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1
Introduction

Abstract
In this chapter, we give a general introduction to the work described in this
thesis. We first briefly introduce colloids, followed by a description of their
use as a hard-sphere and hard-rod model system. We then describe recent
research on the self-assembly of both colloidal spheres and rod-like particles in
external fields. This is followed by a discussion of the model systems that we
used in this thesis and the type of analysis that we applied. At the end of this
chapter, we give an outline of the topics that are presented in each chapter of
this thesis.
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1.1. Colloids
When Thomas Graham was studying diffusion through membranes in 1861, he found

that a sticky substance remained on the membrane for certain types of aqueous solutions
[1]. He called these substances ‘colloids’, after the Greek word for glue: κoλλα.
Although the term ‘colloid’ might be unfamiliar to many, we are actually surrounded
by colloids every day. Colloids can be found in for example foods, cosmetics, living
creatures, the atmosphere and in electronic devices such as e-readers. What colloids
have in common is that they exist of an insoluble substance, roughly between 10
nanometer and several micrometer, dispersed throughout another substance. These
two components are referred to as the dispersed phase and a continuous phase. Both
components can be either gas, liquid or solid, giving rise to a wealth of classifications
of colloids. In a foam (such as shaving cream or the head of a glass of beer), the
dispersed phase is a gas and the continuous phase is a liquid. If both phases are liquid,
the colloid is called an emulsion. Many food products are oil-in-water emulsions: milk,
mayonnaise, vinaigrette, and so on. The colloids that are described in this thesis are
classified as sols: they consist of solid particles dispersed in a liquid. Many types of sols
are used in industry, such as paint, ink and drilling mud. Although the term ‘colloid’
is often used to refer to the dispersed phase only, the term ‘colloidal suspension’ refers
to the two component system.

Because a colloidal suspension is a state of matter somewhere between that of a
fluid and a solid, it has the intricate property that the viscosity is dependent on the
stress (or shear rate) that is applied to the suspension. These suspensions are therefore
also called non-Newtonian fluids or complex fluids. For certain types of suspensions,
the viscosity decreases as a function of shear rate, called shear thinning (this is what
happens when ketchup is squeezed out of its bottle). There are also suspensions of
which the viscosity increases as a function of shear rate, known as shear thickening
(which can be experienced when stirring through a mixture of cornstarch and water).
Finally, there are many examples of complex fluids that show, for increasing shear rate,
both shear thinning and shear thickening behaviour [2].

Another characteristic of a colloidal suspensions is that the particles perform erratic
motion due to collisions with atoms or molecules in the suspending liquid. This motion
is known as ‘Brownian motion’, after its discoverer Robert Brown. In 1827, the botanist
Robert Brown was studying pollens of the plant Clarkia pulchella suspended in water
[3]. When he viewed the rapid and erratic motion of tiny objects through an optical
microscope, he first believed that these were small living organisms. He however soon
found out that also finely ground lifeless substances such as sand and clay also showed
the same type of spontaneous movement when suspended in water. A comprehensive
quantitative theory of the phenomenon, however, was only formulated many decades
later by Albert Einstein [4]. In his 1905 annis mirabilis, he derived an expression for
the mean squared displacement of the random motion of spherical particles suspended
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in a liquid and showed that the diffusion constant of a spherical particle is given by

Dt = kBT

6πηR, (1.1)

with kB the Boltzmann constant, T the temperature, η the solvent viscosity and R

the radius of the sphere. The same diffusion equation was independently derived
in 1904 by the Australian physicist Sutherland in 1904, and hence equation (1.1) is
known as the Stokes-Einstein-Sutherland equation, although the last name is often
omitted (or forgotton) due to historical reasons. The derivation of equation (1.1)
can be considered quite revolutionary as this was done in a time when the existence
of molecules and the kinetic theory of fluids was still disputed. The dispute was
finally put to rest by Jean Perrin, who applied equation (1.1) to his experimental
measurements on colloidal particles to determine Avogadro’s number [5, 6]. He used
mastic spheres of approximately 1 µm in diameter which were made monodisperse by
laborious centrifugation steps. By viewing the suspended particles through an optical
microscope, he could record their translational trajectories over time, from which he
then calculated their mean squared displacements. This was however only one out of the
five methods he used to determine Avogadro’s number. He also exploited the rotational
Brownian motion of spherical colloids, together with the expression for the rotational
diffusion coefficient of spherical colloids. This expression was also derived by Einstein
and is given by

Dr = kBT

8πηR3 . (1.2)

Perrin realized that colloidal spheres with a diameter of 1 µm dispersed in water would
rotate much to fast to be recorded by hand (∼ 8◦/ 0.01 s). He therefore used much larger
spheres of 13 µm in diameter, which only rotated 15◦/min. To avoid sedimentation
of these large particles to the bottom of the sample (which slows down the particle
dynamics), he density matched the particles by a solvent mixture of 27% urea in
water, which was the only solvent he could find that did not induce aggregation of his
suspensions. Using small vacuoles or air pockets that some of the particles contained,
he could record the slow (projected) rotational motion, from which he then computed
the mean-squared-angular displacement. Almost exactly a century after the discovery
of Brownian motion, Jean Perrin received the Nobel Prize in Physics in 1926, for his
experimental work on colloids (or ‘discontinuous structure of matter’).

1.2. Model systems of colloidal spheres and rods
From the time of Perrin onwards, the field of colloid science has matured into a wide

and diverse research field. The type of colloid research described in this thesis is focussed
on the use of colloids as a model system to study fundamental questions in (soft)
condensed matter physics regarding crystallization, flow-induced behaviour and the
glass transition. In this field of study, many of the experimental challenges that Perrin
faced in the beginning of the 20th century, we still face in the lab today: decreasing the
particles polydispersity; finding the right solvent (composition) to avoid sedimentation;
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avoiding particle aggregation; handling the fast (rotational) motion of particles and
extracting 3D information from 2D projected rotational trajectories. Fortunately, we
have much more sophisticated tools today to handle these problems. One of the reasons
that colloids are so well suited as a model system has not changed however: colloids
are large enough to be observed with an optical microscope in real-space. Furthermore,
compared to atoms or simple molecules, they also move very slowly: it takes a spherical
particle of 1 µm approximately 0.5 s to diffuse over its own diameter, when suspended
in an aqueous solution. The possibility to study colloidal particles in real-space and in
real-time thus allows for detailed investigations of both structure and dynamics on the
single particle level.

Monodisperse colloidal spheres with a hard interaction potential (hard spheres in
short) have served over the last decades as the ‘fruit fly’ of the colloid scientist. The
theoretical hard-sphere system consists of particles that have an infinite repulsion at
contact but otherwise do not have any interaction. As a result, the internal energy
of the system is always zero and the phase behaviour is completely driven by entropy.
The phase diagram of hard-spheres is therefore dictated by a single parameter: the
density (or volume fraction) of the spheres. Furthermore, the equilibrium phase diagram
consists of only a fluid and a crystal phase [7,8]. Systems that behave like hard spheres
can also be fabricated in the laboratory: spherical particles are often made of a polymer
such as poly(methyl methacrylate) (PMMA) [9] or from inorganic material such as
silica [10].

There are however a few important differences between the theoretical hard-sphere
model and the colloidal particles used in the experimental systems [11]. Three im-
portant differences are that in reality, colloids have a charged surface, there is always
a distribution of sizes present and finally, the particles are affected by gravity. By
addition of an as large as possible amount of salt to the suspension, electric charges are
screened over distances much smaller than the diameter of the particle. Combined with
an additional steric stabilizer (in case of the polymer particles), these particles behave
approximately as hard-spheres [9,12]. Due to subtle charge effects and possible swelling
of the particles, they do not have an infinite repulsion upon contact, but nevertheless,
their phase behaviour can be mapped effectively onto the hard-sphere phase diagram
by introduction of an effective diameter (and effective volume fraction) [11, 13–15].
Furthermore, the particles have a size polydispersity (standard deviation over the
mean) of at least 3 - 5%, which has an effect on the fluid-solid coexisting volume
fractions. Finally, the particles are affected by gravity. If the particles are around 1 µm
in diameter, they will eventually sediment (in the direction of gravity) or cream (against
the direction of gravity). This effect can be counteracted by carefully matching the mass
density of the solvent to that of the particles, however, this is not always possible or easy
to achieve. Despite these (minor) deviations from the ideal hard-sphere system, hard-
sphere colloids can crystallize in face-centered cubic (fcc) or hexagonal close-packed
(hcp) crystals, similar to simple atomic systems. Furthermore, the screening length can
also be used as a parameter to tune the interactions between the particles: by changing
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the salt concentration, the interactions can be tuned from strongly screened (hard) to
a long-range repulsive electrostatic potential (soft) [12]. Both computer simulations
and experiments on soft colloidal spheres showed that they can crystallize into a body-
centered cubic (bcc) phase [12,16,17].

Compared to spherical particles, colloidal rod-like particles display a wealth of novel
phase behaviour. Rod-like colloids are known since the 1920s, when needle-like vana-
dium pentoxide particles were found to form a nematic phase [18]. In this phase, the par-
ticles are orientationally ordered but positionally disordered (or liquid-like). Later, also
smectic phases were reported in suspensions of the tobacco mosaic virus (TMV) [19]. In
a smectic phase, the particles are not only orientationally ordered but also positionally
ordered into layers. Several types of smectic phases are distinguished, based on the
order within the smectic layers, ranging from smectic-A to smectic-L [20]. Currently,
progress in synthesis methods has enabled the fabrication of many well-defined rod-
shaped colloids of a large variety of materials, including PMMA, polystyrene, silica or
iron hydroxides [21–25]. Also bio-organic materials such as the fd-virus can serve as
well-defined model system of colloidal rods [26, 27]. Just as the hard-sphere particles,
these rod-like particles have a typical screening length (which is usually small compared
to diameter of the particle), they also have a certain size-distribution (in both length
and diameter) and they are affected by gravity. Nevertheless, it was recently shown
that a system of rod-like silica particles could be mapped with reasonable agreement
onto the hard spherocylinder phase diagram (obtained with computer simulations), by
introducing an effective diameter and effective length of the rods [28]. Also systems of
fd-viruses or iron hydroxide rods have shown to form nematic and smectic phases in
equilibrium [21,26,29]. Most of the colloidal liquid-crystal systems are lyotropic: their
phase behaviour is driven by concentration (or volume fraction). This is in contrast
with most molecular liquid crystals, which are thermotropic: their phase behaviour is
determined by temperature. However, because the lyotropic colloidal liquid crystals
form the same equilibrium phases as many thermotropic molecular liquid crystals, they
still serve as a valuable model system.

1.3. Colloidal self-assembly in external fields
Because many of the phenomena studied in this thesis involve both structural and

dynamical components and both in- and out-of-equilibrium phases, we refer to these
phenomena using the overall term self-assembly. Due to their size, colloidal particles
easily couple to external fields such as shear-flow or electric fields. The self-assembly
process can thus be guided or enhanced by such external fields, which is commonly
referred to as directed self-assembly. Studies on the self-assembly of colloidal spheres
in external fields are numerous. When, for example, the particles are heavier than the
solvent, gravity acts as a constant external field on the particles. The gravitational
force that pulls the particles down will eventually be balanced by an osmotic pressure
gradient pushing the particles up, resulting in a density gradient (or sedimentation
profile) along the direction of gravity. For large enough sediments, the sedimentation
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profile will contain all the possible phases of the system. For dilute, non-interacting
particles, this will result in a barometric height distribution. Another example of a
commonly encountered external field that acts on a colloidal suspension is shear. Shear
is known to have a large effect on the ordering of colloidal spheres [30], and can even
induce crystallization in suspensions that are in a fluid phase in equilibrium [31,32]. The
third and final external field that we consider is an electric field. When the colloidal
particles have a different dielectric constant than the suspending medium, they will
acquire a dipole moment when an electric-field is applied to the suspension. High
frequency AC electric fields can be used to prevent polarization of the double layer
of the particles, but still resulting in additional dipole-dipole interactions between the
particles. If these interactions are strong enough, they can induce string-formation
in a suspension of spheres and, at higher densities, a body-centered tetragonal (bct)
phase [12,17].

When rod-like colloids are subjected to external fields, unlike spheres, their orienta-
tional degrees of freedom can couple to the field direction. For example, theory predicts
a change in the nematic ordering of long rigid rods in a gravitational field, which
broadens the region of phase separation, for large enough centrifugal acceleration [33].
Furthermore, it is well known that dense systems of liquid crystals can exhibit rich
phase behaviour when shear flow is applied [34, 35]. Depending on the initial state of
the system and the applied shear rate, the average alignment in the system (or director),
displays complex time-periodic motion such as ‘tumbling’, ‘wagging’ and ‘flow-aligning’.
Using colloidal suspensions of fd-viruses, these three states were experimentally found
[36,37] and confirmed by Brownian Dynamics computer simulations [38, 39]. Recently,
the enhanced rotational diffusion of single dumbbell particles under oscillatory shear
was also determined [40]. Finally, electric fields can be used to align rod-like particles
over large distances. Again, a high frequency AC electric field will prevent polarization
of the electric double layers, however, such a field will still exert a torque on the
particles, resulting in alignment in the field direction [41,42]. For higher field strengths,
dielectric rod-like particles will line up in strings, due to the dipole-dipole interactions,
and for higher concentrations new crystal structures are formed [41, 43, 44], similar to
the behaviour of spherical particles in an AC electric field.

1.4. Real-space analysis of colloidal self-assembly
One of the advantages of using colloidal particles as model systems is that they can be

made fluorescent, combined with the fact that often the refractive index of the solvent
can be matched to that of the particles. This combination allows for imaging deep
into the sample with the use of a confocal laser scanning microscope (CLSM). Because
the use of confocal microscopy combined with subsequent image analysis is the central
technique used in this thesis, we will give a brief introduction to both subjects.

The two key features of such a microscope are point-by-point illumination of the
sample and rejection of out-of-focus light. The first feature is achieved by a pinhole in
front of the laser light source and the second is achieved by a pinhole in front of the
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detector. This results in improved resolution, compared to conventional bright field
microscopy. By scanning several 2D images while moving the microscope stage in the
vertical direction, a 3D image of the sample can be obtained. The colloidal particles
under investigation can therefore be studied in-situ and in three dimensions. Further-
more, the positions of the particles can be determined from the confocal microscopy data
using image processing techniques. Usually, spherical particles are located using a local
brightness maxima criterion and the positions are refined by calculating the brightness-
weighted centroid of a cluster of pixels [45]. This was originally done in 2D but later
extended to 3D [46–48]. The positions of particles can also be linked together between
different time-frames to form trajectories, known as particle tracking [45]. Since the 90s,
there have been numerous improvements to locate or track spherical particles [49–55].
Due to this progress, studies based on particle tracking of spherical colloids combined
with fast confocal microscopy has led to many new insights in phenomena such as
crystallization [12,47,56], gelation [48], defect dynamics [57], the glass transition [58,59]
and flow-induced behaviour [52,60–63].

Compared to the advancement of studies of spherical particles, few researchers have
performed real-space studies on rod-like colloids. In contrast to the systems of e.g.
ellipsoidal or dumbbell particles, we use in this thesis a model system of fluorescent rod-
like silica particles, briefly described in the previous section, that forms both nematic
and smectic phases in equilibrium [25, 28]. Quantitative measurements on the dense
liquid-crystalline phases that this system forms have thus far only been performed in
reciprocal space using small angle X-ray scattering (SAXS). The reason for this is that
the individual particles are on the order of the resolution of the confocal microscope,
resulting in strongly overlapping signals in the confocal microscopy images. Subsequent
image analysis is therefore not accurate enough to determine all coordinates of the
system. To circumvent this problem we developed a new image processing algorithm
to extract the positions and orientations of the fluorescent rod-like particles from
three dimensional confocal microscopy data stacks. The algorithm is tailored to work
even when the fluorescent signals of the particles overlap considerably and a threshold
method and subsequent clusters analysis alone do not suffice. If the resolution of the
images was not good enough for accurate tracking, we also used image deconvolution.
Finally, for particles which could not be identified individually, even after deconvolution,
we used an alternative image processing approach, which still enabled calculation of the
2D (projected) orientation distribution of the particles.
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1.5. Outline of this thesis
This thesis is organized in two parts. In the first part, consisting of Chapters 2 -

4, we describe the methodology to analyse the structure of colloidal suspensions using
confocal microscopy. In Chapter 2, we describe the general properties of the colloidal
suspensions and the imaging techniques used to investigate their self-assembly. In
Chapter 3, we present methods to calibrate and scale axial distances as a function
of refractive index mismatch, often encountered while imaging colloidal suspensions.
Finally, in Chapter 4, we present a new algorithm to accurately identify the positions
and orientations of rod-like particles from 2D and 3D microscopy data.

The second part of this thesis, consisting of Chapters 5 - 9, contains investigations
on the self-assembly of spherical and rod-like particles in external fields. In Chapter 5
we investigate the oscillatory shear-induced order in hard-sphere colloidal suspensions
that are fluid in equilibrium. In Chapter 6, we study the liquid-crystalline phase
behaviour of (nearly) hard rods subjected to gravity. We compare our real-space results
to predictions from theory and simulation on hard spherocylinders. In Chapter 7, we
apply shear flow to suspensions of rods and investigate the shear-induced order in
the suspensions. We also measure the rheological response of the suspensions during
confocal microscopy imaging. In the last two chapters of this thesis, we change the
interaction potential of the silica rods from hard to long-range repulsive by tuning the
salt concentration. In Chapter 8 we analyse the structure and dynamics of the plastic
crystals that these long-range repulsive rods from. Finally, in Chapter 9, we show that
at higher volume fractions, the long-range repulsive rods fail to crystallize and form a
‘plastic glass’. We use a high frequency AC electric field to switch both the plastic
crystals and the plastic glasses to completely crystalline phases.



Part 1

Methods to Analyse Colloidal Particles in
Real-Space





2
Suspension Characterisation and General

Techniques
Abstract

In this chapter, we describe the general properties of the colloidal suspensions
used in the experiments and we describe the imaging techniques that were
applied to investigate their self-assembly. We used colloidal spheres, con-
sisting of poly(methyl methacrylate) (PMMA) dispersed in a mixture of cis-
decahydronaphthalene (cis-decalin) in cyclohexyl bromide (CHB) saturated
with the salt tetrabutylammonium bromide (TBAB). We also used rod-like
silica particle which were dispersed in either a mixture of glycerol and water,
a mixture of dimethylsulfoxide (DMSO) and water or in pure (de-ionized)
cyclohexyl chloride (CHC). We discuss the methods used to manipulate the
electric screening length of the particles in these different mixtures, which we
tuned from ∼ 20 nm to ∼ 10 µm. We then describe the basics of confocal
microscopy imaging and the effect of the point spread function (PSF) on
the imaging of rod-like particles. We also discuss the deconvolution method
that we applied to suppress the effect of the PSF as much as possible. We
end this chapter with preliminary results on stimulated emission depletion
(STED) imaging of rods which were coated with a thin (∼ 30 nm) fluorescein
isothiocyanate (FITC) shell.
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2.1. Introduction
In this thesis, we present results on the self-assembly process of both colloidal spheres

and rods. The colloidal spheres consisted of poly(methyl methacrylate) (PMMA)
dispersed in a mixture of cis-decahydronaphthalene (cis-decalin) in cyclohexyl bromide
(CHB) saturated with the salt tetrabutylammonium bromide (TBAB). The rod-like
particles consisted of silica and were dispersed in either polar or low-polar solvents.
The polar solvents consisted of mixtures of glycerol and water or dimethylsulfoxide
(DMSO) and water. The low-polar solvent that we used was cyclohexyl chloride
(CHC). Because the uncoated particles were not stable in low-polar solvents, they
were first coated with octadecyltrimethoxysilane (OTMOS). Both the spheres and rods
were fluorescently labelled and (nearly) index matched, to allow for observation with a
confocal microscope. This enabled us to acquire images in 3D, up to approximately 100
micrometer into the sample. We performed image analysis on the confocal microscopy
images to investigate the self-assembly process in-situ and on the (single) particle level.
Furthermore, we manipulated and directed the self-assembly process by application of
external fields such as gravity, shear, and electric fields.

In this chapter we describe the main properties of the suspensions and the general
methods that were used in the work presented in this thesis. We first describe the
properties of the solvents. We then briefly describe the particle synthesis and the
general particle properties. Next, we describe the basic principles of confocal laser
scanning microscopy and image formation. This is followed by explanation of image
deconvolution. Finally, we also briefly explain the principles of stimulated emission
depletion (STED) microscopy and show preliminary STED images of fluorescent silica
rods.

2.2. Solvent properties
2.2.1. Low-polar Solvents

The spherical poly(methyl methacrylate) (PMMA) particles used in this work were
always dispersed in a low-polar solvent mixture of approximately 27 wt% cis-decalin
in CHB, see Table 2.1. This mixture not only matches the refractive index of the
PMMA particles (n25

D = 1.492), it also nearly matches their mass-density (ρ = 1.19
g/ml), making it an ideal model system. The silica particles are not directly stable
in low-polar solvents. However, they can be made stable by coating them with e.g.
3-(trimethoxysilyl)propyl methacrylate (TPM) and a steric stabilizer or with octode-
cyltrimethoxysilane (OTMOS), which is described in more detail in Chapter 8. We
used cyclohexylchloride (CHC) as dispersing solvent for these particles, as the refractive
index is close to that of the silica particles (n25

D = 1.45).

2.2.2. Polar Solvents
Silica rods without a surface modification were dispersed in mixtures of glycerol

and water or dimethylsulfoxide (DMSO) and water. General properties of these polar
solvents are listed in Table 2.2. Values from the literature are indicated in the table,
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ρ (g/ml) nD η (cP) εr (25◦C)

CHB 1.3215 (25 ◦C) [64] 1.49345 (25◦C) [64] 2.00 (25◦C) [64] 7.92 [64]
cis-decalin 0.8968 (25 ◦C) [65] 1.4793 (25◦C) [66] 3.355 (20◦C) [65] 2.2102 [67]
27 wt% cis-decalin/CHB 1.1702 (21◦C) [68] 1.4876 (25◦C) [66] 2.726 (21◦C) [68] 5.6205 [66]
CHC 0.993 (25◦C) [69] 1.46265 (20◦C) [70] 1.5675 (25◦C) [69] 7.6 [71]

Table 2.1. Properties of the low-polar solvents used in this thesis. Here, ρ is
the density, nD the refractive index, η the absolute viscosity and εr the relative
permittivity. All values were obtained from the literature.

measured values of the viscosity were obtained with a SV10 viscometer (A&D Company)
and measured values of the refractive index were obtained with a refractometer (Atago
3T). The compositions of the DMSO/water and glycerol/water mixtures were chosen
to (nearly) index-match the silica rods, which have a refractive index of n25

D = 1.45
[72]. This enabled imaging deep into the sample and also minimized Van der Waals
attractions between the particles. The glycerol/water mixture was used for its high
viscosity, which slows down the dynamics of the particles enough to measure with
3D confocal microscopy e.g. dynamical properties of the rods (see Chapter 4) or the
complete sedimentation profile of the rods (see Chapter 6).

ρ (g/ml) (25◦C) nD η (cP) εr

DMSO 1.096 [73] 1.477 (25◦C) [73] 1.99 (25◦C) [73] 48.4 (25◦C) [74]
glycerol 1.258 [75] 1.474 (20◦C) [75] 1410 (20◦C) [75] 41.1 (20◦C) [76]
93 wt% DMSO/water 1.096 ∗ [73] 1.472 (20◦C) 2.6 (22◦C) 50.9 ∗ (25◦C) [74]
85 wt% glycerol/water 1.219 [75] 1.452 (20◦C) 92 (22◦C) 54.7 ∗ (20◦C) [76]

Table 2.2. Properties of the polar solvent (mixtures) used in this thesis,
with ρ the density, nD the refractive index, η the absolute viscosity and
εr the relative permittivity. References are shown for values obtained from
the literature. Values marked with an asterisk (∗) are obtained from linear
interpolation of literature values.

2.2.3. Electric conductivity & the Debye screening length
When the silica rods are dispersed in polar solvents, they acquire a negative surface

charge due to dissociation of terminal silanol groups. In Chapter 8 we demonstrate that
the OTMOS coated silica rods, dispersed in de-ionized CHC, also have a negative surface
charge. On the other hand, the PMMA spheres are known to acquire a positive charge
when they are dispersed in CHB/decalin. However, at sufficiently high concentration
of added tetrabutylammonium bromide (TBAB) salt, the charge reverses from positive
to negative, probably due to specific adsorption of ions [66, 77]. The length scale over
which these surface charges on the particles are screened is known as the Debye screening
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length κ−1 and sets the typical interaction length-scale in the system. For monovalent
ions, the Debye screening length is given by

κ−1 =
√
εr ε0 kBT

2NA c e2 , (2.1)

with εr the dielectric constant of the solvent, ε0 the permittivity of vacuum, NA the
Avogadro constant, c the concentration of ions in the suspension and e the elementary
charge. The Debye screening length is thus directly related to the ionic strength of the
suspension. The ionic strength can originate from trace ions in the solvents, however,
it can also be controlled by adding a known amount of salt to the solvent. In the latter
case, the degree of dissociation must be known to directly calculate the Debye screening
length. Fortunately, the ionic strength (and the amount of salt dissociation) can be
estimated from conductivity measurements of the solvent mixture. The concentration
of dissociated ions c, is related to the conductivity via the equation:

c = σ

Λ0
. (2.2)

Here, σ is the measured conductivity (in S/m) and Λ0 the limiting molar conductance
of the electrolyte at infinite dilution (in m2 S/mol). The limiting molar conductances
of ionic species are often only known for water and a few other solvents. Therefore,
a useful empirical relationship is Walden’s rule, which states that the product of the
viscosity and the equivalent molar conductance at infinite dilution is a constant for the
same species in different solvents [78]:

ΛA
0 η

A
0 = ΛB

0 η
B
0 . (2.3)

The mixtures of cis-decalin/CHB (see Table 2.1) described in this thesis, were always
saturated with the oil soluble salt TBAB to screen the charges on the PMMA spheres
to a maximum extent, resulting in hard-sphere like behaviour [12]. The saturation
concentration of this salt in cis-decalin/CHB is approximately 260 µM, with a degree
of dissociation < 2%, resulting in a screening length of κ−1 ' 130 nm [66,68].

For the silica rods dispersed in CHC however, much larger screening lengths were
desired. Therefore, the as received CHC (with conductivity σ � 1000 pS/cm) was
deionized as follows. First, ∼ 3 g of activated alumina was added to 50 ml of CHC
and left overnight on a roller-bench. The alumina was then removed by centrifugation.
Next, ∼ 3 g of molecular sieves with pore size of 4Å were added and left in contact with
the solvent for at least 4 hours. The resulting conductivity of the solvent was as low as
10 pS/cm, as measured with a Scientifica model 627 conductivity meter. To estimate
the screening length, we used literature values for the limiting equivalent conductance
of HCl in ethanol, ΛHCl

0 = 84.3 S cm2/mol [79], for the viscosity of ethanol ηEtOH
0 = 1.08

cP [79] and for the viscosity of CHC ηCHC
0 = 1.57 cP [69]. Using equations (2.1)-(2.3),

this resulted in screening length κ−1 ' 7 µm.
Finally, we estimate the screening length for the silica rods dispersed in a mixture of

85 wt% glycerol/water and 93 wt% DMSO/water. In these polar solvent mixtures, the
ionic strength was controlled by trace ions in the solvent. Although the identity of the
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trace ions is not known, we can make a rough estimate of the screening length by again
using the limiting molar conductance of HCl in ethanol ΛHCl

0 = 84.3 S cm2/mol [79],
and the viscosity of ethanol ηEtOH

0 = 1.08 cP [79], together with the values of the
viscosities and the dielectric constants of the two mixtures (see Table 2.2). We measured
the conductivity of both mixtures with a CDM 230 conductivity meter (Radiometer
Analytical). For the 85 wt% glycerol/water mixture we measured a conductivity σ =
0.16 µS/cm, resulting in a screening length κ−1 ' 20 nm. For the 93 wt% DMSO/water
mixture these values were σ = 0.71 µS/cm and κ−1 ' 54 nm.

2.3. Spherical particles
The poly(methyl methacrylate) (PMMA) spheres described in this thesis were syn-

thesized using a dispersion polymerisation method reported by Bosma et al. [80].
The particles were sterically stabilized with poly(12-hydroxystearic acid) grafted onto
a PMMA backbone which was chemically attached to the particles. Additionally,
the particles were covalently labeled with fluorescent dye for imaging. Two types
of fluorescent dye were used: rhodamine isothiocyanate-aminostyrene (RAS) and 4-
methylaminoethylmethacrylate-7-nitrobenzo-2-oxa-1,3-diazol (NBD-MAEM), which are
chemical derivatives of rhodamine isothiocyanate (RITC) and 4-chloro-7-nitrobenzo-
2-oxa-1,3-diazol (NBD-Cl) respectively. This resulted in homogeneously fluorescent
particles, as shown by the confocal microscopy images in Fig. 2.1. The size and
polydispersity of the particles was determined by static light scattering (SLS). A list of
PMMA particles used in the experiments presented in this thesis is given in Table 2.3.

As described in the previous section, the PMMA spheres were dispersed in a solvent
mixture of cis-decalin/CHB saturated with TBAB. The high salt concentration screens
the charges on the particles, making them behave approximately as hard spheres [12].
However, due to the non-zero screening length and due to the fact that the particles
absorb some of the CHB, causing them to swell, their diameter determined from SLS
(where the particles were dispersed in hexane) cannot be used to directly determine
a hard-sphere volume fraction, which is the single parameter governing the phase
behaviour of ideal hard-sphere particles [8]. However, many studies have shown that
using an effective diameter, the phase behaviour of these particles can be successfully
mapped onto the hard-sphere phase diagram, provided that κd is not too small [12,81].

2.4. Rod-like particles
2.4.1. Synthesis of particle cores

Fluorescent silica rods were prepared following the method of Kuijk et al. [25, 72].
Specific details of the synthesis (and adaptations to the procedure) can be found in
Chapter 6. Here, we describe a general outline of the method. First, a water in pentanol
emulsion (containing also ethanol) is produced using polyvinylpyrrolidone (PVP) and
sodium citrate-dihydrate as stabilizers. Next, the silica precursor tetraethyl orthosil-
icate (TEOS) is added, together with ammonia, which acts as a catalyst. Hydrolysis
and subsequent condensation of the TEOS takes place inside the water rich emulsion
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Figure 2.1. Confocal microscopy images of poly(methyl methacrylate)
(PMMA) spheres with diameter d = 2.07 µm (JSPMR64), dispersed in 26 wt%
cis-decalin in CHB. Depending on the (effective) volume fraction φ, particles
were in (a) a fluid-like phase and (b) a close-packed crystalline phase. The
scale bars are 15 µm.

d (nm) δ (%) dye

JSPMR63 2100 3 RAS
JSPMR64 2070 3 RAS
JSPMR35 2640 2.5 RAS
JSPMN16 1040 3 NBD-MAEM

Table 2.3. Properties of the poly(methyl methacrylate) (PMMA) spheres
used in this thesis. Here, d is the diameter of the particle and δ the
polydispersity (standard deviation over the mean), determined from static light
scattering (SLS) measurement. The particles were dispersed in an index and
density matching mixture of cis-decalin/CHB, see Table 2.1.

droplets. The growing silica nucleus is positioned at, or close to, the droplet surface,
resulting in an anisotropic supply of reactants (from inside the droplet). This in turn
results in the growth of a rod-like particle with the droplet attached to one end of the
particle, where subsequent growth takes place. The growth of the particle stops when
all TEOS has reacted, which is typically after 24 hours. Afterwards, the particles are
washed with water and ethanol by centrifugation.

The diameter of the particle is thus determined by the size of the droplet, which, given
the right reagent concentrations, remains constant due to surface tension. This results
in straight particles with a constant diameter, however, the particles are not completely
up-down symmetric. The ‘tail’ of the particle (where the droplet was attached) is flat,
whereas the ‘head’ is a hemispherical cap. Therefore, these particles are also referred
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to as silica bullets instead of silica rods. Nearly all reagent concentrations can influence
the final geometry of the particles obtained, even resulting in spherical particles or curly
rods. For a complete overview of the dependence of reagent concentrations on particle
shape and dimensions, see the Supporting Information of Ref. 25.

The above described synthesis procedure typically results in rods with a broad size
distribution. The size distribution can however be narrowed by repeated centrifugation
and sedimentation steps, resulting in polydispersity values (standard deviation over the
mean) for both diameter and length . 10%.

2.4.2. Fluorescent labelling & shell coating
To fluorescently label the rods, we followed the procedures described in Ref. 72. We

used two methods to label the rods: the first resulted in a gradient in fluorescent inten-
sity along the main axis of the particle core, the second method resulted in a uniform
fluorescent shell around the core. We either used fluorescein isothiocyanate (FITC) or
rhodamine isothiocyanate (RITC), which have an excitation maximum around 488 nm
and 543 nm respectively. Both dyes were covalently bonded to the silica surface with
the silane coupling agent (3-aminopropyl)triethoxysilane (APS).

To obtain particles with a fluorescent gradient along their main axis, a dye-APS
mixture was added during the rod synthesis, directly after addition of the TEOS.
Because the availability of dye is higher during the beginning of the rod-growth, this
method resulted in a gradient of dye molecules along the rod axis, see Figs. 2.2a-b.
Fig. 2.2a shows particles with aspect ratio l/d = 5.0, dispersed in 93% DMSO in water
and Fig. 2.2b shows particles with aspect ratio l/d = 7.8, dispersed in 85% glycerol in
water.

To label the particles with a fluorescent shell, a silica shell was grown around the as
prepared particle cores using a standard Stöber growth process [72]. Again, the dye-
APS mixture was added directly after addition of TEOS. This procedure resulted in a
homogeneous fluorescent shell of 30 - 60 nm thickness, see Figs. 2.2c-d. Fig. 2.2c shows
silica rods with aspect ratio l/d = 3.8, dispersed in CHC whereas Fig. 2.2d shows
silica rods with aspect ratio l/d = 6.0, dispersed in 85 wt% glycerol in water. The
individual fluorescent shells of the particles in Fig. 2.2c are not visible due to the low
magnification and the fact that the resolution of the microscope is on the order of the
diameter of the non-fluorescent core. The (small) refractive index mismatch between
the particles (n25

D = 1.45) and the dispersing solvent (CHC, n20
D = 1.46) further reduces

the resolution (see Section 2.5.3). Fig. 2.2d shows a super-resolution image (see Section
2.5.6) of carefully index-matched particles close to the bottom of the sample, clearly
showing the thin (∼ 30 nm) fluorescent shell of the particles.

Because we wanted to resolve individual particles with confocal microscopy, even
when the concentration was high, non-fluorescent silica shells were grown around the
particles using the same procedure as described above but without the addition of dye.
The thickness of the shell depended on the particle dimensions and TEOS concentration,
but was usually between 30 - 60 nm. The shell growth step was repeated several times
until the desired thickness was reached.
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Figure 2.2. Confocal microscopy images of various fluorescently labelled
silica rods. (a-b) Due to addition of dye during the rod-growth, particles had
a gradient of fluorescence along their main axis. (c-d) Particles coated with
a uniform fluorescent shell of ∼ 30 nm. (a) l/d = 5.0. (N51). Dispersed in
DMSO/water. (b) l/d = 7.8 (THB5). Dispersed in glycerol/water. (c) l/d =
3.8 (R2). Dispersed in CHC. (d) l/d = 6.0. (B35) Dispersed in glycerol/water.
Additional properties of the particle systems are listed in Table 2.4. All scale
bars are 5 µm.

Table 2.4 lists the dimensions and fluorescent properties of the silica rods described
in this thesis. Besides the dimensions of the particles, determined from transmission
electron microscopy (TEM), Table 2.4 also lists the type and method of dye incorpo-
ration: ‘shell’ refers to a uniform fluorescent shell whereas ‘core’ refers to a gradient of
fluorescence intensity along the core of the rod. The thickness of the non-fluorescent
(NF) outer shell is indicated in the last column.
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l (µm) δl (%) d (µm) δd (%) l/d dye NF shell (nm)

R2 2.29 6 0.60 6.5 3.8 FITC shell 100
B31 2.4 10 0.64 8 3.8 FITC shell 190
B48 2.6 9 0.63 6 4.1 RITC core 175
N51 2.66 10 0.53 6 5.0 RITC core 150
CT1 3.4 12 0.63 7 5.4 FITC shell 137
B35 3.3 10 0.55 11 6.0 FITC shell 105
THB4 4.3 12 0.59 12 7.3 FITC core 76
THB5 5.2 11 0.67 8 7.8 FITC core 145
TH6 10.0 7 0.49 10 20.4 none none

Table 2.4. Properties of the silica rods used in this thesis. Here, l is the end-
to-end length, d is the diameter, δi the polydispersities and l/d the end-to-end
aspect ratio, determined from transmission electron microscopy (TEM). Also
listed is the type and method of dye incorporation: ‘shell’ refers to a uniform
fluorescent shell whereas ‘core’ refers to a gradient of fluorescence intensity
along the core of the rod. The last column lists the thickness of the outer
non-fluorescent (NF) shell.
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2.5. Microscopy Imaging
2.5.1. Colloids and microscopy

Systems of colloidal particles are widely used as model systems to study diverse
fundamental problems in condensed matter physics regarding for instance crystalliza-
tion, flow-induced behaviour and the glass transition [12, 47, 48, 56, 58–60, 82]. A key
element of these systems is that the individual particles are large enough to be resolved
with a microscope yet small enough to still perform significant Brownian motion. This
allows for real-space and real-time investigation of structures that have a well defined
thermodynamic equilibrium ground state. Using index-matched and fluorescently la-
belled particles, samples can even be imaged deep in the bulk of the sample (avoiding
confinement or wall effects) and in three dimensions, using confocal laser scanning
microscopy.

In this section we first describe some basic principles of microscopy imaging in general,
followed by the principles of confocal microscopy and image formation. We end this
section with an example of super-resolution imaging of a colloidal suspension.

2.5.2. The Point Spread Function
The intensity distribution of an ideal point source imaged with a light microscope is

spread out in all three spatial dimensions, known as the point spread function (PSF).
An object that is imaged with a microscope is therefore always a convolution of the
object function f0(x, y, z) and the point spread function PSF (x, y, z), together with
added noise ξ:

f(x, y, z) = f0(x, y, z) ~ PSF (x, y, z) + ξ. (2.4)

Here, ~ denotes a convolution. In the lateral direction, the PSF is described by the
Airy function [83]

Ixy = I0

2J1(k)
k

2

, (2.5)

with J1 a Bessel function of the first kind, k = 2 π rNA/λ, with r the distance from
the center point, NA the numerical aperture of the objective and λ the wavelength of
the light, see also Figs. 2.3a-b. The area within its first minimum is known as the Airy
disk, with its radius given by

rAiry = 0.61 λ

NA . (2.6)

The Rayleigh criterion states that to resolve two points, their intensity maxima should
be separated by at least the radius of their Airy disks. Equation (2.6) is therefore a
direct measure of the (diffraction limited) resolution of a microscope. Substituting in
equation (2.6) for a wavelength λ = 488 nm and numerical aperture NA = 1.4, we
obtain rairy = 213 nm.
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Figure 2.3. The microscope response function or point spread function
(PSF). (a) The lateral intensity distribution Ixy of an idealized point source,
is given by the Airy function. (b) Intensity distribution in the lateral direction
(Ixy, red), and in the axial direction (Iz, green) as a function of distance from
the center r/λ. Here, λ denotes the wavelength of the light. The black dashed
lines are Gaussian fits.

In the axial direction, the intensity distribution of an ideal PSF can be modelled by
the following response function [83]

Iz =
sin(u/4)

(u/4)

2

. (2.7)

With, u = 2πNA2 z/(λn), z the distance along the optical axis and n the refractive
index of the sample, see Fig. 2.3b. The distance to the first minimum is in this case
given by

z = 2λn/NA2. (2.8)
Substituting for λ = 488 nm, numerical aperture NA = 1.4, and refractive index n = 1.5,
gives an axial resolution of 747 nm, which is 3.5 times larger than in the lateral direction.

The dashed lines in Fig. 2.3b indicate that the PSF can be well approximated with
Gaussian functions with the full width at half maximum (FWHM) approximately 3
times larger in the axial (Iz) than in the lateral direction (Ixy). Because Gaussian
functions are computationally much less expensive to use compared to equations (2.5)
and (2.7), we will use them to approximate the PSF when generating confocal-like test
data, as explained in Section 2.5.4.

2.5.3. Confocal laser scanning microscopy
Confocal laser scanning microscopy (CLSM) is a technique that is widely used in

scientific fields such as soft condensed matter physics, material science, and cell biol-
ogy. The two key features of a scanning confocal microscope are the point-by-point
illumination of the sample and rejection of out of focus light [84]. Confocal microscopy
originates from the patent by Marvin Minksy in 1957 [85] and was further developed
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in the 1980s in several European laboratories with the introduction of a laser as light
source combined with a stage-scanner [84, 86, 87]. A schematic overview of a modern
confocal laser scanning microscope is shown in Fig. 2.4a.

Figure 2.4. Microscopy imaging using a confocal microscope. (a) Schematic
of a confocal laser scanning microscope. (b) 3D image stack (32 × 32 × 9
µm3) of fluorescent rod-like particles (N51).

Point illumination is achieved by a pinhole that is placed in front of the laser
excitation source, combined with the use of a high aperture objective lens, which serves
as both the objective and condenser lens. When the fluorescent sample is excited,
emitted light passes the dichroic mirror and reaches the detector, which can be a charge-
coupled device (CCD), a photomultiplier tube (PMT), a photodiode or a combination of
these [84]. Out-of-focus emission light is rejected by a pinhole placed in the conjugate
focal plane of the sample, hence the name confocal. Point-by-point illumination is
achieved by scanning a 2D plane e.g. with rotating mirrors placed in the beam path or
by moving the sample. The point illumination combined with rejection of out-of-focus
light results in a higher resolution as compared to conventional light microscopy. Due
to the presence of two apertures, the PSF of a confocal microscope is a convolution of
the illumination PSF and the detection PSF [88]

PSFconf(x, y, z) = PSFill(x, y, z) ~ PSFdet(x, y, z), (2.9)

which results in a focus spot-size that in theory is reduced by a factor ∼
√

2 compared
to conventional light microscopy [84]. For an excitation wavelength λ = 488 nm and
an oil-immersion objective with numerical aperture NA = 1.4, this results in a lateral
resolution of 150 nm and axial resolution of 532 nm. However, the improvement by a
factor of

√
2 is in practice hampered due to the finite detector (pinhole) size, resulting



2.5. Microscopy Imaging 23

in a typical confocal resolution in the lateral direction of ∼ 200 nm [83, 88, 89]. The
high axial resolution, however, allows for acquisition of thin 2D optical sections of the
sample. A collection of 2D sections can be acquired at varying depth in the sample, by
either moving the objective or by moving the sample in the vertical direction, resulting
in a 3D image stack of the sample. Fig. 2.4b shows an example of a 3D image stack
of fluorescent silica rods, with dimensions 32 × 32 × 9 µm3 and voxel-size 128 nm in
xy and 103 nm in z, acquired with a Leica SP2 confocal microscope using a 488 nm
laser and 100×/1.4 oil-immersion objective. In Chapter 4 we describe in detail a new
algorithm to identify the positions and orientations of the rods in such a 3D confocal
microscopy image stack of densely packed particles.

