een stabiel ruimtelijk gecentreerd kubisch (bcc) plastisch kristal dichtbij de oc-
taëdervorm. Bovendien zagen we ook coëxistentie van deze twee plastische kristallen, met
een aanzienlijk dichtheidsverschil. De plastische fcc- en bcc-kristallen zijn echter beide
instabiel in de kubus- en octaëderlimiet, hetgeen suggereert dat de lage asfericiteitsver-
houding van de superballen in combinatie met lokale kromming (afgeronde hoeken en
gekromde vlakken) van de superballen een belangrijke rol speelt in het stabiliseren van de
rotatorfase. Bovendien vonden we een tweestappig smeltfenomeen voor harde octaëders,
waarbij een Minkowskikristal smelt tot een metastabiel plastisch bcc-kristal alvorens te
smelten tot de fluïde toestand.

In Hoofdstuk 5 presenteren we een gecombineerde theoretische en simulationele studie
in twee dimensies naar de zelfassemblage van colloïdale nanodeeltjes die de vorm hebben
van hexagonale bipiramiden en hexagonale dubbele afgeknotte piramiden. De zelfgeassem-
bleerde structuren die we verkrijgen uit de simulaties zijn in goede overeenstemming met
de structuren die in experimenten met colloïdale nanokristallen zijn gezien. Onze resul-
taten laten zien dat de superroosterformatie vooral gedreven wordt door een minimalisatie
van de vrije energieën van de grensvlakken en de maximalisatie van de stapelingsdichthe-
den. Daarnaast lieten onze resultaten zien dat een afknotting van de toppen van de
bipiramiden van slechts 5% genoeg is om de symmetrie van het resulterende superrooster
te veranderen van hexagonaal tot tetragonaal. Dit toont aan dat een precieze beheersing
van de vorm van cruciaal belang is voor de vervaardiging van functionele materialen door
zelfassemblage van colloïdale nanokristallen.

In Hoofdstuk 6 bepalen we het fasediagram van harde gelijkzijdige en rechthoekige
gelijkbenige colloïdale driehoeken in twee dimensies met behulp van Monte-Carlosimulaties
en vrije-energieberekeningen. Met behulp van onze simulaties laten we zien dat harde
gelijkzijdige driehoeken en harde rechthoekige driehoeken een faseovergang ondergaan van
een isotrope fase naar respectievelijk een triatisch en een ruitvormig vloeibaar kristal. Met
toenemende druk gaan deze kristalfasen op continue wijze over naar hun dichtgestapelde
kristalstructuren. Bij voldoende hoge pakkingsfactor brengen deze dichtgestapelde kristal-
fasen een regulier rooster teweeg van chirale gaten. De gevonden enantiomeren in beide
systemen vertonen entropische ontmenging bij voldoende hoge dichtheden. Deze gevonden
fasescheiding is gelijksoortig aan fasescheiding in het tweedimensionaal Isingmodel, waar
de twee fasen strepen vormen om de vrije energie van de grensvlakken te minimaliseren.
Dit Hoofdstuk beschrijft dus de eerste observatie van de vorming van chirale fasen en hun
fasescheiding in simulaties van achirale harde deeltjes.

Het uitrekenen van dispersierelaties voor colloïdale kristallen waarin diffusie plaatsvindt,
zoals bij de afgeknotte kubussen in Hoofdstuk 2, is een uitdagend probleem omdat de
gebruikelijke methode ontwikkeld is voor ideale systemen waarin deeltjes altijd op hun
plaats blijven. In Hoofdstuk 7 rekenen we dispersierelaties uit voor colloïdale kristallen
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met diffusie, met behulp van een onlangs ontwikkelde theorie in combinatie met Monte-
Carlosimulaties. We vergelijken de nieuwe theoretische methode met de gebruikelijke
microscopische aanpak en laten zien dat de gebruikelijke aanpak te kort schiet bij het
berekenen van de dispersierelaties als zich diffusie voordoet in het desbetreffende kristal.
Onze resultaten zijn in overeenkomst met het resultaat verkregen uit een dichtheidsfunc-
tionaaltheorie. Deze nieuwe methode kan gebruikt worden in confocale microscopie om
de elasticiteitscoëfficiënten en de dispersierelaties uit te rekenen zonder zich zorgen te
hoeven maken over de diffusie van de deeltjes. Daarbij kunnen de computercodes om
de dispersierelaties te berekenen gemakkelijk gebruikt worden om ook de dispersierelaties
voor experimentele datasets te verkrijgen.
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