Although simple geometrical formulae exist for the expression of the resolution of
a (confocal) microscope, a much more accurate method is via calculation of the PSF
taking into account the vectorial properties of light and electromagnetic diffraction
theory [88, 90]. This method allows for taking important microscopic parameters into
account such as the finite size of the detector pinhole, the use of high aperture objectives
and the often encountered refractive index mismatch between sample and immersion
fluid. The later phenomenon is known to have a detrimental effect on the performance
of the imaging system [88]. A refractive-index mismatch present between sample and
immersion fluid deteriorates the PSF, which becomes progressively worse as a function
of axial distance from the coverslip, and it also introduces an intensity fall-off with
height and distorts axial distances [88]. Hell et al. showed that for a sample with
refractive index nD = 1.47 (which is close to the silica suspensions used in this thesis),
excited with wavelength around 500 nm and observed with an oil-immersion objective
with NA = 1.3, the axial resolution decreases by a factor of 1.2 per 10 µm, the intensity
decreases by 30% per 10 µm and the axial distances are elongated by 4% [88]. The
axial resolution 50 µm deep in a sample with refractive index nD = 1.47 is therefore 2.5
times larger (∼ 1250 nm) compared to an index-matched system. Fortunately, glycerol-
objectives, optimized for samples with refractive index nD ∼ 1.45 do not suffer from
such strong distortions and, additionally often have a longer working distance than an
oil-immersion objective [91].

In Chapter 3 we will demonstrate the experimental measurement of the PSF of a
point-scanning confocal microscope (Leica SP8) using an index matched sample, for λ
= 488 nm and a 100×/1.4 oil immersion objective, resulting in resolutions of 190 nm in
the lateral and 490 nm in the axial direction. We also present detailed measurements
of the dependence of the refractive index mismatch on the scaling of axial distances.

2.5.4. The effect of the PSF on particle imaging
The rod-like particles studied in this thesis have a fluorescent diameter of typically

200 - 300 nm, which is smaller than the resolution of a confocal microscope in the
axial direction (see Section 2.5.3). Because the PSF is anisotropic, this can result in
a (strongly) distorted particle shape. To investigate the effect of the PSF on parti-
cle imaging, we created computer-generated confocal-like images with a theoretically
approximated PSF and noise. These images can be compared to existing confocal
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microscopy images obtained from experiment or they can be used as test data for real-
space particle tracking.

We now briefly explain the generation of test-images, for a more detailed description
see Chapter 4. First, 3D coordinate sets of a specific configuration of rods were
generated, with a line segment parallel to the main axis of the rod representing the
particle. Next, all points closer than half the diameter of the line segment are given an
intensity value of 0.95 (with the range of intensities between 0 and 1). The effect of
the PSF was approximated by convolving these objects with a Gaussian kernel with a
standard deviation σx/d = σy/d = 0.1− 0.3 and σz/d = 0.3− 0.9 with d the diameter
of the particle. Besides a theoretical approximation of the PSF, we also added artificial
noise to the images. Although noise from modern detectors is essentially photon-limited,
suggesting a Poisson distribution [92], we added noise to each pixel in our images with
a simple Gaussian distribution with standard deviation σn = 0.10 − 0.30. Finally, we
converted all our data with intensity values between 0 and 1 to 8-bit grayscale tiff
images.

Fig. 2.5 shows a comparison between computer-generated data and real experimental
data. This figure shows three orthogonal views of an experimental (Fig. 2.5a-c) and a

Figure 2.5. Effect of a point spread function (PSF) on rod-like particle
imaging. (a-c) Confocal microscopy images of rods with length l = 3.3 µm,
diameter d = 550 nm and aspect ratio l/d = 6.0 (B35). The rods were ordered
into a hexagonal columnar phase. All scale bars are 3 µm. (d-f) Computer
generated data of a columnar phase of rods. See text for details on how the data
were created. Due to the lower resolution in the z-direction, rods appear larger
in the z-direction than in the x- and y-direction. The apparent difference in
rod diameter between figures (b) and (c) is because of the hexagonal columnar
symmetry only.
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computer-generated (Figs. 2.5d-f) hexagonal columnar phase of rod-like particles. The
computer-generated images were constructed using a PSF with σx/d = σy/d = 0.15 and
σz/d = 0.3. Gaussian noise was added with σn = 0.1. The effect of the anisotropy of the
point spread function in the z-direction compared to the xy-direction is clearly visible
(Figs. 2.5b,e), where the diameter of the rods in the xz plane appears broader than in
the xy plane (Figs. 2.5a,d). The difference in apparent diameter between Fig. 2.5b and
Fig. 2.5c is because of the hexagonal columnar symmetry only, resulting in different
inter-particle spacing for different cuts through the sample.

2.5.5. Image Deconvolution
Since the shape of the PSF is known to a large extent a priori, it can be used to

reverse the convolution process, which is a process known as deconvolution. However,
due to the addition of noise (and possibly other image distortions), the effect of the PSF
cannot be completely reversed but rather suppressed. Nevertheless, if both the signal-
to-noise ratio is high and the sampling frequency is sufficient, deconvolution is capable
of not only increasing resolution (especially in the axial direction), but also suppressing
noise and enhancing contrast [84]. For a point-scanning fluorescent confocal microscopy
setup using a 488 nm laser and an oil-immersion objective (nD = 1.515) with numerical
aperture NA = 1.4, the ideal Nyquist sampling rate is approximately 43 nm in the lateral
(xy) direction and 130 nm in the axial (z) direction [93,94], i.e. roughly 1/4 of the res-
olution of the microscope (see Section 2.5.3). Because the noise from modern detectors
can be well modelled with a Poisson distribution [92], we use the definition SNR = √np
with np the number of detected photons in the brightest part of the image [95]. Using
certain detectors, e.g. an avalanche photodiode (APD), np can be directly measured.
Using a photo-multiplier tube (PMT), np can be estimated by comparing (empty)
background parts of the image with a bright (signal) part. See Refs. 96 and 50 for
further details and alternative methods. Using the definition SNR = √np, high quality
confocal microscopy images have a SNR & 15 [96]. All deconvolutions presented in this
thesis were performed using commercially available software (Huygens Professional 4.4,
Scientific Volume Imaging) using the classic maximum likelihood estimation restoration
method [90]. When there was a refractive index-mismatch between immersion fluid and
sample, we used a depth dependent theoretical PSF [90]. In other cases, we used a
measured PSF, obtained using fluorescent polystyrene spheres as approximate point-
sources, which is described in detail in Chapter 3. In Chapter 6 we demonstrate the
effect of deconvolution of 3D confocal microscopy image stacks of dense sediments of
fluorescent silica rods.

2.5.6. Stimulated Emission Depletion
A well known expression for the diffraction limited resolution of a light microscope

was pioneered by Ernst Abbe and is given by the full width at half maximum of the
focal spot:

∆x ≈ λ

2n sinα, (2.10)
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with λ the wavelength, n the refractive index and α the semi-aperture angle of the
objective lens, such that the numerical aperture NA = n sinα. This expression is
similar but slightly different from the later defined criterion by Lord Rayleigh (see
equation (2.6)). The last several decades, many techniques have been developed to
resolve features that are smaller than the diffraction limit, often referred to as super-
resolution techniques. For an extensive overview of super-resolution imaging techniques
we refer the reader to Ref. 97. One particular technique that we discus here is known
as stimulated emission depletion (STED) [89,98]. A 2D version of this technique works
as follows (see also Fig. 2.6). Using an excitation laser (green), a fluorescent sample is
excited within a diffraction limited spot. With a second laser (red), that has a higher
wavelength than the excitation laser, a helical-vortex phase filter is used to create a
doughnut-shaped overlay. This doughnut drives all the fluorophores at the periphery
of the focus spot to the ground state via stimulated emission of a lower energy photon.
Due to the doughnut shape, the central spot alone is unaffected, which can decay
spontaneously.

The resolution (in the lateral direction) of the resulting central focus spot can be
expressed as an extension of Abbe’s equation [89,98]

∆x ≈ λ

2n sinα
√

1 + I/Isat
, (2.11)

with I the peak intensity of the depletion beam and Isat the intensity required to induce
stimulated emission. This results (for biological samples) to typical values for the lateral
resolution between 20 and 80 nm. Since the resolution of the axial direction is essentially
unaffected to remain ∼ 500 nm, this results in a ‘cigar-shaped’ PSF. However, using
an overlay that also extends in the z-direction, known as 3D-STED, axial resolutions
down to ∼ 100 nm can be achieved [99–101].

Figure 2.6. Schematic of a 2D-STED microscope. (1) Detector. (2)
Excitation laser. (3) Depletion laser. (4) Phase filter. (5) STED objective
(6) Focused excitation spot. (7) Doughnut overlay. (8) Resulting fluorescence
spot. Image courtesy of Leica Microsystems, Germany.
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In this thesis, however, we used 2D-STED techniques only. Fig 2.7 shows a compar-
ision between conventional confocal microscopy and STED imaging. STED confocal
microscopy images were taken with a Leica TCS SP5 and SP8, equipped with continuous
wave (CW)-gated STED [100]. STED was performed in CW-STED mode, using a CW
depletion laser at 592 nm wavelength and a pulsed excitation at 488 nm from a white
light continuum laser.

Fig. 2.7a shows a 2D slice out of a 3D data set that was taken of a sample of silica rods
(B35), dispersed in an index matching DMSO/water mixture after sedimentation, at a
packing fraction above 50%. Fig. 2.7b clearly shows the increased resolution when the
same particles were imaged in CW-STED mode. As a result of the improved resolution,
the fact that the FITC is localized in a very thin (30 nm) shell is much better visible,
especially for rods oriented perpendicularly to the imaging plane. The resolution could
be even further increased by 3D STED deconvolution (Huygens Professional STED
module, Scientific Volume Imaging), see Fig. 2.7c, thereby also significantly reducing
background noise and increasing contrast.

Figure 2.7. Difference between (a) conventional confocal microscopy, and (b)
STED confocal microscopy. In (b), the location of the dye in the outer shell is
much better visible due to the increased resolution. (c) Further improvement
of the resolution by 3D STED deconvolution. Scale bars indicate 3 µm.
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3
Calibration and Scaling of Axial Distances
in Confocal Microscopy as a Function of

Refractive Index
Abstract

Accurate distance measurement in 3D confocal microscopy is important for
quantitative analysis, volume visualization and image restoration. However,
axial distances can be distorted by both the point spread function and by a
refractive-index mismatch between the sample and immersion liquid, which are
difficult to separate. Additionally, accurate calibration of the axial distances in
confocal microscopy remains cumbersome, although several high-end methods
exist. In this chapter we present two methods to calibrate axial distances in
3D confocal microscopy that are both accurate and easily implemented. With
these methods, we measured axial scaling factors as a function of refractive-
index mismatch for high-aperture confocal microscopy imaging. We found
that our scaling factors are almost completely linearly dependent on refractive
index and that they were in good agreement with theoretical predictions that
take the full vectorial properties of light into account. There was however a
strong deviation from the theoretical predictions using (high-angle) geomet-
rical optics, which predict much lower scaling factors. As an illustration, we
measured the point-spread-function of a correctly calibrated point-scanning
confocal microscope and showed that a nearly index-matched, micron-sized
spherical object is still significantly elongated due to this PSF, which signifies
that care has to be taken when determining axial calibration or axial scaling
using such particles.
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3.1. Introduction
Confocal microscopy is a powerful tool for 3D in-situ measurements of both structure

and dynamics for a wide range of scientific disciplines, such as cell-biology, phar-
maceutics and materials science [84, 102–104]. However, care has to be taken with
3D measurements because not all three dimensions are effected in the same way by
both optics and data acquisition software. The inevitable difference in lateral and
axial resolution affects the apparent shape of any (sub)micron-sized feature in a 3D
measurement [50]. Furthermore, there is often a refractive index (RI) mismatch between
immersion fluid and sample. Not only does the RI-mismatch deteriorate the point
spread function (PSF) with increasing focus depth, and therefore the resolution, it also
introduces a decrease in intensity and a shift of the objective focus [88,105–114]. When
the refractive index of the sample is smaller than the immersion liquid used for imaging,
axial distances appear more elongated due to the refractive effects on the focus position.
A clear distinction can be made between studies that analyse these focal shifts with
geometrical optics and studies that take the vectorial properties of light into account.
On the basis of geometrical optics, axial elongation up to a factor of three times the
actual distance has been predicted for high-aperture oil-immersion imaging in aqueous
samples [105, 106]. It seems likely however that in the mechanism of the axial shift,
paraxial rays dominate over the high-angle rays that are used in the geometrical optics
approach [108]. Studies that take the vectorial properties of light into account therefore
predict significantly smaller axial elongations [88,109,115].

There are however still significant differences between the precise values of the axial
scaling factors for different vector-based theories [88, 109, 110, 115] and the amount of
experimental studies remains limited [88, 113, 116]. Also, in most experimental studies
on axial distance scaling, little attention is devoted to the axial-distance calibration,
which is indispensable for precise measurements. Calibration of the lateral distances is
both straightforward and accurate, e.g. by using a calibration grid. However, accurate
calibration of the axial distances in confocal microscopy remains cumbersome, although
several high-precision methods exist [117–119].

In this chapter we demonstrate two methods to calibrate axial distances in confocal
microscopy that are both accurate and practical to employ. In the first method we use
light interference to accurately measure the height of an empty calibration cell. We
filled the cell with four different solvents mixed with fluorescent dye, which enabled
the determination of the axial scaling factors as a function of refractive index for
high-aperture 3D confocal-microscopy imaging with an oil-immersion objective. We
also demonstrate a second method to accurately calibrate the confocal microscope,
which is with large (∼ 50 µm) spherical particles that only have a thin fluorescent
shell (compared to their size). Finally, we show with a correctly z-calibrated confocal
microscope that spherical objects of a micrometer or smaller are still significantly
elongated due to the PSF and possibly also due to a small refractive index mismatch
between particle and solvent.
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3.2. Methods
3.2.1. Calibration cell construction and FTIR measurement

To calibrate the axial distances in a point-scanning confocal microscope, we built a
custom sample cell with standard glass coverslips (Menzel Gläzer). The glass coverslips
had a refractive index (n23

D = 1.523) close to the refractive index of the oil-immersion
liquid (Type F, Leica, n23

D = 1.515) used for imaging. We avoided using glass capillaries
(Vitrocom), often used in confocal studies on colloidal systems, since they provide
lower quality imaging which is partially due to their manufacturing process and also
due to the refractive index (n23

D = 1.47). We used a standard No. 1.0 coverslide,
which has a thickness between 130 - 160 µm, as specified by the manufacturer (Menzel
Gläzer). Although standard confocal microscopy objectives are optimized for a coverslip
thickness of 170 µm [84] and therefore a No. 1.5 coverslip (thickness 160 - 190 µm) would
have been more accurate, we could not however completely image our cell (with a height
∼ 80 µm), due to the limited working distance of the high numerical aperture objectives
that we used. As spacers, we used No. 00 coverslips (thickness 55 - 80 µm) and the
individual components of the cell were permanently fixed onto a standard microscopy
slide (Menzel Gläzer) with UV glue (Norland 68 Optical Adhesive), see Fig. 3.1a. The
resulting height of the cell H was measured with a Fourier Transform Infrared (FTIR)
spectrometer, with a selected diameter aperture of 0.25 mm (Vertex 70, Bruker). To
avoid additional interference effects from the top coverslip itself, a drop of immersion
oil was carefully placed on top of the cell before the measurement. The thickness and
irregularities of the much thicker microscopy slide (∼ 1 mm) made it not necessary to
correct for its interference effects.

3.2.2. 50 µm PMMA spheres
We used large poly(methyl methacrylate) (PMMA) spheres as a second method for

calibration. The spheres had an average diameter σ = 50 µm and large polydisper-
sity (> 10%, Altuglas, BS150N). To fluorescently dye the particles, we first prepared
(rhodamine isothiocyanate)-aminostyrene (RAS) dye following the method described by
Bosma et al. [80]. Then, we saturated a quantity of acetone (99%, Merck) with RAS and
subsequently centrifuged the saturated acetone at high speed to sediment undissolved
dye. The acetone was then added to dodecane (99%, Sigma-Aldrich) to give a 10 wt%
solution of acetone. In this mixture, 50 wt% undyed PMMA particles and 0.35 wt% azo-
bis-isobutyronitrile (98%, Acros) were suspended in a glass vial. The reaction mixture
was heated up to 83◦C and left to react for approximately 1 day. During this reaction,
RAS molecules become chemically bonded with unreacted PMMA-ends at the surface of
the particle. The vial was left open, so acetone could evaporate. The dyed particles were
washed with hexane and dried under vacuum. Afterwards, the particles were suspended
in a 24 wt% mixture of cis-decahydronaphthalene (cis-decalin, 99%, Sigma-Aldrich) in
cyclohexylbromide (CHB, 98%, Sigma-Aldrich). The refractive index of this mixture
was n21

D = 1.490, as measured with a refractometer (Atago 3T). This solvent mixture
closely matched the refractive index of the particles, based on the fact that the refractive
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index is close to that of the bulk material (n20
D = 1.491 [120]) and that the particles

hardly scattered when viewed under bright-field illumination. As a measure of shape
uniformity, we determined the ellipticity of a small ensemble of particles suspended in
24 wt% cis-decalin in CHB. To this end, we fitted an ellipse to a binarized confocal
microscopy image of the particles’ equator using ImageJ software [121]. We measured
the aspect ratio AR = b/a, with b the major and a the minor axis of the ellipse. For a
total of 18 particles we found AR = 1.016± 0.002.

3.2.3. Confocal microscopy measurements
The confocal microscopy measurements were all performed with a Leica SP2 or Leica

SP8. All distance measurements were performed on 3D image stacks obtained in xyz-
scanmode. Although a (single) vertical scan obtained in xzy-mode is a fast method
to view vertical slices through the sample, the obtained distances are in general not
accurate and were avoided for any quantitative measurement. Imaging of the empty
calibration cell was performed with a 20x/0.7 air-objective (Leica), all other measure-
ments were performed with a 100x/1.4 oil-immersion confocal objective (Leica). The
largest measurement error is introduced by the top coverslip being under a small angle
with respect to the microscopy glass slide (see Fig. 3.1a), despite careful application of
the UV glue. Because we cannot place the sample in exactly the same position after
its first measurement, we measured the height gradient in the x- and y-direction and
found that the largest slope was 1.9 µm/mm. Assuming that it is possible to place the
sample in its original position within 0.3 mm accuracy, a rough estimate of the error on
the confocal height measurements is ∼ 0.6 µm. We therefore chose our pixel-size in the
axial direction to roughly half of this value. For the axial-scaling measurements, we used
solvents of increasing RI: immersion oil (Type F, Leica, n20

D = 1.516), cyclohexylchloride
(CHC, >98%, Merck, n20

D = 1.463), dodecane (>99%, Sigma-Aldrich, n20
D = 1.421) and

de-ionized water (Millipore system, n20
D = 1.333). The first three (apolar) solvents were

saturated with pyrromethene-567 dye (excitation maximum λmax = 518 nm, Excition)
whereas the water was saturated with fluorescein isothiocyanate (FITC, isomer I, 90%,
Sigma-Aldrich). Undissolved dye was removed by centrifugation. Also, a small amount
of sterically stabilized PMMA tracer particles [80] (diameter σ = 2.07 µm, polydispersity
3%), that often stick to untreated glass, was added to the apolar solvents to accurately
determine the top and bottom of the cell. Because the volume fraction of the PMMA
tracer particles is � 1 %, their contribution to the effective refractive index of the
sample can be neglected. Solvents were removed from the sample cell with nitrogen
flow and the cell was flushed three times with the new solvent before the sample was
carefully placed on the marked area under the confocal microscope to record a new
image-stack. The image-stacks of the calibration cell were all recorded on a Leica SP2
with a 488 nm laser and a scan speed of 1000 Hz. The voxel-size of the image stacks
was 293 × 293 × 311 nm3. The typical total volume of the images stacks was 38 × 38
× 115 µm3. Images of the large PMMA spheres (σ = 50 µm) were recorded on a Leica
SP8 with a 543 nm laser line, voxel-size 51 × 51 × 168 nm3 and total volume 52.8 ×
52.8 × 54.1 µm3.
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3.2.4. PSF measurement & deconvolution
To suppress the effect of the point-spread-function (PSF), we deconvolved the 3D

confocal microscopy data-stacks of the spherical particles. All deconvolutions were
performed using commercially available software (Huygens Professional 4.4, Scientific
Volume Imaging) using the classic maximum likelihood estimation restoration method
[90]. For the deconvolution of the image-stack of the large PMMA sphere (σ = 50 µm),
we used a depth dependent theoretical PSF that takes into account the (small) RI-
mismatch between sample and immersion fluid [90]. For the deconvolution of the 200 nm
and 1040 nm particles, we used a measured PSF, obtained using fluorescent polystyrene
spheres with diameter σ = 200 nm, polydispersity 5% and excitation maximum λ =
441 nm (YG Fluoresbrite Microparticles, Polysciences). The polystyrene particles (bulk
material n20

D = 1.592 [120]) were dried on a cover glass (Menzel Gläzer, No. 1.5) and
subsequently a drop of immersion oil (Type F, Leica, n20

D = 1.516) was placed on
the glass slide to (nearly) index-match the particles. The sample was then placed
on a microscopy slide with glass spacers and sealed with UV glue (Norland Optical
Adhesive). Images of the beads were recorded with an inverted confocal microscope
(Leica SP8) with a 100x/1.4 oil immersion objective (Leica) in combination with a
Hybrid detector. To gain enough statistics, confocal image-stacks of 8 different spheres
were recorded with (sub)Nyquist sampling rate (18.2 × 18.2 × 83.9 nm3). Because
these particles are only approximate point-sources, the PSF was obtained by iterative
deconvolution with a 200 nm bead object [90]. Additionally, we imaged poly(methyl
methacrylate) (PMMA) spheres with diameter σ = 1040 nm and a polydispersity δ

= 3%, as determined with static light scattering (SLS). The particles were sterically
stabilized with poly(12-hydroxystearic acid) (PHS) grafted onto the PMMA backbone
which was chemically attached to the core of the particles and covalently labelled
with fluorescent 4-methylaminoethylmethacrylate-7-nitrobenzo-2-oxa-1,3-diazol (NBD-
MAEM) dye for imaging [80]. With the measured PSF, we deconvolved image-stacks
of both the fluorescent polystyrene spheres (σ = 200 nm) and of the larger PMMA
spheres (σ = 1040 nm) that were dried on a glass coverslip (Menzel Glazer, No. 1.5)
and subsequently immersed in immersion oil (Type F, Leica). The particles were imaged
within one hour of sample preparation. We acquired images stacks with voxel-size 5.4
× 5.4 × 41.96 nm3 and 18.75 × 18.75 × 83.9 nm3 respectively, using a 100x/1.4 oil
objective and a 488 nm laser-line selected from a white light laser.

3.3. Results
3.3.1. Calibration cell & distance measurements

The sample cell used for calibration is shown in Fig. 3.1a. When placed in a
spectrometer, light reflecting from the front and back of the inside of the sample
cell resulted in oscillations in the transmission spectrum, known as Fabry Perrot (FP)
fringes, and shown in Fig. 3.1b. We determined the height of the cell from the spacing
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Figure 3.1. Construction and measurement of a calibration cell. (a) A sample
cell with height H was built with glass coverslips and a standard microscopy
slide, glued together with UV-glue. (b) When the (empty) cell was placed in
a Fourier Transform Infrared (FTIR) spectrometer, Fabry Perrot (FP) fringes
were visible in the transmission spectrum. (c) The height of the cavity (H =
80.990 ± 0.008 µm) was determined from the spacing between the FP fringes
[122]. The error-bars on individual points are smaller than the symbol size.

between the maxima of the FP fringes with the formula [122]

H = p
λpλ0

2n(λ0 − λp)
, (3.1)

with λ0 the longest wavelength, p the fringe order of subsequent maxima at wavelength
λp and n the refractive index of the medium (air). In Fig. 3.1c the fringe order p is
plotted as a function of 2n(λ0 − λp)/λpλ0. The slope of the linear fit directly gives the
height of the cell H = 80.990± 0.008 µm.

In Fig. 3.2a we show a confocal micrograph of the empty calibration cell, imaged
in reflection mode with a 20x/0.7 air objective and 488 nm laser. The image clearly
shows the reflections at the glass-air interfaces, which we assumed to be positioned at
the highest pixel-intensity. We measured the height at the same position as was done
with the spectrometer (for four different times), which resulted in a mean value of H =
80.8 ± 0.3 µm. This value is in good agreement with the spectrometer measurement
(H = 80.990± 0.008 µm) and thus confirms proper calibration of the microscope in the
axial direction.

Fig. 3.2b shows the same cell, this time filled with solvents of decreasing refractive
index, as indicated in the figure. The tracer particles were used to measure the height
of the sample. When the cell was filled with immersion oil (Fig. 3.2b, left) a single value
of H = 80.30 µm was obtained. After removal of the oil, the empty cell was measured
again with an air objective which resulted in a value of H = 80.92 µm. From these
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measurements we can conclude that the confocal was accurately calibrated and that
filling the cell with solvent did not alter the height significantly.

We also measured the effect of refractive index (RI) on the axial distances, indicated
by the intensity profiles shown in Fig. 3.2c. Not only does the (apparent) axial distance
change as a function of RI, also the intensity becomes non-linearly dependent on the
axial distance, which is described in detail elsewhere [88]. We compared the data
obtained from Fig. 3.2c with a theoretical model for the scaling factor of axial distances
h(n,NA), based on geometrical optics, given by [105,106]

h(n,NA) =

√√√√ n2 − NA2

n2
oil − NA2 , (3.2)

with n the refractive index of the suspension, noil = 1.516 the refractive index of the
oil immersion liquid and NA the numerical aperture of the objective. For low NA-
objectives, equation (3.2) simplifies to an expression of the focal shift in the paraxial
limit

k(n) = n

noil
. (3.3)
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Figure 3.2. Axial distances measured with confocal microscopy. (a) The
empty calibration cell with H = 80.990± 0.008 µm was measured in confocal
reflection mode (Leica SP2) with a 20x/0.7 air-objective (Leica), which resulted
in H = 80.8±0.3 µm. (b) The cell filled with immersion oil, pyrromethene dye
and poly(methyl methacrylate) (PMMA) tracer particles (left). The sample
was imaged with an 100x/1.4 oil objective (Leica) and a similar height was
measured (H = 80.3 µm). However, when the cell was re-filled with solvents
that had a refractive index-mismatch with the oil-objective, deviating axial-
distances were found, as indicated in the figure. (c) Intensity profiles along
the axial (z) direction show the increase in (apparent) axial distance as well
as decrease of intensity deeper in the sample. The profiles where normalized
and shifted for better visualization.
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We also compared our measurement to two theoretical studies that take the full vectorial
properties of light into account [88, 109]. A summary of these scaling factors is shown
in Fig. 3.3. The (black) circles are our measurement points, which are connected with
a linear fit (dashed black line). The (green) continuous and (green) dashed-dotted
lines are from the theoretical prediction of equation (3.2), for NA = 0.7 and NA = 1.4
respectively. The (pink) square is based on a theoretical study by Sheppard et al. [109]
for NA = 1.4 and the (blue) diamonds show calculations based on a study by Hell et
al. for NA = 1.3 [88], both at a wavelength around 500 nm. The reason for choosing a
lower NA in the latter study is that due to total internal reflection at the glass/water
interface, a numerical aperture of 1.4 becomes effectively 1.3 [88].
The calculations by Hell et al. seem to agree best with our measurements (black circles).
It is also clear from Fig. 3.3 that the formula based on geometrical optics (equation 3.2)
is highly dependent on NA and that our measurements do not correspond at all with the
theoretical predictions for NA = 1.4. This is a confirmation that indeed the paraxial rays
dominate the mechanism of axial shift instead of the high-angle rays used in geometrical
optics. Interestingly though, if we assume an ‘effective NA’ of 0.7 (continuous green
line), equation (3.2) fits our data remarkably well.
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Figure 3.3. Axial scaling factors as a function of the sample refractive index
nD. Our measurements are indicated with black open circles, which were fitted
with the dashed (black) line. The (green) continuous and (green) dashed-
dotted lines are from the high-angle geometrical prediction of equation (3.2),
for NA = 0.7 and NA = 1.4 respectively, and the (red) dotted line is from the
paraxial limit of equation (3.3). The (pink) square is based on a theoretical
study by Sheppard et al. [109] for NA = 1.4 and the (blue) diamonds show
calculations based on a study by Hell et al. for NA = 1.3 [88], both at a
wavelength around 500 nm.

We also measured the axial shift when the calibration cell was filled with CHC and
imaged with a 100x oil-immersion objective with variable NA between 0.7 and 1.4 (not
shown here). This resulted in an increase in axial distance of 2% from NA = 0.7 to
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NA = 1.4, whereas equation (3.2) predicts an increase of 31%. This result is however
again in good agreement with the theoretical prediction and experimental measurement
reported by Hell et al. [88].

From a linear fit to our measurement points, we obtained the empirical formula

f(nD) = 0.82 nD − 0.24, (3.4)

with the coefficient of correlation R2 = 0.993 indicating a strong linear correlation.
This empirical formula could be used to predict (or estimate) the axial scaling factor
for 3D images acquired with an oil-immersion objective (NA = 1.4) for any RI between
1.3-1.5.

3.3.2. Calibration with a 50 µm PMMA sphere
As a second method to calibrate the axial distance in a confocal microscope, we

exploited the well-defined 3D geometry of large spherical PMMA particles (average
diameter σ = 50 µm and polydispersity larger than 10%), dyed with a thin fluorescent
shell (∼ 500 nm). We used these particles to determine the z-calibration of a point-
scanning confocal microscope (Leica SP8). We first confirmed correct calibration of the
xy-distances of the microscope by imaging a calibration grid (Ted Pella, grid spacing
0.01 mm) in reflection mode using a 100x/1.4 oil immersion objective (Leica). Then we
imaged a single particle in 3D using the same objective. Fig. 3.4a shows a 3D image-
stack of a particle dispersed in an RI-matching mixture of 24 wt% cis-decalin/CHB.
In Fig. 3.4b, a single xy-image shows that the diameter of the particle in the x- and
y-direction is equal. However, a reconstructed xz-view of the particle (Fig. 3.4c) shows
that there is an elongation in the z-direction. From the intensity profiles, shown in
Fig. 3.4d, we determined the diameter of the particle in the x-, y- and z-direction, and
found an elongation of 5.8% in the z-direction. We also deconvolved the 3D image
stack with a theoretical depth-dependent PSF. The resulting intensity profile in the
z-direction is indicated with the (blue) dashed line in Fig. 3.4d. The deconvolution
resulted in a decrease of the width of both peaks, however, there was no significant
change in the distance between them. Additionally, we acquired images for different
scan-speeds and different image-sizes and found similar results. Due to the (small)
refractive index mismatch between the suspension (n21

D = 1.490) and the immersion
oil (n20

D = 1.516) we expected, based on equation (3.4), an axial scaling factor in the
z-direction of only f(1.49) = 0.98. We therefore conclude that there is a small but
significant elongation in the z-direction of 3.7%, which is most likely due to an incorrect
calibration of the microscope. To confirm this statement, we measured the height of
our calibration cell when it was filled with immersion-oil (Fig. 3.2b) with the same
microscope and objective as used for the image-stack in Fig. 3.4, and found a distance
of H = 83.4 µm. This indicated a similar deviation of 3.0% in the axial direction.

Because the calibration of the xy-distances in confocal microscopy is simple and
straightforward (e.g. with a calibration grid), the fluorescent PMMA spherical particles
described above can be used to measure absolute axial-distance deviations within ∼ 2%.
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Figure 3.4. A fluorescent PMMA sphere dispersed in an index matching
mixture of 24 wt% cis-decalin in CHB, recorded with a confocal microscope
(Leica SP8). (a) 3D view constructed from a XYZ image stack. (b) A single
XY image shows that x and y distances are equal. (c) The reconstructed
XZ view of the image shows that there is a small (6%) elongation in the z-
direction. Due to the refractive index mismatch between the suspension (nD
= 1.49) and the oil immersion (nD = 1.52) an elongation in the z-direction of
2% was expected. (d) Intensity profiles along different lines trough the sphere,
as indicated in the figure. The profiles were normalized and shifted for better
visualization.

An additional benefit is that these particles hardly display thermal motion, even when
dispersed in a solvent with viscosity ∼ 1 cP, which is due to their large size.

3.3.3. PSF measurement & imaging of single fluorescent beads
In Fig. 3.5 we show examples of an experimental measurement of the PSF and its

effect on confocal microscopy measurements of fluorescent particles. In Figs. 3.5a-c we
show images of the PSF of an accurately calibrated point-scanning confocal microscope
(Leica SP8) equipped with a 100x/1.4 oil-immersion objective (Leica). The intensity
profiles of the PSF in the x, y and z-direction could be well fitted with Gaussian
functions (Fig. 3.5d). From the FWHM of these Gaussian fits, we obtained a measure
of the resolution of the microscope. The values that we obtained are 190 nm in the
lateral and 490 nm in the axial direction, which is close to the maximum resolution
possible for a conventional point-scanning confocal microscope, which is around 178
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nm in the lateral and 459 nm in the axial direction for this setup [123, 124]. Also, the
symmetry of the PSF in all three directions is high, indicating little optical aberration.
In Figs. 3.5e-l we demonstrate the effect of the PSF on the geometry of two (nearly)
index-matched spherical particles. In Figs. 3.5e-h, orthogonal views are shown of a
polystyrene bead with a diameter of 200 nm that was immersed in immersion oil (Type
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Figure 3.5. Experimental measurement of the point spread function (PSF)
and imaging of single fluorescent beads. Images were recorded with a 100x/1.4
oil immersion objective. (a) The PSF in the XY plane. Intensity profiles were
recorded along the indicated cross-sections. (b-c) The PSF in the z-direction
clearly shows the expected elongation, due to the more limited resolution in
the axial direction. (d) Recorded intensity profiles from the images in (a) and
(b). The FWHMs that we obtained were 190 nm in the lateral and 490 nm
in the axial direction. (e-h) Orthogonal views of a polystyrene bead with a
diameter of 200 nm, before and after deconvolution. The scale bar is 300 nm.
(i-l) Orthogonal views of a PMMA sphere with diameter 1040 nm, again before
and after deconvolution. The scale bar is 1 µm.
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F, Leica) before and after deconvolution. It is clear from Fig. 3.5g that its dimensions
in the axial direction were stretched. Deconvolution (Figs. 3.5f,h) reduced the apparent
size of the particle, however, anisotropy in the particle shape still remained. In Figs. 3.5i-
l, orthogonal views are shown of a PMMA sphere (diameter 1040 nm), before and after
deconvolution. Despite its larger size, the particle still seems elongated in the axial
direction (Fig. 3.5k), however, deconvolution almost recovered the spherical shape of
the particle (Fig. 3.5l).

These measurements demonstrate that even a micron-sized spherical object that was
nearly RI-matched, seemed elongated in the axial direction due to the anisotropy of the
PSF (and possibly to a lesser extent due to a subtle difference in RI between particle and
solvent). This demonstrates that care has to be taken when using single, micron-sized
features to determine if the microscope is correctly calibrated in the axial direction,
even when the sample is almost RI-matched.

3.4. Discussion
With the calibration cell described in this chapter, we measured the scaling of axial

distances as a function of refractive index (RI) mismatch. We found for an aqueous
sample dyed with FITC (excitation wavelength 488 nm) imaged with an oil-immersion
objective with NA = 1.4, an axial scaling factor of 0.85. This value is in good agreement
with the theoretical calculations of Hell et al. [88], who found an value of 0.83 and
to reasonable extent to the value of 0.89 calculated by Sheppard et al. [109]. The
linear slope fitted to our data was however much smaller than the slope predicted
from the high-angle geometrical optics equation (3.2), which predicts a scaling factor
of 0.36 for NA = 1.3, and is slightly higher than the slope for the paraxial limit
n/noil. Our experimental values are however in good agreement with other experimental
measurements that use a fluorescent ‘sea’ between two coverslips [88,116]. Theoretical
expressions that take the vectorial properties of light into account found almost linear
scaling in axial shift as a function of axial distance, and also found no strong dependence
on excitation wavelength (around 500 nm) [88,109,115], which extends the applicability
of these results.

Our measurements deviate considerably however from experimental studies on micron-
sized particles that are immersed in a solvent with a RI-mismatch, where scaling
factors of 0.4-0.7 are reported for aqueous samples [105, 106, 116]. In the case of a
RI-mismatch between the sample and the immersion liquid, both the width of the PSF
increases [88,114], as well as the apparent axial distance (due to the focal shift). These
two effects are hard to separate for micron-sized particles and has led to overestimation
of axial distance scaling in previous studies, as described further in Ref. 110. The
overestimated axial scaling obtained by measuring particles of a few micron in diameter
corresponds however approximately to the incorrect axial scaling distances predicted
by the geometrical optics model (equation 3.2).

This does not mean that micron-sized spheres are not useful for calibration samples.
On the contrary, regular 3D colloidal crystals of fluorescent micro-spheres can act
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as an ideal calibration sample, because of the well defined (periodic) 3D distances
of the crystal lattice. The particles can be immobilized by post-treatment of the
sample and the lattice distances can be measured with complementary methods such
as light scattering or X-ray diffraction [125]. Such 3D colloidal crystals are especially
worth exploring because a complete theory exists on how to correct for refraction
index differences between the micro-spheres and the surrounding medium. Presently
we are using such samples to test effective medium theories that are used to arrive
at approximate effective refractive indices for the combined particle-solvent system.
Furthermore, if the particles have e.g. a small gold core, the sample can at the same
time be used to measure the PSF (in reflection mode).

3.5. Conclusion
We demonstrated two methods to calibrate axial distances in confocal microscopy

that are both accurate and practical to employ. The first method consists of a sam-
ple cell built from ordinary glass cover-slips. From the Fabry-Perrot fringes in the
transmission spectrum of the empty cell, we could accurately measure its height. We
filled the cell with four different solvents mixed with fluorescent dye, which enabled
the determination of the axial scaling factors as a function of refractive index for high-
aperture confocal-microscopy imaging. We found that our scaling factors are almost
completely linearly dependent on the refractive index (RI) and therefore we determined
an empirical formula that provides the axial scaling factor for confocal microscopy
images acquired with an oil-immersion objective (NA = 1.4) for any RI between 1.3-1.5.
Our results are in good agreement with theories that take the full vectorial properties of
light into account, and consequently, there was a strong deviation with the high-angle
theoretical prediction of geometrical optics, which predicts much lower scaling factors.
The prediction in the paraxial limit (considered only valid for low NA) resulted in only
slightly higher scaling factors compared to our measurements, which is in agreement
with the assertion that paraxial rays dominate in the mechanism of axial shift. Using
a straightforward calibration of the lateral distances of a confocal microscope with a
calibration grid, we showed that large (∼ 50 µm) spherical particles that only have a
fluorescent shell, can conveniently be used to measure axial-distance deviations ∼ 2%.
As an illustration, we demonstrated with a correctly calibrated confocal microscope
that spherical objects of only a micrometer or smaller were still significantly elongated
due to the PSF, and possibly due to a small RI-mismatch, which signifies that care has
to be taken when determining axial calibration or axial scaling using such particles.
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4
Determination of the Positions and

Orientations of Concentrated Rod-like
Colloids from Microscopy Data

Abstract
We developed a new particle-fitting algorithm that can extract the positions
and orientations of fluorescent rod-like particles from three dimensional confo-
cal microscopy data stacks. The algorithm is tailored to work even when the
fluorescent signals of the particles overlap considerably and a threshold method
and subsequent clusters analysis alone do not suffice. We demonstrate that our
algorithm correctly identifies all five coordinates of uniaxial particles in both a
concentrated disordered phase and a liquid-crystalline smectic-B phase. The al-
gorithm also works on confocal microscopy images of other uni-axial symmetric
particles such as dumbbells and on 3D electron tomography reconstructions of
gold nanorods. We also give examples of position and orientation fitting from
2D images of concentrated 3D samples of silica rods and PMMA dumbbells and
show that the projected 2D nematic order parameter gives a good estimate of
the true 3D nematic order in the system. Lastly, we determined the accuracy
of the algorithm using both simulated and experimental confocal microscopy
data-stacks of diffusing silica rods in a dilute suspension. This novel particle-
fitting algorithm allows for the study of structure and dynamics in both dilute
and dense liquid-crystalline phases (such as nematic, smectic and crystalline
phases) as well as the study of the glass transition of rod-like particles in three
dimensions on the single particle level.



44 4. Determination of the Positions and Orientations of Rod-like Colloids

4.1. Introduction
The accurate determination of particle positions by means of microscopy has been

important in scientific studies for at least a hundred years. For instance, research trying
to quantify via microscopy what is now known as Brownian motion of colloidal particles
goes back several centuries [126]. This type of quantitative study on Brownian motion
culminated in essential contributions to proving the existence of atoms and molecules
and led to a Nobel Prize in 1926 [6]. One year earlier, the Nobel Prize had been awarded
for the development of the ultra-microscope by Zsigmondy. This type of microscopy
made it possible to follow individual gold nanoparticles that are much smaller than
the wavelength of visible light [127]. The ultra-microscope imaged the light scattered
by such metallic nanoparticles using methodology that is now referred to as dark-field
microscopy [128]. More recent developments have taken light microscopy to the imaging
of single molecules [129] and with resolutions clearly so far below 100 nm that the
correct term is starting to become: light nanoscopy [89,97]. However, the focus of this
chapter and the brief literature review in this introduction is on two particular classes
of microscopy that enable quantitative 3D imaging of all individual colloidal particles
present even in concentrated systems: fluorescence confocal microscopy and electron
microscopy tomography. This is not to say that there are no exciting developments
taking place in quantitative 3D imaging using other techniques. For instance, in the field
of digital holography multiple particle trajectories can now be tracked with nm precision
(also for z-coordinates) [130]. However, this technique can be used to disentangle the
signals of only a few particles [131], but not (yet) of truly concentrated systems.

If all the particles in concentrated systems need to be followed in 3D, the approaches
that have been successful until now try to limit the interaction of the incident photons
or particles with the photons being detected as much as possible. This is also an
important reason for the use of fluorescence, because with fluorescence there is almost
no possibility of interference of the exciting light with the light that is detected. In
addition, chemical attachment of dye in specific places inside the particles can help
in resolving particles in concentrated systems significantly [132,133]. By matching the
refractive index of the particles and the medium one can minimize the interaction of the
imaging light with the particles and image samples that consist of more than just a few
layers of particles [46, 134]. In addition, having an as optically homogeneous medium
as possible limits the degradation of the microscope response function, i.e. the point
spread function (PSF) [88].

The first demonstration of the ability to quantitatively image individual particles in
more concentrated systems was done by studying particles only a few layers away from
the container wall [135,136] or essentially 2D systems using (digital) video microscopy,
which started to become important in the 1980s [137]. The group of Grier and his
co-workers gave an important impetus to this field by publishing the methodology and
making available the software they developed to track all particles quantitatively in 2D
[45,138]. After filtering steps to remove noise, coordinates were obtained with sub-pixel
accuracy using a centroiding algorithm. Centroiding algorithms essentially determine
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the arithmetic mean of the pixels associated with a particle. Sub-pixel accuracy can
be achieved with this approach if the noise is below a certain level and if the signals of
the individual particles are well separated. In addition, Grier et al. also implemented a
method to identify the same particles in consecutive video-frames after they have moved,
known as particle tracking, which is based on the minimization of the mean squared
displacement of the particles [45, 138]. This method is an example of a combinatorial
optimization problem and is independent of the process of locating the particles.

Many other groups studying similar 2D model systems started using the methodology
optimized by the Grier group. Often the systems studied were composed of charged
polystyrene particles (refractive index nD = 1.6) with a size of several hundred nm
or larger in water (nD = 1.3). Refractive index matching was considered not to be
too important because there were no particles blocking each other’s signal. For these
kinds of 2D systems however, the significant index of refraction difference and the
consequently strong interaction of the light with the particles can lead to an overlap of
neighbouring particle signals. More recently it has come to light that if this overlap is
not properly dealt with, it can lead to small systematic shifts in the determination of
particle positions [139,140]. The resulting systematic errors are small (order of tens of
nm) compared to the particle size, but enough to lead to an incorrect interpretation of
the interaction potential between such particles and the appearance of attractions at
relatively large distances where there are really none [139,140].

In the early 90s it was demonstrated that quantitative imaging of thousands of
particles even in concentrated 3D systems is possible by using confocal microscopy
in combination with fluorescent core-shell particles [46]. As mentioned in Ref. 46,
particle coordinates were obtained with sub-pixel (or actually its 3D equivalent: a voxel)
accuracy by fitting the full 3D data sets with the confocal microscope response function
averaged and measured from a 2D collection of the particles stuck on a microscopy slide.
It was soon found, however, that it was as accurate, but hundreds of times faster, to use
a slice-by-slice approach. In this approach, first the x,y positions of all particles in each
of the xy-slices out a 3D data stack were fitted, using a similar methodology as that
of Grier et al. [45]. Subsequently, the coordinates in the different xy-slices belonging
to the same particle were identified and finally a Gaussian function was fitted to this
limited number of points (generally < 10) to also obtain the z-coordinate. This method
makes use of the fact that the point spread function (PSF), can be approximated quite
well by a Gaussian function in the x,y (lateral) direction and by another Gaussian in
the z (axial) direction with a full-width-at-half-maximum that is approximately three
times larger [102, 141]. The main reason that this methodology (further outlined in
Ref. 47) is so much faster than direct 3D centroiding is that not the entire 3D data
set needs to be loaded into memory at any time but only single 2D slices. Combined
with the fact that the image filtering is only needed in 2D, and 2D image filtering has
been highly optimized, this results in a significant decrease in execution time. Fast
algorithms based on this method allowed for real-time tracking [49]. It is good to point
out, however, that the speed gain was much more important 20 years ago than it is now.
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Modern computers can easily contain an entire stack in their memory and fitting speed
is no longer a limiting factor, which is why most recent studies locate particles using
the full 3D image [48]. In connection to this it was recently pointed out in Ref. 142 that
a shortcut implemented by Grier and others to gain speed in the earlier algorithms in
a noise suppression step leads to unwanted artefacts in coordinate determination.

Around the turn of the millennium, 3D particle tracking of colloids combined with
fast confocal microscopy became well established and enabled the investigation of
phenomena such as crystallization, gelation, the glass transition and flow induced
behaviour on the single-particle level [12,47,48,52,56–63]. Since then, there have been
many examples of algorithms that locate spherical particles with increased accuracy
or performance [49–51, 55]. For example, Jenkins and Egelhaaf demonstrated that for
spherical colloids, improvements in both the position refinement and error estimation
can be done by fitting with the ‘sphere spread function’ (SSF), the convolution of
the PSF and the (fluorescent part of) the particle, which works particularly well for
concentrated systems [50]. Improvements were also made for colloids under flow, where
cross-correlation techniques have been used to track particles in a co-moving frame,
known as ‘correlated image tracking’ [52, 53, 60]. Finally, we want to mention that via
the dynamics of the tracked particles, additional (static) information can be acquired
such as the accuracy of the particle location algorithm [45] and for dense suspensions of
spheres interacting through a hard-sphere-like potential, an estimate of the individual
particle radii [54].

Not only are there significant advances in our ability to track ever smaller particles
with higher accuracy [143], also the range of fields for which this ability is important
has expanded significantly. For instance, particle tracking is used to measure forces
and other dynamical properties such as viscosity in cell-biology, materials science and
food research, known as particle-tracking micro-rheology [144–148]. It is also used in
the study of non-Brownian particles, for instance that of granular materials [149, 150],
in fields where colloidal or larger particles are driven by external fields, such as particle
tracking velocimetry [151, 152], or in the emergent field of ‘active colloids’, i.e. (self)
propelled particles and bacteria [153–155].

Besides fluorescence confocal microscopy, the second method that we focus on in
this chapter is electron microscopy. The relatively weak interaction of the electron
beam in electron microscopy imaging, enables imaging of thousands of nanoparticles
quantitatively in 3D [156–158]. However, there is an extreme difference in the numerical
aperture of imaging with electrons as opposed to photons, which results in a focal depth
that is enormous compared to the wavelength of the electrons. Therefore, the quantita-
tive determination of particle coordinates can be achieved using scanning transmission
electron tomography, in which transmission data are taken from an as large as possible
range of projection angles [156, 159]. Although even the quantitative determination of
ternary structures with electron tomography has been demonstrated [156–158] and the
methodology in general is already well established [156,159], the use of this technique for
obtaining accurate coordinates of colloidal or nanoparticle systems is presently much less
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well developed and the same applies to the methodology of image processing of the data
sets obtained. However, recent advances in electron microscopy are pushing ‘particle’
tracking as far as the atomic level. Huang et al. studied rearrangements of individual
atoms in a two-dimensional glass, using a combination of high-resolution transmission
electron microscopy, Gaussian fitting and the Crocker and Grier algorithm [160].

All studies described so far are based on the quantitative determination of particle
positions and translational motion. It is, however, much less known to researchers in
the field that Perrin, next to his determination of Avogadro’s number by measurement
of the translational diffusion coefficient of spherical colloidal particles, also obtained
their rotational diffusion coefficient [6]. Using larger (and therefore slower) particles,
he focused on small inclusions inside these particles, making it possible to track their
(projected) rotational motion [6]. It has long been known that by, for instance, bleaching
part of a fluorescent particle a similar mark could be made in fluorescence confocal
microscopy as well. However, until quite recently, such a procedure has not been
implemented to measure rotational dynamics [161]. Thanks to recent progress in
particle synthesis however, well-defined (shape) anisotropic colloids are becoming widely
available, see e.g. Refs. 25, 28, 162–165. These particles can often be observed directly
with a (confocal) microscope and therefore enable quantitative measurement of not
only their positional but also their rotational degrees of freedom. Therefore, a rapid
increase in the number of algorithms that extract coordinates of anisotropic particles
from microscopy images has taken place, which will be briefly reviewed in the following.

If the anisotropic particle consists of a cluster of fused spheres, the centroid-algorithm
of Crocker and Grier can still be applied [43, 164]. Hunter et al. described a method
to track the rotational motion of these clusters [166], which was used to study the
decoupling of rotational and translational motion upon approaching the glass transition
in a tracer-host system [167]. Recently, this method was extended to the computation of
the hydrodynamic friction tensor of clusters of (differently sized) spheres [168]. Anthony
et al. used semi-fluorescent Janus-spheres to simultaneously measure the 2D position
and 3D orientation from 2D images [169]. This method was extended to determine the
orientation of single rod-like particles (consisting of jointed Janus-spheres), including
the rotation around the rod axis [170]. Bright-field imaging and customized particle
tracking of (quasi-)2D systems has also been applied to study Brownian motion of
ellipsoids [171–173], boomerang particles [174, 175], the glass transition of ellipsoids
[176–178] and the phase behaviour of Brownian squares [179] and triangles [180].

Mohraz and Solomon, however, were one of the first to determine the 3D position
and orientation of uniaxial ellipsoidal particles, i.e. all five coordinates, using confocal
microscopy and a novel anisotropic feature-finding algorithm [162]. Their algorithm
identifies the points that are located on the central axis (or backbone) of a rod. These
points are then grouped together by cluster analysis as individual rod-backbones, from
which the centroid location and orientation are determined. This algorithm enabled the
quantitative determination of the 3D translational and rotational motion of a dilute
suspension of ellipsoids [181]. A different approach was used by Cohen et al. who
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first detected the centres and orientation angles of all two-dimensional confocal slices
through ellipsoidal particles, which were then connected to analyse the 3D positional
structure of a colloidal fluid of ellipsoids [182,183].

Recent developments in anisotropic particle-tracking studies include the measurement
of the coupling of diffusive motion of particles to external fields, such as shear-induced
rotational motion [40]. A second direction is the quantitative study of anisotropic patchy
particles, e.g. by the determination of all six degrees of freedom of Janus-spheroids [184].
A third is the study of liquid-crystalline phase behaviour on the single particle level.
Progress has been made for suspensions of ellipsoids, where nematic order was found
using a centrifugal field [185] and local crystalline order with an external electric field
[44]. Additionally, large-scale crystalline order was found for soft dumbbells under an
electric field [43]. When silica rods are made long-ranged repulsive, it was found by
several of us that they can form 3D plastic crystals, that can be switched to a complete
crystal with an electric field [186]. However, to the best of our knowledge, equilibrium
nematic, smectic or crystalline phases of uniaxial particles have, thus far, not been
quantified in 3D on the single particle level.

In this chapter we demonstrate a novel 3D image processing algorithm that is capable
of extracting the positions and orientations of a recently developed system of fluorescent
silica rods that forms both equilibrium nematic and smectic phases [25,28]. In brief, the
algorithm detects the backbone of a particle by fitting a line to local bright pixels and
grouping them together. Then the centroid is computed, the orientation is fitted and
finally the length is fitted. This step is iterated and results in a refined estimate of the
3D positions and orientations of the rods. The algorithm still works for dense smectic-
like phases where the fluorescent signals of the particles overlapped considerably. The
algorithm also works for other uniaxial particles such as ellipsoids or dumbbells and on
electron tomography data of gold nanorods.

This chapter is organized as follows. First, we describe the basics of particle-locating
algorithms. Second, we describe our algorithm in detail. Third, we demonstrate the
performance of the algorithm with 3D image stacks of concentrated fluorescent silica
rods. Then, we illustrate that our algorithm can be applied to 3D electron tomography
data of gold nanorods as well. We also give examples of position and orientation fitting
from 2D images of concentrated 3D samples of silica rods and PMMA dumbbells. Next,
we evaluate the accuracy of the algorithm by measuring the translational and rotational
motion of non-overlapping rod-like particles. Finally, we compare our results with recent
progress in the field and give an outlook on further studies that the algorithm enables.

4.2. Methods
4.2.1. Locating particles in confocal microscopy data sets

The aim is to identify and locate (rod-shaped) particles in a set of real-space images
(or snapshots) and to obtain the full configuration of the system. A specific configu-
ration of a system of particles is given by a set of parameters, one for each degree of
freedom of every particle. In the case of rods, these degrees of freedom for particle i are



4.2. Methods 49

centre position ri, orientation ûi and possibly length li, diameter di and brightness bi.
If the length and diameter are known in advance they can be fixed, but if the particles
vary in size they can also be left as free parameters. If the particles vary in brightness
this can be added as an additional degree of freedom. Variations in brightness can be
caused by the synthesis method, scattering or shading in the sample, but also by photo
bleaching. In the case of fully symmetric, homogeneously dyed rods it is not possible
to distinguish between the two ends of the rods. However, we also synthesised rods
with a gradient in brightness, with one bright and one much darker end [72], of which
the orientation could be fully determined. To keep the notation short we introduce
pi = {ûi, li, di, bi} which contains all the degrees of freedom except the position.

To obtain the configuration (ri and pi) we need to elaborate on what is measured. In
case of fluorescent confocal laser scanning microscopy we can assume that the imaging
system is linear so that we can add intensities. Furthermore, li and di refer to the
fluorescent part of the particle length and diameter respectively. The measured image
intensityM(r) at position r can be written as the sum of the ideal (noiseless or averaged)
images of the single particles,

M(r) =
N∑
i=1

RSP(r− ri,pi), (4.1)

and RSP(r,pi) is the image of a single particle placed in the origin, or rod spread
function (RSP). The image of a single particle at the origin depends on all the internal
degrees of freedom of the particle such as orientation, length, diameter and brightness,
but also on the point spread function (PSF) of the imaging system. It is given by

RSP(r,pi) =
∫

dr′ρdye(r′,pi)PSF(r− r′)

= (ρdye(pi) ∗ PSF)(r), (4.2)

which is a convolution (∗) of the dye distribution ρdye(r,pi) of particle i placed in the
origin and the PSF. In a dilute sample this RSP(r,pi) can be measured directly but it
can also be calculated when the dye distribution is simple and the parameters of the
optical systems are known.

Different approaches to obtain the particle coordinates are possible. If all the param-
eters such as the PSF and RSP are known, the locating problem becomes in principle
a deconvolution. However, the RSP and the PSF can be time consuming to determine
accurately, and deconvolutions are sensitive to small changes in the kernel function [187].
This is unfortunate since e.g. polydispersity will introduce changes in the RSP which
would make the deconvolution difficult. If the RSP is not known, there exist several
other possible options. The first option is to assume that the overlap between the RSPs
is not too severe and to determine centre-of-mass and orientation with methods that are
insensitive to the details of the optical system. This is the method used by centroiding
algorithms and is also the method used in this chapter.

Another option is to use a Bayesian method [188]. This method searches for the
configuration that has the largest probability of having resulted in the observed image.
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This method has proven to work well for two-dimensional data sets [189]. It is, however,
slow and complex and therefore not practical for large three-dimensional data sets.

4.2.2. Generation of test images
To test our algorithm we generated confocal-like images from sets of computer-

generated particle trajectories. The images were first generated with intensity values
between 0 and 1, which were later converted to an 8-bit grayscale. Using the centres-
of-mass ri and particle orientations ûi, we generated 3D stacks of xy-images of sphero-
cylinders with aspect ratio l/d = 5, where l is the end-to-end length of the particle and
d the diameter. This was done by calculating the closest distances D to a line segment,
representing the backbone of a particle. The distance from a point in the origin to a
line segment from x1 to x2 with length l = |x1 − x2| is given by

D(x1,x2) =
|x1| if α < 0,√

|x1|2 − α2 if 0 < α < l,

|x2| if α > l,

(4.3)

where α = (û · x1) and û = (x1 − x2)/l the unit vector along the length of the line
segment. If this distance was less than half the diameter of the particle, the pixel was
given a value of 0.95. This was then repeated for all particles. We approximated the
effect of the PSF in our test images by convolving them with a Gaussian kernel with fixed
standard deviation σx/d = σy/d = 0.3 and σz/d = 0.3, 0.6 and 0.9 with d the diameter of
the particle. The full-width-at-half-maximum (FWHM) of the Gaussian function, given
by 2
√

2 ln 2σi, is a direct measure of the resolution of the images. Besides variation
of resolution, we also varied the amount of noise in the images. Although noise from
modern detectors is essentially photon-limited, suggesting a Poisson distribution [92],
we added noise to each pixel in our images with a simple Gaussian distribution with
standard deviation σn = 0.10 − 0.30. Because the amount of noise is known a priori,
it is still straightforward to calculate the signal to noise ratio (SNR), which we define
as SNR = (σ2

g/σ
2
n − 1)1/2, with σ2

g the variance of the constructed image and σ2
n the

variance of the noise [50]. Finally, we converted all our data, with pixel-values between
0 and 1, to 8-bit grayscale tiff images.

4.2.3. Our algorithm
To demonstrate the three-dimensional rod tracking algorithm we will first illustrate

all steps of the algorithm with an artificially created set of images of a single rod,
shown in Fig. 4.1. This will allow us to demonstrate clearly what is going on on a single
pixel/voxel level. Later we will demonstrate how the algorithm fares with real colloidal
suspensions. The following description is for three dimensions but most of the steps are
straightforward to modify for two dimensions.

Reading. In Figs. 4.1a-c we show three orthogonal slices through a generated 3D image
that acts as the source image. The particle shown in the image has a diameter d = 13.0
pixels, and is blurred with a Gaussian kernel σx/d = σy/d = 0.3 and σz/d = 0.9.
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Gaussian pixel noise of σn = 0.1 was added to the image. The first step is to read
in these source images. To avoid accumulating rounding errors and to allow the use
of images of arbitrary bit depth we perform all image manipulations on floating point
numbers between zero and one. Next, the image is rescaled to make sure the voxels are
cubic, which is often not the case for confocal microscopy image stacks. The rescaling
avoids having to account for different x, y and z scales in all following routines. To
make sure no information is lost, this is done by enlarging the image using a bicubic
interpolation. Care should be taken not to use overexposed images since this will result
in a loss of information and an increase of positional error. See Ref. 50 for a more
detailed description and the optimal shape of the intensity histogram. We generally
choose the magnification such that the particles are approximately 10 pixels in diameter.
Larger magnification results in a large file size without any additional benefit.

Filter. The aim of the first filter step is to reduce image noise. We apply a Gaussian blur
to the image, i.e. a convolution with a Gaussian kernel, that acts as a low pass filter.
The optimal width of the function depends on the noise level in the images; a value
between 1.5 and 3 pixels was found to give the best results for the images obtained
in the present chapter. A value that is too large will result in the loss of resolution
and in missing particles, a value that is too small will result in additional, incorrectly
identified, particles. To ensure a black background for the particles, a background value
is subtracted from every pixel. This background value is assumed to be mostly the result
of photon noise, but it can also originate from other sources such as fluorescence from
the solvent or immersion fluid. Pixels that have a negative value after the background
value has been subtracted, are set to zero. In most cases a background value between
0.01 and 0.1 is used. This value should be chosen such that approximately half the
empty pixels (not containing a particle) of the image are zero. We also save a copy of
the image that has not been filtered. This allows us to perform the final fitting step on
the original image. An example of a computer-generated image that has been filtered
is shown in Fig. 4.1d.

Well separated particles. When the intensity distributions of the individual particles
do not overlap significantly we apply what we call a threshold method. This threshold
method works as follows. A typical value for the threshold is between 0.4 and 0.7 and
can be determined by plotting a histogram or by a quick test on a single image in
a program like Photoshop, Gimp or ImageJ. The next step is to group all connected
pixels above the threshold value into sets, as described in the next section. This method
works when these sets of pixels belong each to a single particle and each particle only
corresponds to a single set of pixels. In Fig. 4.1e an example is shown of the threshold
method applied to a single particle. All pixels above the threshold are marked in yellow.
The particle coordinates can be obtained by applying a fit to these sets of pixels, as
described later in this section. When this threshold method works, it is preferred over
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more complex methods since it is both robust and accurate.

General case. When a threshold does not successfully separate the image into regions
belonging to single particles another method has to be used. The first step of this
method is similar to the Crocker and Grier algorithm and is aimed at providing the
final fitting steps with a good initial starting point. In this step, we roughly locate the

Figure 4.1. The different stages of identification of the position and
orientation of a single rod-shaped particle. (a,b,c) Orthogonal slices through
a computer generated 3D image stack. The particle has a diameter of 13.0
pixels and is blurred with a Gaussian kernel with width σx/d = σy/d = 0.3,
and σz/d = 0.9. Pixel noise has been added by adding Gaussian noise with σn
= 0.1. (d) The same image after the filter-step. (e) After a threshold step, the
pixels above the threshold are marked in yellow. (f) After a backbone step,
the pixels identified as backbone pixels are marked in yellow. (g,h,i) The rod
as it is located, viewed from the xy, yz and xz plane. (j) The histogram of
the average intensity along the rod length after smoothing and background
removal. The dashed vertical lines mark the fitted end-points of the rod.
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line segment starting from one end of the rod and ending at the other end, called the
backbone of the particle. To locate the backbone, we look at all voxels brighter than
a predetermined cut-off value. A good value for this is in general between 0.1 and 0.5
depending on the intensity fluctuations between the rods. For these bright pixels we
then check whether they are part of a backbone. To do this we first note that all local
maxima should be part of the backbone. To check if the brightness of the pixel is a
local maximum we compare its intensity to that of all pixels within a distance rbb. If
none of these pixels are brighter the pixel is a local maximum. To find the parts of
the backbone that are not on a local maximum, we look at the distribution of brighter
pixels around the pixel in question. If the pixel is part of the backbone they should be
on a ridge. Backbone pixels can have brighter pixels to one side or two sides but all
these brighter pixels should be more or less on a line through the pixel in question. So
to check if the pixel is part of a backbone we need to check if the pixels brighter than
the pixel in question are on a straight line. To do this we fit a line to these bright pixels
and sum the squared residuals χ, the squared distance between the brighter pixels and
the line. If these bright pixels are part of the backbone of a rod this number will be
low since the pixels will form an almost perfect line while on other places they will not
form a line and the residuals will be much higher. We found that rbb = 3 pixels and a
maximum value χmax = 80 work well for all our data. This step depends on the initial
filtering and on the thickness of the rod in pixels. Fig. 4.1f shows the pixels that have
been identified as backbone pixels in yellow.

After having identified the backbone pixels, we group them into connected clusters.
Due to noise there can be small gaps between the backbone pixels of a rod, so we use
the same search range rbb as before to identify neighbouring pixels. This should work
as long as the diameter of a rod is larger than rbb.

We now have groups of pixels most likely belonging to a single rod. To continue,
we fit (least square) a straight line to these pixels using a singular value decomposition
[190, 191]. The coordinates resulting from this fit are accurate, but still have a strong
pixel bias since they only fit to a few backbone pixels. To eliminate this bias and to
obtain more accurate results, we use these coordinates, lengths and orientations as a
starting point to fit the real image again.

Fitting. The fitting steps work best when applied to the unfiltered image. The Gaussian
blur filter will result in an additional overlap of the RSPs which can result in a decreased
accuracy. The fitting is done in three steps; first the centre of mass of each group of
pixels is computed, then the orientation is fitted and finally the length is fitted. The
position is taken from the centre of mass, weighted with the pixel intensity, of the pixels
within half a diameter from the previous fit. The orientation is obtained by fitting a
straight line to these pixels where the fit is weighted with the intensity of the pixels using
the same least square fitting algorithm as for the backbones. The length is obtained
by calculating the average intensity of pixels along the rod length, see Fig. 4.1j. The
histogram that is obtained from this is smoothed with a Gaussian kernel to avoid noise.
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The end points are then obtained by determining where the histogram value drops
below IendImax, where Imax is the maximum intensity value in the smoothed histogram
and Iend is a parameter that can be set manually. Usually a value of Iend = 0.6 - 0.8 was
found to give good results, see the (blue) dashed lines in Fig. 4.1j. To obtain sub-pixel
accuracy we fit a straight line to the 2 pixels above and 2 pixels below the point where
the histogram crosses this value. To determine which pixels to take into account in
the generation of the histogram and the other fits, we use the pixels within one radius
of the central line segment of the previous fit. Therefore, the result of the fit might
improve when the step is repeated. The fitting algorithm normally converges in one
or two steps. If this is not the case there is something wrong with the data or one of
the parameters. Figs. 4.1g-i show the same orthogonal sections as Figs. 4.1a-c with the
backbone of the rod highlighted in yellow and the outline of the rod (resulting from the
fit) highlighted in magenta.

Filtering. The final step is to filter out particles that are found more than once, particles
that do not contain enough intensity or sometimes particles that are not long enough.
Ideally not much filtering is required.

4.2.4. Generation of particle coordinates
We generated artificial particle trajectories to construct 3D test-image series. We

used two different approaches to generate particle trajectories. The first is a single-
particle approach where we independently drew random (orientational) displacements
for a set of particles and not allowed particles to interact. The second is a Molecular
Dynamics (MD) simulation where particles interact via a hard-core repulsion.

Using the single particle approach, we generated two sets of trajectories. For the
first set of trajectories, we fixed 25 particles on a 5× 5× 1 hexagonal lattice in 3D.
For each particle a unit vector u0 was initialized, which represented the principal
axis of the particle. The particles were not allowed to translate, however, they were
able to rotate with a fixed diffusion coefficient Dr. The reduced rotational diffusion
coefficient is given by D∗r = Dr ts (in rad2) with ts the time-step. Particles were rotated
by first randomly selecting rotation angles α, β and γ from a Gaussian distribution
with σi =

√
2D∗r . Then, the particles were rotated by applying the rotation matrices

u = Rx(α)Ry(β)Rz(γ)u0, as is described in detail in Ref. 166. For the second set of
trajectories, we generated 36 trajectories of a single particle that could diffuse freely
in all three dimensions. To this end, displacements ∆r were drawn from a Gaussian
distribution with standard deviation σi =

√
2D∗t . Here, we define D∗t = Dt ts/d

2, with
Dt the rotationally averaged translational diffusion coefficient, ts the timestep and d

the particle diameter. The centre-of-mass of the particle was displaced by r = r0 + ∆r.
The particle was rotated as before with a fixed rotational diffusion coefficient D∗r .

The final set of trajectories were from a more concentrated suspension of rods, which
we obtained using a molecular dynamics (MD) simulation of hard spherocylinders in the
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NVT ensemble [192]. The configuration consisted of 4000 spherocylinders with aspect
ratio l/d = 6, with l the end-to-end length of the particle.

4.2.5. 3D particle tracking
To study particle dynamics, we applied our algorithm to time-series of 3D image-

stacks. We first identified the positions and orientations of the rods in each 3D stack
separately. Then, we obtained the particle trajectories using standard IDL-based
routines [45]. To uniquely track the tip of the (up-down indistinguishable) rods, it is
required that the angular displacements between successive frames [û(t+1)−û(t)]2 < 2.
Therefore, care was taken that displacements with [û(t+1)− û(t)]2 > 2 were negligible.
We then calculated the mean squared displacement (MSD) and the mean squared
angular displacement (MSAD). We fitted the MSD to the expression

〈∆r2(t)〉 = 6Dt t+ 6 ε2t , (4.4)

with Dt the rotationally averaged translational diffusion coefficient and εt the error in
measurement of each of the coordinates of the particle [193]. For the MSAD we used
the expression [194,195]

〈∆û2(t)〉 = 2[1− (1− ε2r) exp(−2Drt)], (4.5)

with Dr the average rotational diffusion coefficient and εr the measurement error in the
determination of û(t). For short times, equation (4.5) reduces to

〈∆û2(t)〉 = 4Drt+ 2ε2r . (4.6)

To estimate the sedimentation velocity at infinite dilution, assuming complete decou-
pling of rotations, translations and sedimentation [196], we use the Svedberg equation
[197]

vsed = vpDt g (ρp − ρs)
kB T

, (4.7)

with vp the volume of the particle, g the gravitational acceleration, ρp the mass density
of the particle and ρs the mass density of the solvent.

4.2.6. Calculation of the nematic order parameters
To quantify the 3D orientational order in our systems we calculated the 3D nematic

order parameter defined by
S3D = 3

2〈cos2 θ〉 − 1
2 , (4.8)

with θ the angle between the main axis of the rod û and the nematic director n̂. We
find S3D and n̂ by calculating the largest eigenvalue and corresponding eigenvector of
the standard 3 × 3 nematic order parameter tensor

Q3D
αβ = 1

N

N∑
i=1

3uiαuiβ − δαβ
2

, (4.9)

with uiα the α-component of the unit vector pointing along the main axis of particle i,
and α, β = x, y, z. δαβ is the Kronecker delta and N is the total number of particles in
the system.
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To quantify the (projected) 2D order in the system we calculated the corresponding
2D nematic order parameter, given by

S2D′ = 2〈cos2 ψ〉 − 1, (4.10)
with ψ the angle between the projected main axis of the rod û′ and the projected
nematic director n̂′, i.e. ψ is the in-plane projected angle that maximizes equation
(4.10). Similarly, we calculated the 2 × 2 nematic order parameter tensor given by

Q2D
αβ = 1

N

N∑
i=1

(
2u′iαu′iβ − δαβ

)
, (4.11)

with u′iα the α-component of the unit vector pointing along the projected main axis of
particle i, δαβ the Kronecker delta and α = x, y.

4.2.7. Expressions for the diffusion coefficients
To test the validity of our experimental measurements of the diffusion coefficients,

we compared them to analytical expressions for hard cylinders at infinite dilution, as
proposed by Tirado, Martinez and de la Torre [198],

D⊥ = kBT

4πη l (log p+ δ⊥), (4.12)

D‖ = kBT

2πη l (log p+ δ‖), (4.13)

Dt = 2
3D⊥ + 1

3D‖, (4.14)

Dr = 3kBT
πη l3

(log p+ δr), (4.15)

with η the solvent viscosity, p = l/d the aspect ratio of the particle and δi a correction
term for the finite aspect ratio of the cylinders, given by [198]

δ⊥ = 0.839 + 0.185/p+ 0.233/p2, (4.16)
δ‖ = −0.207 + 0.980/p− 0.133/p2, (4.17)
δr = −0.662 + 0.917/p− 0.050/p2. (4.18)

4.2.8. Experimental methods
Dense sediments of silica rods. For the preparation of dense samples of silica rods, two
different batches of particles were used. The first batch consisted of rods with length
l = 2.37 µm (δ = 10%) and diameter d = 640 nm (δ = 7.5%), with δ the polydispersity
(standard deviation over the mean) [25]. A transmission electron microscopy (TEM)
image of these particles is shown in Fig. 4.2a. The particles contained a non-fluorescent
core, a 30 nm fluorescein isothiocyanate (FITC) labelled shell, and a 190 nm non-
fluorescent outer shell. For the second batch of silica rods, with length l = 2.6 µm
(8.5%) and diameter d = 630 nm (6.3%), rhodamine isothiocyanate (RITC) dye was
added during synthesis, which resulted in an intensity gradient of dye molecules along
the major axis of the particle [72]. The particles were coated with a 175 nm non-
fluorescent outer shell. Particle suspensions were prepared by dispersing the rods in an
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index-matching mixture (n21
D = 1.45) of either dimethylsulfoxide (DMSO) and ultrapure

water (Millipore system) or glycerol and ultrapure water. The particles were first
dispersed in DMSO or glycerol, after which water was added until the suspension was
index-matched by eye. This resulted in mixtures of 91 wt% DMSO in water and 85
wt% glycerol in water.

Next, sample cells were constructed with standard microscopy slides and No. 1.0-
1.5 glass coverslips (Menzel-Gläzer). After the cells were filled with the suspension,
they were sealed with UV-glue (Norland No. 68). The suspensions were imaged with
a confocal microscope (Leica SP2 or Leica SP8) using a 63×/1.4 or 100×/1.4 oil-
immersion confocal objective (Leica). We corrected the 3D images for distortion of
the axial (z) distances due to the refractive index mismatch between sample (n21

D =
1.45) and immersion oil (n21

D = 1.51), which resulted in an increase of axial distances
of 5% [141]. In Figs. 4.2c-e, three orthogonal slices through this 3D volume are shown.
The larger width of the PSF in the axial (z) direction is clearly visible. Notice that
the pixel size in x,y (50 nm) is smaller than in z (78 nm). Figs. 4.2f-h show the same
rod after rescaling to cubic pixels, filtering and particle-fitting. In Fig. 4.2i, we show
the intensity histograms of two rods that were oriented parallel to the xy image plane
of the confocal microscope. The continuous (red) line shows the intensity histogram of
a single uniformly dyed rod and the dashed (green) line that of a gradient-dyed rod [72].

Freely diffusing silica rods. For the experimental measurements on a dilute suspension
of silica rods we used particles with length l = 3.3 µm (δ = 10%) and diameter d = 550
nm (δ = 11%), as measured with TEM. The particles were fluorescently labelled with
a 30 nm (FITC) shell. The particles were dispersed in an index matching mixture of 85
wt% glycerol in water. The density of the solvent mixture was ρ = 1.222 g/ml [199] and
the viscosity η = 92 cP (22◦C), as measured with an SV10 viscometer (A&D Company).
This mixture not only matches the refractive index of the particles (n25

D = 1.45), the
high viscosity slows down the particle dynamics enough to measure their short-time
self-diffusion in 3D. Because the density of this mixture is significantly lower than
the density of the particles ρ = 1.9 g/ml [72], sedimentation cannot be avoided. We
assume, however, complete decoupling between translational motion, rotational motion
and sedimentation [196]. A fused quartz capillary (Vitrocom) was filled with a dilute
suspension (volume fraction φ < 1%) of the fluorescent silica rods. The suspension was
imaged with a confocal microscope (Leica SP8) equipped with a fast 12 kHz resonant
scanner and hybrid detector. Images with 8-bit pixel-depth were acquired using a
white light laser with a selected wavelength of 488 nm. A confocal glycerol immersion
objective 63×/1.3 (Leica) was used, which is optimized for refractive index nD = 1.45.
If we assume a Poisson distribution of the noise, we can easily estimate the signal to
noise ratio (SNR) of a single image because of the photon counting mode of the hybrid
detector. We use the definition SNR = √np with np the number of detected photons
in the brightest part of the image [95]. To avoid hydrodynamic interactions with the
wall, particles were imaged 20 µm deep into the sample. We recorded 800 repeats of 3D
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Figure 4.2. Particle fitting in 3D. (a) Transmission electron microscopy
(TEM) micrograph of fluorescently labelled silica rods with length l = 2.37
µm (δ = 10%) and diameter d = 640 nm (δ = 7.5%). (b) Scanning
electron microscopy (SEM) micrograph of poly(methyl methacrylate) (PMMA)
dumbbells with length l = 3.2 µm (δ = 5%) and diameter d = 2.1 µm (δ =
8%). (c-e) Three orthogonal slices through a 3D confocal microscopy image
of a fluorescent silica rod suspended in 85wt% glycerol/water. The scale
bars are 800 nm. (f-h) The images after rescaling, filtering and fitting. The
magenta outline indicates the final fit from which the position and orientation
is computed. (i) The (normalized) intensity histograms along the major axis of
particles that are oriented in the xy plane, obtained from confocal microscopy
images. The (red) solid line is from a uniformly dyed silica rod. The (green)
dashed line is from a silica rod with a gradient in dye distribution and the
(blue) dotted line was obtained from a uniformly dyed PMMA dumbbell.
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image stacks consisting of 512 × 261 × 66 pixels with voxel size 144 × 144 × 331 nm.
The time to record a single 3D volume was τ = 1.80 s. During this time, the particles
are expected to translate on average

√
2Dt τ = 110 nm in each direction and rotate

only
√

4Dr τ = 0.1 rad.

PMMA Dumbbells. Dumbbell-like poly(methyl methacrylate) PMMA particles were
synthesized from spherical polymer particles [200] through an over-swelling method
[165]. Scanning electron microscopy (SEM) was used to determine the length l = 3.2
µm (δ = 5%) and diameter d = 2.1 µm (δ = 8%) of the particles, see Fig. 4.2b.
The particles were homogeneously fluorescently labelled by a post-dying treatment
with (rhodamine B isothiocyanate)-aminostyrene (RAS) dye [165]. The particles were
dispersed in decahydronaphthalene (decalin, mixture of cis/trans) and stabilized by
a nonionic surfactant (span 85), which nearly matched the refractive index of the
particles [165]. A glass capillary (VitroCom) was filled with the suspension and sealed
with an epoxy glue (Bison kombi rapide). The samples were imaged with a confocal
microscope (Nikon C1) using a laser wavelength of 543 nm and a 100×/1.4 oil immersion
objective. The intensity distribution along the major axis of a dumbbell, as recorded
with confocal microscopy, is indicated by the dotted (blue) line in Fig. 4.2i.

AuNRs@SiO2 & 3D electron tomography. For the fabrication of a spherical cluster of
nanorods, we first synthesized gold nanorods following the method described in Ref. 201.
Next, the gold rods were coated with a layer of mesoporous silica (AuNRs@SiO2) [202],
which resulted in particles with length l = 119 nm and diameter d = 68 nm, as measured
with TEM. Afterwards, clusters were fabricated via an emulsification process [158,203].
Brightfield TEM tilt series of an 11-particle NR-cluster were acquired by tilting the
sample over a range of -65◦ to 65◦ and recording images every 2◦. Images were taken on
a Tecnai 20 (FEI) transmission electron microscope, operating at 200 kV with an LaB6
electron source, in bright field mode. Tomographic reconstructions of the images were
made with the iMOD software package using the simultaneous iterative reconstruction
technique (SIRT) [204, 205]. After reconstruction, the data stack was filtered using a
low frequency Fourier filter (iMOD) and inverted to ensure light particles on a dark
background to enable individual particle identification.
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4.3. Results
4.3.1. Determination of 3D particle positions & orientations in dense sus-

pensions
To test our 3D particle-fitting algorithm we identified the fluorescent particles in a

concentrated suspension of silica rods, as shown in Fig. 4.3. The particles were uniformly
dyed, had a length l = 2.37 µm (10%), diameter d= 640 nm (7.5%) aspect ratio l/d= 3.7
and were dispersed in a 85 wt% glycerol in water mixture. Small regions of hexagonally
stacked particles existed in the sample (Fig. 4.3c), however there was no long-ranged
order in the sample and particles seemed jammed or arrested in different orientations.
Fig. 4.3a shows that 5.2 µm deep in the sample, the fluorescent signals of the particles
did not overlap significantly in xy, despite the high particle concentration. This is
due to the 190 nm non-fluorescent outer shell of the particles which was deliberately
grown around the particles during synthesis to resolve them individually, even when
they were lying side-by-side. However, the orthogonal slices in Figs. 4.3b-c show that
particle signals did overlap in the z-direction, even after noise filtering. Nevertheless,
by visual inspection of the (magenta) particle outlines in Figs. 4.3d-f we conclude that
the algorithm correctly identified the orientations and positions of the particles, despite
the high particle concentration. Fig. 4.3g shows a computer generated reconstruction
of the sample, with colours indicating the 3D orientation of the particles.

Fig. 4.4 shows a second example of the performance of our fitting-algorithm in a
concentrated suspension. The rods in this sample had length l = 2.6 µm (8.5%),
diameter d = 630 nm (6.3%) and were dispersed in an index-matching mixture of
DMSO/water. After the particles had been left to sediment for several days, they
ordered into smectic layers, more or less parallel to the xy-plane, as can be seen from
Fig. 4.4a (12.5 µm deep in the sample). It can also be seen that the particles had
an intensity gradient along their major axis and that there was significant overlap of
the fluorescent signals in the xy-image (Fig. 4.4a). As expected, it was even more
difficult to resolve individual particles in the z-direction (Figs. 4.4b-c), however, it is
clear from the hexagonal pattern in Fig. 4.4b that the particles formed a smectic-B
phase. The magenta outlines in Fig. 4.4d-f show the result of the particle fitting. By
visual inspection of the outlines in the complete image-stack (containing 1699 particles),
we conclude that > 98% of the particles had been correctly identified by the algorithm.
In Fig. 4.4g we show a 3D reconstruction of a part of the image-stack, which clearly
shows 3D orientational order, smectic layering, and transverse (red and blue) particles.
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Figure 4.3. Local order in a dense sediment of rods with length l = 2.37 µm
(10%), diameter d = 640 nm (7.5%) and aspect ratio l/d = 3.7, dispersed in
a glycerol/water mixture. The particles had an outer non-fluorescent shell of
190 nm. The dimensions of the image volume were 512 × 201 × 79 pixels with
voxel sizes 60 × 60 × 83 nm in x,y and z. The time to record the complete
stack was 3.37 s. (a-c) Close-ups of orthogonal slices through the 3D image,
after filtering and (d-f) after particle identification. The scale bars are 3 µm.
(g) Computer rendered 3D reconstruction of the sample with the RGB value
of the colour indicating the particle orientations.
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Figure 4.4. Smectic-B phase of rods with length l = 2.6 µm (8.5%), diameter
d = 630 nm (6.3%) and aspect ratio l/d = 4.1, dispersed in a DMSO/water
mixture. The particles had an outer non-fluorescent shell of 175 nm. The
dimensions of the image volume were 256 × 256 × 151 pixels with voxel size
58 × 58 × 104 nm in x,y and z. The time to record the image stack was
73.3 s. (a-c) Orthogonal sections after filtering. (a) 12.5 µm deep in the
sample, particles were ordered in smectic-like layers. (d-f) Identified particles
are outlined in magenta. All scale bars are 3 µm. (g) Computer rendered 3D
reconstruction of the sample with the RGB value of the colour indicating the
particle orientations.
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4.3.2. Determination of 3D positions and orientations of gold nanorods
Although our algorithm was written for analysis of confocal microscopy images, it

is also applicable to other 3D image-stacks of uniaxial symmetric particles. As an
example, we show results of the identification of gold nanorods (AuNRs) from a 3D
transmission electron microscopy (TEM) tomographic reconstruction in Fig. 4.5. The
TEM micrograph in Fig. 4.5a shows the gold nanorods (in black), that were coated
with a layer of mesoporous silica (dark grey). Figs. 4.5b-c show two orthogonal sections
through the 3D reconstruction of the cluster. The images were inverted to enable
particle identification with our algorithm. Figs. 4.5d-e show the same orthogonal
sections after filtering, with identified particles outlined in red. Finally, Fig. 4.5f
shows the 3D reconstruction, with color-coding of the 3D orientation of the rods. The
algorithm had identified all 11 particles and the reconstruction clearly shows that there
was some degree of orientational ordering inside the cluster.

We are aware that a substantial amount of information on the 3D structure of the
nanoparticles can be measured directly (and manually) from the 3D tomogram itself.
Our image-processing algorithm however can determine unambiguously the 3D positions

Figure 4.5. Identification of the positions and orientations of 11 gold
nanorods coated with mesoporous silica (AuNRs@SiO2), confined in a small
spherical cluster. (a) A single TEM image that was part of the tilt-series used
for the tomographic reconstruction. (b) An xy- and (c) zy-view of the 3D
electron tomogram. The images were inverted for particle identification. (d)
Corresponding xy- and (e) zy-views of the filtered images with the identified
particles outlined in red. (f) 3D reconstruction of the nanorod cluster. Colours
indicate their 3D orientations.
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and orientations of the particles and can therefore be useful for the quantification of
(larger) nanoparticle assemblies and should in principle also work on other types of
samples, e.g. self-assembled clusters of nano-dumbbells [206].

4.3.3. 2D particle analysis
Our rod-like particle identification in 3D results in all 5 degrees of freedom of the

particles and consequently enables unambiguous calculation of physical quantities such
as translational motion and the orientation distribution function. However, fast 3D
confocal imaging of particle suspensions is still limited to a time resolution of seconds,
requires large data storage and subsequent image analysis is time consuming. Hence
we now turn to some examples of anisotropic particle identification from 2D confocal
images. For a 3D system, this will only result in projected angles and lengths of the
particles. However, this information can still be useful to capture significant information
on the physics of these systems. For example, Troppenz et al. derived a theoretical
expression for the projected orientation distribution function of polarizable rod-like
particles in an electric field and showed that these distributions were in good agreement
with particle identification of 2D confocal microscopy images of 3D samples [207].
Another example is the extraction of the 3D rotational diffusion coefficient Dr and
the perpendicular translational diffusion coefficient D⊥ from 2D (projected) bright-field
data [208].

In Fig. 4.6a, we show an example of a layer of fluorescent silica rods with length
l = 2.37 µm (10%) and diameter d = 640 nm (7.5%) on the bottom glass slide of
a 3D sample. The identified positions and orientations are indicated with a (green)
line. Fig. 4.6b shows a 2D confocal slice through a 3D sample of fluorescent PMMA
dumbbells with length l = 3.2 µm (5%) and diameter d = 2.1 µm (8%). The particles
were ordered on a hexagonal lattice, however they were still free to rotate, i.e. they
formed a plastic crystal [165]. A computer rendered reconstruction of the projected
length and orientation of the rods and dumbbells is shown in Fig. 4.6c and Fig. 4.6d
respectively. The colours indicate the orientation in the plane of observation. Note that
particles that are oriented (almost) perpendicular to the plane of observation do not
have a well defined projected orientation angle.

Using the projected angles obtained from 2D confocal microscopy images of 3D
samples, we can calculate the projected 2D nematic order parameter S2D′(ψ), with
ψ the in-plane projected angle, see equation 4.10. We investigated how well these
values compare to the actual 3D nematic order in the system, using computer generated
confocal-like test-images, shown in Fig. 4.7. In Fig. 4.7a, we show a 3D snapshot from
a Molecular Dynamics (MD) simulation of 4000 spherocylinders with with aspect ratio
l/d = 6 (with l the end-to-end length of the particle) and volume fraction φ = 0.3.
The particles were initially perfectly aligned parallel to the planes that were later used
to generate the test-images. Because the volume fraction φ = 0.3 was below isotropic-
nematic phase coexistence [209], the suspension gradually formed an isotropic phase
upon equilibration, which resulted in the full range of perfect to almost absent nematic
alignment in this system. For this set of 3D particle coordinates, we calculated the
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Figure 4.6. 2D particle identification. (a) Result of particle identification in
a dense layer of silica rods with length l = 2.37 µm (10%), diameter d = 640
nm (7.5%) and aspect ratio l/d = 3.7, dispersed in a DMSO/water mixture.
The identified particles are indicated by the green lines. The scale bar is 4 µm.
(b) Identification of PMMA dumbbells with length l = 3.2 µm (5%), diameter
d = 2.1 µm (8%) and aspect ratio l/d = 1.5 dispersed in decalin. The particles
formed a (plastic) crystalline phase. The scale bar is 10 µm. (c-d) Computer
generated reconstructions of the two samples in (a-b). Colours indicate the
projected angle ψ.

3D nematic order in the system S3D(θ), with θ the angle between the director and
the main axis of the particle. Using the same set of 3D coordinates (obtained from
simulation), we generated confocal-like 3D image-stacks (see Section 4.2.2). We first
rescaled the simulation data so that the volume fraction was 0.1, the boxsize 256 × 256
× 256 voxels and the diameter of the rod 4.5 pixels. Then, the computer generated data
were convolved with a 3D Gaussian approximation to the point spread function (PSF)
(σx/d = σy/d = 0.2 and σz/d = 0.4). After the addition of some random Gaussian
noise (σn = 0.09), a 2D slice of the sample resembled the real experimental data well,
see Fig. 4.7b. In Fig. 4.7c we show the same image as in Fig. 4.7b, after 2D particle
fitting, indicated by the green lines. Using the projected particle angles obtained from
particle fitting, we obtained for the projected 2D nematic order parameter S2D′(ψ) =
0.54, which is in strong agreement with the value for the 3D nematic order parameter
S3D(θ) = 0.53. We then calculated the 3D nematic order parameter S3D for the full set
of coordinates obtained from simulation and compared them to the projected 2D order
parameter S2D′, shown in Fig. 4.7d. It is clear from Fig. 4.7d that the order parameter
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determined from 2D image slices gives a good indication of the actual 3D nematic
order in the system, at least when the director lies approximately in the image plane
of highest resolution. Analysis as a function of the orientation of the rods compared to
the imaging plane is in progress.

Figure 4.7. The nematic order parameter obtained from 2D slices compared
to the actual 3D nematic order in the system. (a) Snapshot of a Molecular
Dynamics (MD) simulation of 4000 spherocylinders with aspect ratio l/d = 6
and volume fraction φ = 0.3. (b) Computer generated 2D confocal-like test-
image, generated from the configuration shown in (a). (c) The same image
as in (b) after 2D particle fitting. (d) The 3D nematic order parameter S3D
calculated from simulation compared to the projected 2D order parameter S2D′

calculated after particle identification in 2D test-images.



4.3. Results 67

4.3.4. Testing the accuracy of the algorithm for non-overlapping particle
signals

In this section, we assess the accuracy of our algorithm in more detail. We focus on
the fitting accuracy of the algorithm when applied to images containing particle signals
that are well separated. Although this situation is much less demanding compared to
partially overlapping signals, care has to be taken when fitting this type of data as
well. The main reason is that the (fluorescent) diameter of typical rod-like particles
used in our experiments (dfl ∼ 300 nm) is comparable to the resolution of a typical
confocal microscope (200−300 nm in the lateral and 500−700 nm in the axial direction
[102, 141]). Additionally, the PSF itself is anisotropic, which can result in a (strongly)
distorted particle shape. Things become progressively worse when there is a refractive-
index mismatch between the sample and immersion fluid, which deteriorates the PSF,
introduces an intensity fall-off with height and distorts axial distances [88,141].

We therefore determined the accuracy of our algorithm using two approaches. In
the first approach we investigated both the effect of the PSF and the effect of noise
on particle tracking accuracy using computer generated data. The second approach
consisted of an experimental measurement of the translational and rotational diffusion
of a dilute suspension of silica rods.

The effect of the point spread function and noise on particle fitting accuracy. To test the
effect of a theoretically approximated PSF and the effect of noise on particle tracking
accuracy, we constructed time-series of 3D test-data using a single-particle approach
(see Section 4.2.2 and 4.2.4). For the first set of particles (fixed on a hexagonal lattice)
we used a rotational diffusion coefficient D∗r = 0.0025 rad2. We generated 3D image
stacks of 200 × 163 × 37 pixels for every timestep (1000 timesteps in total). The
particles that we generated had a length of l = 25 pixels and diameter d = 7 pixels
in an xy-image. To approximate the effect of the PSF we used a fixed σx/d = σy/d

= 0.3, representing a constant resolution in the xy direction, with σi the standard
deviation of the Gaussian kernel and d the diameter of the particle. In the vertical
direction we used σz/d = 0.3, 0.6 and 0.9. Figs. 4.8a-c show xz-views of this decrease
in z-resolution. Typical rod-like particles used in our experiments have a length l ∼
3 µm and a fluorescent diameter dfl ∼ 300 nm. The FWHM of the Gaussian kernels
in the z-direction therefore correspond to 2

√
2 ln 2σz = 212 nm, 424 nm and 636 nm

respectively. The resolution of our microscope, which we measured to be 190 nm in the
lateral (xy) direction and 490 nm in the axial (z) direction (see Ref. 141 and Chapter 3),
is within this range. In Figs. 4.8d-f we show increasing noise levels, obtained by adding
Gaussian noise with standard deviation σn = 0.09, 0.18 and 0.27. These levels resulted
in a signal-to-noise ratio (SNR) of 11.2, 3.8 and 1.7 respectively, which corresponds to
typical SNR values of the confocal microscopy images that we used for particle tracking.
Notice the strong similarity between Figs. 4.8d-f and Figs. 4.2d-e. In Fig. 4.8g, we show
a test-image with σz/d = 0.9 and σn = 0.27, in Fig. 4.8h the same image after filtering
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Figure 4.8. The effect of z-resolution (σz) and noise (σn) on the
measurement of rotational motion. To study this effect, test-images were
generated with 25 randomly rotating particles fixed on a lattice. (a-c) The
effect of a decrease in z-resolution (increase in σz). (d-f) Increase in noise level
σn. (g) Original test-image with σz/d = 0.9 and σn = 0.27. (h) The image after
filtering and (i) after particle fitting. (j,k) Computer rendered particles with
color coding based on their orientation. (l) Mean squared angular displacement
(MSAD) for decreasing σz/d and σn. The measurement error εr decreases for
decreasing σz/d and σn.

and in Fig. 4.8i the particle fitting as indicated by the magenta outline. Fig. 4.8j and
Fig. 4.8k show the 3D reconstruction with RGB colours indicating particle orientation.

After identification of the orientations in each frame separately, we determined par-
ticle trajectories with existing IDL based routines [45]. Fig. 4.8l shows the calculated
mean squared angular displacement (MSAD) for decreasing resolution and increasing
noise levels. We obtained the correct D∗r for all five test cases, as shown by the data-
collapse with the theoretical result 4Dr t (black dashed dotted line) for ∆t/ts > 10.
The (coloured) continuous lines are fits to equation (4.6). As expected, the error in
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the determination of the main axis of the rod (εr) increases with increasing noise level,
as indicated in Fig. 4.8l. The results are summarized in Table 4.1, which shows that
for our worst-case scenario of a z-resolution of 636 nm and signal to noise ratio of 1.7,
we obtain for the error in the determination of the main-axis of the rod εr = 0.07 rad,
which corresponds to a small measurement error of 4.1◦.

z-resolution noise levels error

σz/d FWHM (nm) σn SNR εr (rad)

0.3 212 0.09 13.5 0.025
0.6 424 0.09 11.4 0.026
0.9 636 0.09 11.2 0.036
0.9 636 0.18 3.8 0.048
0.9 636 0.27 1.7 0.071

Table 4.1. Static measurement error εr in the determination of the main axis
of the rod, assuming d = 300 nm. The error increases with both σz and σn. For
the worst case scenario of σz/d = 0.9 and σn = 0.27, the value for εr remains
rather small.

To further test for any biases in our algorithm, we generated 3D test-images of single,
freely diffusing particles with an imposed (rotationally averaged) translational diffusion
coefficient D∗t = 0.01 and rotational diffusion coefficient D∗r = 0.005 rad2. The particles
were initially randomly oriented. We constructed 2000 time-frames of 3D image-stacks
and convolved them with a Gaussian kernel with standard deviation σx/d = σy/d = 0.3
and σz/d = 0.6. We also added Gaussian noise with σn = 0.09 to the images. The
particles had a length l = 25 pixels and a diameter d = 7 pixels. To test for a
possible pixel-bias of the algorithm, we computed the fractional part of the determined
positional coordinates as shown in Figs. 4.9a-c. Neither of the three coordinates shows
a strong deviation from a flat distribution. We also computed the distributions of
the absolute value of the three components of the orientation vector û, see Figs. 4.9d-f.
The distributions are not completely flat, which is not surprising considering the limited
number of pixels per particle and the effect of the (theoretically approximated) PSF.
These deviations, however, did not hamper an accurate determination of the rotational
motion of the particles. Fig. 4.9g shows the mean squared displacement (MSD) expected
from theory and the corresponding result after particle tracking. The statistical errors
for the individual measurement points are smaller than the symbol size. From the fit to
equation (4.4), we obtain D∗t = (1.021± 0.004)× 10−2 and εt/d = (5.47± 0.01)× 10−2.
In Fig. 4.9h, results are shown for the mean squared angular displacement (MSAD).
Fitting to equation (4.5) results in D∗r = (5.06± 0.06)× 10−3 rad2, which recovers
the imposed theoretical value, and results in a small static orientation error of εr =
(1.2± 0.1)× 10−2 rad.
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Figure 4.9. Tracking results from computer generated 3D test-images of
single, freely diffusing particles. (a-c) The fractional parts of the positional
coordinates do not show signs of significant pixel-bias. (d-f) The absolute
value of the components of the orientation vector also do not indicate any
strong orientational bias. (g) Mean squared displacement (MSD) of the centre-
of-mass of the particles. (h) Mean squared angular displacements (MSAD).
We retrieved the correct translational and rotational diffusion coefficients with
small static errors εt and εr respectively. The statistical errors for the individual
measurement points are smaller than the symbol size and the black dashed lines
are expected from theory.
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To summarize, we did not find any significant pixel-bias in either the position or
the orientation. For the error in the positional measurement, we found εt/d ∼ 0.05,
which indicates sub-pixel accuracy. Furthermore, the error in the measurement of the
orientation also remained small (εr = (1.2± 0.1)× 10−2 rad).

Diffusive motion of rod-like particles. In this last section, we present experimental
measurements of the diffusive motion of fluorescent silica rods in a dilute suspension,
which provides a real-life test of the accuracy of our algorithm. The rods that were
used had length l = 3.3 µm (δ = 10%), diameter d = 550 nm (δ = 11%) and aspect
ratio l/d = 6.0. From the number of photons in the brightest part of the image, we
estimated the signal to noise ratio to be SNR ≈ 3, which is in the range stated in
Table 4.1. The tracking results, averaged over 8 particles, are shown in Fig. 4.10. A
typical translational trajectory of 12 min is shown in Fig. 4.10a. From a fit to the
average linear displacements (of all 8 particles) in the z-direction, we estimated the
sedimentation speed to be vsed = 0.331± 0.005 µm/min. This value is slightly higher
but comparable to the value of vsed = 0.28 µm/min that we obtained from equation
(4.7). For further analysis we subtracted the average linear displacements from the
trajectories. Fig. 4.10b shows a rotational trajectory of 12 min for a single particle.
In Fig. 4.10c we show the probability distribution of the norm of the displacement
|∆r|, for three different time-steps ∆t. In Fig. 4.10d we show the same distribution
for the norm of the displacements of the unit vector |∆û|. The solid black lines in
Figs. 4.10c,d are fits proportional to |α|2 exp(−|α|2) with α = ∆r,∆û respectively. To
extract the translational diffusion coefficient, we calculated the rotationally averaged
mean squared displacement 〈∆r2〉, as can be seen in Fig. 4.10e. For ∆t > 10 s we found
that 〈∆r2〉 ∼ t0.97 indicating diffusive behaviour. The statistical error in the individual
measurement points is smaller than the symbol size. Fitting the data with equation
(4.4), we obtain the short-time rotationally averaged translation diffusion coefficient
Dt = (3.06 ± 0.01) × 10−3 µm2/s and static error εt = 45, 46 and 59 nm in the x,
y and z-direction respectively, which confirms that we can locate the particles with
sub-pixel accuracy. The value for Dt is in strong agreement with the theoretical value
obtained from equation (4.14) which is Dt = 3.2 × 10−3 µm2/s. Finally, we calculated
the mean squared angular displacement 〈∆û2〉, as shown in Fig. 4.10f. This time we
obtained 〈∆û2〉 ∼ t0.92 and for the short-time rotational diffusion coefficient Dr =
(1.32± 0.02) × 10−3 rad2/s. This is in good agreement with the theoretical value Dr

= 1.5 × 10−3 rad2/s, obtained from equation (4.15). For the corresponding rotational
relaxation time we found τr = 1/(2Dr) = 3.8 × 102 s, which confirms that we measured
in the short-time diffusion regime. From the fit we also obtained εr = 0.07 rad, which
corresponds to a small angular uncertainty of ∼ 4◦.
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Figure 4.10. Experimental measurement on a dilute suspension of
sedimenting silica rods with length l = 3.3 µm and diameter l = 550 nm
suspended in a 85 wt% glycerol in water mixture. (a) Typical translational
and (b) rotational trajectory of a single particle. (c) Distribution of the
translational displacements |∆r| and (d) rotational displacements |∆û| for
three different time-steps ∆t. The displacements are an average over 8 particles
and the black lines are fits. (e) The average mean squared displacement
(MSD). The estimate for the static error (εt = 45, 46 and 59 nm in x, y
and z respectively) confirms sub-pixel accuracy. (f) Mean squared angular
displacement (MSAD). The static error in the determination of the unit vector
εr = 0.07 rad corresponds to an angular uncertainty of 4◦.
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4.4. Discussion
In this chapter we demonstrated a new image-processing algorithm that is capable

of extracting the positions and orientations of fluorescent rod-like particles in both
dilute and concentrated suspensions. The algorithm was originally written for three
dimensions, however, most steps are straightforward to modify for two dimensions.
Mohraz and Solomon [162] were the first, as far as we know, to describe an algorithm
that can detect the position and orientation of ellipsoidal particles in 3D confocal
microscopy images and this work follows a similar approach. The algorithm of Mohraz
and Solomon groups clusters of pixels together to form backbones but does not use
additional fitting steps, which we found necessary to correctly identify particles when
there is significant overlap of particle signals. The difference in particle geometry
(ellipsoids versus rods) combined with the small (fluorescent) particle diameter in our
study might be the reason why we find that using only a maximum threshold and cluster
analysis is not sufficient to identify rods in concentrated suspensions, even when the
rods have a large (> 150 nm) non-fluorescent shell and a considerable electric double
layer (∼ 50 nm) [25, 28]. The rod-like particles used in this study have a repulsive
interaction potential and therefore form dense smectic-like phases, which we now can
identify on the single-particle level in the bulk. The algorithm also enables the study
of glassy phases of anisotropic particles in three dimensions, which is promising since
all current real-space glass-transition studies of anisotropic particles so far are either
2D [176–178] or tracer-host [167]. Finally, we would like to mention that the algorithm
is also applicable to study the dynamics of (concentrated) ‘active colloids’ (e.g. self-
propelled particles and bacteria), a field that is rapidly emerging [210].

Since the typical fluorescent diameter of the rod-like particles is around 300 nm,
deconvolution of the image-stacks before particle fitting can be useful when particles
are difficult to resolve individually. The necessary higher (Nyquist) sampling rate,
however, is not always practical or even not possible for faster moving particles. Addi-
tionally, deconvolutions are sensitive to small changes in the rod-spread-function (RSP),
introduced by e.g. polydispersity. A clear improvement of the algorithm, therefore, is
to fit the particles with the RSP, analogous to the fitting of the sphere-spread-function
(SSF) reported by Jenkins et al. [50], which is work currently ongoing. With this type
of extension of the current algorithm it should also be possible to accurately measure
in-situ particle polydispersity, which is known to have a large effect on e.g. the liquid-
crystalline phase behaviour [211].

We also demonstrated that analysis of 2D confocal microscopy image-slices through
a 3D sample yields an accurate estimate of the 3D (nematic) orientational order in the
sample, for the full range of nematic order. This is of course only true if the nematic
director is (approximately) parallel to the plane of observation. This result will benefit
many experimental studies where 3D imaging is difficult or not even possible, such as
rod-like particles subjected to electric fields or under shear. A full analytical treatment
of the projected orientation distributions (and corresponding nematic order parameter
values) of single particles aligned by an electric field is currently in progress [207].
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By measurement of freely diffusing rods, we acquired additional information on the
accuracy of our algorithm. Although the motion is analysed in the lab-frame and
therefore translational and rotational motion should be coupled [171], we did not observe
such behaviour since the friction anisotropy in our 3D measurement is small D‖/D⊥
= 1.3 and because we averaged over an ensemble of particles and over many initial
orientations. We found that the error in locating the rods (εt = 45, 46 and 59 nm in
the x, y and z-direction respectively) confirms sub-pixel accuracy and agrees roughly
with the criterion for spherical particles that εt ∼ M/N , with M the pixel-size and N
the diameter of the particle in pixels [45]. The value for the (short-time) rotational
diffusion coefficient Dr = (1.32± 0.02) × 10−3 rad2/s, is one order of magnitude larger
than previously accessible with 3D confocal microscopy [181] which is, however, due
to the equipment rather than the image-processing. The error in the determination of
the orientation of the rod (εr = 0.07 rad) is in the range of the values obtained via
simulated test-images, shown in Table 4.1. The rule-of-thumb that εr ∼ 1/Pa with Pa
the half-length of the rods in pixels [181] seems to hold quite well in our case, since
1/Pa = 0.08 in our measurements.

4.5. Conclusion
We developed an algorithm that extracts the positions and orientations of rod-like

particles from 2D and 3D confocal microscopy images. The algorithm is tailored to
a system of fluorescently labelled silica rods and can identify these particles even
in the bulk of 3D concentrated phases where the fluorescent signals of the particles
overlap considerably. This allowed us to determine the 3D positions and orientations of
particles in a concentrated disordered phase and in a liquid-crystalline smectic-B phase.
The algorithm also works on confocal microscopy images of other uni-axial symmetric
particles such as dumbbells and on tomography reconstructions of gold nanorods, which
enables the 3D quantification of (large) nano-particle assemblies. By generating realistic
3D test-image stacks, we showed that it is possible to obtain an accurate estimate of the
3D nematic order in a system of rod-like particles from a single 2D confocal microscopy
image-slice trough the sample. We determined the accuracy of the algorithm for varying
z-resolution and noise levels from generated 3D test-images. Despite the (anisotropic)
distortion of the theoretically approximated point spread function (PSF) and the low
signal to noise ratio (SNR), the error in the determination of the orientation of the
particles remained small. These results confirmed that we can accurately track rod-like
particles with (fluorescent) diameters down to 300 nm. With our algorithm and a fast
confocal microscope we determined the translational and rotational motion of a dilute
suspension of sedimenting silica rods. We demonstrated that the measured diffusive
motion was in good agreement with theory (neglecting sedimentation) and that we can
track the particles with sub-pixel resolution.

This novel algorithm therefore allows for studies of structure and dynamics on the
particle level of dense liquid-crystalline phase behaviour (such as nematic, smectic and
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crystalline phases), but also allows for studies of the glass transition of anisotropic rod-
like particles in three dimensions. Of course, the algorithm will also be applicable to
dilute suspensions or in cases where rod-like particles are used as tracers, such as in
biophysical or micro-rheology studies.

4.6. Acknowledgement
This work was done in collaboration with Michiel Hermes, Anke Kuijk, Bo Peng,

Bart de Nijs, Tian-Song Deng and Marjolein Dijkstra. We thank Eric Weeks, Kenneth
Desmond and Anjan Gantapara for useful discussion. We also thank Henriëtte Bakker,
Chris Kennedy and Bing Liu for useful feedback on the algorithm and Hans Meeldijk
for help with the electron microscopy data. We thank Teun Vissers for critical reading
of this chapter.



76 4. Determination of the Positions and Orientations of Rod-like Colloids



Part 2

Self-assembly of
Colloidal Spheres and Rods





5
Out-of-Equilibrium Crystallization in

Hard-Sphere Colloidal Fluids Driven by
Oscillatory Shear

Abstract
In this chapter we investigated oscillatory shear-induced crystallization in hard-
sphere colloidal fluids. We performed experiments on poly(methyl metha-
crylate) (PMMA) colloids and non-equilibrium Brownian Dynamics (NEBD)
simulations, which allowed us to investigate the shear-induced order in real-
space. All samples in both experiments and simulation were below the coexis-
tence density of hard-sphere freezing, so the shear-induced crystals were out-
of-equilibrium and melted after cessation of the shear. The physics is therefore
fundamentally different from shear-induced crystallization in jammed or glassy
systems. We investigated two distinct oscillatory shear-induced phases: an
oscillatory twinned fcc phase and a sliding layer phase. For the twinned fcc
phase, the crystallization seemed to proceed via a nucleation-and-growth type
of mechanism. For the sliding layer phase, however, we found a much more con-
tinuous crystallization process. The simulation results (without hydrodynamic
interactions and an enforced linear shear profile) were in strong agreement with
the experiments, suggesting that hydrodynamic interactions do not strongly
affect the shear-induced structures. We also present preliminary experimen-
tal results on the melting of these phases, which occurred immediately after
cessation of the shear.
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5.1. Introduction
It is well known that shear has a large effect on colloidal self-assembly [30]. A

remarkable example is that a hard-sphere fluid can crystallize as the result of oscillatory
shear and that the shear-induced crystal melts back upon cessation of the shear [31,
32]. These shear induced crystals are out-of-equilibrium and therefore the physics is
fundamentally different from shear-induced crystallization in jammed or glassy systems
[212,213]. Out-of-equilibrium crystallization of particles can also occur in systems with
other driving forces than shear-flow, such as charged particles in electric fields [214,215],
active colloidal particles [216] and shaken granular matter [217]. Crystallization induced
by shear is the result of flow-induced rearrangements in the micro-structure of the
fluid, caused by an interplay between hydrodynamics interactions, Brownian motion
and inter-particle forces. Understanding such complex flow behavior is industrially
important and the possibility to switch between different states by means of an external
field is promising for many applications (e.g. in the case of electronic ink when the
switching is between a state displaying color by interference effects and one with less
order and no color).
When subjected to steady shear, hard-sphere suspensions that are fluid in equilibrium
do not display pronounced three-dimensional (3D) ordering for shear rates ranging
from 10−3 − 102 s−1. However, when oscillatory shear is applied to these samples,
shear-induced ordering is observed such as layering [62], string formation [218] and 3D
crystal-like ordering [32]. The principal parameter governing the crystal-like ordering
is the strain amplitude, which determines the distance of flow-induced interactions
between the particles. For small strains, particles form hexagonal layers in the vorticity-
velocity plane with one of the close-packed lines of particles perpendicular to the
velocity direction. These layers slide from an ABC stacking at one extreme of the
oscillation to ACB at the other, resulting in an oscillating twinned face-centered-cubic
(fcc) crystal. For intermediate shear strain, the particles form hexagonal layers in the
same plane as before, but now with one of the close-packed lines parallel to the velocity
direction, and slide through the grooves of layers above and below. The oscillating
twinned fcc phase and the sliding layer phase were observed with light scattering
experiments on sheared hard-sphere suspensions [32] and on charged particles [219,220].
The same structural rearrangements were observed in real space with suspensions that
are above the bulk fluid coexistence density of hard spheres with optical and confocal
microscopy [61, 221–223] and with light scattering experiments [32, 224]. Derks et al.
showed for concentrated suspensions under steady shear, that the close-packed lines of
particles of the hexagonal layers align with the velocity direction and that the hexagonal
layers slide over each other in a zig-zag path, travelling from one triangular void of a
neighboring layer to the other [225]. Non-equilibrium Molecular Dynamics (NEMD)
simulations on oscillatory shear confirmed the formation of the twinned fcc and the
sliding layer phase in samples that are fluid in equilibrium [226,227].
For large strain amplitudes the hexagonal layers break up, resulting in strings of
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particles along the velocity direction, known as string formation. Weak string for-
mation was observed in both steady and oscillatory shear experiments [32, 220]. Early
NEMD simulation on hard-sphere fluids under steady shear showed that at very high
shear rates particles form strings in the direction of the flow and that these strings
arrange in a regular hexagonal pattern in the gradient-vorticity plane [228]. In some
studies it was argued that this string phase is an artifact arising from the assumed
linear velocity profile, founded on the fact that without such an assumption a shear
thickening regime without strings was observed [229, 230], which is consistent with
experiments on PMMA colloids under steady shear [231]. However, non-equilibrium
Brownian Dynamics (NEBD) simulations on oscillatory shear revealed similar string
like ordering [232], and the scattering diagram calculated from the string phase observed
in simulations strongly resembles the experimental light scattering results [233]. NEMD
simulations that do not make any assumption about the velocity profile revealed oscil-
latory shear-induced ordering in a Lennard-Jones fluid but do not report on ordering
in all three dimensions [226]. More recently, real-space experiments identified vorticity
aligned string-formation in oscillatory sheared hard-sphere fluids that are below the bulk
freezing point [218]. However, this was mostly a confinement effect and the vorticity
aligned strings disappeared when the volume fraction was increased towards the freezing
point [218]. Real-space experiments by the same group, combined with rheological
measurements and Stokesian dynamics, revealed that layering in hard-sphere fluids is
not the driving force for shear thinning but is strongly correlated with a two-particle
measure of the shear stress [234, 235]. The non-equilibrium phase behaviour of a bulk
colloidal hard-sphere fluid under oscillatory shear was investigated by our group in
3D real-space, using both experiments on hard-sphere colloids and NEBD computer
simulations, for volume fractions just below the freezing point (φ = 0.46−0.49) [63,236].
Depending on the amplitude and frequency of the oscillation, four regimes with different
structures were identified: the oscillating twinned fcc phase, the sliding layer phase, a
velocity aligned string phase and a phase that has not been reported previously in
experiments, which consists of hexagonal layers of particles that are tilted with respect
to the velocity-vorticity plane [63,236].

In this chapter, we continue our real-space study of oscillatory shear-induced order
in hard-sphere colloidal fluids using both experiments on poly(methyl methacrylate)
(PMMA) colloids and non-equilibrium Brownian Dynamics (NEBD) simulations. First,
the 3D real-space structure of an oscillating fcc phase and a sliding layer phase is
presented and compared to existing light-scattering experiments. Then, we investigate
the shear-induced crystallization kinetics of both phases on the single particle level and
compare our experimental results to simulation. Finally, we present preliminary results
on the melting of these phases, which occurs upon cessation of the shear.
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5.2. Methods
5.2.1. Experimental methods
Particle characterization. The particles used in this study were poly(methyl methacry-
late) (PMMA) spheres with a diameter σ = 2.07 µm and polydispersity of 3%, particles
with diameter σ = 2.10 µm and polydispersity of 3%, and particles with diameter σ =
2.64 µm and polydispersity δ = 3%, as determined with Static Light Scattering (SLS).
They were sterically stabilized with poly(12-hydroxystearic acid) (PHS) grafted onto
a PMMA backbone which was chemically attached to the core of the particles and
covalently labelled with fluorescent rhodamine isothiocyanate (RITC) dye for imaging
[80]. Particles were dispersed in a 26 wt% mixture of cis-decahydronaphtalene (cis-
decalin) in cyclohexyl bromide (CHB) saturated with the salt tetrabutylammonium
bromide (TBAB). This mixture nearly matches the density of the particles (ρ = 1.19
gml−1) and also closely matches the index of refraction (n25

D = 1.492). The viscosity of
the solvent mixture was 2.2 mPa s [66]. The high salt concentration screens the charges
on the particles, making them behave approximately as hard spheres [12].
The equilibrium phase behavior of the suspension was determined by filling five capil-
laries with different weight fraction of the sterically stabilized PMMA particles (0.388,
0.408, 0.419, 0.427 and 0.438). Because the particles were nearly density matched, these
weighted values are approximately equal to the dry PMMA volume fraction φc. The
capillaries were stored horizontally in a temperature controlled room at 21±1◦C and
after 22 hours the particle positions were determined over the complete height of the
capillary with confocal microscopy. The fraction of particles that are part of a crystal
was determined by 3D bond order parameter analysis, using the method of Ten Wolde
et al. [237]. Because the particles were closely density matched, sedimentation did not
have a significant effect during the 22 hours. With linear regression an average scaling
factor p = 1.23± 0.01 was determined that maps the values for φc onto the hard-sphere
phase diagram [9], resulting in a freezing point φf = 0.40 ± 0.01 and melting point
φm = 0.44 ± 0.01. The effective particle diameter was on average 1.231/3 = 1.07 times
larger than determined with SLS. This is because the particles absorb some of the CHB,
causing them to swell, combined with leftover charge effects [12]. The effective diameter
was also measured by determining the distance of nearest approach from the first peak
in the pair correlation function g(r) of a crystalline domain in the coexistence region.
Using the hard-sphere melting point (φ = 0.54) as reference, this resulted in an effective
particle diameter of 1.05σ, which is slightly smaller than obtained with the previous
method.
Shear cell setup. A parallel plate shear cell mounted on top of an inverted confocal
microscope was used to investigate the real-space behaviour of the particles under shear
[238]. Fig. 5.1 shows a schematic of the shear cell and our choice of the coordinate
system. The top and bottom plate are microscopy glass slides attached to translational
cassettes that can be displaced with piezostepper motors. Alignment of the glass slides
was performed using confocal microscopy in reflection mode using a 543 nm HeNe laser
and an air objective (20x/0.7, Leica). The slides varied ∼ 1 µm in the z-direction over
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Figure 5.1. Parallel-plate shear cell mounted on top of an inverted confocal
microscope [238]. The height between the two plates h, the amplitude A and
the maximum speed vmax can be set during the experiment. Because both
plates moved in opposite direction with equal speed, there was a plane of zero
velocity in the middle of the cell, indicated by the dashed (red) line.

the full travel of 1 cm (0.01%) based on extensive testing of the setup [238]. The typical
spacing between the slides h was 100 µm and an amount of ∼ 60 µL of suspension was
placed between the slides to fill the cell. A metal vapor lock was used to prevent
evaporation of the suspending liquid. The amplitude of the upper and lower slide A,
the maximum velocity vmax and gap width h, which can be set prior to the experiment,
determine the maximum strain amplitude γmax = 2A/h and the maximum shear rate
γ̇max = 2vmax/h. We note that in the experimental literature on shear usually a ’peak
to peak’ distance for the strain amplitude is used, which is twice the value of the strain
amplitude defined in rheology [30]. In this work the latter definition was chosen. For
the results described in this chapter, we always applied oscillatory shear to our samples.
This makes for a time dependent strain amplitude γ(t) and shear rate γ̇(t), given by

γ(t) = γmax sin(2πft) (5.1)
γ̇(t) = γ̇max cos(2πft), (5.2)

with f the frequency of oscillation and γ̇max = 2πfγmax. We define the Peclet number
Pe as

Pe = γ̇max η a
3

kBT
, (5.3)

with a = σ/2 the particle radius and η the viscosity of the medium.

Data acquisition. Digital images of the colloidal dispersion were obtained with a con-
focal microscope (Leica SP2) and a 100x/1.4 NA oil-immersion objective (Leica). The
RITC labeled particles were excited with a 543 nm HeNe laser and a piezo focusing drive
(Physik Instrumente) was used for scanning in the vertical direction. Measurements
were performed in a temperature controlled room at 21± 1◦C. Coordinates of the
particles were obtained from 2D and 3D confocal microscopy images using an algorithm
similar to the method described by Crocker and Grier [45], but extended to 3D as e.g.
schematically described in Ref. 47.
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5.2.2. Simulation method
Non-equilibrium Brownian Dynamics (NEBD) simulations were used to model col-

loidal particles of diameter σ under shear. The unit of time is the Brownian relaxation
time τB = a2/D0, with a = σ/2 the radius of the colloidal particles and D0 = kBT/ξ

the bare diffusion constant, kB the Boltzmann constant, T the temperature and ξ the
Stokes drag coefficient. We define ξ = 6πηa as the unit of drag which fixes the viscosity
η. For particles with diameter σ = 2.07 µm, the unit of time τB = 11.3 s, the drag
coefficient ξ = 4.3 × 10−8 Ns·m−1, with the unit of energy kBT = 4.1 × 10−21 J. The
simulations were carried out in a simulation box with periodic boundary conditions in
the x and y directions and two walls positioned at z = 0 and z = h. The number
of particles varied between 1200 and 3456 and the shape of the box was chosen to be
commensurate with the dimensions of the expected crystalline phases. To approximate
hard-sphere like particles, an inverse power law was used for the pairwise interaction
potential

Uij(r) = ε
(
σ

r

)36
, (5.4)

with ε the interaction energy, σ the particle diameter and r ≡ |ri−rj| the center-of-mass
distance between particles i and j. For efficiency reasons this potential was truncated
at 1.02σ and shifted to make it continuous. The wall-particle interaction is taken to be

Uwall =


εw(σ

z
)6 for z < σ/2

εw( σ
h−z )6 for z > h− σ/2

0 otherwise
(5.5)

with εw the wall-particle interaction energy and z the z-coordinate of a particle. We
used the integration method of Ermak [239] with an additional term to account for the
oscillating shear

ri(t+ δt) = ri(t) + δt
−∇Ui(t)

ξ
+ δrGi + δtγ̇(t)zi(t)x̂, (5.6)

with −∇Ui the force acting on the particle as a result of the potential energy, δrGi a
Gaussian random displacement with zero mean and variance 〈(δrGiα)2〉 = 2D0δt where
α ∈ {x, y, z}. The term γ̇(t)zi(t)x̂ imposes a linear velocity profile on the system.
Previous experimental work byWu et al. has shown that the velocity profile of a partially
crystallized (or sliding layer) suspension deviated from linearity and that the local shear
rate is approximately 1.5 times higher in the layered region than in the fluid phase [240].
In the simulations we neglect these deviations from a linear profile because they do not
strongly effect the shear-induced structures [63,236]. The time step δt used to evaluate
equation (5.6) was chosen to be much larger than the velocity relaxation time (∼ m/ξ),
but much smaller than the Brownian relaxation time (a2/D0). It is important to note
that hydrodynamic interactions, that are neglected in Brownian Dynamics simulations,
become more important for larger shear rates and higher volume fractions [241] and
that they also play an important role in determining the absolute time scales in the
system.
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5.2.3. Structure analysis
To quantify the symmetry of the 3D local structure surrounding a particle, the

method of local bond orientational order parameters was followed [242]. Based on
the spherical harmonics Ylm, a set of numbers was computed for each particle

qlm(i) = 1
nc(i)

nc(i)∑
j=1

Ylm(r̂ij), (5.7)

with l an integer parameter and m an integer running from −l to l. The unit vector r̂ij
connects particle i and one of its nearest neighbors j. To distinguish between particles
that are in a liquid-like environment and particles that are in a crystal-like environment
we used the method described by Ten Wolde et al. [237]. A normalized complex vector
ql(i) was constructed with (2l + 1) components q̃lm(i) that are proportional to the
numbers qlm(i). Next, the correlation between the vector ql(i) and the vector of its
nearest neighbor ql(j) was computed by defining the scalar product

S3D
ij =

l∑
m=−l

q̃lm(i) q̃lm(j)∗. (5.8)

If the local structures of particle i and j are similar, the value of the scalar product S3D
ij

is close to one and a crystal-like bond was assigned to the particles. Because thermal
broadening results in a distribution of values it is necessary to define a threshold value
S3D
c for the scalar product. As we expect the crystal to have hexagonal order, we chose

a symmetry index l = 6. We used a threshold value of S3D
c = 0.7 and because some

particles in the fluid phase exceed this threshold, a particle was called crystal-like only
if in addition it had a minimum of 8 crystalline bonds.

When only 2D information of the system was available, we quantified the positional
order by calculation of the hexagonal bond-orientational order parameter ψ6k given by

ψ6k = 1
nc(k)

nc(k)∑
j=1

exp(i6θ(rjk)), (5.9)

with nc the number of neighbors of particle k (which is taken to be the number of
particles that are within a distance of 1.4σ of the particle), rjk the vector connecting
particle k and its neighbour j, θ(rjk) the angle between rjk and an arbitrary reference
axis and i in the exponent the imaginary unit. In a perfect hexagonal layer, the angles
θ(rij) are multiples of 60◦ and |ψ6(i)| = 1.

To quantify the 2D global hexagonal order we used the global order parameter Ψ6,
given by

Ψ6 = 1/N
∣∣∣∣ N∑
k=1

ψ6k

∣∣∣∣, (5.10)

with N the number of particles in the plane. For a dense hard-sphere fluid, this order
parameter vanishes in the limit of an infinitely large system size (limN→∞Ψ6 = 0).
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In phases of hard spheres close to coexistence, |ψ6k | alone is not sufficient to distin-
guish clearly between particles that are in a liquid-like environment and particles that
are in a crystal-like environment. Therefore, we used a 2D analysis that is similar to
the 3D bond orientational order method by Ten Wolde et al. described above. We
quantified the correlation between the local structure of particle k and j by computing
the normalized scalar product

S2D
kj =

Re (ψ6kψ
∗
6j)

|ψ6k ||ψ6j |
, (5.11)

If the local structure of the two particles is similar (and hexagonal), S2D
kj is close to

1. Therefore, a crystalline bond was assigned to the particle if S2D
kj > Sc, with Sc a

threshold value between 0 and 1. If the number of crystalline bonds nb ≥ nc, with nc the
minimum number of bonds, the particle was classified as crystalline. We chose the values
Sc = 0.7 and nc = 4 for the analysis described in this chapter. We also determined the
angle φ of a particle in a crystal-like (hexagonal) region, given by φ = arg(ψ6k)/6.

To compare our real-space results with existing light-scattering literature, we calcu-
lated the structure factor S(q) according to

S(q) = 1
N

〈
N∑
j,k

eiq·(rk−rj)
〉
, (5.12)

with N the number of particles in the sample and the angular brackets denoting an
ensemble average. The vector q was chosen such that qα = 2π n/Lα with n an integer,
α ∈ {x, y, z} and Lα the system size. A cosine window was used to avoid artefacts
caused by the shape of the box.

5.3. Results
We studied oscillatory shear-induced ordering in fluid samples with volume fractions

in the range φ = 0.46 − 0.49, i.e. just below the freezing point. First, we describe
two different ordered phases that were observed when the frequency and amplitude of
the oscillatory shear were varied, both in the experiments and in the simulations. We
discuss to what extent these phases agree with previous work, which was mainly done
with light scattering techniques. We then show results of the crystallization kinetics
during shear and show preliminary results on the melting of the shear-induced phases
once the shear was stopped.

5.3.1. 3D structure of the shear-induced phases
Oscillatory twinned fcc. The structural changes that can be observed in the fluids under
shear are rich and strongly dependent on the strain amplitude. In Fig. 5.2a, a suspension
with volume fraction φ = 0.47 ± 0.01 is shown. Without shear, the sample remained
in the fluid phase and for strain amplitudes γmax ≤ 0.1 no shear-induced order was
observed for any frequency. Fig. 5.2b shows that for strain amplitude γmax = 0.36 and
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frequency f = 4.5 τ−1
B (Pe = 0.5) the particles formed hexagonal layers in the velocity-

vorticity plane with a close-packed direction (indicated by the lines of particles forming
the 2D hexagonal arrangement) almost perpendicular to the velocity. Fig. 5.2c shows
a snapshot of a simulation with volume fraction φ = 0.49 and particles color coded
according to their z-position, so they appear brighter the closer they are to the plane.
After application of shear with γmax = 0.35 and f = 4.3 τ−1

B (again Pe = 0.5), almost
identical ordering compared to the experiments was observed (Fig. 5.2d). The insets
show the increase in the values of the global hexagonal order parameter Ψ6. Note that
both in the experiments and simulations a slight deviation of the close-packed lines with
respect to the vorticity direction was found. Similar small but systematic deviations
were also found for the crystalline structures described below.

Figure 5.2. Shear-induced crystallization with perpendicular alignment,
observed in the velocity-vorticity plane. Values of the global hexagonal order
parameter Ψ6 are indicated in the figures. (a,b) Experimental results for a
sample with volume fraction φ = 0.47 ± 0.01. The scale bars are 10 µm. (a)
The quiescent sample is fluid in equilibrium. (b) When subjected to shear
with strain amplitude γmax = 0.36 and frequency f = 4.5 τ−1

B , particles form
hexagonal layers with one of the close packed directions almost perpendicular
to the velocity direction. (c,d) Simulation results for φ = 0.49. The figures
show a part of the simulation box with particles color coded according to their
z-position. (d) For γmax = 0.35 and f = 4.3 τ−1

B , the ordering is almost
identical compared to the experiment.
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To determine the stacking of these hexagonal layers, confocal images of the gradient-
velocity plane were taken directly after cessation of the shear and compared with
simulations. Fig. 5.3 shows images taken at different moments of the oscillation cycle for
γmax = 0.3 and f = 10.0 τ−1

B (experiment) and f = 50.0 τ−1
B (simulation) after applica-

tion of shear for 1200 oscillations. The higher frequency in the simulation was used for
efficiency reasons. The crystal-like particles in the simulation snapshots are colored red
and fluid-like particles are colored cyan. Both types of particles are reduced in diameter
(0.5σ and 0.2σ respectively) to enhance visualization. In Fig. 5.3a, the oscillation is
at maximum displacement and the layers are ABC stacked, indicating a face-centered-
cubic (fcc) phase. At the equilibrium position of the oscillation (Fig. 5.3b), the layers are
bridge-site stacked and a body-centered-tetragonal (bct) phase is temporarily formed.
At the other maximum displacement (Fig. 5.3c), the particles are again fcc stacked, but
with the other twin structure (ACB). The schematic drawing in Fig. 5.3d shows that
this transition in stacking can be explained with a simple geometrical model where the
particles oscillate between two neighbouring triangular voids, as proposed originally by
Ackerson [32]. Probably, this movement enables the particles to minimize the stress
caused by collisions with other particles during the shear.

From both experiments and simulations it is clear that for small strain amplitudes
a twinned fcc-like phase is formed in an initial hard-sphere fluid. In both experiments
and simulations we always observed the crystal together with a fluid phase. The strain
amplitude that corresponds to the exact dimensions of an fcc crystal is given by γmax =
∆x/∆z = 0.35, with ∆x the distance between two neighbouring voids and ∆z the
distance between two hexagonal layers. For lower volume fractions, the fcc phase can
persist for significantly larger strain amplitudes because of the larger free volume. A
simple geometrical calculation shows that for φ = 0.49, the strain amplitude has to
be larger than γmax = 0.69 before particles in a perfect fcc crystal touch during the
oscillatory motion.

To further demonstrate the twinning behaviour, particle coordinates were obtained
from experiments with γmax = 0.3, f = 10.0 τ−1

B and φ = 0.47 ± 0.01. In Fig. 5.4a
the rendered particles are shown at the two extremes of the oscillation directly after
cessation of the shear. Again, crystal-like particles are shown in red, fluid-like particles
are shown in cyan and both are reduced in diameter to enhance visualization. Fig. 5.4b
shows plots of the calculated 3D structure factor S(q) in the qx-qy plane, confirming the
twinning behavior. The light scattering experiments by Ackerson on hard-sphere fluids
under oscillatory shear reveal the same position of the diffraction peaks as in Fig. 5.4b,
however, the maxima are spread out around the inner ring instead of appearing as
small spots [32]. This was also observed for soft spheres [219] and for samples above
the bulk fluid coexistence density [221, 224], indicating a distribution of crystalline
domains centred at the vorticity direction.
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Figure 5.3. Oscillating fcc phase in the velocity-gradient plane. Experimen-
tal results (left) for φ = 0.46 ± 0.01, γmax = 0.3 and f = 10.0 τ−1

B after 1200
oscillations. The scale bars indicate 12 µm. Simulation results (right) for
φ = 0.49, γmax = 0.3 and f = 50.0 τ−1

B , again after 1200 oscillations. Crystal
particles are colored red and reduced to 0.5σ, fluid particles are colored cyan
and reduced to 0.2σ to enhance visualization. (a) Particles are fcc stacked
(ABC) at maximum displacement of the plates. (b) The hexagonal layers are
bridge-site stacked, corresponding to a bct phase. (c) Particles are twin stacked
at the other maximum displacement of the plates (ACB). (d) Schematic model
of the relative movement of the layers during shear.
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Figure 5.4. Experimental results on the twinned fcc phase. (a) Rendered
particle positions at both extremes of the oscillation, after applying shear with
γmax = 0.3 and f = 10.0 τ−1

B to a suspension with volume fraction φ =
0.47± 0.01. Red indicates crystal-like particles and cyan indicates fluid order.
Particles are reduced in diameter to enhance visualization. (b) The calculated
3D structure factor S(q) at both extremes of the oscillation in the qx-qy plane
demonstrates the twinning behavior.

Sliding layers. When the strain amplitude exceeds approximately 0.5, collisions be-
tween particles will prevent the formation of the twinned fcc phase and particles form
hexagonal layers aligned parallel to the velocity direction. In Fig. 5.5 experimental
results are shown for a quiescent sample (Fig. 5.5a) and after application of shear with
strain amplitude γmax = 0.6 and frequency f = 2.5 τ−1

B (Pe = 0.5, Fig. 5.5b) after
approximately 100 oscillations. Simulation snapshots are shown before (Fig. 5.5c) and
after shear with γmax = 0.8 and f = 3.7 τ−1

B (Pe = 0.5, Fig. 5.5d) after 200 oscillations.
The high values of the global order parameter Ψ6 in Fig. 5.5b and Fig. 5.5d are a clear
indication of the hexagonal ordering in the velocity-vorticity plane.

A comparison between the stacking of hexagonal layers observed in experiments and
with simulations is shown in Fig. 5.6. Experimental results are from a suspension with
volume fraction φ = 0.47± 0.01, γmax = 1.3 and f = 4.1 τ−1

B . The particle coordinates
in Fig. 5.6a were obtained from a 3D data stack of confocal microscopy images taken
directly after cessation of the shear and the structure factor S(q) shown in Fig. 5.6c
is calculated from these 3D coordinates. The view from the vorticity-gradient plane in
Fig. 5.6a shows random stacking of layers, which is confirmed by the hexagonal pattern
in Fig. 5.6c. The simulation snapshot in Fig. 5.6b is for φ = 0.49, γmax = 1.2 and f = 9.0
τ−1
B and shows that every third layer is positioned on top of the first, when viewed
from the vorticity-gradient plane. The fourfold pattern of the corresponding structure
factor (Fig. 5.6d) resembles the pattern observed by Ackerson with light scattering
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Figure 5.5. Formation of the sliding layer phase. (a,b) Experimental results
for ordering in a sample with volume fraction φ = 0.47± 0.01 before and after
application of shear with strain amplitude γmax = 0.6 and frequency f = 2.5
τ−1
B . The scale bars are 10 µm. (c,d) Simulation snapshots for φ = 0.49,
γmax = 0.8 and frequency f = 3.7 τ−1

B . Particles are color coded according
to their z-position. Values of the global hexagonal order parameter Ψ6 are
indicated in the figure.

experiments [32, 220], who argued that if the volume fraction φ < 0.58, the hexagonal
layers can slide in straight lines through the grooves formed by a neighbouring layer,
as indicated in Fig. 5.6e. The consequence of this movement is that the registry (in
terms of the close packed stacking points ABC) between the layers vanishes and the
resulting phase is called the freely sliding layer phase [32]. Fig. 5.6f shows that the view
of the sliding layer phase in the vorticity-gradient plane is indeed very similar to what
is found in the simulation (Fig. 5.6b). The six-fold pattern in Fig. 5.6c is expected
for higher volume fractions φ > 0.58 when there is still registry between the layers.
This suggest that in the experiments, particles rearranged after cessation of the shear
into the triangular voids of neighbouring layers during the time it takes to acquire the
confocal images, which resulted in randomly stacked layers.

Transition point. The transition between the twinned fcc and the sliding layer phase
occurred in the experiments at γmax ≈ 0.5, which is similar to the pioneering light scat-
tering experiments by Ackerson et al. [32]. The transition strain value was independent
of the applied frequency range of f = 5 - 15 τ−1

B . In the experiments, the crystal-like
phases were always observed together with a fluid phase. For both the oscillating fcc
and the sliding layer phase, domains with deviating alignments were always present. In
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Figure 5.6. Structure of the sliding layer phase. Experimental results for
γmax = 1.3, f = 4.1 τ−1

B and φ = 0.47±0.01 and simulation for γmax = 1.2, f =
10.0 τ−1

B and φ = 0.49. Crystal particles are shown in red and fluid particles
in cyan. Both are reduced in diameter to enhance visualization. (a) After
cessation of the shear, random stacked layers were found in the experiments.
(b) Viewed from the vorticity-gradient plane, every third hexagonal layer is
positioned on top of the first in the simulations. The structure factor S(q),
calculated from 3D coordinates, indicates (c) randomly stacked layers and (d)
sliding layers. (e,f) Proposed movement of the layers during shear.

the simulations, the transition between the twinned fcc phase and sliding layer phase
occurred at the same strain amplitude (γmax ≈ 0.5), and was also independent of
frequency. The ordering in the simulations did persist for larger strain amplitudes
compared to the experiments. It is highly likely that the absence of hydrodynamic
interactions in the simulations promotes consistent layering of the sample even at strain
amplitudes where in the experiments fluid order was found. For a detailed (frequency-
strain amplitude) state diagram, which in addition also contains a velocity aligned string
phase and a tilted layer phase, see Refs. 236 and 63.
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5.3.2. Shear-induced crystallization kinetics
In this section, we investigate the shear-induced crystallization kinetics of the os-

cillating twinned fcc phase and the sliding layer phase using both experiments and
simulation.

Fig. 5.7 shows experimental results on the shear-induced crystallization in a sus-
pension with volume fraction φ = 0.49 ± 0.02 for equal Peclet number (Pe = 0.5)
but different strain amplitude γmax. Crystal-like particles were identified from confocal
microscopy images obtained during shear. Because the images were acquired in the zero-
velocity plane, the same particles were in the field-of-view for the complete duration of
the experiment, see Movies 1-2 in Appendix B.1. Fig. 5.7a shows that for a maximum
strain amplitude of γmax = 0.3, multiple crystalline domains were formed oriented
around the vorticity direction. Upon continuation of the shear, these domains slowly
coarsened into larger ones, eventually forming an oscillatory twinned fcc phase, as
shown in Fig. 5.3 and Fig. 5.4. The crystallization at this strain amplitude thus
seems to proceed via a nucleation-and-growth type of mechanism. A significantly
different scenario was observed for a larger strain amplitude of γmax = 0.6 (Fig. 5.7b).
Here, multiple crystal-like domains were formed that were all aligned with the velocity
direction. These domains quickly grew into a large and uniform domain, forming the
sliding layer phase shown in Fig. 5.6. This observation suggests a much more continuous
crystallization process. To test for any history dependence, the sample was completely
shear-melted by applying a high shear rate of γ̇max = 10/s. When the crystallization
experiment was repeated at both strain amplitudes, we observed the same behaviour,
indicating little or no history effects due to ordering of particles at the wall.

The time evolution of the 2D hexagonal order parameters are shown in Figs. 5.7c-
d. Fig. 5.7c shows that there was a clear difference in the increase of the average local
hexagonal order parameter 〈|ψ6|〉 for both strain amplitudes. However, this difference is
clearly more marked for the global hexagonal order parameter Ψ6 shown in Figs. 5.7d.
For a maximum strain amplitude of γmax = 0.6, the global order increased fast and
continuous, until it reached a plateau level of Ψ6 ∼ 0.7. On the other hand, for a
strain amplitude of γmax = 0.3, the increase was not only much slower (due to the slow
coarsening of several domains), there were also significant fluctuations in the global
order, corresponding to the formation and break-up of crystalline regions.

In Fig. 5.8, we analysed the orientation of the shear-induced crystalline domains in
more detail. Figs. 5.8a,b show 2D reconstructions from confocal microscopy images
of the zero-velocity plane, with colours indicating the in-plane orientation a particle
and its nearest neighbours. Fig. 5.8a was obtained after applying shear with Peclet
number Pe = 0.5 and strain amplitude γmax = 0.3 for a duration of 63 τB. Individual
crystalline domains are clearly visible, which were often found to have a small offset
with the vorticity (y) direction. The distribution of orientations is shown in Fig. 5.8c.
In Fig 5.8b, we show a single domain crystalline region, obtained after application of
shear with Peclet number Pe = 0.5 and strain amplitude γmax = 0.6 for a duration of
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Figure 5.7. Experimental results on the shear-induced crystallization in a
hard-sphere suspension. The volume fraction φ = 0.49 ± 0.02. Equal Peclet
number (Pe = 0.5) were used but different strain amplitude γmax. Crystal-
like particles were identified from confocal microscopy images obtained during
shear with colours indicating the orientation of the crystalline regions. Fluid-
like particles were reduced in size to enable better visualization. (a) For small
strain amplitude (γmax = 0.3) multiple crystalline domains oriented around the
vorticity direction were observed. (b) For larger strain amplitude (γmax = 0.6)
a single domain crystal was formed, aligned with the velocity direction. Notice
the difference in time for the snapshots on the right. (c) Evolution of the
average local hexagonal order parameter 〈|ψ6|〉 and (d) the global hexagonal
order parameter Ψ6. Lines are drawn to guide the eye only.
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Figure 5.8. Distribution of the orientations of shear-induced crystalline
domains. (a) A polycrystalline sample (γmax = 0.3 and Pe = 0.5) and (b)
a single domain crystal (γmax = 0.6 and Pe = 0.5). (c) The distribution of
the orientations of the image in (a) shows that the crystalline domains are
centred, but not peaked, at the vorticity direction. (d) The distribution of the
orientations of the image in (b) is narrow and centred at the velocity direction.
The lines are spline fits with periodic boundary condition (PBC).

126 τB. The corresponding distribution of orientations in Fig. 5.8d shows that there
was a narrow, single peaked distribution centred at the velocity direction.

Since the experimental measurements only allow for 2D analysis during shear (of
particles in the zero-velocity plane), we also used simulations to investigate the shear-
induced crystallization kinetics in 3D. However, because the simulations neglect hy-
drodynamic interactions, we cannot compare the time-scales for crystallization directly
with the experiments. Fig. 5.9 shows the simulation counterpart of Fig. 5.7. Figs. 5.9a,b
show the mid-plane of the simulation box (at z = 7σ), containing in total 6000 particles
at a volume fraction φ = 0.49. Again, colours indicate the orientation of the crystalline
regions and fluid-like particles were reduced in diameter to enable better visualization.
Oscillatory shear was applied with Peclet number Pe = 4 and strain amplitude γmax =
0.3 (Fig. 5.9a) and γmax = 0.6 (Fig. 5.9b). Despite the small system size, several distinct
domains can be identified in Fig. 5.9a, which, upon continuation of the shear, coarsened
into a single domain aligned with the vorticity direction. Even the characteristic small
orientation offset with the vorticity direction was often found in the simulations, despite
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Figure 5.9. Simulation counterpart of Fig. 5.7. Results are shown for 6000
particles at φ = 0.49 and Peclet number Pe = 4.0. The midplane of the
simulation box at z = 7σ was chosen for visualization. (a) For small strain
amplitude (γmax = 0.3), similar poly-crystalline domains as in the experiment
were found. Upon continuation of the shear, the domains coarsened into a
single domain. (b) For larger strain amplitude (γmax = 0.6), a single-domain
crystal was formed, aligned with the velocity direction. (c) The average
local hexagonal order parameter 〈|ψ6|〉 and (d) the global hexagonal order
parameter Ψ6, calculated for the midplane at z = 7σ, are in agreement with
the experimental results. The lines are drawn to guide the eye only.

the fact that the boxsize was chosen to be commensurate with a perfectly vorticity-
aligned fcc crystal. Fig. 5.9b shows that for strain amplitude γmax = 0.6, one uniform
domain was formed, again in good agreement with the experimental results. Also the
values of the average local hexagonal order parameter 〈|ψ6|〉 (Fig. 5.9c) and the global
hexagonal order parameter Ψ6 (Fig. 5.9d), calculated for the midplane at z = 7σ, are in
good agreement with the experimental results (compare Figs. 5.7c,d with Figs. 5.9c,d).
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For the two simulation results shown in Fig. 5.9, we also determined the density
profiles ρ(z), with z the gradient direction. Fig. 5.10a shows the results for strain
amplitude γmax = 0.3 and Fig. 5.10b for γmax = 0.6. The density profiles are shifted
for visualization and were obtained at times t/τB = 0, 1.5, 2.5, 5 and 12.5 from bottom
to top. It is clear from Fig. 5.10 that layering starts at the wall (even in the absence of
shear) and that during the shear the layers grow further into the sample. The layering
is more pronounced and occurs faster for the large strain (Fig. 5.10b) than for the small
strain (Fig. 5.10a). We also found that in both regimes, particles first order into layers
after which the hexagonal order within the layer starts to increase (compare Fig. 5.10
with Fig. 5.9d). This is most pronounced in the small strain regime. When both
samples are completely layered (t/τB = 5), the global hexagonal order in the mid-plane
at z = 7σ for γmax = 0.3 is small (Ψ6 < 0.1) whereas for γmax = 0.6 the global order
parameter has almost reached its plateau value (Ψ6 ∼ 0.6).

Figure 5.10. Density profiles of the two simulation results shown in Fig. 5.9.
The profiles are shifted for better visualization. Oscillatory shear was applied
with Peclet number Pe = 4 and strain amplitude of (a) γmax = 0.3 and (b)
γmax = 0.6. Density profiles ρ(z) are shown for times t/τB = 0, 1.5, 2.5, 5 and
12.5 from bottom to top. Layering starts from the walls and is significantly
faster in the large strain regime.

5.3.3. Melting after cessation of the shear
We end this chapter with preliminary experimental results on the melting of the shear-

induced crystals upon cessation of the shear. The spheres used in these experiments had
a diameter σ = 2.64 µm and polydispersity δ = 2.5 %. The Brownian relaxation time
τB = a2/D0 for these particles was 23.4 s. Fig. 5.11a shows the melting of an oscillatory
twinned fcc phase, induced by applying oscillatory shear with Peclet number Pe =
2.0 and maximum strain amplitude γmax = 0.3 for a duration of 150 τB. The volume
fraction φ = 0.46 ± 0.02. When the shear was stopped at t = 0, the shear-induced
crystal started to melt and returned to its equilibrium fluid phase within ∼ 15 min, see
also Movie 3 in Appendix B.1. The melting seemed to start uniformly throughout the
sample, rather than nucleating at grain boundaries or defects [243].

In Fig. 5.11b, we show results on the melting of a sliding layer phase, induced by
applying oscillatory shear with Peclet number Pe = 1.0 and maximum strain amplitude
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Figure 5.11. Experimental results on the melting of shear-induced phases
after the shear was stopped at t = 0. (a) Melting of an oscillatory twinned fcc
phase, induced by applying oscillatory shear with Peclet number Pe = 2.0 and
maximum strain amplitude γmax = 0.3 for a duration of 150 τB. The volume
fraction φ = 0.46 ± 0.02. (b) Melting of a sliding layer phase, induced by
applying oscillatory shear with Peclet number Pe = 1.0 and maximum strain
amplitude γmax = 0.6 for a duration of 79 τB. The volume fraction φ = 0.47
± 0.02. (c) The average local hexagonal order parameter 〈|ψ6|〉 and (d) the
global hexagonal order parameter Ψ6 as a function of time. Lines are drawn
to guide the eye only.
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γmax = 0.6 for a duration of 79 τB. The volume fraction φ = 0.47 ± 0.02. Again,
melting started immediately after the shear was stopped at t = 0, see also Movie 4 in
Appendix B.1. Fig. 5.11c and Fig. 5.11d show that there was no difference between the
two phases in both the rate of decrease of the local hexagonal order parameter 〈|ψ6|〉
and the global hexagonal order parameter Ψ6 respectively.

5.4. Conclusion
With both experiments on PMMA colloids and Brownian Dynamics simulations

(without hydrodynamic interactions and an enforced linear shear profile) we have
investigated two oscillatory shear-induced phases in hard-sphere fluids: an oscillating
twinned fcc phase and a sliding layer phase. In both the experiments and in the
simulation, these phases were below the coexistence density of hard-sphere freezing,
i.e. they were in a fluid phase in equilibrium. For both phases, we characterized the
crystallization kinetics during shear and the resulting 3D shear-induced structures.
Because the simulation results were in strong agreement with the experiments, we
conclude that deviations from a linear profile can be neglected in this work. Based on the
same agreement, we also conclude that, except for large Peclet numbers, hydrodynamic
interactions do not strongly affect the shear-induced structures. However, because the
hydrodynamics play an important role in determining the absolute time scales in the
system, we could not directly compare the crystallization rates.

Upon application of shear with a maximum strain amplitude of γmax = 0.3, multiple
crystalline domains were formed oriented around the vorticity direction. Upon contin-
uation of the shear, these domains slowly coarsened, eventually forming an oscillatory
twinned fcc phase where the particles oscillated between two neighbouring triangular
voids of a neighbouring layer. The crystallization seemed to proceed via a nucleation-
and-growth type of mechanism. A significantly different scenario was observed for a
larger strain amplitude of γmax = 0.6 (but equal Peclet number). Here, multiple crystal-
like domains were formed that were all aligned with the velocity direction. These
domains quickly grew into a large and uniform domain, forming a sliding layer phase
with the hexagonal layers sliding in straight lines through the grooves formed by a
neighbouring layer. This observation suggests a much more continuous crystallization
process. Simulation results showed that for both phases, upon application of the
shear, layering started at the walls and grew further into the sample until it became
completely layered. After particles ordered into layers, the hexagonal order within the
layer started to increase. Both the layer growth as well as the ordering within the
layers was significantly slower for the oscillating fcc phase than for the sliding layer
phase. We also presented preliminary experimental results on the melting of these
phases, which occurred immediately after cessation of the shear. The melting seemed
to start uniformly throughout the sample and we did not find any significant difference
between the two phases in terms of decrease in hexagonal order as a function of time.
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6
Synthesis and Phase Behaviour of a Model

System of Rod-like Silica Particles
Abstract

In this chapter we demonstrate quantitative real-space measurements on col-
loidal liquid crystal phases. First, we present three adjustments that were
made to a recently developed synthesis procedure to produce fluorescent rod-
like silica particles with large aspect ratio. When suspended in a solvent,
these particles form equilibrium liquid crystal phases, such as nematic and
smectic phases. With confocal microscopy and a particle fitting algorithm
we determined all 3D positions and orientations of these particles, even in
the most concentrated liquid crystal phases, for aspect ratios up to l/d =
5.4. Here, l is the end-to-end distance and d the diameter. This allowed us
to directly compute the 3D orientation distribution function and investigate
the (local) suspension structure. We found a smectic-B phase with small
regions (approximately 10× 10× 5 particles) of AAA-stacked crystalline layers.
Additionally, we determined the complete equilibrium density profile of a
sediment of coexisting isotropic and smectic-B phases in 3D real-space. At the
isotropic - smectic-B interface, we found a difference between the inflection
points of the density and the nematic order parameter, which agrees well
with theoretical predictions. We also measured the 2D (projected) orientation
distributions of both nematic and smectic phases of particles with aspect ratio
l/d > 7. We compared our results to theory and simulations on both hard and
soft spherocylinders and found a reasonable to good agreement. Preliminary
results are also shown on super-resolution imaging of a smectic phase.
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6.1. Introduction
The first experimental report on liquid crystals dates from 1888, when botanical

physiologist Friedrich Reinitzer and physicist Otto Lehmann studied cholesterol based
substances, now known as cholesteric liquid crystals [244, 245]. Before the discovery of
liquid crystals by Reinitzer and Lehmann, three states of matter were known: solid,
liquid and gas. The study of liquid crystals proved however, that also phases existed
which had symmetry properties in between that of a liquid and a crystalline state,
called mesophases. The classification of these phases was set out a few decades later,
by Georges Friedel in 1922 [246]. Fig. 6.1 shows schematics of some of the mesophases
that rod-like molecules or particles can form. The nematic phase, for example, is
characterized by unidirectional orientational order, but liquid-like positional order. In
the smectic phases, molecules are also aligned but, additionally, they are ordered into
layers. In the smectic-A phase, the positional order within the layer is still liquid-like
whereas in the smectic-B phase, molecules are hexagonally ordered. There are actually
many different smectic phases, ranging from smectic-A to smectic-L, depending on the
different types and degrees of positional and orientational order [20]. If there is long-
ranged correlation between the hexagonal smectic-B layers, a crystal phase is formed.
Depending on the stacking of the layers, this can either be an ABC crystal or AAA
crystal, as indicated in Fig. 6.1. Also other liquid-crystalline phases exist, such as a

Figure 6.1. Schematics of the liquid crystal phases discussed in this chapter,
with the imaging planes parallel (top) and perpendicular (bottom) to the
average alignment in the system, or director, n̂.

columnar phase, where the hexagonal ordering is still present but the molecules are no
longer ordered into layers. In general, liquid crystals can be divided into thermotropic
and lyotropic phases. Thermotropic liquid crystals exhibit phase transitions as a
function of temperature, whereas lyotropic liquid crystals exhibit phase transitions as a
function of concentration [20]. Most of the molecular liquid crystals are thermotropic.
In this chapter, however, we will focus on a colloidal liquid-crystal system, consisting
of rod-like particles suspended in a solvent, which is an example of a lyotropic system.

In 1949, Lars Onsager gave one of the first theoretical explanations of the formation
of a nematic phase of hard rods, based on excluded volume (and therefore entropy)
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alone [247]. Later, it was demonstrated with computer simulations that a smectic phase
is also stable in a system of hard rods with sufficient aspect ratio [248]. Fig. 6.2 shows
the packing fraction - aspect ratio phase diagram of a system of hard spherocylinders
obtained with computer simulations by Bolhuis and Frenkel [209]. All phases shown
in Fig. 6.1 are present in the phase diagram except for the smectic-B phase. In the
simulations, the aspect ratio L/D is defined as the cylinder length over the diameter
(see the inset in Fig. 6.2). Because the particles used in the experiments in this chapter
are not identical in shape to a spherocylinder, but are more bullet-like, we define the
end-to-end aspect ratio l/d, with l the average end-to-end length of the particle and d the
diameter. Because the particles are also charged in suspension, as we will later discuss
in detail, we also introduce an effective end-to-end length l∗ and effective diameter d∗,
resulting in an effective aspect ratio l∗/d∗ ≈ L/D + 1.

Figure 6.2. Phase diagram of hard spherocylinders, adapted from computer
simulation results by Bolhuis and Frenkel [209]. The gray areas indicate
coexistence regions. In the simulations, the aspect ratio L/D is defined as the
length of the cylinder L over the diameter D (see inset). In the experiments in
this chapter, however, we use the end-to-end length l, diameter d and aspect
ratio l/d. Because the particles in the experiments are charged, we also define
the effective end-to-end length l∗, effective diameter d∗ and effective aspect
ratio l∗/d∗ ≈ L/D + 1.

One of the first reports of an experimental colloidal liquid crystal system dates from
1925 by Zocher, who used needle-like vanadium pentoxide (V2O5) particles that formed
nematic phases in suspension [18]. For a system of the tobacco mosaic virus (TMV),
nematic phases were reported in the 1930s and smectic phases in the 1950s [19]. Since
then, many different colloidal particles have been developed to study liquid crystal phase
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behaviour. We will however give a brief overview of the experimental systems consisting
of rod-like colloids. Apart from the TMV system, various other bio-organic systems
exist that form nematic, smectic and in some cases even crystalline phases, including
the fd-virus [249, 250] and DNA [251]. Another class is that of the aluminium and
iron hydroxides, including rod-like boehmite (AlOOH) particles [252], akaganeite (β-
FeOOH) [21], goethite (α-FeOOH) [253] and spindle-like hematite (α-Fe2O3) [254,255].
For a review on liquid crystal formation in colloidal dispersions with mineral particles
see Ref. 256. Another class of rod-like particles are the ellipsoidal polymer particles,
made by mechanical stretching of spherical particles in a polymerized matrix. These
ellipsoidal particles are usually made from poly(methyl methacrylate) (PMMA) [162] or
polystyrene [257]. Furthermore, dumbbell-shaped polymer particles are also used as a
model system for real-space studies of uniaxial anisotropic particles [165,258,259]. Our
final examples of rod-like particles are nanorods made from gold [260] or semiconductor
material, such as CdS [261], which can form large-scale smectic phases. See Refs. 262–
264 for extensive reviews on the different types of colloidal (rod-like) self-assembly
studies and liquid crystalline phase behaviour.

Early real-space experiments on colloidal liquid crystals were performed by Maeda and
Maeda in 2003, who reported nematic and smectic phases of rod-like particles for a wide
range of aspect ratios (∼ 3 - 35), which they observed with an optical microscope [21].
The high refractive index of the particles, however, impeded observation of more than
one or two layers of the sample. Nevertheless, they obtained quantitative data on the
particle dynamics in a smectic phase [265] and also investigated the phase behaviour
under strong confinement [266]. For some of the systems mentioned so far, the particles
can be fluorescently dyed and index matched, which enables study of their phase
behaviour with a confocal microscope. For the fd-viruses, which have a diameter
much smaller than the resolution of a confocal microscope, this was only possible
with fluorescently labelled tracers [26, 27]. However, this still enabled single particle
measurements on the self-diffusion in a nematic [26] and in a smectic phase [27]. The
larger PMMA and polystyrene ellipsoidal and dumbbell particles allowed for 3D study
of systems where all the particles were fluorescent [44, 185]. However, hard dumbbells
do not from liquid-crystal phases [267] and hard ellipsoids do not form stable smectic
phases [268]. Therefore, external fields have been used to induce particle alignment over
larger distances. Using a centrifugal field, nematic order was found in dense suspensions
of ellipsoids [185] and crystalline order was induced with an external electric field for
both dumbbells and ellipsoids and measured with 3D confocal microscopy [43,44].

In contrast with the systems of ellipsoidal particles, it was recently shown by our
group that a system of fluorescent rod-like silica particles does form nematic and smectic
phases in equilibrium [25]. Further study showed that the phase behaviour could be
mapped with qualitative agreement onto the hard-rod phase diagram shown in Fig. 6.2
[28]. However, there are several important differences with the computer simulation
model. First of all, the particles in our experimental system are charged, resulting
in both an effective length l∗ and effective diameter d∗, which changes the aspect ratio
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(and therefore the phase behaviour) of the particles [28,269]. Additionally, the repulsive
charge can also lead to a twisting effect [270]. Furthermore, computer simulations
on parallel soft spherocylinders have shown that charge stabilizes a columnar phase,
whereas a smectic and especially a nematic phase is destabilized [271]. Second, the
particle systems that we use are not perfectly monodisperse, but have a polydispersity
of 6% - 12% in both length and diameter, which is expected to have a significant
effect on the stability of the smectic and crystalline phases [211, 272]. Finally, the
particles in the experimental system are heavier than the dispersing solvent, resulting
in sedimentation and, upon equilibration, a density profile along the direction of gravity.
The equilibrium density profile is a fundamental property of the system that can be used
to determine the equation of state, as has previously been done in real-space for colloidal
spheres [273, 274]. Additionally, sedimentation has been used to study crystallization
in the first layers of the sediment [14]. For recent developments and unsettled issues
on colloidal sedimentation, see Ref. 275. Compared to studies on colloidal spheres,
however, advancements in sedimentation phenomena of rod-like particles strongly lag
behind [275]. Nevertheless, several theoretical studies have been put forward, e.g.
on the concentration dependence of the sedimentation velocity of colloidal rods [276]
or on the nematic ordering of rods during sedimentation [277]. A notable computer
simulation study is by Savenko and Dijkstra who studied hard spherocylinders with

Figure 6.3. A snapshot of a computer simulation by Savenko and Dijkstra on
hard spherocylinders with aspect ratio L/D = 5, subjected to a gravitational
field [278]. The number of particles per unit surface nsD2 = 4.34 and inverse
gravitational length D/ lg = 0.75. The snapshot shows isotropic-nematic-
smectic-A-crystal phase coexistence.
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aspect ratio L/D = 5 in a gravitational field [278]. Fig. 6.3 shows a snapshot from
this study, indicating isotropic-nematic-smectic-crystal phase equilibrium, determined
from analysis of the sedimentation profile. Real-space experimental measurements of
rod-like particles under sedimentation remain however scarce [28] and, quoting Roberto
Piazza, “a comprehensive experimental analysis of rod concentration profiles, allowing
for instance a comparison with detailed theoretical predictions for nematic ordering in
the presence of gravity, is yet to come” [275].

In this chapter, we demonstrate novel strategies that allow for real-space quantitative
analysis of experiments on rod-like particles under gravity. We first show results on
adjustments made to a recently developed synthesis procedure to produce fluorescent
rod-like particles [25, 28, 72]. After the particles had been left to sediment and form
concentrated liquid-crystal phases, we acquired 3D confocal microscopy data stacks
and applied our particle fitting algorithm, described in Chapter 4, to obtain their 3D
positions and orientations. From these data, we analysed the phase behaviour of the
particles, for aspect ratios l/d = 4 - 20, and compared the results with predictions from
both theory and simulation.
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6.2. Methods
6.2.1. Rods in a gravitational field

The sedimentation profile of a colloidal suspension is the result of fundamental
equilibrium properties of the system. The profile arises due to the competing effects
of minimal gravitational energy and maximal entropy. This competition results in a
gravitational pressure on the particles being balanced by an osmotic pressure gradient,
which is given by

dΠ(z)
d z = −g(ρp − ρs)φ(z). (6.1)

Here, Π(z) is the osmotic pressure at height z, ρp the mass density of the particle,
ρs the mass density of the solvent and φ(z) = ρ(z) vp the particle volume fraction at
height z, with ρ(z) the particle number density at height z and vp the volume of the
colloid. Equation (6.1) is only valid if the thermodynamic quantities, such as the density
and pressure, are locally well-defined [279]. We assume the rods in this chapter to be
spherocylindrical in shape, with a volume given by

vp = π

 l d2

4 −
d3

12

, (6.2)

with l the end-to-end length of the particle and d the diameter. In the ideal gas limit,
the density profile is barometric and the solution to equation (6.1) is the well known
barometric height distribution

φ(z) = φ0 exp(−z/lg), (6.3)

with lg the gravitational length, given by lg = kBT/mg, where m is the buoyant mass
of the particle, i.e. m = (ρp − ρs) vp. For higher densities, where particles start to
interact, the system can undergo phase transitions and an integrated sedimentation
profile allows for a determination of the equation of state. First, the sedimentation
profile is integrated from z to the top of the sample h to give the pressure

Π(h)− Π(z) = −g (ρp − ρs)
∫ h

z
φ(z′)dz′. (6.4)

Next, elimination of z between Π(z) and φ(z) directly leads to the equation of state
Π(φ). On the other hand, if the equation of state Π(φ) is explicitly known, equation
(6.1) can be used to obtain the density profile for given lg [280]. Moreover, equation
(6.4) can be used to estimate the number of layers in the sediment N needed to reach
the pressure for the bottom layer to undergo a phase transition [281]. We therefore
assume that the volume fraction of the entire sediment is constant. If we also assume
a constant layer thickness ξ, then equation (6.4) becomes

Π = g (ρp − ρs)φ ξ N. (6.5)

We will now estimate N for a spherocylinder with diameter D = 500 nm, cylinder
length L = 2.5 µm and aspect ratio L/D = 5.0. For the mass densities we used ρp
= 1.9 g/ml and ρs = 1.0 g/ml. Based on the computer simulations by Bolhuis and
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Frenkel, we expect the isotropic to nematic phase transition to occur at a pressure Π
= 0.036 N/m2 and volume fraction φ = 0.40 [209]. Assuming a layer thickness ξ = 600
nm, we obtain from equation (6.5) that N = 17 layers are needed for the bottom layer
to become nematic. Similarly, for a nematic to smectic-A transition (Π = 0.047 N/m2

and φ = 0.47) we find N = 19 layers and for the smectic-A to solid transition (Π =
0.076 N/m2 and φ = 0.60) we expect that N = 24 layers are needed for the bottom
layer to crystallize.

Because the density profile can vary rapidly due to layering of particles, a coarse-
grained density profile is sometimes used to obtain the equation of state [279,282], given
by

φ̄(z) =
∫ ∞

0
φ(z)w(z − z′)dz′, (6.6)

with w(z) a normalized resolution function, e.g. a triangular or top-hat function [279].
To quantify the interface region of two coexisting phases, we fitted a tangent hy-

perbolic function to both the nematic order parameter S3D and the particle number
density ρ, given by [283]

α(z) = 1
2(α1 + α2) + 1

2(α1 − α2) tanh(z − z0)/∆, (6.7)

with z0 the position of the interface, ∆ the thickness of the interface and α = {S3D, ρ}.
To estimate the sedimentation velocity at infinite dilution, assuming complete decou-

pling of rotations, translations and sedimentation [196], we use the Svedberg equation
[197]

vsed = vpDt g (ρp − ρs)
kB T

, (6.8)

with Dt the rotationally averaged translational diffusion coefficient at infinite dilution.

6.2.2. Rod-like particle suspensions
Synthesis of particle cores. Fluorescent silica rods were prepared following the method
of Kuijk et al. [25,72]. Two types of adjustments were made to increase the aspect ratio
of the rods. The first adjustment was a seeded growth method. For this method, 30 g
of polyvinylpyrrolidone (PVP, average molecular weight Mn = 40.000, Sigma-Aldrich)
was disssolved in 300 ml of 1-pentanol (≥ 99% Sigma-Aldrich) by ultra-sonication for
2 hours in a 500 ml glass laboratory bottle. After all the PVP had dissolved, 30 ml of
absolute ethanol (Baker) was added to the pentanol, together with 8-10 ml of ultrapure
water (Millipore system) and 2 ml of 0.18 M sodium citrate dihydrate (NaCit, 99%,
Aldrich). Afterwards, the flask was shaken by hand several times until the solution
became turbid. Next, 6.75 ml of ammonia (25 wt%, Merck) and 3.0 ml of tetraethyl
orthosilicate (TEOS, ≥ 98%, Fluka) was added to the mixture. After both additions,
the flask was shaken by hand several times. After the mixture was left to react for 6
hours, an additional amount of 3 ml TEOS was added after which the flask was gently
shaken again and left unagitated. This growth step was repeated up to a maximum
of 3 times, each with a minimum time interval of 6 hours. After the last addition of
TEOS, the reaction was allowed to proceed overnight.



6.2. Methods 109

The second method consisted of a scaled-up synthesis, using a 1 L glass bottle, with
slightly different concentrations as described before: 80 g of PVP, 800 ml of 1-pentanol,
80 ml ethanol, 19 - 20 ml water, 8 ml of 0.18 M NaCit, 16 - 18 ml ammonia and 8.0-
8.5 ml TEOS. The TEOS was added once at the beginning of the synthesis and, after
shaking by hand several times, the reaction was left to proceed for at least 48 hours.
All reactions were carried out at room temperature except for one, which was carried
out at 30 ± 1 ◦C using an incubator (RS-IF-203, Revolutionary Science).

The synthesis was stopped by centrifuging the reaction mixture at 1500 g for 1 hour
after which the supernatant was removed and particles in the sediment were redispersed
in ethanol by vortex mixing and by brief sonication. This procedure was repeated at
1500 g for 20 minutes, 2 times with ethanol, 2 times with water and finally with ethanol
again.

To narrow the particle size distribution and purify the sample, we removed both large
and small particles and we removed aggregates. To remove the smaller particles, the
sample was centrifuged with varying centrifugation speeds (150 - 700 g), depending
on the average size of the particles. The centrifugation speed was chosen such that
after 15 minutes of centrifugation, there was both a dense sediment at the bottom and
still a turbid supernatant on top. The supernatant was removed and the rods in the
sediment were redispersed in ethanol. This procedure was repeated at least four times
and the centrifugation speed was lowered if the height of the turbid supernatant became
smaller. Large particles and aggregates were removed by transferring the sample to a
40 ml vial and leaving it to sediment for approximately 2 hours, until a sediment was
visible at the bottom, a turbid supernatant in the middle and a clear supernatant at
the top. The clear supernatant was removed and approximately the same volume of
turbid supernatant was separated for further use. This procedure was repeated several
times to increase the yield of the final suspension containing rod-like particle cores with
a relatively narrow size distribution.

Fluorescent labelling. To fluorescently label the rods, we followed the method described
in Ref. 72. We used two methods to label the rods: the first resulted in a gradient
in fluorescent intensity along the main axis of the particle core, the second method
resulted in a uniform fluorescent shell around the core. For both methods we dissolved
25 mg of fluorescein isothiocyanate (FITC, isomer I, 90%, Sigma-Aldrich) in 5 ml of
absolute ethanol (Baker), after which 35 µl of (3-aminopropyl)triethoxysilane (APS)
was added. The mixture was left to react overnight. Alternatively, 35 mg of rhodamine
isothiocyanate (RITC, mixed isomers, Aldrich) was used instead of 25 mg FITC. For
the first method, the dye-APS mixture was added during the rod synthesis, described
in the previous section, directly after addition of the TEOS. Because the availability of
dye is higher during the beginning of the rod-growth, this method resulted in a gradient
of dye molecules along the rod axis. To label the particles with a fluorescent shell, the
as prepared particle cores (∼ 0.5 g) were dispersed in 300 ml of ethanol in a round
bottom flask. Under gentle magnetic stirring, we added 10 ml of ultrapure water, 10



110 6. Synthesis and Phase Behaviour of a Model System of Rod-like Silica Particles

ml of ammonia and 1.0 ml of TEOS together with the dye-APS mixture. After the
mixture reacted overnight, it was centrifuged at 700 g for 30 minutes and washed three
times with ethanol and once with water. This procedure resulted in a homogeneous
fluorescent shell of 30 - 60 nm. When RITC was used instead of FITC, particles were
not stable in ethanol, since RITC is cationic and the silica rods have a negative charge.
Therefore a mixture of ammonia and ethanol was used (5 ml ammonia per 100 ml of
ethanol) to wash the particles. The particles were stable in ethanol again after growing
a non-fluorescent outer silica shell around the RITC-dyed particles (see details below).

The particles with a fluorescent shell enable a more accurate determination of the
center of mass from confocal microscopy images, compared to gradient-dyed rods, and
are therefore the preferred type of particles. However, there were often problems with
(partial) aggregation during the shell coating procedure, rendering the batch useless
about half the time. The gradient dyed rods did not have any stability problems
and, additionally, break the up-down symmetry of the rods optically, enabling unique
determination of the tip of the particle. In Chapter 4, we show in Fig. 4.2i the
intensity histograms of two fluorescently labelled rods that were oriented parallel to
the xy image plane of the confocal microscope. The continuous (red) line shows the
intensity histogram of a rod with a fluorescent shell and the dashed (green) line that of
a gradient-dyed rod.

To resolve individual particles with confocal microscopy, even when the concentration
is high, non-fluorescent silica shells were grown around the particles. The fluorescent
rods (∼ 0.7 g) were dispersed in 300 ml of ethanol in a round bottom flask together
with 10 ml of water. Under gentle magnetic stirring, 10 ml of ammonia was added and
0.5 - 1.5 ml TEOS after which the reaction mixture was left to react overnight, which
resulted in a non-fluorescent silica shell around the particles. Afterwards, the particles
were centrifuged at 700 g for 30 minutes and washed three times with ethanol and once
with water. The thickness of the shell depended on the particle dimensions and TEOS
concentration, but was usually between 30 - 60 nm. The shell growth step was repeated
several times until the desired thickness (∼ 100 - 200 nm) was reached.

Index matching. Particle suspensions were prepared for confocal microscopy imaging by
dispersing the rods in an index-matching mixture n21

D = 1.45 of either dimethylsulfoxide
(DMSO, ≥ 99%, Sigma-Aldrich) and ultrapure water (Millipore system) or glycerol (>
99 %, Sigma-Aldrich) and ultrapure water. The particles were dispersed in DMSO or
glycerol first, after which water was added until the suspension was carefully index-
matched by eye. This resulted in mixtures of 91 wt% DMSO in water and 85 wt%
glycerol in water.

6.2.3. Confocal microscopy & image restoration
Sample cells. To record confocal microscopy images, three types of sample cells were
used. The first consisted of normal glass capillaries (0.1 × 1.0 mm2 and 0.2 × 2.0 mm2,
Vitrocom) which were sealed at both ends with UV-glue (Norland No. 68). This type of
capillary was used only for qualitative inspection of the samples because they provide
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poor imaging, which is partially due to their manufacturing process and also due to the
low and probably non-uniform refractive index (n23

D = 1.47). For high quality images,
sample cells were constructed with standard glass coverslips (Menzel Gläzer). These
glass coverslips have a high flatness (≤ 5.0 %) and a refractive index (n23

D = 1.523)
close to the refractive index of the oil-immersion liquid (Type F, Leica, n23

D = 1.515)
used for imaging. The second type of sample cell consisted of such a glass coverslip
(No. 1.0, thickness between 130 - 160 µm) and a standard microscopy slide (Menzel
Gläzer) which were separated by two strips of a No. 1.0 coverslip acting as spacers. All
components were glued together with UV-glue, leaving a small channel of ∼ 0.2 × 4 ×
20 mm3 (height × width × depth) which was filled with suspension and sealed at both
ends with either UV-glue or two component epoxy glue (Bison Combi Rapide).

The third and final sample cell was used to accommodate a column of sedimenting
particles. This cell was constructed as follows (see the schematic in Fig. 6.4). First,
the broad end of a glass pasteur pipette (WU Mainz) was cut to 2 cm in length. One
of the open ends was then glued on a No. 1.0 or No. 1.5 coverslip (Menzel Gläzer) with
UV curing glue (Norland 68). Then, the pipette was slid through a circular hole of
7 mm that was drilled in the middle of a standard microscopy slide (Menzel Gläzer)
and attached permanently by gluing the coverslip to the microscopy slide with UV glue.
This created a vertical cylindrical sample holder of 5 mm in diameter and 2 cm in height,
with a volume of ∼ 400 µl, see Fig. 6.4. The sample cell was filled by either adding 350
µl of suspension with initial volume fraction φ = 0.04% or by adding 5 µl of suspension
with volume fraction φ = 3% on top of a column of 345 µl of glycerol/water that was
recovered from the same sample by centrifugation. After filling, the sample was sealed
with cotton wool wrapped in parafilm, followed by candle wax. This prevented any
significant evaporation of the suspension for at least several weeks.

Conventional confocal microscopy. The samples were imaged with a confocal micro-
scope (Leica SP2 or Leica SP8) using a 63×/1.4 or 100×/1.4 oil-immersion confocal

Figure 6.4. Sample cell used for study of the sedimentation profile of rod-like
particles with 3D confocal microscopy.
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objective (Leica) and an excitation wavelength of either 488 nm or 542 nm. We corrected
the 3D images for distortion of the axial (z) distances due to the refractive index
mismatch between sample (n21

D = 1.45) and immersion oil (n21
D = 1.51), which results

in an increase of axial distances by 5%, see Chapter 3. Typical dimensions of a single
3D image stack were 30 × 30 × 50 µm3 with voxel size of 50 × 50 × 100 nm3. This
is roughly four times smaller than the resolution of the Leica SP8 confocal microscope
used (190 nm in the lateral and 490 nm in the axial direction, see Chapter 3) and close
to the Nyquist sampling rate, which is 43 × 43 × 130 nm3 for a numerical aperture of
1.4, oil-immersion (nD = 1.515) and an excitation wavelength of 488 nm [93,94].

Stimulated Emission Depletion. ContinuousWave Stimulated Emission Depletion (CW-
STED) images were taken with a Leica SP8 STED confocal microscope. Images were
taken with a white light continuum laser with a pulsed excitation at 488 nm and a 592
nm STED beam. Typical image dimensions were 10 × 10 µm2 with a pixel size of 20
× 20 nm2.

Image deconvolution. Some of the 2D and 3D confocal microscopy data were decon-
volved to suppress noise and improve both contrast and resolution [187]. All deconvo-
lutions were performed using commercially available software (Huygens Professional 4.4,
Scientific Volume Imaging) using the classic maximum likelihood estimation restoration
method [90]. A theoretical point spread function (PSF) was used when there was a
mismatch between the refractive index of the sample and the immersion fluid and for
the STED data, otherwise the measured PSF shown in Chapter 3 was used.

6.2.4. Particle fitting
We determined the position and orientation of the fluorescent rods from 3D confocal

microscopy data-stacks using the algorithm described in Chapter 4. We applied the
algorithm to both raw and deconvolved data, depending on the quality of the data
stacks.

6.2.5. Structure tensor
Some systems that we studied did not have a (large) non-fluorescent outer layer,

resulting in strongly overlapping particle signals. When the overlap was too severe
to apply our particle fitting algorithm with enough accuracy, we used the publicly
available ImageJ routine OrientationJ to quantify the orientational order in 2D confocal
microscopy images [284–286]. This routine computes the structure tensor J for each
pixel in the image, given by the 2 × 2 symmetric matrix

J =
(
〈fx, fx〉 〈fx, fy〉
〈fx, fy〉 〈fy, fy〉

)
, (6.9)

with fi the spatial derivatives of the image f(x, y), which were calculated using a cubic
B-spline interpolation [285]. The brackets denote a weighted inner product given by

〈a, b〉w =
∫∫

R2
w(x, y)a(x, y)b(x, y), (6.10)
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with w(x, y) a Gaussian function that specifies the area of interest. The eigenvector
corresponding to the largest eigenvalue of the tensor then gives the local predominant
orientation of each pixel [285]. We used a Gaussian window with standard deviation
σ of 3 pixels. From the pixel orientation distribution we then calculated the projected
2D nematic director and nematic order parameter as described in the next section.

6.2.6. 3D and 2D projected nematic order parameters
To quantify the global 3D orientational order in our systems we calculated the 3D

nematic order parameter defined by

S3D = 3
2〈cos2 θ〉 − 1

2 , (6.11)

where cos θ = û · n̂, with û the unit vector along the main axis of the rod and n̂ the
nematic director, i.e. the direction of the average alignment in the system. We find
S3D and n̂ by calculating the largest eigenvalue and corresponding eigenvector of the
standard 3 × 3 nematic order parameter tensor

Q3D
αβ = 1

N

N∑
i=1

3uiαuiβ − δαβ
2

, (6.12)

with uiα the α-component of the unit vector pointing along the main axis of particle i
and α, β = x, y, z. δαβ is the Kronecker delta and N is the total number of particles in
the system.

We also determined the local nematic order parameter Si3D given by

Si3D = 1
ni

ni∑
j=1

3
2 |ui · uj|

2 − 1
2

 (6.13)

with ni the number of (nearest) neighbours of particle i. A particle is assigned as a
neighbour j if its center falls within a cylinder concentric with particle i with length
and diameter approximately three times that of particle i.

In cases where only 2D information was available, we quantified the (projected) 2D
order in the system by calculation of the 2D nematic order parameter, given by

S2D′ = 2〈cos2 ψ〉 − 1, (6.14)

with ψ the angle between the projected main axis of the rod û′ and the projected
nematic director n̂′, i.e. ψ is the in-plane projected angle that maximizes equation
(6.14). Similarly, we calculated the 2 × 2 nematic order parameter tensor given by

Q2D
αβ = 1

N

N∑
i=1

(
2u′iαu′iβ − δαβ

)
, (6.15)

with u′iα the α-component of the unit vector pointing along the projected main axis of
particle i, δαβ the Kronecker delta and α = x, y.
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6.2.7. Fast Fourier Transform
We applied a Fast Fourier Transform (FFT) algorithm on 2D confocal microscopy im-

ages to visualize the observed structures in Fourier space. This allows for a (qualitative)
comparison with existing light scattering or X-ray diffraction experiments on rod-like
particles. We used a custom written C++ algorithm involving a Hanning window to
avoid artefacts caused by the finite size of the images [287].
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6.3. Results
6.3.1. Control over particle geometry

From the phase diagram of hard spherocylinders shown in Fig. 6.2, we can see that
for both the nematic and smectic liquid crystal phases to be stable for an appreciable
range of density, a minimum cylinder length aspect ratio L/D of approximately 6 is
needed, or equivalently, an end-to-end length aspect ratio l/d of 7. Fortunately, it is
well within the limit of the method of Kuijk et al. [25] to synthesize particle cores with
such an aspect ratio. Fig. 6.5a shows a transmission electron microscopy (TEM) images
of particles directly after synthesis with l/d = 9.4. However, to perform quantitative

Figure 6.5. The effect of shell coating on the particle aspect ratio. (a)
Transmission electron microscopy (TEM) image of particle cores with l/d =
9.4, directly after synthesis. (b) After coating the cores with a 162 nm shell, the
aspect ratio decreased to l/d = 4.7. Both scale bars are 3 µm. (c) Change in
aspect ratio l/d as a function of shell thickness for a rod with a core diameter
of 250 nm. The gray area indicates the approximate non-fluorescent shell
thickness needed to resolve individual particles with 3D confocal microscopy.

3D real-space analysis in concentrated phases with confocal microscopy, the fluorescent
parts of the rods need to be separated by approximately 500 nm, which is roughly the
resolution of the confocal microscope in the lateral (z) direction. If we assume that the
repulsive potential of the particles adds about 100 nm of separation to each rod (which
will be discussed in more detail in section 6.3.2), then the particle cores need to be
coated with a non-fluorescent outer layer with a minimum thickness of approximately
150 nm. Because the thickness of the fluorescent layer (∼ 25 nm) also needs to be
taken into account (if the cores themselves are not made fluorescent), a minimum shell
thickness of 175 nm is needed. The problem that now arises is that the shell coating
decreases the particle aspect ratio quite dramatically. Fig. 6.5b shows that an initial
aspect ratio of l/d = 9.4 decreased to l/d = 4.7 after coating the particles with a 162 nm
shell. Fig. 6.5c further demonstrates this effect. The continuous lines show the decrease
in aspect ratio for a rod with an initial diameter of 250 nm and initial aspect ratio l/d =
8,10,12,14 and 16, assuming that a layer of uniform thickness is formed all around the
rod. The gray area in Fig. 6.5c marks the approximate total shell thickness needed for
quantitative 3D real-space measurement. The dashed line in Fig. 6.5c indicates that to
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end up with particles with l/d = 7, coated with a 175 nm shell, an initial aspect ratio
of l/d = 16 is needed, which stretches the limits of the current synthesis procedure.
We therefore used three adjustments to the rod synthesis procedure to obtain particles
with significantly larger aspect ratio.

The first adjustment was a seeded growth procedure where the original recipe was
followed with the exception that additional TEOS was added in steps of 3 ml with
a time interval of 6 hours. We used a maximum of 4 additions of TEOS in total,
resulting in rods with increased aspect ratio. An additional observation is that within
the same batch, the thickest rods were always bent. With careful centrifugation and
sedimentation steps it was possible to almost completely remove them. Shaking as
opposed to just tumbling the synthesis bottle several times after the addition of TEOS
did not have a significant effect on rods being straight or bent. A list of syntheses
performed using this growth method is given in Table 6.1. A maximum of 4 growth
steps resulted in particles with an aspect ratio of l/d = 20.4 (TH6). In Fig. 6.6

H2O (ml) NH3 (aq) (ml) TEOS (ml) l (µm) d (µm) l/d

THB7 10 6.75 1 × 3 ml 1.7 0.32 5.3
TH2 10 6.75 2 × 3 ml 2.3 0.33 7.0
TH4 8.4 6.75 2 × 3 ml 2.6 0.28 9.1
TH9 8 6.75 3 × 3 ml 5.5 0.30 18.3
TH7 9 6.75 3 × 3 ml 5.7 0.43 13.2
TH8 10 6.75 3 × 3 ml 4.8 0.44 10.9
TH6 10 6.75 4 × 3 ml 10.0 0.49 20.4

Table 6.1. Reagent concentrations of the seeded growth syntheses. All
syntheses were performed with 300 ml of 1-pentanol, 30 g PVP, 30 ml ethanol
and 2 ml of 0.18 M sodium citrate dihydrate solution in a 500 ml glass
laboratory bottle. There was always a minimum of 6 hours between additions
of TEOS. All rods were straight and bullet shaped except for TH9, which
contained many particles which had a kink along their major axis. Here, l is
the average end-to-end length, d the average diameter and l/d the aspect ratio.

TEM images are shown for three particle systems with, all other concentrations kept
constant, increasing number of growth steps: one time (l/d = 5.3, Fig. 6.6a), two
times (l/d = 9.1, Fig. 6.6b) and four times (l/d = 20.4, Fig. 6.6c). The results are
summarized in Figs. 6.7a-b, showing that the aspect ratio increases almost linearly
with TEOS concentration. For a fixed number of 3 growth steps we also varied the
water concentration, which is known to be inversely proportional to the final length of
the rods obtained [25]. By lowering the water concentration we could indeed increase
the aspect ratio of the particles (see Figs. 6.7c-d). However, below a critical water
content of 9 ml, almost all rods were curly or bent.
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Figure 6.6. TEM images of rod-like particle cores. (a) Aspect ratio l/d =
5.3 (THB7). (b) Aspect ratio l/d = 9.1 (TH4). (c) Aspect ratio l/d = 20.4
(TH6). A larger aspect ratio was achieved by a seeded growth procedure, with
a maximum of 4 additions of 3 ml TEOS. Reagent concentrations and particle
dimensions are listed in Table 6.1.

Although the seeded growth method could be used to produce rods with aspect
ratios as large as l/d = 20, it also produced very large (and heavy) rods. This is not
ideal, since Brownian relaxation times and sedimentation speed increase strongly as a
function of size. Therefore, equilibrium phases are more easily surpassed by metastable
disordered phases. For a particle with length l = 5.7 µm and diameter d = 430 nm
(TH7) dispersed in 91 wt% DMSO in water, the rotational relaxation time τr = 23 s, the
time to translate over its own length τL = 70 s, the gravitational length lg = 0.64 µm and
the sedimentation velocity at infinite dilution vs = 10 µm/min. Due to subsequent shell
coatings, these values will increase even more. We therefore investigated an alternative
method to obtain particles with large aspect ratio but with small length and diameter.
This method consisted of a scaled-up synthesis, using larger amounts of reagent in a
1 L glass bottle and different water and sodium citrate concentrations. Details of all
the reagent concentrations and resulting particle dimensions are listed in Table 6.2.
Compared to the original synthesis procedure, we used for the first synthesis listed
in Table 6.2 (CT1) 25% less water and 50% more sodium citrate solution. All other
concentrations were kept constant. We added 8 ml of TEOS only once and the reaction
was left to proceed for 72 hours. This resulted in rods with average length l = 3.0
µm, diameter d = 0.21 µm and l/d = 14.4. Although these particles had both a large
aspect ratio and a small diameter, their shape was less well defined, see Fig. 6.8a for
a TEM image of the particles after several purification steps. Many of the particles
were not perfectly straight, and especially the larger ones had an asparagus-like shape.
However, most of the large particles could be removed by sedimentation, and shell
coating improved the uniformity of the particle shape significantly. When we increased
the ammonia concentration from 16 ml to 18 ml (see CT2 in Table 6.2), which is known
to result in smaller and less curly rods [25], the particles were indeed more straight and
well defined. However, the resulting aspect ratio l/d = 5.6 was not high enough for our
phase behaviour studies as these particles will have a final aspect ratio of approximately



118 6. Synthesis and Phase Behaviour of a Model System of Rod-like Silica Particles

Figure 6.7. Dependence of reagent concentrations on the particle size and
shape. Change in length, diameter and aspect ratio are shown as a function
of (a-b) TEOS concentration and (c-b) water concentration, with all other
concentrations being constant. TEOS was always added in steps of 3 ml with
a minimum time interval of 6 hours. Below a critical water concentration, the
rods became curly or bent. Error bars indicate the s.d. of the distribution.
Complete reagent concentrations are listed in Table 6.1.

3 if a 175 nm shell is coated around these particles. A lower water concentration and
lower ammonia concentration (see CT3 in Table 6.2) increased the aspect ratio again
to l/d = 9.4, with most of the rods straight (see Fig. 6.8b).

To increase the aspect ratio even further we carried out a synthesis at elevated
temperature, since it was recently shown that the diameter of the rods can be controlled
by regulating the reaction temperature during synthesis, with higher temperatures
resulting in smaller diameters [288]. Although the diameter still responded to tem-
peratures up to 90 ◦C, rods already started to become curved when they were grown
at a constant temperature of 40 ◦C [288]. We therefore carried out our synthesis at
a constant temperature of 30± 1 ◦C using an incubator to maintain a constant and
uniform temperature throughout the duration of the synthesis. This resulted in particles
with aspect ratio l/d = 15.4 (CT5), see Table 6.2 for details and Fig. 6.8c for a TEM
image of the particles.
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H2O (ml) NH3 (aq) (ml) TEOS (ml) l (µm) d (nm) l/d

CT1 20 16 8.0 3.0 210 14.4
CT2 20 18 8.0 1.7 305 5.6
CT3 19 17 8.5 2.1 226 9.4
CT5 19 17 8.5 3.2 209 15.4

Table 6.2. Reagent concentrations for syntheses that were scaled-up and
changed in composition compared to the ones listed in Table 6.1. All syntheses
were performed with 800 ml of 1-pentanol, 80 g PVP, 80 ml ethanol, 8 ml of 0.18
M sodium citrate dihydrate solution in a 1 L glass laboratory bottle. TEOS
was added once at the beginning of the synthesis. All reactions were carried
out at room temperature with the exception of CT5 which was incubated at
30◦C. Here, l is the average end-to-end length, d the average diameter and l/d
the aspect ratio.

Figure 6.8. TEM images of particle cores, with varying aspect ratio, directly
after synthesis. (a) Synthesis performed in a larger volume, with 25% higher
water concentration (CT1), aspect ratio l/d = 14.4. Notice that not all
particles are straight. (b) Synthesis performed at room temperature (CT3),
aspect ratio l/d = 9.4. (c) Synthesis performed at an elevated temperature
of 30◦ C (CT5), aspect ratio l/d = 15.4. All scale bars are 3 µm. Particle
dimensions and reagent concentrations are listed in Table 6.2.
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6.3.2. Phase behaviour
Particle systems. In Table 6.3 we listed the particle systems used for phase behaviour
studies for increasing end-to-end aspect ratio l/d. Systems B31, B48 and B35 were
used in earlier studies, which are reported in Ref. 28. Two systems had a fluorescent
dye-gradient along the main axis of the rods: system B48 (rhodamine isothiocyanate,
RITC) and system THB4 (fluorescein isothiocyanate, FITC). Three systems had an
FITC fluorescent shell: system B31 (30 nm), system CT1 (57 nm) and system B35
(30 nm). The system TH6 consisted of non-fluorescent particle cores. To image these
particles with confocal microscopy, we dyed the solvent with FITC and inverted the
images.

l (µm) d (µm) l/d shell (nm) solvent lg (µm) l∗/d∗ − 1

B31 2.4 (10%) 0.64 (8%) 3.8 190 glycerol/water 0.84 2.1
B48 2.6 (9%) 0.63 (6%) 4.1 175 DMSO/water 0.69 2.4
CT1 3.4 (12%) 0.63 (7%) 5.4 137 glycerol/water 0.59 3.3
B35 3.3 (10%) 0.55 (11%) 6.0 105 glycerol/water 0.80 3.7
THB4 4.3 (12%) 0.59 (12%) 7.3 76 DMSO/water 0.46 4.6
TH6 10.0 (7%) 0.49 (10%) 20.4 - DMSO/water/FITC 0.28 13.8

Table 6.3. Properties of the particles used for the phase-behaviour studies
in this chapter, with l the average end-to-end length of the rod, d the average
diameter, and the percentages in brackets the polydispersity. Also listed is the
hard-core end-to-end aspect ratio l/d, the thickness of the outer non-fluorescent
shell, the composition of the dispersing solvent, the corresponding gravitational
length lg and an estimate of the effective aspect ratio minus one l∗/d∗ − 1.

Table 6.3 further lists the thickness of the outer non-fluorescent shell of the particles,
the composition of the dispersing solvent and the corresponding gravitational length lg.
As explained in section 6.3.1, a crude estimate of the minimum thickness of the non-
fluorescent layer needed for particle fitting of 3D confocal microscopy data is ∼ 150 nm
(see also Fig. 6.5c). The systems B31 and B48 were above this limit and it was indeed
possible to determine accurate 3D positions and orientations of these particles, as shown
in detail in Chapter 4. For system CT1, this was only possible after deconvolution of
the 3D image stacks and for systems B35, THB4 and TH6 this was not possible. Later
in this chapter we will demonstrate, however, that a 2D analysis of the (projected)
orientations was nevertheless still possible for these systems.

It is known for these systems, that the silica rods have a negative charge and therefore
have a repulsive electrostatic potential [28]. Using an effective diameter d∗ and effective
length l∗ = l + d∗−d, with l and d the hard-rod dimensions as measured by TEM, it was
possible to map the phase behaviour to reasonable extent onto the hard-spherocylinder
phase diagram [28], in analogy with the mapping of charged silica spheres onto the
hard-sphere phase diagram, see e.g. Refs. 13,14. In contrast with spheres, however, the
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(increased) effective dimensions of anisotropic particles also changes the aspect ratio
(and therefore also the phase behaviour) [269, 289]. In Ref. 28, the value d∗ − d was
found to be roughly constant for the five different systems that were used (including
systems B31, B48 and B35), which was approximately 200 nm. We therefore used this
value to estimate an effective aspect ratio for all of our systems, which we reduced by
1, to enable direct comparison with the phase diagram of hard spherocylinders (see
Fig. 6.2 and Ref. 209), where the cylinder length-to-diameter L/D is used. Based on
computer simulations, Bolhuis and Frenkel predict the smectic-A phase to be stable for
L/D > 3.1 and the nematic phase for L/D > 3.7. They also estimate the transition
between the ABC crystal and AAA crystal to happen at L/D ≈ 7 [209]. We can
immediately see that for the first three systems (B31, B48 and CT1) we do not expect
nematic phases.

Figure 6.9. TEM images of the particles used for phase-behavior studies.
(a) B31 (b) B48 (c) CT1 (d) B35 (e) THB4 (f) TH6. Particle dimensions are
summarized in Table 6.3.

Fig. 6.9 shows TEM images of the systems listed in Table 6.3. Figs. 6.9a-c show the
systems with a non-fluorescent shell ≥ 137 nm which were used for quantitative 3D
analysis. Although the shell coating decreased the aspect ratio significantly, it did have
a positive effect on the particle system; particles became more uniform in size and more
spherocylinder-like in shape compared to the cores that were obtained directly after
synthesis.
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Aspect ratio l/d = 4.1. In this section we present results for system B48, which consists
of particles with length l = 2.6 µm (δ = 8.5%), d = 630 nm (δ = 6.3%) and aspect
ratio l/d = 4.1. The estimated effective aspect ratio minus one l∗/d∗ − 1 = 2.4, which
means that based on computer simulations we only expect an isotropic phase and an
ABC crystal to be stable (see Fig. 6.2). However, we always observed that the particles,
when left to sediment, ordered into either a smectic-B phase or an AAA stacked solid.
Fig. 6.10a-c show that particles ordered into smectic layers (Fig. 6.10a) and within the
layers we always found hexagonal order (Fig. 6.10b). Figs. 6.10d-f show Figs. 6.10a-c
after 3D deconvolution with a theoretical point spread function. The deconvolution
not only suppressed noise but also increased both contrast and resolution, where the
improvement in resolution is most clearly visible in the z (lateral) direction. This
allowed us the investigate the registry between the smectic layers in more detail, as
shown in the 3D projections in Fig. 6.11. Often there was no clear registry between
the layers, indicating that there was no long-ranged order or large-scale crystalline
phase present. We expect that this is due to the polydispersity of the sample, resulting
in the formation of a smectic-B phase, whereas in the simulations on monodisperse
hard-rods an ABC solid is found [209]. It is likely however, that the charges on the
particle also stabilize a smectic-B phase, as simulations on monodisperse parallel soft
spherocylinders indicated a continuous crystal to smectic-B transition [290], whereas in

Figure 6.10. Smectic-B phase formed by particles with aspect ratio l/d =
4.1 (B48). (a-c) Orthogonal views from a 3D confocal microscopy data stack.
Particles ordered into smectic layers and within the layers there was hexagonal
order. (d-f) The same images as in (a-c) after 3D deconvolution with a
theoretical point spread function. All scale bars are 3 µm.
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the phase diagram for hard spherocylinders the smectic-B phase is completely absent
[209]. However, we did find small regions were there was registry between the layers,
showing an AAA-crystal-like stacking (Fig. 6.11). Bolhuis and Frenkel predict that
the ABC stacked crystal is stable up to the point where the distance between layers
decreases to become of the order of the diameter D, which is for L/D . 7 [209]. Beyond
that point, the hemispherical caps of the rods start to feel each other and the AAA
crystal is more stable because the number of interactions in the ABC crystal is much
larger than for the AAA crystal; a rod in ABC stacking interacts on average with 6
rods from neighbouring layers whereas in the AAA stacking this number reduces to 2.
The AAA crystal-like stacking that we found for l∗/d∗− 1 = 2.4 is probably due to the
polydispersity of the system (δl = 8.5% and δd = 6.3%). For the B31 system, which

Figure 6.11. 3D views of deconvolved data of a dense sediment of particles
with aspect ratio l/d = 4.1 (B48). Small AAA-stacked crystalline regions are
visible. The direction of gravity is indicated with g. All scale bars are 4 µm.



124 6. Synthesis and Phase Behaviour of a Model System of Rod-like Silica Particles

has similar dimensions but slightly higher polydispersity (δl = 10% and δd = 7.5%, see
Table 6.3), we never observed any regular stacking between smectic layers, i.e. we always
found a smectic-B phase at the bottom of the sediment. We therefore expect for rods
with L/D < 7 the following transition as a function of increasing polydispersity: ABC
crystal → AAA crystal → Smectic-B phase, given that the polydispersity in length
stays below a certain level (δl . 10%) since otherwise it is likely that a columnar phase
will form at high density [211,272].

In Fig. 6.12 we show a 3D reconstruction after particle fitting the data shown in
Fig. 6.10a-c, i.e. without an initial deconvolution. We determined the 3D positions
and orientations of 1699 particles in total, which we color-coded according to their
orientation. Figs. 6.12a-d show that there were small domains of particles with deviating
orientation and also single, transverse interlayer particles, which were predicted by
computer simulations [291, 292]. In Fig. 6.12e particles are shown 1/2 of their original
size. The AAA-crystalline region in the top left corner is clearly visible. It is also
visible that both positional and orientational order was less pronounced towards the
bottom region of the sample where the particles were horizontally aligned with the glass
wall, which will be discussed in more detail in the next section. We also calculated
the nematic order parameter S3D and the nematic director n̂, indicating the average
alignment in the system, using equation (6.12). We found S3D = 0.78 and n̂ =
{−0.19, 0.98,−0.07} confirming the strong alignment in the y-direction. In Fig. 6.12f
we show the distribution of the angle θ, defined by cos θ = û · n̂, with û the unit
vector along the main axis of a rod. Here, we also define φ as the angle in the plane
perpendicular to the director, with φ = 0 indicating alignment with the horizontal.
The large peak in Fig. 6.12f, close to θ/π = 0, is from the particles aligned with the
director, whereas the small secondary peak close to θ/π = 0.5 shows that the (domains
of) interlayer particles were on average oriented perpendicular to the nematic director.
Additionally, these particles were also more often orientated along the hexagonal close-
packed directions of the smectic-B layer (φ ≈ 0, π/3 and 2π/3) or orientated parallel to
gravity (φ ≈ π/2), which is indicated by the red, purple and blue particles respectively
in Figs. 6.12a-e.
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Figure 6.12. 3D reconstruction from confocal microscopy data of a dense
sediment of rods with aspect ratio l/d = 4.1 (B48). (a-e) Colors indicate
the 3D orientation of the particles. Small deviating domains and transverse
interlayer particles are clearly visible. (f) Orientation distribution function of
the angle θ, defined by cos θ = û · n̂.
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Aspect ratio l/d = 5.4. In Fig. 6.13, we show deconvolved confocal microscopy images
of a sediment of the CT1 system which consists of particles with average length l =
3.4 µm (12%), diameter d = 630 nm (7%) and aspect ratio l/d = 5.4 dispersed in
glycerol/water. The images in Fig. 6.13 were acquired after the sample had been left
to sediment for 90 days. We did not find a significant difference in structure with data
acquired 47 days after sample preparation. The estimated effective aspect ratio minus
one l∗/d∗ − 1 = 3.3 for this system (see Table 6.3). At this aspect ratio, the equation
of state of monodisperse hard spherocylinders shows isotropic - smectic-A - ABC solid
transitions [209]. Fig. 6.13a shows that we observed a dilute isotropic phase at the top
of the sediment (see also Fig. 6.13b). Closer to the bottom of the sediment, we found a
hexagonally stacked dense phase, which we identify as a smectic-B phase (see Fig. 6.13a
and Fig. 6.13c). Furthermore, we found that the smectic phase was more disordered
closer to the glass bottom wall (Figs. 6.13d-f), which will later be discussed in more
detail.

In Fig. 6.14 we show a quantitative 3D analysis of a part of the sediment (acquired 47
days after sample preparation), based on confocal microscopy data stacks of 25× 20× 54
µm3, with a voxelsize of 51 nm in x,y and 84 nm in z. Fig. 6.14a shows a 3D
reconstruction, with colours indicating the 3D orientation of the particles. Notice the
strong similarity with the computer simulation result shown in Fig. 6.3, which is for hard
spherocylinders with aspect ratio L/D = 5, inverse gravitational length D/ lg = 0.75
and number of particles per unit surface nsD2 = 4.34, defined as ns ≡

∫∞
0 dz ρ(z) [278].

The similarity is because these three parameters are in reasonable correspondence with
the ones in our experimental system; the estimated effective aspect ratio minus one
l∗/d∗−1 = 3.3, the inverse gravitational length d∗/ lg = 0.75 and the number density per
unit surface ns d∗2 = 6.5. Here, we have used an estimated effective end-to-end length l∗
= 3.6 µm, effective diameter d∗ = 0.83 µm and a gravitational length measured from the
dilute top region of the sediment, which will be discussed later in this section. However,
the difference in the phases that we observed, compared to the simulations, are due to
the (non-negligible) difference in aspect ratio and likely due to polydispersity. For hard
spherocylinders with aspect ratio L/D = 3.3, the nematic phase is not stable and the
density region where the smectic-A phase is stable in the simulations is so narrow that
it is unlikely to be observed in our experimental system. Similarly as before, we expect
the presence of the smectic-B phase (instead of the predicted ABC solid) to be caused
by the polydispersity of the system. We did not find any indication of (AAA) crystalline
order in this sample. Fig. 6.14b shows a projection of the rods centres-of-mass, with
colours indicating the values of the average local nematic order parameter 〈Si3D〉, given
by equation (6.13). The smectic layers are clearly visible in Fig. 6.14b, as well as the
positionally and orientationally disordered isotropic phase. Close to the bottom glass
wall (z = 0), we observed wall induced layering of the rods, however, both positional and
orientational order were lower than in the smectic region above (as can be seen from the
lower part of Fig. 6.14b). This type of disorder is unexpected because a wall aligns the
particles and computer simulations on monodisperse hard rods have shown that a thick
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Figure 6.13. Deconvolved confocal microscopy images of a sediment of
particles with aspect ratio l/d = 5.4 (CT1). Images are shown (a) parallel
to gravity (xz-direction) and (b-f) perpendicular to gravity (xy-direction).
The dashed horizontal lines in (a) indicate the height were images (b-f) were
acquired. All scale bars are 10 µm.



128 6. Synthesis and Phase Behaviour of a Model System of Rod-like Silica Particles

Figure 6.14. Quantitative analysis from 3D confocal microscopy data stacks
of particles with aspect ratio l/d = 5.4 (CT1). (a) 3D reconstruction from
a sediment, 47 days after sample preparation. Colours indicate 3D particle
orientation. (b) Distribution of the rods centres-of-mass. The colours indicate
the value of the average local nematic order parameter 〈Si3D〉, as indicated in
the colour-bar.

nematic film forms at the wall, already below the isotropic-nematic coexistence density,
which grows logarithmically when nearing the bulk phase transition [293]. Close to the
wall, however, we always found small domains of particles with various orientations,
together with orientationally disordered regions (see Figs. 6.13e,f) which extended at
least 10 layers into the bulk. The disorder is likely caused by particle segregation
during sedimentation. After sedimentation, the concentration of the larger particles
was higher at the bottom of the sediment (Figs. 6.13e,f) than in the middle or top part
of the sediment (Figs. 6.13b-d).

In Fig. 6.15a we show the density profile over the full length of the sediment, averaged
over 24 image stacks collected at different xy position. The continuous (green) line
shows the local density profile ρ d3, with d the particle diameter as measured with
TEM. The (red) dashed line shows a coarse grained density profile ρ̄ d3, obtained by
convolving the data with a top hat function of 5d in width. The profiles were obtained
by averaging over 175.728 particles in total. The (blue) dashed-dotted line in Fig. 6.15a
shows the average value of the local nematic order parameter 〈Si3D〉. After ∼ 17 µm,
the order parameter reaches a plateau level in the smectic-B phase (〈Si3D〉 ∼ 0.85), until
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Figure 6.15. Density profile for particles with aspect ratio l/d = 5.4 (CT1),
obtained from 3D confocal microscopy data. (a) Profiles of the particle number
density ρ d3, the coarse grained number density ρ̄ d3 and the average local
nematic order parameter 〈Si3D〉. Here, d is the hard-core particle diameter
(630 nm). (b) Number density ρ d3 and average local nematic order parameter
〈Si3D〉 at the isotropic - smectic-B interface. (c) Density profile of the dilute
top region of the sediment.

it drops at the smectic-B - isotropic interface, where there is also a change in number
density ρ d3.

We investigated the interface region of a single data stack in more detail, as shown
in Fig. 6.15b. The dashed and continuous lines are tangent hyperbolic fits, given by
equation (6.7). It is clear that the nematic order persisted higher up in the sample,
compared to the density. This phenomenon was predicted by both theory and simu-
lation for an isotropic-nematic interface of hard spherocylinders and is due to planar
alignment of particles close to the interface [294, 295]. We determined the difference
between the two inflection points to be δ/(l∗ − d∗) ≡ (zS3D

0 − zρ d
3

0 )/(l∗ − d∗) = 0.48
± 0.04, which agrees well with density functional theory (δ/L = 0.45) and computer
simulations of hard spherocylinders with L/D = 15 (δ/L = 0.38) [295]. Furthermore,
we obtained for the density in the isotropic and smectic-B phase respectively ρ1 d

3 =
0.088 and ρ2 d

3 = 0.107. If we convert these values to volume fractions, assuming an
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effective length l∗ = 3.6 µm and effective diameter d∗ = 0.83 µm, we find φI = 0.63
and φSm = 0.77. These values are higher than predicted by computer simulations for
the isotropic-ABC solid transition for hard spherocylinders with L/D = 3.4, which are
φHSCI = 0.50 and φHSCSolid = 0.60 [209]. However, determining colloidal volume fractions
via confocal microscopy is difficult, even for hard-sphere like suspensions [15]. This is
even more so the case for the charged, anisotropic particles used in this chapter since
the effective dimensions, which are only estimates, can shift the final volume fractions
considerably. For comparison, if we use the hard-particle diameters obtained from TEM
(l = 3.4 µm and d = 0.63 µm) we find φI = 0.35 and φSm = 0.43. Furthermore, other
phenomena that influence the volume fraction determination are the assumption about
the particle shape (bullet-like or spherocylindrical-like) and the polydispersity of the
particles. Nevertheless, the relative increase in density (φSm − φI)/φI = 22% does
compare well with the 20% increase predicted by the simulations [209], however, it is
likely that the polydispersity of the system actually broadens this range [296–298].
For the average values of the local 3D nematic order parameter we found for the
isotropic phase 〈Si3D〉I = 0.13 and for the smectic-B phase 〈Si3D〉Sm = 0.92, which are in
reasonable agreement with the values that were expected for hard spherocylinders [209].

The last part of the density profile that we investigated was the dilute top regime,
indicated in Fig. 6.15c. We fitted the tail of the density profile (z > 42 µm) to a
barometric height distribution ρ d3(z) = ρ0 exp(−z/lg), indicated by the continuous
line in Fig. 6.15c. From this fit, we obtained for the gravitational length lg = 1.10 ±
0.02 µm, corresponding to a reduced inverse gravitational length d∗/lg = 0.75, which
is almost twice the value expected from the hard-rod dimensions (lg = 0.59 µm). It is
known from simulation that a polydispersity of ∼ 5% in a hard-sphere system results
in an increase of the gravitational length of ∼ 8% [274]. We expect a similar but
larger effect in our system, since the polydispersities are δl = 12% and δd = 7% for
the particle length and diameter respectively. Although the particles in our system are
charged, they are significantly screened since the inter-particle spacing of two parallel
rods at the bottom of the sediment is ∼ 0.3 d, with d the hard-core particle diameter
obtained from TEM. We therefore do not expect that charge separation, which results
in extended gravitational lengths in unscreened systems of spherical colloids [274,280],
can fully explain our observations.
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Determination of in-plane orientations. In the previous sections (and in Chapter 4) we
showed that individual particle detection from 3D confocal microscopy images is only
possible when there is a large enough non-fluorescent layer grown around the particle
(approximately 150 nm). This limits however the aspect ratio of the rods, which is why
the systems described so far did not form nematic phases in equilibrium. We therefore
also synthesized rods that have a non-fluorescent layer of only 76 nm but a relatively
high aspect ratio l/d = 7.3 and estimated effective aspect ratio minus one l∗/d∗ − 1 =
4.6 (system THB4, see Table 6.3). We also used a particle system consisting of non-
fluorescent cores only with aspect ratio l/d = 20.4 and estimated effective aspect ratio
minus one l∗/d∗−1 = 13.8 (TH6, see Fig. 6.6c). At this (effective) aspect ratio, the range
of volume fractions at which a nematic phase is predicted to be stable is quite large:
φ = 0.18− 0.45 [209]. However, their size (average length l = 10.0 µm and diameter d
= 0.49 µm), makes them almost non-Brownian: when dispersed in DMSO/water, the
rotational relaxation time τr = 102 s. Nevertheless, we dispersed a small amount of
the rods in a refractive matching mixture of 91 wt% DMSO in water and added FITC
dye to this mixture to image the non-fluorescent particle cores, eliminating the need for
shell coating, which would have reduced the aspect ratio and increased their size even
further.

Although these two systems (with a minimum inter-particle separation of ∼ 200
- 300 nm) do not allow for quantitative 3D measurements, Fig. 6.16 shows that the
orientations of the particles can nevertheless be quantified in 2D real-space, even for
concentrated phases. Fig. 6.16a shows a raw xy confocal microscopy image of particles
with an aspect ratio l/d = 7.3, dispersed in DMSO/water (THB4). The image was
acquired close to the bottom glass wall of the sample container, after the particles had
sedimented for 2 days. We quantified the orientational order in the system by calculation
of a structure tensor of each pixel individually [285]. We used a Gaussian window
function with a standard deviation σ = 3 pixels to specify the region of interest. The
eigenvector corresponding to the largest eigenvalue of the tensor gives the predominant
orientation in that region. These orientations are shown in Fig. 6.16b, with colouring
according to the colormap on the right. Fig. 6.16b shows a close-up of a nematic-
like phase, indicated by the predominant green and yellow in the image. A small
domain with different orientation (magenta), is visible in the top right of Fig. 6.16b.
The same procedure was followed for our second system (TH6), consisting of non-
fluorescent cores with aspect ratio l/d = 20.4, also dispersed in DMSO/water. Because
the dispersing solvent was made fluorescent, instead of the particles, we inverted the
confocal microscopy image shown in Fig. 6.16c before processing. Figs. 6.16b,d clearly
show that this method is capable of quantifying the (in-plane) orientational order in
the system, with accuracy almost on the single particle level.

Aspect ratio l/d = 7.3. In this section, we report investigations on the phase behaviour
of particles with an average end-to-end length l = 4.3 µm (12%), average diameter d =
0.59 µm (11%), aspect ratio l/d= 7.3 and estimated effective aspect ratio l∗/d∗−1 = 4.6,
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Figure 6.16. Determination of the in-plane particle orientations. Orienta-
tions were determined by calculation of the structure tensor for each pixel
individually, using a Gaussian window function with σ = 3 pixels [285]. Colours
correspond to the orientations indicated in the colormap. (a) Raw xy confocal
microscopy image and (b) processed image of particles with aspect ratio l/d
= 7.3 (THB4). (c) Inverted xy confocal microscopy image and (d) processed
image of particles with aspect ratio l/d = 20.4 (TH6). Both particle systems
were dispersed in an index-matching mixture of DMSO/water. All scale bars
are 10 µm.

dispersed in DMSO/water (THB4). Fig. 6.17 shows a processed confocal microscopy
image (perpendicular to gravity), obtained after the particles had sedimented for 2
days. In this single microscopy image, three phases were observed: an isotropic phase,
a nematic phase and a smectic phase are clearly visible, with colours indicating the
in-plane orientations of the particles. Bolhuis and Frenkel estimated the isotropic-
nematic-smectic triple point at L/D ≈ 3.7 [209], which is in the vicinity of the estimated
effective aspect ratio of our system l∗/d∗ - 1 = 4.6. However, it is likely that the sample
shown in Fig. 6.17 was under a small angle with respect to gravity, due to the common
fact that the capillaries are never stored perfectly vertically or placed vertically under
the confocal microscope. Combined with the small gravitational length of the rods
(lg = 0.46 µm), it is likely that the image shows a (small) section through the density
profile and therefore shows regions with slightly different densities, instead of a single
phase point.

We further analysed the two liquid-crystal phases individually, shown in Fig. 6.18.
Figs. 6.18a,b show processed xy confocal microscopy images obtained at different heights
in the sediment, 4 days after sample preparation. Fig. 6.18a shows an image of a nematic
phase, acquired approximately 20 µm above the bottom wall, whereas Fig. 6.18b shows
an image of a smectic phase, acquired approximately 15 µm above the bottom wall. The
arrows in the inset of Fig. 6.18b highlight transverse interlayer particles, which have
an orientation perpendicular to the director, which were predicted by both theory and
computer simulations [291, 292]. Figs. 6.18c,e show a Fast Fourier Transform (FFT)



6.3. Results 133

Figure 6.17. Phase behaviour of particles with aspect ratio l/d = 7.3,
dispersed in an index matching mixture of DMSO/water. In a single confocal
microscopy image, which was acquired perpendicular to gravity, three phases
were observed: an isotropic, a nematic and a smectic phase.

of the images in Figs. 6.18a,b respectively, plotted with logarithmic intensity scale.
The FFTs clearly indicate the long-range (orientational) order in the system. The
orientation probability density functions (PDFs) shown in Figs. 6.18d,f were obtained
from structure tensor calculations for all the individual pixels (1024 × 1024) of the
images shown in Figs. 6.18a,b. From these distributions, we calculated the projected
2D nematic order parameter S2D′ and the nematic director n̂′. As long as the angle
between the director and the plane of observation is small, we have found the value
of the 2D projected nematic order parameter to be a good estimate of the true 3D
nematic order in the system (at the same height in the sample), which is demonstrated
in Chapter 4. Fig. 6.18d shows the projected orientation distribution of the nematic
phase, from which we obtained S2D′ = 0.88. The projected nematic director was at an
angle of −48.6 ◦ with the horizontal, indicated by the double-sided arrow in Fig. 6.18a.
For the smectic phase, we found S2D′ = 0.97 (Fig. 6.18f) and a nematic director that
was at an angle of +1.4 ◦ with the horizontal, as shown in Fig. 6.18b. Bolhuis and



134 6. Synthesis and Phase Behaviour of a Model System of Rod-like Silica Particles

Figure 6.18. Liquid crystalline phase-behaviour for particles with aspect
ratio l/d = 7.3. (a) Nematic phase. (b) Smectic phase. The arrows in the inset
highlight transverse interlayer particles. The colours in (a) and (b) indicate the
in-plane orientation of the particles as indicated by the colormap. (c,e) Fast
Fourier Transforms (FFTs) of the images in (a,b) respectively, plotted on a
logarithmic intensity scale. (d,f) Probability density function (PDF) of the in-
plane orientations, which were used to determine the projected nematic order
parameter S2D′ and the projected nematic director n̂′. The nematic director
n̂′ is indicated in both (a) and (b) with an double sided arrow. The scale bars
are 20 µm in (a) and (b), 10 µm in the insets of (a) and (b) and 5 µm−1 in (c)
and (e).
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Frenkel demonstrated that although the isotropic-nematic transition is a first-order
transition, the density jump and the hysteresis were too small to be observed in the
simulations for L/D ≤ 5 [209]. For an aspect ratio L/D = 5.0, corresponding to the
effective aspect ratio of our system, they estimated the isotropic-nematic transition
to take place at φ = 0.40 with an order parameter value S3D ∼ 0.4 [209]. Notice
that this value very low compared to Onsager theory (L/D → ∞), which predicts
S3D = 0.79 in the coexisting nematic phase [247]. The nematic to smectic-A transition
is however a more pronounced first-order transition for hard spherocylinders with L/D
= 5.0, with coexisting densities φ1 = 0.45 and φ2 = 0.48 and order parameter values
S1 = 0.74 and S2 = 0.90 for the nematic and smectic-A phase respectively [209], which
is in reasonable agreement with the values shown in Fig. 6.18. Unfortunately, due to the
limited resolution in the axial (z) direction (parallel to gravity), we could not determine
the order within nor between the smectic layers shown in Fig. 6.18b, and therefore we
could not distinguish between smectic-A, smectic-B or crystalline phases.

Aspect ratio l/d = 20.4. In this section, we present results on the phase behaviour
of particles with a significantly larger aspect ratio than in the previous section. The
particle system that was used consisted of non-fluorescent cores with average length l
= 10.0 µm (7%), diameter d = 0.49 µm (10%), aspect ratio l/d = 20.4 and estimated
effective aspect ratio minus one l∗/d∗ - 1 = 13.8 (TH6, see Fig. 6.6c and Figs. 6.16c,d).
The non-fluorescent particles were dispersed in a DMSO/water mixture, dyed with
FITC. Despite their long rotational relaxation time, a nematic phase was formed close
to the bottom wall of the sample, within an hour after sample preparation. Fig. 6.19a
shows a processed confocal microscopy image, acquired three layers above the glass
bottom wall, indicating that large nematic domains were formed, with the director
gradually changing as a function of xy position. Fig. 6.19b shows the bottom layer of
particles, directly on top of the glass bottom wall: here, particles were ordered in small
nematic domains with random orientation. A smectic phase was not observed, probably
because a high enough density was not reached in this sample. Figs. 6.19c,e show FFTs
of the images in Figs. 6.19a,b respectively. The measured orientation distributions,
shown in Figs. 6.19d,f, resulted in a nematic order parameter S2D′ = 0.92 for the
nematic phase (Fig. 6.19a) and S2D′ = 0.38 for the multi-domain nematic (Fig. 6.19b).
The disorder in the bottom layer of the sample is unexpected because a wall aligns
the particles and computer simulations on monodisperse hard rods have shown that a
thick nematic film forms at the wall, already below the isotropic-nematic coexistence
density [293]. We expect that the lower orientational order close to the bottom wall is
due to the polydispersity of the sample, which is likely to couple to the sedimentation
process, i.e. we expect the number of longer rods to be at enhanced at the bottom of
the sample. Additionally, we suspect that although the wall aligns the particles, (too)
fast sedimentation and long relaxation times impede the coarsening into larger domains
close to the wall. Furthermore, it is likely that due to the same effect, the nematic phase
(Fig. 6.19a) was not in equilibrium but trapped in a glassy state. To circumvent these
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Figure 6.19. Phase behaviour of particles with aspect ratio l/d = 20.4. (a)
Three layers above the bottom wall, a nematic phase was formed. (b) At the
glass bottom wall, particles ordered in small nematic domains with random
orientation. The colours in (a) and (b) indicate the in-plane orientation of the
particles as indicated by the colormap. (c,e) Fast Fourier Transforms (FFTs) of
the images in (a,b) respectively, plotted on a logarithmic intensity scale. (d,f)
Probability density function (PDF) of the in-plane orientations which were
used to determine the projected nematic order parameter S2D′ . The scale bars
are 20 µm in (a) and (b) and 5 µm−1 in (c) and (e).

limitations, it would be worthwhile to synthesize rods with a smaller diameter, while
keeping the aspect ratio unchanged. This could done by further tuning of the reagent
concentrations [25], or by elevating the temperature of the reaction mixture [288].



6.3. Results 137

6.3.3. Super-resolution imaging
As a final addition to this chapter, we present a preliminary result of 2D super-

resolution imaging of a smectic liquid-crystalline phase using STED confocal microscopy
[89]. Fig. 6.20a shows a conventional confocal microscopy image of particles with
average length l = 3.3 µm (10%), average diameter d = 0.55 µm (11%) and aspect
ratio l/d = 6.0 (B35). The particles had a non-fluorescent core, a 30 nm FITC
fluorescent shell and a 105 nm non-fluorescent outer shell. Furthermore, particles were
dispersed in an index matching mixture of 85 wt% glycerol in water. Data were acquired
approximately two months after sample preparation. On the bottom of the sample cell,
particles were ordered in a smectic phase. Often the particles in the smectic layers were
aligned parallel with the glass bottom wall of the sample cell, however, small domains
existed were particles were oriented perpendicular to the walls. In Figs. 6.20b,c, we
show CW-STED images acquired using a pulsed excitation at 488 nm with a white
light laser, a 592 nm STED beam and a 100×/1.4 STED oil-immersion objective. The
30 nm fluorescent shells of the particles are clearly visible. Figs. 6.20d,e show the images
after deconvolution using a theoretical point spread function (PSF). The deconvolution
further increased the resolution of the images and additionally, increased the contrast
and suppressed pixel noise.

Figure 6.20. Super-resolution imaging of a smectic phase formed by particles
with aspect ratio l/d = 6.0 (B35). (a) Conventional microscopy image. Scale
bar is 6 µm. (b-c) CW-STED images of the same region of the sample,
using a pulsed white light laser at 488 nm and a 592 nm STED beam.
The thin FITC fluorescent shells of 30 nm are clearly visible. (d-e) Images
after deconvolution, which further increased the resolution and also increased
contrast and suppressed noise. All scale bars in (b-e) are 3 µm.
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Super-resolution imaging can be a useful technique to image particles that are not
well resolved with conventional confocal microscopy. This allows for quantitative mea-
surements on thinner silica rods (with a higher aspect ratio) compared to the systems
described in this chapter, and therefore enables study of systems which show more
pronounced liquid crystalline phase behaviour.

6.4. Summary and Discussion
In this chapter we presented quantitative real-space measurements on colloidal liquid

crystal phases. We first described three adjustments to a recently developed synthe-
sis procedure to produce rod-like silica particles. The adjustments were targeted at
increasing the aspect ratio of the rods. The first adjustment consisted of a seeded
growth procedure, the second adjustment consisted of a synthesis at larger volume
using 25% lower water concentration and the third was an adjustment of the reaction
temperature, which was raised to a constant value of 30 ◦C [288]. All adjustments
increased the particle aspect ratio significantly, reaching values up to 20, with the rods
still being straight. However, the seeded growth procedure resulted in large and heavy
particles. Therefore, the synthesis at larger volume using lower water concentration in
combination with an elevated reaction temperature is preferred.

Furthermore, we used six different particle systems for quantitative real-space study
of liquid-crystalline phase behaviour in a gravitational field and compared them to
predictions from theory and simulation. In the simulations, the aspect ratio L/D is
defined as the cylinder length over the diameter (see Fig. 6.2 and Ref. 209). Because
the particles used in the experiments in this chapter were not identical in shape to a
spherocylinder, but are more bullet-like, we defined the end-to-end aspect ratio l/d, with
l the average end-to-end length of the particle and d the average diameter. Additionally,
because the particles are electrically charged in suspension, we also introduced an
effective end-to-end length l∗ and effective diameter d∗, resulting in an effective aspect
ratio l∗/d∗. Based on these effective dimensions, the rod-like silica systems are known
to be in qualitative agreement with the phase diagram for hard spherocylinders, with
l∗/d∗ − 1 ≈ L/D [28].

Three of the systems had a non-fluorescent shell & 150 nm, which allowed for
individual 3D particle detection from confocal microscopy data. In a dense sediment of
particles with aspect ratio l/d = 4.1, we observed a smectic-B phase with small regions
(approximately 10× 10× 5 particles) of AAA-stacked crystalline layers, instead of the
ABC-crystalline phase predicted by simulations. Both the occurrence of the smectic-B
phase and the AAA-crystal-like regions are likely due to the polydispersity in the system
and possibly also due to subtle charge effects [211,271,290]. As far as we are aware, this
is the first real-space demonstration of an AAA crystalline region in a colloidal liquid
crystal system. There are for instance many examples of crystal-like columnar phases
of mineral particles, observed with small angle X-ray diffraction (SAXS) [253,299,300],
but columnar phases were not observed in our system. Additionally, for a system of
fd-viruses a hexagonal AAA crystalline phase has been reported, however, the crystal
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structure could again only be determined with SAXS and the phase was only formed
after slow drying of the sample [250].

Apart from the positional structure, we also determined the orientational distribution
function for the system with aspect ratio l/d = 4.1. We found that the inter-layer
particles were always aligned perpendicular to the director, as was predicted by both
theory and simulation [291,292]. Additionally, we determined the complete equilibrium
density profile of a sediment of particles with aspect ratio l/d = 5.4. We found
that close to the wall, there was a large region that was disordered both in particle
position and in orientation. This was unexpected given the fact that the wall aligns
the particles and that simulations predict a thick nematic film to form already below
the isotropic-nematic coexistence density [293]. We believe that our observation was
caused by a size-segregation process during sedimentation with the larger particles from
the size distribution ending up more frequently at the bottom of the sediment. This
phenomenon bears resemblance to a fractionation process, or partitioning of colloidal
components over coexisting phases, as predicted by theory and observed for colloidal
particles with high polydispersity [253,296,300,301].

Higher up in the sample, at the isotropic-smectic-B interface, we found a difference in
the inflection points of the density and the nematic order parameter δ/(l∗− d∗) = 0.48
± 0.04. Such a shift was predicted by both theory and simulations for the isotropic-
nematic interface of hard spherocylinders [294, 295]. The coexisting densities that we
obtained were higher compared to the hard spherocylinder phase diagram, however,
both the relative density change (φSm − φI)/φI ∼ 22% and the coexisting values of
the nematic order parameter (S3D

I = 0.13 and S3D
Sm = 0.92) were in agreement with

the simulations [209]. We expect that both the polydispersity and the charge on the
particles influences these values significantly and it would be interesting to incorporate
these in simulations on spherocylinders for further investigation. Finally, we found an
increased gravitational length (lg/d∗ = 1.3), obtained from a fit to the dilute upper part
of the sediment, which is almost twice the value expected from the hard-rod dimensions.
The polydispersity is likely to contribute to this increase [274]. We do not expect that
charge separation can explain our observation, as the charges on the particles in our
system are significantly screened [274,280].

The thick non-fluorescent shells of the first three systems, needed for individual 3D
particle detection, decreased the particle aspect ratio strongly. As a result, none of these
systems showed a nematic phase in equilibrium. We therefore also used a system with a
small 76 nm outer shell (resulting in an aspect ratio l/d = 7.3) and one without an outer
shell at all (with aspect ratio l/d = 20.4). Although both 2D and 3D particle detection
from confocal microscopy images was not accurate enough for these systems, we found
that calculation of the structure tensor for each pixel individually nevertheless enabled
the determination of the (projected) 2D nematic order parameter and nematic director.
As shown in Chapter 4, the 2D projected nematic order parameter is almost equal to
the value of the 3D nematic order parameter, as long as the angle between the director
and the plane of observation is not close to π/2. For the system with aspect ratio l/d
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= 7.3, we found a three-phase coexistence region of isotropic-nematic-smectic phases.
Bolhuis and Frenkel estimated the isotropic-nematic-smectic triple point to be at L/D
≈ 3.7 [209], which is in the vicinity of the estimated effective aspect ratio minus of our
system, which was l∗/d∗ − 1 = 4.6. The values of the order parameter in the nematic
phase (S2D′ = 0.88) and in the smectic phase (S2D′ = 0.97) were in good agreement
with the values for the 3D nematic order parameter of a coexisting nematic and smectic
phase (with the same aspect ratio) obtained from computer simulation [209]. Our last
system, with aspect ratio l/d = 20.4, formed large-scale nematic phases within 1 hour.
However, the large size of the particles made them almost non-Brownian and it is likely
that the observed nematic phase did not reach equilibrium but became frozen-in or
glassy within several hours. Nevertheless, this system showed clearly that the bottom
layer of the sediment was more disordered in orientation than the layers above it.

As a final example of the novel possibilities of this liquid-crystal model system,
we showed preliminary result on super-resolution imaging of a smectic phase of rods
using 2D stimulated emission depletion (STED). The particles were labelled with a
thin (30 nm) fluorescein isothiocyanate (FITC) shell, which was clearly visible in the
(deconvolved) STED images.

6.5. Conclusion
We produced 6 different suspensions of rod-like particles and investigated their liquid-

crystalline phase behaviour in real-space. We found that a non-fluorescent outer shell of
approximately 150 nm or larger enabled quantitative 3D real-space measurements using
a combination of confocal microscopy and a novel particle fitting algorithm. However,
the thick non-fluorescent layer limited in practice the end-to-end aspect ratio of the
particle systems to l/d ≤ 5.4. For particle systems with aspect ratio l/d ≥ 6.0, we
could not obtain 3D coordinates, however, it was still possible to obtain the in-plane
orientation distribution from 2D confocal microscopy images. We compared our exper-
imental results to both simulations and theory of hard spherocylinders, using effective
particle dimensions to account for the small but non-negligible Debye screening length
in our systems. In general, we found reasonable agreement regarding the formation of
isotropic, nematic, smectic and crystalline phases. However, the ABC-stacked crystal
predicted from simulation was replaced by either a smectic-B or AAA-stacked crystal in
the experiments. We expect that this was due to the polydispersity in the experimental
systems and possibly also due to subtle charge effects. We did not observe a columnar
phase, which is not unexpected because the polydispersities for all our particle systems
were always ≤ 12%. Furthermore, we determined the full equilibrium sedimentation
profile of a system of rods with aspect ratio l/d = 5.4. At the isotropic - smectic-B
interface, we found a difference in height between the inflection points of the 3D nematic
order parameter and the density. Both the magnitude of this difference as well as the
values for the nematic order parameter were in good agreement with predictions from
both theory and simulation on an isotropic - nematic interface of hard spherocylinders
with similar aspect ratio. The (effective) volume fractions that we obtained for both
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phases were higher than expected, however, the magnitude of the relative density jump
was in good agreement with the values from simulation. Additionally, we found that
the gravitational length, obtained from a fit to the dilute upper part of the sediment,
was almost twice the value expected from the hard-rod dimensions. We expect that this
discrepancy can only partially be explained by the polydispersity in the system and a full
explanation is left for further study. Finally, we showed preliminary results of stimulated
emission depletion (STED) imaging of rod-like particles coated with a thin (30 nm)
uniform fluorescent shell. The results indicated that STED is a successful method to
study thinner rods at high resolution, thus enabling quantitative real-space study of
particles with higher aspect ratio compared to conventional confocal microscopy.
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7
Rheology and Real-Space Analysis of

Colloidal Silica Rods under Shear
Abstract

In this chapter we describe the shear-induced phase behaviour of colloidal
silica rods. We used two different shear cell configurations that both allowed
simultaneous confocal microscopy measurements to be made while the system
was sheared. The first configuration was a parallel-plate shear cell and the
second configuration was a stress controlled rheometer, both mounted on top of
a confocal microscope. With the parallel-plate shear cell, steady shear flow was
successfully applied to align rods with an aspect ratio of 6.0, and create shear-
aligned para-nematic and para-columnar liquid crystal phases. The application
of oscillatory shear led to the formation of para-smectic-like domains in a
sample that was previously in a shear-aligned para-nematic state. Rheological
measurements on rod-like particles with aspect ratio 7.8 and initial volume
fraction φ ∼ 0.3, were characterized by pronounced shear thinning behaviour, a
Newtonian regime and (the onset of) shear-thickening for increasing shear rate.
We also found large non-periodic fluctuations in the viscosity (as a function
of time) for shear rates < 1.0 s−1. However, these fluctuations could not be
directly correlated with the micro-structure of the suspension. Although these
experiments are only preliminary, they give a strong indication that shear is a
powerful external field to align colloidal liquid-crystal phases over larger areas.
This could for instance be applied in spin coating of colloidal liquid crystals.
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7.1. Introduction
Dense systems of liquid crystals exhibit rich phase behaviour when subjected to

shear flow. Early theoretical investigations on hard rods under shear by Hess [34] and
by Doi and Edwards [35] produced an equation that governed the time development of
the orientational distribution function. The Doi-Edwards-Hess (DEH) theory predicts
that the average direction of alignment, the nematic director, can undergo different
motion depending on its initial state, volume fraction and shear rate. If the system is
initially in a nematic liquid crystal phase with the director in the velocity-gradient plane,
the induced flow can bring it in a quasi-stationary state for which the local director
describes a periodic ‘tumbling’ orbit for low shear rates. At intermediate shear rates
the director can also describe an orbit oblique to the gradient-velocity plane, called a
‘kayaking’ state. Other time-periodic orbits are ‘wagging’, where the director oscillates
between two angles in the velocity-gradient plane and ‘log-rolling’, a state where the
director remains perpendicular to the gradient-velocity plane. For higher shear rates
the director aligns with the flow and a para-nematic is formed. The tumbling, wagging
and flow aligning states were experimentally found using colloidal suspensions of fd
viruses [36,37] and with Brownian Dynamics computer simulations for rods with large
aspect ratio (20 < l/d < 60) [38, 39]. A Brownian Dynamics simulation study on
ellipsoids demonstrated that particles with much shorter aspect ratio (l/d = 3) can
also exhibit tumbling, wagging and flow aligning states [302]. Additionally, both theory
and experiments have identified that the stationary viscosity as a function of shear rate
decreases, i.e. the system behaves as a shear-thinning fluid, as the sample progresses
from tumbling to wagging to flow-alignment [37]. Moreover, a hesitation in the decrease
of the viscosity with increasing shear rate has been interpreted as a signature of the
transition from a tumbling to a wagging state [37, 303]. Although recent real-space
studies on colloidal hard-sphere suspensions have clarified the correlation between shear-
thinning, shear-thickening and the micro-structural changes in the suspension [62,235],
similar work on rod-like suspensions has not been performed as far as we know.

As mentioned, the above described shear-induced liquid crystal phases all have con-
centrations such that they are in a nematic phase in the absence of shear. It is,
however, known that shear flow also has a significant effect on more concentrated
phases, such as a smectic phase. The effect of shear flow on smectic phases has often
been studied in the configuration where the layers are parallel to the planes of constant
velocity. For instance, theoretical models inspired by experimental results are treated in
Refs. 304,305. In this configuration, the layering is stable up to a certain critical shear
rate. At higher shear rates, the director and the smectic layers were found to adjust their
alignment through undulations of the layers and realignment of the director relative to
the layers to end up in a state where the layers are parallel to the gradient-velocity plane,
as experimentally shown in Refs. 306,307. Theory and computer simulations show that
shear that is applied to smectic phases that are oriented with their layers parallel to
the gradient-vorticity plane, also causes structural changes [308, 309]. It was found
that the layers tilt progressively with increasing shear. At a critical shear, however,
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the particles were found to rearrange themselves; the sample melts near the center
and reforms with a reduced tilt consistent with the layers that are still present at the
walls. Shear induced melting and recrystallization was also measured experimentally
in smectic-A and smectic-B phases of butyloxy-benzylidene-octylaniline [310].

In this chapter, we present preliminary results of experiments on the combined effect
of shear and gravity on concentrated dispersions of silica rods, which we analysed in
2D real-space on the single particle level. The silica rods, opposed to e.g. polymeric
systems, are affected significantly by gravity. Here, we use the concentrating effect
of gravity to create shear aligned dense phases in systems that were initially in an
isotropic phase. Using a parallel plate shear cell, which previously was used to study
dispersions of spheres (see Refs. 63, 238, 240 and Chapter 5), we were able to follow
the dynamics of particles in the zero-velocity plane for an extended period of time.
Using a hybrid combination of a confocal microscope and a rheometer (known as a
confocal rheoscope [52,311]), we also investigated the correlation between the suspension
viscosity and the particle micro-structure.

7.2. Methods
7.2.1. Suspensions

Two different suspensions of rod-like particles were used for the shear experiments
described in this chapter. The properties of these systems are summarized in Table
7.1. The B35 particles consisted of a 280 nm non-fluorescent core, a 30 nm fluorescein
isothiocyanate (FITC) dyed inner shell and a 105 nm non-fluorescent outer shell. The
THB5 particles had a 380 nm core that contained a gradient of FITC dye along the
rod main axis and were coated with a 145 nm non-fluorescent outer shell, see Ref. 72
and Chapters 2 and 6 for details.

The B35 particles were dispersed in a mixture of dimethylsulfoxide (DMSO, ≥
99%, Sigma-Aldrich) and de-ionized water (Millipore system) and the THB5 particles
were dispersed on a mixture of glycerol (≥ 99%, Sigma-Aldrich) and de-ionized water
(Millipore system). Both the B35 and the THB5 particle suspensions were index-
matched by eye, which resulted in 93 wt% DMSO in water and 85 wt% glycerol in
water mixtures respectively. The properties of these solvent mixtures are summarized
in Table 7.2. Using the particle dimensions and the solvent properties, we calculated
two quantities of interest, as indicated in Table 7.1: the gravitational length lg and
the rotational self-diffusion coefficient Dr at infinite dilution [198]. For both these
calculations the effects of a double layer (repulsion) that was caused by the charges
present on the rods and the concentration of counter and other ions in the solvent were
neglected.

7.2.2. Shear cells
We used two different shear cells to investigate the properties of the rod-like sus-

pensions under shear. The first is a parallel-plate shear cell that was mounted on top
of an inverted confocal microscope (SP2, Leica). A schematic representation can be
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l (µm) σl (%) d (µm) σd (%) l/d φ lg (µm) Dr (rad2/s)

B35 3.3 10 0.55 11 6.0 0.30 0.70 5.3 · 10−2

THB5 5.2 11 0.67 8 7.8 0.25/0.33 0.35 4.5 · 10−4

Table 7.1. Properties of the particles used in this chapter, with l the end-to-
end length of the rod, d the diamter, σi the polydispersity, l/d the aspect ratio
and φ the volume fraction. For the solvent properties summarized in Table
7.2, we also calculated the gravitational length lg and the rotational diffusion
coefficient Dr at infinite dilution [198].

solvent mixture ρ (g/ml) nD η (cP)

93 wt% DMSO/water 1.096 (25◦C) [73] 1.472 (20◦C) 2.6 (22◦C)
85 wt% glycerol/water 1.222 (20◦C) [199] 1.452 (20◦C) 92 (22◦C)

Table 7.2. Properties of solvents used in this chapter, with ρ the density, nD
the refractive index and η the absolute viscosity. The values for the density
are obtained from the literature.

seen in Fig. 7.1a and a detailed description of the setup can be found in Ref. 238. The
top plate was a standard No. 5 microscopy slide (Menzel Gläzer, thickness 0.5 - 0.6
mm) which was cut to 15 mm × 30 mm. The bottom plate was a No. 1 slide (Menzel
Gläzer, thickness 0.13 - 0.16 mm) of 24 mm × 50 mm. The glass slides were attached
to translational stages that could be displaced by piezostepper motors. The maximum
travel of the stages was ∼ 10 mm. Because both plates can move in opposite directions,
there is a plane of zero velocity, indicated by the dashed (red) line in Fig. 7.1a. This
zero-velocity plane enables observation of the particles under shear for an extended
period of time. The alignment of the plates and the spacing between the plates was set
prior to the experiment with confocal microscopy in reflection mode using a HeNe 543
nm laser and a 20×/0.7 air objective (Leica). Values for the spacing between the plates
h in this chapter were between 30 - 50 µm. The cell was filled with ∼ 60 µl suspension
and a metal vapour-lock was used to avoid evaporation of the sample. Prior to the
experiment, a value can be chosen for the sum of the amplitudes of the upper and lower
slide A = AT +AB, the sum of the velocities v = vT +vB and the ratio between the two
velocities k = vB/vT . Combined with the value for the distance between the plates h,
this determines the shear rate γ̇ = v/h, the strain amplitude γ = A/h and the position
of the zero-velocity plane zzvp = h/(1/k + 1). Additionally, it is possible to choose
between steady shear or oscillatory shear. We applied both types of shear, where in
the latter the shear rate and strain amplitude become time dependent, as described in
Chapter 5.

The second shear cell that we used was a confocal-rheoscope setup, indicated in
Fig. 7.1b. This setup is a combination of a fast confocal microscope (VT-Eye, Visitech)



7.2. Methods 147

h

velocity (x)

g
ra

d
ie

n
t 

(z
)

objectivevorticity (y)

vT

a

objective

b

r

z

velocity (y)

g
ra

d
ie

n
t 

(z
)

vorticity (x)

ω

θ

rc

vB

AT

AB

Figure 7.1. Schematic representations of the shear cells used. (a) Parallel-
plate shear cell mounted on top of an inverted confocal microscope [238]. The
height between the two plates h, the sum of the amplitude of the upper and
lower plate A = AT + AB, the sum of the speeds v = vT + vB and the ratio
between the two velocities k = vB/vT can be set during the experiment.
Because both plates move in opposite directions, there is a zero velocity
plane (ZVP), indicated by the dashed (red) line. The position of the ZVP
can be adjusted by changing the ratio k. (b) Confocal rheoscope setup [52].
This setup consists of a stress controlled cone-plate rheometer coupled to
an inverted confocal microscope, which enables measurement of rheological
properties during imaging. The rotation speed ω and distance of observation
r can be set during the experiment. The lower plate consists of a stationary
glass plate, which enables confocal microscopy imaging but does not allow for
a ZVP to be moved away from the lower wall.

and a stress controlled rheometer (Physica MCR 301, Anton Paar) [52]. The cone-plate
rheometer had a custom-built open construction that allowed for simultaneous imaging
and rheological measurements. The bottom (transparent) plate of the rheometer was
stationary, whereas the truncated cone was able to rotate. This resulted in a velocity
profile with constant shear rate throughout the gap, given by γ̇ = ω/ tan θ, with ω the
angular velocity of the cone and θ the angle between the cone and plate, see Fig. 7.1b. In
our experiments, a stainless steel cone was used with radius rc = 20 mm and cone angle
θ = 1◦. The plate of the rheometer consisted of a glass microscopy slide (thickness ∼
180 µm, radius 25 mm) attached to an aluminium plate. The aluminium plate could be
aligned prior to the experiment using three adjustments screws. We filled the cell with
∼ 0.5 ml of suspension. We measured flow curves of the suspensions using logarithmic
up- and down ramps spanning four decades of shear rate (γ̇ = 0.01 - 100 s−1). Longer
measurement were performed for smaller shear rates to adjust for differences in particle
displacement (or strain magnitude), with a maximum of 300 s. We further monitored
the viscosity as a function of time for various shear rates, with a maximum duration
of 600 s. A 100×/1.4 oil-immersion objective (Nikon) mounted on a piezo-element was
used for focussing in the z-direction. The distance between the axes of the objective
and the cone r (see Fig. 7.1b) could be adjusted during the experiment. The confocal
microscope was equipped with an acousto-optic deflector (AOD) for scanning in the
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x-direction and a galvanometer mirror for scanning in the y-direction. A solid state 488
nm laser was used to excite the fluorescent particles. Scan speeds are up to 40 fps for
images of 1024 × 1024 pixels and 110 fps for images of 512 × 512 pixels. These high
scan speeds result in a typical acquisition time of a 3D-image of ∼ 1 s. Because the
lower plate of the setup was stationary, there was no zero-velocity plane, which makes
it hard to follow particles for an extended period in time. However, because of the fast
image acquisition, it is possible to follow the 3D structure for a limited period of time
for shear rates up to ∼ 0.05 s−1 and in 2D for shear rates up to ∼ 50 s−1.

7.2.3. Image analysis
Confocal microscopy is a technique especially suited for 3D measurements and several

algorithms exist that are optimized for 2D and 3D particle tracking under flow [52,53,
60]. We found, however, that 3D image analysis of concentrated samples of rod-like
particles under flow was not (yet) possible with the suspensions and setups described
in this chapter. We therefore analysed 2D time-series of confocal microscopy images
only. Using the 2D particle fitting algorithm described in Chapter 6, we obtained the
projected positions r′ and orientations û′ of the rod-like particles under shear. We
quantified the (projected) 2D order in the system by calculating the 2D nematic order
parameter, given by

S2D′ = 2〈cos2 ψ〉 − 1, (7.1)
with ψ the angle between the projected main axis of the rod û′ and the projected
nematic director n′, i.e. ψ is the in-plane projected angle that maximizes equation
(8.12). To find the projected nematic director, we calculated the 2 × 2 nematic order
parameter tensor given by

Q2D
αβ = 1

N

N∑
i=1

(
2u′iαu′iβ − δαβ

)
, (7.2)

with u′iα the α-component of the unit vector pointing along the projected main axis of
particle i and α, β = x, y. δαβ is the Kronecker delta and N is the total number of
particles in the system.

We also calculated the (local) orientation of the particles via the structure tensor
using an existing ImageJ plugin [285], as described in Chapter 4, which was used for
visualization of the orientations of the particles.

To determine local shear rates, we used a coarse-grained method similar to a particle
image velocimetry (PIV) technique [60, 312]. For different heights in the velocity-
gradient (z) direction, we recorded xy time-series of confocal microscopy images. By
calculating the cross-correlation between consecutive time-frames, we obtained the
average displacement of the particles per frame (without the need for individual particle
tracking), which are then divided by the time step to obtain the average velocity as
a function of z. We also used these displacements to shift the images such that we
obtained a view from the co-moving frame, i.e. the frame that moves with the average
speed of the suspension. This enables better visualization of the non-affine motion of
the particles.
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Finally, for a quantitative comparison between experiments, we calculate the rota-
tional Peclet number Per, which we define as

Per = γ̇

2Dr

(7.3)

This dimensionless quantity is the ratio of the orientational relaxation time (1/2Dr)
and the typical time-scale associated with flow (1/γ̇). If Per < 1, Brownian motion
is dominant and no large deviations from equilibrium phase behaviour are expected.
However, if Per > 1, the time-scale for flow is dominant and shear-induced motion can
be expected.

7.3. Results
7.3.1. Shear-induced alignment

In Fig. 7.2 we show preliminary results of a suspension of silica rods (B35) with
aspect ratio l/d = 6.0, suspended in a mixture of 93 wt% dimethylsulfoxide (DMSO)
in ultrapure water, with initial volume fraction φ = 0.3. Figs. 7.2a-c show close-ups
of confocal microscopy images of the suspension under steady shear (shear rate γ̇ =
33 s−1, Peclet number Per = 311) applied with the parallel plate shear cell. The
view is from the velocity-vorticity plane, close to the zero-velocity plane. The colors
indicate the projected 2D orientation of the particles. Initially, the particles in the
field-of-view were in an isotropic phase. However, shortly after the shear was applied,
particles aligned in the velocity direction forming a shear-induced nematic phase (or
para-nematic phase). Figs. 7.2b shows that after the shear was stopped, the system
relaxed back towards the equilibrium isotropic phase. However, some (local) order still
remained after approximately 38 s. After re-applying the shear, the system aligned
with the velocity direction again (within ∼ 3 s), see Fig. 7.2c. In Fig. 7.2d we show
the projected 2D nematic order parameter S2D′ as a function of time, calculated for
approximately 650 particles per time-step (∆t = 0.66 s). The red line is an average
over 7 consecutive time-steps. When the shear was applied, the value for the 2D order
parameter reached a plateau of approximately S2D′ = 0.7. Because the nematic director
is approximately parallel to the plane of observation, this value (of the 2D projected
nematic order parameter) will be almost equal to the value of the 3D nematic order
parameter, as shown in Chapter 4.

7.3.2. Rheology measurements
To complement the shear measurements with the parallel plate shear cell, we also

investigated the behaviour of a suspension of rods with a rheo-confocal setup [52]. The
particles used for this study (THB5) had a slightly larger aspect ratio of l/d = 7.8 and
were dispersed in a mixture of 85 wt% glycerol in water. Fig. 7.3a shows an average over
three independent flow curves for a suspension with volume fraction φ = 0.25. A clear
shear-thinning regime is observed for shear rates γ̇ = 0.01 - 3 s−1, corresponding to Per
∼ 10 - 103. In this regime, we observed both a non-monotonic decrease of the viscosity
for individual measurements and significant variations between measurements, resulting
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Figure 7.2. Shear alignment of rods with l/d = 6.0 by application of steady
shear with shear rate γ̇ = 33/s using a parallel-plate shear cell. The particles
in the zero-velocity plane were initially in an isotropic phase. (a-c) Close-
ups of confocal microscopy images in the velocity-vorticity (xy) plane. The
colors indicate the (projected) orientation of the particles in the 2D plane,
as indicated by the colorwheel. The scale bars indicate 5 µm. (a) Directly
after application of the shear, a shear-induced nematic phase was formed. (b)
Approximately 38 s after the shear was stopped, the distribution of orientations
was almost isotropic again. (c) Particles aligned almost instantly when the
shear was re-applied. (d) The projected 2D nematic order parameter S2D′ as a
function of time. The (red) line is an average over 7 consecutive measurement
points (∆t = 4.6 s).

in the large error-bars shown in Fig. 7.3a. Furthermore, we found that for shear rates
γ̇ = 3 - 10 s−1 (Per ∼ 103 - 104) the suspension behaved approximately Newtonian.
Finally, we observed a small increase in viscosity, i.e. shear thickening, for shear rates
γ̇ > 10 s−1 (Per > 104), as can be seen in the inset in Fig. 7.3a. To further investigate
the rheological behaviour of the suspensions, viscosity measurements were taken as a
function of time for varying shear rates. Fig. 7.3b shows that for the shear rates in the
shear thinning regime (γ̇ = 0.01 - 3 s−1), significant (non-periodic) fluctuations existed,
whereas for the largest shear rates, a constant value was measured. Notice that the
plateau value in the viscosity for γ̇ = 5 s−1 (pink triangles) is lower than for γ̇ = 20 s−1

(blue diamonds), since these values are in the shear thickening regime.
A hesitation in the decrease of the viscosity, such as shown in Fig. 7.3a, was also

observed for fd viruses under shear and was interpreted as a signature of the transition
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from a tumbling to a wagging state [37]. It is also probable that the large fluctuations
in the viscosity, shown in Fig. 7.3b, were (partially) a result of tumbling, wagging or
kayaking behavior of the rods. However, we could not identify such micro-structural
changes in the confocal microscopy images acquired during shear. Movies 1 - 3 in
Appendix B.2 show confocal microscopy time-series of the velocity-vorticity plane, for
shear rates γ̇ = 1, 2 and 5 s−1. Images were shifted backwards with the average
displacement of the particles, which enables a clear view of how the local micro-structure
and any non-affine motion was influenced by the flow. For shear rate 1 s−1 we observed
a (weak) average alignment with velocity direction, however we did not observe any
rearrangements during the time that the particles were in the field of view of the
microscope. For shear rate 2 s−1 the particles were, on average, still aligned with the
flow, and particles rotated of tumbled, however not collectively. For shear rate = 5 s−1

(which is at the upper limit of the Newtonian regime) we observed more non-collective
rotations of the rods and for shear rates > 10 s−1 (which is in the shear-thickening
regime) the non-affine motion of the rods looked turbulent. The fluctuations were not
a result of the resolution of the rheometer, as for a shear rate γ̇ = 0.05 s−1 we measured
a stress σ ∼ 0.02 Pa and torque τ ∼ 0.7 µNm, which is well above the torque resolution
of the rheometer of 0.1 nNm. Also, the period of rotation of the cone (T = 3600s for γ̇
= 0.1 s−1) is much larger that the time of a typical fluctuation.

Although the microscopy observations did not identify the expected time-periodic
motion of the directors, Movies 1 - 3 in Appendix B.2 are a clear illustration of shear-
enhanced rotational motion, a form of Taylor dispersion, which was recently reported
for dumbbell particles at infinite dilution under oscillatory shear as well [40].
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Figure 7.3. Rheology measurements for a suspensions of rod-like particles
with length l = 5.2 µm, aspect ratio l/d = 7.8 and volume fraction φ = 0.25. (a)
For increasing shear rate we observed shear-thinning, Newtonian and shear-
thickening behaviour. (b) Viscosity as a function of time for four different
shear rates. For the lowest shear rates, we systematically observed large, non-
periodic fluctuations whereas for the largest shear rates, a constant value was
measured.
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Figure 7.4. Velocity profiles for a suspensions of rod-like particles with length
l = 5.2 µm, aspect ratio l/d = 7.8 and volume fraction φ = 0.25. (a) The slopes
are all close to linear. Measured shear rates were obtained from linear fits to
the data. (b) The applied versus measured shear rates are almost identical.

As a final addition to the rheology measurements, we measured the local velocity
profile for various shear rates, indicated in Fig. 7.4a. The slopes are all close to linear
and the measured shear rates (linear fits) correspond well to the applied values, as
indicated in Fig. 7.4b. These results indicate an absence of shear banding and suggest
little to no slip.

7.3.3. Shear aligned columnar and smectic-B phases
Combining the ability of shear flow to align the rods and that of gravity to increase

concentration, it was possible to create a shear-aligned columnar, or a shear aligned
smectic phase on the bottom of the shear cell. Which phase was formed depended on
when the shear was stopped. The columnar phase was created by applying steady shear,
with a shear rate of 2.6 s−1 and a strain amplitude of 5.3, for 3.5 hours. In this time, the
volume fraction of rods on the bottom of the sample increased sufficiently to allow for a
phase transition from a shear aligned nematic, with its director pointing in the velocity
direction, to a shear induced columnar phase. Figs. 7.5a-c show confocal images of the
columnar phase through three different planes. In the velocity-gradient (xz) plane as
well as in the velocity-vorticity (xy) plane, the rods were ordered in horizontally oriented
columns. The hexagonal stacking of the columns is visible in the vorticity-gradient (yz)
plane. Subjecting the columnar phase to a shear flow with a shear rate of 13.2 s−1

and strain amplitude of 26.3, destroyed the 3D order of the sample, but an average
orientation of the rods in the velocity direction remained (para-nematic phase). The
volume fraction of the rods on the bottom of the sample was sufficiently high at this
point to maintain the alignment caused by the shear when the flow was stopped. After
cessation of the shear and subsequent sedimentation, the particles ordered in a shear-
aligned smectic phase within 1 hour, as shown in Figs. 7.5d-f. The rods in the smectic
layers of this phase were ordered hexagonally, as shown in Fig. 7.5e. The structure was
therefore identified as a smectic-B phase [28].
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Figure 7.5. Shear aligned columnar and smectic phases in different planes.
x is the velocity direction, y the vorticity direction and z the velocity gradient
direction. (a-c) When subjected to a shear flow with a shear rate of 2.6 s−1 and
a strain amplitude of 5.3, a sample with initial volume fraction of 0.3 ordered
into a shear aligned columnar phase. (d-f) After shear melting the sample to
a para-nematic and leaving it to sediment in the absence of shear, the sample
was almost completely smectic within 1 hour.

7.3.4. Oscillatory shear
Besides steady shear, the rods were also subjected to oscillatory shear. Oscillatory

shear has been used in several recent experiments to increase the crystalline order
of nearly jammed, glassy and gel systems of colloidal spheres [213, 313]. Even in
equilibrium fluids of hard-sphere colloids, ordered structures can be formed under the
influence of oscillatory shear [31, 63], which is described in detail in Chapter 5 of this
thesis. The effect of oscillatory shear on a sedimented sample of rods is shown in
Fig. 7.6. Before applying oscillatory shear, the rods were subjected to steady shear
(shear rate 33 s−1, strain amplitude of 7) and afterwards left to sediment. In this
manner, a shear aligned smectic formed with a nematic order parameter value of 0.94
(Fig. 7.6d). This was the initial state of the system at t = 0, shown in Fig. 7.6a.
Subsequently, the smectic phase was shear melted to a para-nematic phase with S2D′ =
0.85 by applying large amplitude (∼ 25) steady shear (Fig. 7.6b). Upon the application
of oscillatory shear, with a shear rate of 33 s−1 and a strain amplitude of 7, small
smectic or columnar-like domains were formed (Fig. 7.6c). The average nematic order
parameter S2D′ first decreased and then significantly increased during shear, as can be
clearly seen in Fig. 7.6d. Details about this intriguing phenomenon, such as its stability
and development in time, require more experimental work.
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Figure 7.6. Application of oscillatory shear to a dispersion of rods. (a) A
sedimentation induced shear-aligned smectic phase. (b) Shear melting into a
para-nematic. (c) After applying oscillatory shear (shear rate 33 s−1, strain
amplitude 7), ordered columnar/smectic-like domains were induced in the
para-nematic sample. (d) The nematic order parameter S2D′ first decreased
and then increased significantly when oscillatory shear was applied to the
sample. Scale bars indicate 10 µm.

7.4. Discussion and Conclusion
Steady shear flow was successfully applied to align rod-like silica particles and create

shear-induced nematic, columnar and smectic liquid crystal phases. Upon application
of steady shear to rods in the isotropic phase, a shear-induced nematic was almost
instantly formed and the nematic order parameter was determined from 2D confocal
microscopy time-series. With a combination of fast confocal microscopy and simulta-
neous rheological measurements we investigated the correlation between the suspension
micro-structure and its rheological properties. For increasing shear rate, we found
pronounced shear thinning, a Newtonian regime and (the onset of) shear-thickening.
We also found large non-periodic fluctuations in the viscosity over time for shear rates
γ̇ < 1.0 s−1. Although these fluctuations could be an indication of tumbling, wagging
or kayaking behavior of the rods, we could not identify such micro-structural changes in
the confocal microscopy images acquired during shear. As the measured velocity profiles
were all linear and indicated no slip nor shear-banding, we rule out any non-linear shear
flow as the origin of the fluctuations. Also the torque resolution of the rheometer was
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more than adequate to resolve the fluctuations and the period of rotation of the cone
was orders of magnitude larger than the fluctuations.

While it would be interesting to study tumbling, wagging or kayaking behavior on
the single particle level, which our system in principle does allow for, it is also difficult
to get the sample in the right state. Tumbling, wagging or kayaking has been observed
for nematic liquid crystals only. Our system of rods with aspect ratio l/d = 6 - 8 in
principle has a nematic phase (see Chapter 6), but only in a small range of volume
fractions. Due to the sensitivity of the rods to gravity, the samples tended to form a
smectic rather than a nematic phase upon concentration. Therefore, careful fine-tuning
of the dispersion’s concentration will be required to make these measurements possible.
Alternatively, a mixture of rods with different dimensions and aspect ratios can be used
to frustrate the formation of a smectic phase. The time-scale of tumbling, with periods
between 10 s for shear rates of 1 s−1 and 0.2 s for shear rates of 100 s−1 that were
measured in fd-virus suspensions [37], are accessible using confocal microscopy. The
viscous solvent for one of the samples in this chapter slows down Brownian dynamics
enough to track the motion of a quiescent particle in 3D (see Chapter 4). However,
it also shifts shear rates two orders of magnitude down, if we want to compare data
with equal Peclet numbers, which can also obscure observation of tumbling or wagging
motion using microscopy.

The largest changes observed in the suspension micro-structure were beyond the
shear-thinning regime (γ̇ > 2 s−1) and indicated an enhanced (non-collective) shear-
induced rotational motion that increased in magnitude while approaching the shear-
thickening regime. Although various studies exist on shear thickening of colloidal
spheres, little is known about this behaviour for rods. We believe that rheo-confocal
studies such as described in this chapter, can also elucidate the micro-structural origin
of shear thickening in rod-like suspensions. However, more research is needed for this
to be achieved.

Combining the ability of shear flow to align the rods and that of gravity to increase
concentration, it was possible to create shear-aligned dense phases on the bottom of
the shear cell. After sufficient sedimentation, the alignment induced by the shear was
maintained in the sample when the shear was stopped and upon further sedimentation
a shear aligned smectic-B phase was formed. When the shear was continuously applied
during sedimentation a columnar phase was formed, with its director in the velocity
direction. Although these first experiments are preliminary, it is already clear that
shear is a powerful field to induce order over large distances as could for instance be
applied by spin coating, which is often used in industry. The application of oscillatory
shear to a shear aligned nematic resulted in the formation of para-smectic-like domains.
More experiments are required to examine this phenomenon in more detail.
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8
Switching Plastic Crystals of Colloidal Rods

with Electric Fields
Abstract

When a crystal melts into a liquid both long-ranged positional and orienta-
tional order are lost, and long-time translational and rotational self-diffusion
appear. Sometimes, these properties do not change at once, but in stages,
allowing states of matter such as liquid crystals or plastic crystals with unique
combinations of properties. Plastic crystals/glasses are characterized by long-
ranged positional order/frozen-in-disorder but short-ranged orientational or-
der, which is dynamic. Here we show by quantitative three-dimensional studies
that charged rod-like colloidal particles form three-dimensional plastic crystals
and glasses if their repulsions extend significantly beyond their length. These
plastic phases can be reversibly switched to full crystals by an electric field.
These new phases provide insight into the role of rotations in phase behaviour
and could be useful for photonic applications.
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8.1. Introduction
Owing to their size, colloidal particles are an interesting model system for condensed

matter, because Brownian motion ensures that the phase behaviour is analogous to that
of atomic and molecular systems [314, 315] and particle coordinates can be obtained
quantitatively in three-dimensional (3D) real space on a single particle level [12,46,56,
59]. In addition to the system being able to reach equilibrium on experimental time
scales, the interaction potentials between the particles can be tuned extensively [12].
For instance, rod-like and plate-like particles have a nematic liquid crystal phase where
translational order is short ranged, and there is unconstrained 3D translational motion,
but one orientational degree of freedom is still long ranged [314]. This combination
of properties makes liquid crystals perfectly suitable for display applications. As such,
liquid crystals are the positional-rotational opposite of plastic crystals (PCs). The
term ‘plastic crystals’ was chosen by Timmermans [316] when he found that some of
the molecular plastic crystals could not even support their own weight as a direct
consequence of the reduced strength of this solid phase of matter by the rotational
dynamics of the molecules on their lattice [316, 317]. Colloidal liquid crystals are well
known [262]; plastic crystals, however, have hardly been studied experimentally, despite
their intriguing structure and dynamics, which are a mixture of those of a liquid and
those of a solid. In recent experiments two-dimensional (2D) plastic crystals have been
found [179, 318], but, as the dimension affects dynamics and structure strongly, these
are not the same as 3D systems. For instance, 2D crystals do not have long-ranged
order, and a system of disks does not have a glass transition. The only work we are
aware of that mentions a 3D colloidal plastic crystal is the recent work by Zukoski
et al. [319]. They studied slightly anisotropic ‘dicolloids’ for which the shape closely
approximated two interpenetrating spheres by x-ray scattering. For certain parameters,
it was concluded that a plastic crystal with a long-ranged positional, but random
orientational, order had formed. However, because only static scattering experiments
were performed, the question of rotations of the particles on their lattice sites on
experimental time scales could not be addressed, which leaves open the possibility
that the random orientations of the dicolloids were actually frozen in. Such plastic
crystals are perhaps better characterized as ‘aperiodic crystals’, as they have sharp
diffraction peaks but no true lattice periodicity due to the absence of rotations on
an experimental time scale [320]. Similar to the particles as in Ref. 319, almost
all molecular plastic crystals for which rotation around one or more axes is possible
[316, 317] consist of an almost spherical shape around their rotation axis (for some
examples, see Refs. 321–323).

Here, we take advantage of the possibility to realize extremely long-ranged repul-
sions in colloidal systems. By making this range longer than the rod-like particles
in our system, we demonstrate that even for colloidal rods of 3.3 µm length and a
length/diameter (l/d) ratio as large as 5.6 plastic crystals and, at higher densities,
plastic glasses are found in a large range of volume fractions. We also demonstrate
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by scattering experiments, described later, that field-induced switching of these new
plastic crystal phases offers new opportunities for photonic applications.

8.2. Methods
8.2.1. Particle synthesis

Fluorescent silica rod-like particles were synthesized as described in Chapter 2. The
particles were dyed using fluorescein isothiocyanate (FITC, isomer I, 90%, Sigma-
Aldrich). The particles consisted of a three layered structure: a non-fluorescent core,
an FITC labelled shell (ca. 40 nm) and a non-fluorescent outer shell (ca. 100 nm). In
the second step, we modified the silica rods with octadecyltrimethoxylsilane (OTMOS,
90%, Sigma-Aldrich) by a ultrasonic-assisted coating procedure. In brief, a solution
of OTMOS, butylamine (BA, 99.5%, Sigma-Aldrich) and dried toluene (1:1:10 v/v/v)
was prepared, and then 10 wt% of silica rods, that had been dried under a nitrogen
flow, were added to this solution. The suspension was sonicated at 30 - 55 ◦C for 4
hours (Branson 2250). Afterwards, the colloidal rods were washed in turn with toluene,
cyclohexane and cyclohexylchloride (CHC, > 98%, Merck). Finally, the colloidal rods
were dispersed in deionized CHC for further use.

We used three systems of fluorescent colloidal silica rods, named R1, R2 and R3.
R1: l = 2.36 µm (6.3%), d = 0.58 µm (10.6%), l/d = 4.1; R2: l = 2.29 µm (6.0%),
d = 0.60 µm (6.5%), l/d = 3.8; R3: l = 3.30 µm (6.3%), d = 0.59 µm (8.7%), l/d =
5.6. Here, l and d are the mean end-to-end length and diameter respectively with the
polydispersity (standard deviation divided by the mean) between parentheses.

8.2.2. Sample preparation & Electric field setup
The particles were suspended in cyclohexyl chloride (CHC). The received CHC (con-

ductivity � 1.000 pS/cm) was deionized by using molecular sieves (0.4 nm, Aldrich)
and activated aluminium oxide (Aldrich). After purification, CHC had a conductivity
as low as 5 - 10 pS/cm. Rectangular glass capillaries (0.1 × 2 mm2, 0.1 × 2 mm2, 0.5
× 0.5 mm2, VitroCom, UK) were used as sample cells. Electrodes consisting of a 3
nm layer of Cr and a 6 - 10 nm layer of Au were sputter-coated on two opposing outer
surfaces of these capillaries. Thermocouple alloy wires (diameter 50 µm, Goodfellow)
were connected to the electrodes with silverpaint (SPI-paint). The ends of the wires were
wrapped around standard electronic wires that in turn were connected to the electrical
set-up. We used a function generator (Agilent 33120A) to generate a sinusoidal signal
with a frequency of 1 MHz and an amplitude of 2.0 V (peak-to-peak). This signal was
sent to the sample via a wide band amplifier (Krohn-Hite, 7602M) used to vary the field
strength in the sample. We applied a high frequency AC field to prevent polarization
of the electric double layer of the particles. After filling the capillaries, they were fixed
on a glass slide and sealed with UV-cured glue (Norland, No. 68).
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8.2.3. Electric field calculation
Because the electrodes were on the outside of the capillaries, there were three layers

of material between the two electrodes. In this case, the field strength is given by [281]

E = V

ε0

 ε1ε2ε3
d1ε2ε3 + d2ε1ε3 + d3ε1ε2

, (8.1)

with V the applied voltage, ε0 the dielectric constant of the sample, ε1−3 the dielectric
constant of layers 1-3 and d1−3 the thickness of layers 1-3. In our experiments, layer 1
and 3 are the glass capillary walls, (thickness d ∼ 0.1 mm and ε = 3.5) and layer 2 is
(primarily) the solvent CHC (thickness d ∼ 0.1 mm and ε = 7.6). The field strength is
thus given by E = 1.9 × 10−3 V (V/µm). All field strengths in this chapter are given
in units VRMS/µm.

8.2.4. Electrical conductivity measurement
We estimated the Debye screening length by measuring the conductivity of the

deionized solvent CHC with a Scientifica 627 conductivity meter. For the calculation
of ionic strength, we made use of Walden’s rule [12, 77] which states that the product
of the limiting equivalent conductance and the viscosity is a constant between different
media, that is, ΛEthanol

0 ηEthanol0 = ΛCHC
0 ηCHC0 . We used literature values for the limiting

equivalent conductance of HCl in ethanol [79] and the viscosity of 1.57 mPa·s for
CHC [69]. The Debye screening length κ−1 can then be estimated by

κ−1 = (8πλBc)−1/2. (8.2)

Here, λB = e2/(4πεε0kBT ) is the Bjerrum length, and ε and ε0 are the dielectric
constant of the solvent and the permittivity of vacuum. e is the elementary charge,
kB is Boltzmann’s constant and T is the absolute temperature. A final conductivity of
ca. 10 pS/cm for particle-free CHC corresponded to κ−1 of ca. 5 µm, estimated using
equation (8.2).

8.2.5. Electrophoretic mobility measurement
To estimate the surface charge of our particles, we measured the electrophoretic

mobility of a dilute suspension (volume fraction φ = 0.0005) with confocal microscopy
[53]. The sample cell was a 0.1 × 2 mm2 capillary with two parallel nickel-alloy wires
(diameter 50 µm) running along the side walls. We filled the cell with our sample
and sealed it with UV-glue. The z-position of the stationary layer was calculated as
described before [53]. In a direct current (DC) electric field, the motion of particles
in the stationary layer was determined from time series of confocal microscopy images.
From the mobility we then obtained the zeta potential using the Hückel equation, which
applies to ideal dilute suspensions with large Debye screening length.

8.2.6. Confocal microscopy measurement
The samples were studied with a laser scanning confocal microscope (Leica TCS SP2

and Leica TCS SP8 equipped with a 12 kHz resonant scanner). All images were taken
in fluorescence mode. The excitation wavelength was 488 nm. To obtain 3D data for
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dynamical measurements, care was taken to ensure that rods did not move or rotate
too much during the collection of the 3D data set. The measured rotational relaxation
time was 2.7 s for sample R2. The time to acquire a single 3D data-set was 0.26 s,
achieved by scanning an area of 54 × 18 × 7 µm3, with a pixel size of 178 nm in x-y
and 396 nm in z.

8.2.7. Rod-like particle tracking
We determined the positions and orientations of the rods from both 2D and 3D

confocal micrscopy data sets, using the algorithm described in Chapter 4. To uniquely
track the tip of the (nearly up-down symmetric) rods, it is required that the rotation
angle of individual rods between successive frames was less than π/2. It was therefore
verified that the rotations larger than π/2 were negligible at a time-step of 0.26 s.

8.2.8. Translational motion
To quantify the rotationally averaged translational motion in the plastic crystalline

phases, we used an expression for the diffusive motion of a harmonically bound Brownian
particle. Following the work of Uhlenbeck and Ornstein [324], we derived an expression
for the mean squared displacement (MSD) in three dimensions of a Brownian particle
trapped in a harmonic potential [325]

〈|r− r0|2〉 = 3
β k

[1− exp (−2Dt β k t)] + r2
0 [1− exp (−Dt β k t)]2, (8.3)

with r the (radial) distance to the minimum of the harmonic potential, r0 the position
of the particles at t = 0, β = 1/(kBT ) the inverse temperature, Dt the rotationally
averaged translational diffusion coefficient and k the spring constant. For t → ∞ and
r0 = 0 we find the equipartition theory

1
2k〈r

2〉 = 3
2kBT. (8.4)

Equation (8.3) is valid for an ensemble of particles that all start to diffuse at the
same starting position r0 at t = 0. In the experiments, however, the particles are at
a random position at any given time, also for t = 0, which is given by a Boltzmann
distribution

P (r) =
(
β k

2π

)3/2
exp

(
− 1

2 β k r2
)
. (8.5)

It is not difficult to show that in this situation, the expression for the MSD is given
by [325]

〈〈|r− r0|2〉〉r0 = 6
β k

[1− exp(−Dt β k (t− τ

3)] + 6 ε2t , (8.6)

with the outermost brackets indicating an average over starting positions r0. Here, we
have included τ to account for the time to acquire a 3D data set and εt to account
for positional measurement error [193]. Equation (8.6) shows that for a Boltzmann
distribution of starting points r0, there is a factor of 2 difference in both the decay
constant of the exponent as well as the prefactor of the expression for the MSD,
compared to equation (8.3) with r0 = 0.
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An alternative method to measure the effective spring constant k is by calculating the
probability of an excursion of a particle away from its center position P (r) for any given
time (see equation (8.5)). Taking the logarithm of this distribution gives the effective
potential well − lnP (r) = β U(r). Weiss et al. showed for charged spherical colloids
that this effective well is harmonic for excursions within 10% of the lattice spacing [326]

β U(r) = 1
2 β k r2. (8.7)

8.2.9. Rotational motion
We quantified the rotational motion of the particles by determination of the rotational

auto-correlation function, given by

C(t) = 〈û(0) · û(t)〉, (8.8)

with the brackets denoting an ensemble average, and û(t) the orientation of the rod.
The angular coordinates of the rods were obtained from time-series of 3D confocal
microscopy data sets. The rotational auto-correlation function was calculated by aver-
aging over 35 particles and over 494 time steps. The auto-correlation function was then
fitted to the expression

C(t) = (1− ε2r) exp(−2Dr(t−
τ

3)). (8.9)

This expression is derived from the equation for the mean squared angular displacement
used in Ref. 195. Here, εr is the term accounting for the statistical error in measurements
of û(t) and τ is the time to acquire a single 3D data set. As demonstrated in Chapter 4,
εr can be as low as 4 ◦ using our in-house developed rod-fitting algorithm. However, the
value of εr in this chapter was significantly higher due to the fast rotational motion of
the particles, i.e. the angular resolution was time-limited due to motion blur. Therefore,
we found a relatively high angular uncertainty of εr = 24 ◦, which is close to the average
angular displacement during the time that a 3D data set was acquired

√
〈θ 2〉τ = 25 ◦,

with τ = 0.26 s.
We compared our measurement of the rotational diffusion coefficient with the value

for a freely rotating cylinder at infinite dilution, given by [198]

D0
r = 3kBT

π η l3
(log p+ δr), (8.10)

δr = −0.662 + 0.917/p− 0.050/p2, (8.11)

with l the end-to-end length of the rod, p = l/d the aspect ratio, kB the Boltzmann
constant, T = 294 K the temperature and η = 1.57 mPa·s the viscosity of the solvent.
The term δr is to correct for the finite size of the particle. The calculated D0

r for rod
system R2 is 0.19 (rad)2/s.
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8.2.10. Nematic order parameter calculation
To quantify the (projected) 2D order in the system we calculated the 2D nematic

order parameter, given by
S2D′ = 2〈cos2 ψ〉 − 1, (8.12)

with ψ the angle between the projected main axis of the rod û′ and the projected
nematic director n̂′, i.e. ψ is the in-plane projected angle that maximizes equation
(8.12). To determine both n̂′ and ψ, we calculated the 2 × 2 nematic order parameter
tensor given by

Q2D
αβ = 1

N

N∑
i=1

(
2u′iαu′iβ − δαβ

)
, (8.13)

with u′iα the α-component of the unit vector pointing along the projected main axis of
particle i and α = x, y and δαβ the Kronecker delta. Although the 2D projection of 3D
orientations changes the orientation distribution significantly, we showed in Chapter 4
that the 2D projected nematic order parameter is almost equal to the value of the 3D
nematic order parameter, as long as the the director lies approximately in the plane
of observation. Given that circumstance, measurements of the projected 2D nematic
order parameter are therefore a strong indication of the actual 3D nematic order in the
system.

8.2.11. Low polar viscous solvents
At the end of this chapter we present preliminary results on plastic crystals where

particle dynamics were slowed down due to the use of low polar viscous solvents.
We used cyclohexyl chloride (CHC) mixed with either dioctyl phthalate (DOP, 99%,
Aldrich) or tris(2-ethylhexyl)trimellitate (TEHTM, 99%, Aldrich). The solvents were
de-ionized as described in Section 8.2.2, resulting in similar conductivity values as
obtained for pure CHC (5 - 10 pS/cm). Results are presented for particles dispersed in
a mixture of 83 wt% DOP in CHC. The viscosity of this solvent η = 22.5 mPa·s (23 ◦C),
as measured with a SV10 viscometer (A&D Company) and the refractive index n23

D =
1.482, as measured with a refractometer (Atago 3T). Confocal microscopy data stacks
were acquired with a Leica SP2 confocal microscope. The dimensions of a single 3D
stack was 44.5 × 34.8 × 51.6 µm3 with a voxel size of 174 nm in x,y and 311 nm in z.
The time to record the stack was 28 s (using a 1 kHz scanner).

8.3. Results
8.3.1. Charged colloidal rods

We and others have shown previously for spherical colloids that it is not difficult
to achieve electrostatic screening lengths (κ−1) of several micrometer in solvents with
a relative dielectric constant approximately in between 4 and 10 [12, 327]. In this
study, we used a recently developed fluorescent model system of micron-sized colloidal
silica rods that can be fluorescently labelled [25] and dispersed in the index matching
solvent cyclohexylchloride (CHC). In addition to carrying a negative charge (surface
potential -70 mV), the colloidal silica rods were sterically stabilized by grafting with
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short C18 alkane chains and almost index-matched to reduce van der Waals forces
and allow for quantitative confocal microscopy measurements > 100 µm deep inside
the sample. We studied three different rod lengths from 2.3 to 3.3 µm and aspect
ratios from 3.8 to 5.6 (see Methods). For relatively high concentrations of an added
salt, and thus short screening lengths, nematic and smectic liquid crystal phases were
found (not shown here) in accordance with a recent real space study of our group (see
Ref. 28 and Chapter 6). On the other hand, at low concentrations of salt, the effective
repulsive interactions between the rods should become increasingly less anisotropic. On
the basis of results of spherical particles [12,17], we expected to obtain crystals with a
body centred cubic (BCC) structure in which the rods have the freedom to rotate. The
screening lengths for the systems studied in this chapter were maximized by extensively
deionizing the solvent to reach screening lengths of about 5 µm, as determined from
the conductivity. This screening length was sufficient to result in plastic crystals over
a range of volume fractions (φ ≈ 0.005 - 0.015). In the following, we first describe the
structures observed without an external electric field.

8.3.2. Plastic crystal structure
As Fig. 8.1 shows in detail, the 3D lattice on which the rods rotate is indeed of

BCC symmetry (see Fig. 8.1a-e). In addition, it is clear that the softness of the inter-
particle potential as well as the rotations of the individual rods on their 3D lattice makes
visual identification of the actual structure from (sets of) individual images relatively
hard. However, as a testament to the true 3D long-ranged periodicity and stability of
these crystals, an average of 150 frames taken over 5 min produced an almost perfect
lattice, shown in Fig. 8.1c (also see Movies 1 and 2 in Appendix B.3). The sharp
peaks from first to even fifth order in the corresponding Fourier transform shown in
Fig. 8.1d illustrate the nearly perfect crystallinity present even over the relatively long
averaging period. We further illustrated the softness and the positional order of the
crystal with two-dimensional (2D) pair correlation functions g(r) (Fig. 8.1f) with (red)
and without averaging (blue). The peaks from the timeaveraged image match well
with a perfect (110) plane of a BCC phase (black). The position of the first peak
at 2.2 times the length of the rods again illustrates the long range repulsion between
the rods. The resulting extremely low effective mass density of these crystals explains
why gravity hardly affected the lattice spacing as a function of height in the samples
studied. Unfortunately, a theoretical description of systems of anisotropic particles
with electrostatic double layers the size of the particles is not available yet as the inter-
particle interactions are quite difficult to solve [269].

8.3.3. 3D particle dynamics
Translational motion. Using fast confocal microscopy, we were able to study the dy-
namics of the particles in the plastic crystal phases in 3D real-space. Prior to these mea-
surements, the confocal microscope was carefully calibrated in all three directions and
we corrected for the refractive index mismatch between the sample and oil-immersion
(see Chapter 3). In Fig. 8.2a, we show a 3D reconstruction from a confocal microscopy
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Figure 8.1. Body centred cubic (BCC) plastic crystal structure. Silica rods
R1 with φ = 0.005. (a) 2D confocal microscopy image of a 3D plastic crystal
of silica rods. The scale bar is 15 µm and the scale bar in the inset 5 µm. (b)
Confocal microscopy images indicating the BCC plastic crystal structure, left:
(110) plane; top right: (001) plane; bottom right: (11̄0) plane. The images for
the (001) and (11̄0) planes were reconstructed from the same 3D data stack.
(c) The average of 150 frames, measured over a time of 300 s. The dashed
(orange) lines correspond to the plane of the orange spheres in the BCC model
shown in (e). (d) Fourier transform calculated from the monochrome real space
image shown in (c). The colour bar indicates the logarithmic intensity scale.
(e) Schematic BCC model defining the lattice vectors shown in (b) and (c). (f)
Pair correlation function g(r) found, from top to bottom, by calculating the
g(r) of a single frame, by calculating the g(r) of the average of 150 frames, and
from a perfect BCC lattice. The scale bars in (b) and (c) are 10 µm, and the
scale bar in (d) is 3 µm−1.

data set. To minimize the time-interval to record the stack (τ = 0.26 s, see Sections
8.2.6 - 8.2.7) only a thin 3D slab was acquired containing 1 crystalline layer, covering
a volume of 54 × 18 × 7 µm3. In Fig. 8.2b, we show the xy projections of the 3D
translational trajectories of all the particles in the 3D volume, for a total time of 128 s.
The xy-plane in Fig. 8.2b shows a view of the BCC(110) plane of the plastic crystal (see
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Figs. 8.1a,b). Drift was removed by subtraction of the center of mass of the system from
the particle coordinates at each time step. The trajectory of the particle highlighted
with the dashed circle in Fig. 8.2b, is shown in 3D in Fig. 8.2c. From the nearly
isotropic shape of the trajectory we can infer that diffusion in the x, y and z direction
was almost equal. In Fig. 8.2d, we show the probability distributions of an excursion
away from the average lattice position of a particle in the x, y and z direction, averaged
over all particles and time-steps. The lines are Gaussian fits to equation (8.5). By
taking the logarithm of these distributions and fitting to equation (8.7) for each spatial
direction, we obtained for the effective spring constants β kx = 32.3 ± 0.5 l −2, β ky =
21.1±0.5 l −2 and β kz = 29.0±0.6 l −2, with β = 1/(kBT ) the inverse temperature and

Figure 8.2. Translational dynamics of silica rods (R2) in a plastic crystal
phase, with volume fraction φ = 0.005. (a) 3D reconstruction from a confocal
microscopy data set containing a single layer of the crystal. Colours indicate
the 3D orientation of the particles. (b) Projection in the xy plane of the 3D
translational trajectories, showing a view of the BBC(110) plane of the plastic
crystal. (c) The complete 3D trajectory of the particle highlighted with the
dashed circle in (b). (d) Probability distribution of excursions from the center
of the lattice position in the x, y and z direction, averaged over all particles and
all time-steps. The lines are Gaussian fits to equation (8.5). (e) Rotationally
averaged mean squared displacement 〈∆r2(t)〉, averaged over 35 particles. The
(red) dashed line is a fit to equation (8.6).
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l = 2.29 µm the average length of the rods. The effective potential well is weaker in
the y than in the x or z direction, which is likely due to the orientation of the BCC
crystalline lattice (see Fig. 8.2b). In Fig. 8.2e, we show the rotationally averaged mean
squared displacement 〈∆r2(t)〉. The dashed (red) line in Fig. 8.2e is a fit to equation
(8.6), which is an expression for the mean squared displacement of Brownian particles
trapped in a harmonic potential with random starting positions. From this fit, we
obtain for the average spring constant β k = 30.7± 0.5 l −2, which is in agreement with
the previous stated values. In Ref. 77, a similar calculation was done on crystals of
spherical particles with a long-range repulsion (inverse screening length κσ = 5 and
potential at contact βε = 140), which resulted in β k ≈ 60 σ −2, with σ = 2 µm the
diameter of the sphere. This shows that the (effective) potential in which the rods in
our experiments were trapped was significantly weaker. Furthermore, we obtained from
the fit to equation (8.6) the rotationally averaged translational diffusion equation Dt

= 0.118 ± 0.007 µm2/s, which is significantly smaller than the theoretical value for
particles at infinite dilution Dt = 0.22 µm2/s. We also obtained the average vibrational
amplitude

√
〈r2〉 =

√
〈∆r2〉/2 = 0.71 µm, which is 14% of the average inter-particle

spacing in the crystal (obtained from the first peak in the g(r), see Fig. 8.1f). These
(extremely) large lattice displacements further illustrate the softness of the crystal.

Rotational motion. We explored the nature of the rotational motion of the rods on
their BCC lattice and investigated whether rods influence each other’s rotation at the
lowest volume fractions φ = 0.005. In Fig. 8.3a, we show the superposition of a time
sequence of 300 frames taken over 100.8 s. Already from the symmetry of the pattern,
we can reasonably infer that the rods explore all the orientations. This is confirmed by
the absence of structure in the orientation distribution of the rods as projected in the
2D imaging plane (Fig. 8.3b). To further verify the free rotation of the rods, we also
measured a 3D rotational trajectory of a single rod on its lattice position by extracting
its angular coordinates from a time series of 3D confocal microscopy data sets (see
section 8.2.7-8.2.9). The orientation distribution on the unit sphere is homogeneous,
showing that the rod explores all orientations (see Fig. 8.3c and Movie 2 in Appendix
B.3). From an average over the trajectories of 35 rods, we calculated the rotational
autocorrelation function C(t), as shown in Fig. 8.3d. The (red) continuous line in
Fig. 8.3d is a fit to equation (8.9), from which we obtained the rotational diffusion
coefficient Dr = 0.18 ± 0.04 (rad)2/s. This value is close to the theoretical value for a
freely rotating rod D0

r = 0.19 (rad)2/s, which is indicated by the (black) dotted line in
Fig. 8.3d.

When φ was increased above 0.005 the plastic crystalline behaviour was still observed,
although the (almost) free rotations demonstrated in Fig. 8.3 became more and more
influenced by neighbouring particles. Interestingly though, not the rotational degrees of
freedom were lost when φ was increased above roughly 0.018, but it was the positional
order that was lost (Fig. 8.4a). This loss of positional order, without appreciable trans-
lational diffusion, but with significant rotational mobility is clearly seen by comparing
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Figure 8.3. Rotational dynamics of silica rods (R2) in a plastic crystal phase,
with volume fraction φ = 0.005. (a) A superposition of 300 frames measured
over 100.8 s. The scale bar is 10 µm. (b) The orientation distribution function
of in-plane angles. (c) The rotational trajectory of a single rod on the unit
sphere surface. (d) Orientational autocorrelation function C(t), averaged over
35 particles. The (red) continuous line is a fit to equation (8.9), whereas the
(black) dotted line is obtained from theory for a freely rotating particle at
infinite dilution.

Fig. 8.4b and c with Fig. 8.1b and c. In Movie 3 in Appendix B.3, the rotations of
many of the rods can be clearly observed, while positionally there is no relaxation.
This plastic glass phase is a remarkable demonstration of the decoupling of the glass
transitions of the positional and rotational degrees of freedom, as has been discussed
earlier based on simulations and theory (for examples, see Refs. 328–330). The ability to
follow the 3D rotations of the particles quantitatively in real-space gives unprecedented
possibilities to study this new type of glass transition, which is investigated in more
detail in Chapter 9. Moreover, the positional glass can be reversibly switched to a
crystalline state by an external electric field as will be demonstrated below.

8.3.4. Alignment under an electric field
Electric fields are known to couple strongly to the alignment of liquid crystal phases,

enabling many applications [262]. To examine whether the particle orientations in
plastic crystals can also be controlled, we applied a homogeneous external electric field
with a frequency of 1 MHz so that the double layer is not able to follow the field
and only effects of dielectric polarization of the particles remain [12]. Because the
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Figure 8.4. Volume fraction - electric field state diagram. Silica rods R2
with φ ∼ 0.005 − 0.02. (a) The state diagram. Thick grey lines indicate
approximate phase boundaries. (b) Confocal image of a plastic glass phase.
(c) A superposition of 120 frames of a plastic glass measured over 98 s. (d)
Confocal images of a 3D crystal with BCC symmetry, left: (110) plane; top
right: (001) plane; bottom right: (11̄0) plane. The images for the (001) and
(11̄0) planes were reconstructed from the same 3D data stack. (e) Distorted
BCC phase and (f) distorted close packed phase at φ = 0.02, the focal plane
is in between two neighbouring layers. In inset images, squares represent one
layer, and circles represent one neighbouring layer. The scale bars from (b) to
(f) are 10 µm.
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long range of the particle repulsion, coupling of induced dipoles between particles is
significantly weaker than the thermal energy at almost all field strengths used, so in the
systems studied here induced dipoles couple only to the external field (see Figs. A.1-
A.2 in Appendix A). Nevertheless, as shown qualitatively in Fig. 8.4 and quantitatively
in Fig. 8.5, fields of sufficient strength align the rods, fully arresting the rotational
freedom of the plastic crystals, thus switching from a plastic crystal to a fully ordered
3D crystalline state (Fig. 8.5a,b). As expected from the lack of dipole-dipole coupling
(Appendix A), the lattice symmetry was preserved in this transition as illustrated in
Fig. 8.4d and Movie 4 in Appendix B.3.

To investigate the nature of the transition from a plastic to a full BCC crystal, we
quantified the projected angular distributions measured by taking 2D time series of
(110) crystal planes (Fig. 8.5c, φ = 0.005) as a function of the electric field strength
with the field parallel to the imaging plane (Fig. 8.5a). Already at a field strength of 25
Vrms/mm, the rotations became highly restricted (Fig. 8.5c). However, there was no

Figure 8.5. Manipulation of the rotation using an external electric field.
Silica rods R2 (a,b,d-f) and R3 (c) with φ = 0.005. (a,b) Confocal images of
the rods oriented by different field directions. (c) In-plane angular distribution
of rods on a crystal lattice as a function of field strength. (d) Nematic order
parameter (2D) and corresponding field strength as a function of time. (e)
Nematic order parameter (2D) versus field strength, showing the absence of
hysteresis. The time points were 0, 14, 35, 65, 89, 133, 161, 188, 228, 253,
286, 310, 340, 355 s. The vertical error bars are the standard deviation of
the calculated values displayed. (f) Fast switching between the on-state (same
orientation) and off-state (random orientation). The scale bars in (a) and (b)
represent 10 µm.
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indication of a sudden jump in the angular distribution or the nematic order parameter
S2d of in-plane angles, indicating that the transition as a function of the field was
continuous at this volume fraction. This is also borne out by the absence of any hys-
teresis when the field was slowly cycled from low to high values and back (Fig. 8.5d,e).
Figure 8.5f gives an indication of the switching speed. When the field is switched on/off
instantaneously, it takes a few seconds to achieve full alignment/randomization of the
rods (see also Movie 5 in Appendix B.3). Fully in line with expectations, such switching
did not affect the crystallinity.

At higher volume fractions (φ & 0.015) and for field strengths where the positional
order was not lost, we observed a relatively large region where distorted BCC crystal
(see Fig. 8.4a) was found mixed with crystals with a different stacking and symmetry
(compare Fig. 8.4e,f). These other crystals were similar to those observed for hard
spheres: randomly stacked close packed (CP) layers. The distortion consisted of an
elongation of the crystal lattice along the electric-field direction and is investigated in
more detail in Chapter 9. There was not a sharp transition region in the state diagram
between BCC and the randomly close packed layers, quite similar to the case reported
for spheres in a similar inter-particle distance range [331]. As mentioned, there are
unfortunately no simulations or theory for comparison. It is also quite intriguing that
at the higher volume fractions and relatively low field strengths there is a transition
between the already mentioned plastic glass and a 3D fully crystalline state that is
completely reversible. Apparently and intriguingly, without a field the plastic glass is
more stable than the crystal. In Chapter 9, we characterize this transition in more
detail in real-space and on the single particle level.

8.3.5. Apolar viscous solvents
We end this chapter with an outlook on real-space quantitative measurement on

particles in a plastic crystal phase, dispersed in an apolar viscous solvent mixture. The
rotational diffusion coefficient that we measured when particles were dispersed in CHC
(Dr = 0.18 ± 0.04 (rad)2/s, Fig. 8.3), is three orders of magnitude larger than previously
accessible with 3D confocal microscopy [181]. However, due to this rapid rotational
motion, only small 3D volumes can be acquired, even with a 12 kHz scanner, as shown
in Fig. 8.2. We therefore increased the solvent viscosity to slow down the dynamics
in the system [181, 332]. We used two low-polar viscous solvents: dioctyl phthalate
(DOP) and tris(2-ethylhexyl)trimellitate (TEHTM). DOP has been used earlier as

ρ (g/ml) (25 ◦C) n21
D η (cP) (25 ◦C) εr

DOP 0.980 1 1.4862 1 54.8 1 5.1 2

TEHTEM 0.985 3 1.4856 3 213.4 3 4.6 2

Table 8.1. Properties of two low-polar viscous solvents. Here, ρ is the density,
nD the refractive index, η the absolute viscosity and εr the dielectric constant.
All entries are literature values, taken from Refs. 333 (1), 334 (2) and 335 (3).
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a dispersing solvent for PMMA spheres to measure shear-induced structure with 3D
confocal microscopy [223] and TEHTM has similar properties but is more viscous (and
less toxic) than DOP, see Table 8.1.

We found that the particles were not stable in either DOP or TEHTEM alone,
which is likely due to the limited charge that the particles acquire in these solvents.
We therefore dispersed the particles in solvent mixtures of CHC and DOP or CHC
and TEHTEM. Fig. 8.6a shows a confocal microscopy image of particles with volume
fraction φ ∼ 0.005 dispersed in a mixture of 83 wt% DOP in CHC. It is clear that also
in this mixture, the particles had a long range repulsion and that they were able to
from a plastic crystal phase. The viscosity of this solvent mixture was η = 22.5 mPa·s,
corresponding to a rotational relaxation time τr = 38 s, which is 14 times larger than

Figure 8.6. Rod system R2 dispersed in a mixture of 83 wt% dioctyl
phthalate (DOP) in cyclohexyl chloride (CHC). The viscosity of this solvent
mixture η = 22.5 mPa·s. (a) Confocal microscopy image showing that also
in this solvent, repulsions remained long-range and a plastic crystal phase was
formed. The scale bar is 20 µm. (b) Close-up view of a 3D confocal microscopy
image stack. Time to acquire the 3D stack shown was 8.5 s. (c) BCC unit
cell. (d-e) 3D particle reconstructions from the image stack shown in (b).
The colours indicate the 3D orientation of the particles. (d) View from the
BCC(110) plane. (e) View from the BCC(100) plane.
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for pure CHC (η = 1.57 mPa·s). Fig. 8.6b shows a close-up of a 3D confocal microscopy
data stack, with total dimensions of 44.5 × 34.8 × 51.6 µm3 with a voxel size of 174
nm in x,y and 311 nm in z. The time to record the complete stack was 28 s (with
a 1 kHz scanner) and the time to record the close-up shown in Fig. 8.6b was 8.5 s.
Since this is significantly smaller than the rotational relaxation time (τr = 38 s), there
is no motion-blur visible in the 3D image, enabling (more) accurate measurement of
the particle coordinates (compare Fig. 8.1b and Fig. 8.6b). In Figs. 8.6d,e we show 3D
reconstructions of the BCC(110) and BCC(100) planes respectively, showing that the
orientations of all the nearest neighbours of a particle were determined, which could be
further improved if a fast (12 kHz) scanner was used, as in Fig. 8.2. The white dashed
lines in Fig. 8.6d-e indicate the BCC unit cell, shown in Fig. 8.6c.

Accurate determination of particle positions and orientations over larger areas allows
for detailed study of the 3D structure in real-space and for calculation of quantities
such as the spatial orientation correlation function.

8.4. Discussion
Because the rods studied here are quite long and their aspect ratio is quite high,

we expect that switchable plastic crystals can be obtained with a broad range of other
monodisperse anisotropic particles in combination with sufficiently long-range charged
repulsions. Such repulsions can be achieved in a large range of solvents but should
be accessible also in water for anisotropic particles of a smaller size. It is quite clear
that the systems studied here were not yet optimized for applications. For instance,
clear improvements in switching speed by going to smaller rods and a much more
marked photonic switching will be possible, for instance, with gold rods, which are
known to have two strongly different plasmonic resonances excitable by changing the
orientation of the rods [336]. As another example, rod-like superparticles built up
from nanorods with strongly anisotropic luminescent light emission have recently been
realized as well [337]. Results on other rod-like systems have already indicated that at
lower electric field frequencies a phase diagram as studied here will become richer as
a result of strong coupling of the double layers to the external field [338]. Finally, the
demonstrated ability to quantitatively analyse rotations on the single particle level in
strongly interacting systems will no doubt lead to new insights into the role played by
rotations in fundamental processes such as crystallization and the glass transition.
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9
Plastic Glass to Crystal Transition in a
System of Long-Range Repulsive Rods

Abstract
We demonstrate that when the volume fraction of a suspension of long-range
repulsive silica rods is increased above a critical value (φ ∼ 0.015), the sys-
tem fails to crystallize into a plastic crystal phase. Instead, a plastic glass
was found. In this phase, particles lacked long-ranged positional order and
translational motion was frozen-in, whereas rotational motion remained almost
free. This phenomenon is a remarkable demonstration of the decoupling of
the glass transitions associated with the positional and rotational degrees
of freedom. Moreover, this glassy phase could completely crystallize into a
stretched body-centered-cubic (bcc) lattice upon application of an AC electric
field. Intriguingly, when the field was turned off, the crystal became unstable
and the system returned to the plastic glass phase. The ability to follow the
3D rotations of the particles quantitatively in real-space gives unprecedented
possibilities to study this new type of glass transition and its connection to
crystallization.
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9.1. Introduction
When a liquid is slowly cooled below its melting point, it may crystallize. However, if

the temperature decrease is fast enough, the liquid can bypass crystallization and forms
instead a supercooled liquid, which is metastable since the thermodynamically stable
state is a crystal. If the cooling is fast enough, the viscosity increases dramatically upon
further cooling, until it can be considered an amorphous solid, known as a glass. How
dramatic the viscosity changes, depends on the fragility of the material. Liquid that are
very sensitive to changes in temperature are known as ‘fragile’ glass formers, whereas
liquids that are much less sensitive to temperature changes are known as ‘strong’ glass
formers. The formation of a glass happens at the glass transition temperature Tg
and the transition of a material that approaches Tg from T > Tg is known as the
glass transition [339]. Although glasses are ubiquitous in nature, many aspects of
glasses and the glass transition are far from understood and highly debated, and current
theories, such as mode coupling theory (MCT), only partially explain experimental
measurements [340]. This is why P.W. Anderson is often cited, who remarked that “the
deepest and most interesting unsolved problem in solid state theory is probably the
theory of the nature of glass and the glass transition." [341]. In recent years, colloids
have proven to be a fruitful model system to study both glasses and the glass transition.
See Ref. 342 for a general overview and for an in-depth comparison between molecular
and colloidal glasses. Hard-sphere colloids in particular have been used as the standard
model system and, combined with confocal microscopy, allowed for pivotal study of
colloidal glasses on the particle level [46, 58, 59]. Later, also other types of particles
have been used such as hydrogel particles, which interact via a soft repulsion [343,
344], or more complex systems such as colloids combined with polymers which results
in an attraction between the particles [345]. Recently, glasses composed of spherical
particles with a long-range repulsive Yukawa potential were studied both experimentally
[346], and with computer simulation [347] and revealed that the structure of these
‘soft glasses’ was remarkably similar to the structure of their hard-sphere counterparts.
Interestingly, studies on both hydrogel particles and spheres with a long-range repulsive
Yukawa potential showed that these ‘soft particles’ form stronger glasses than hard
particles [343, 347]. Apart from particle interaction, both MCT and simulations have
shown that shape anisotropy deeply modifies the nature of the glass transition [348–
351]. Experimentally, anisotropic particles with a (nearly) hard repulsive potential
have been used to study the effect of shape on the glass transition [176, 255, 329].
Zheng et al. used ellipsoidal particles in a quasi-2D configuration combined with bright-
field microscopy and found a two-step glass transition where the rotational degrees of
freedom freeze in first (as a function of density), followed by the translational degrees
of freedom. In between these two transitions, they found an orientational glass, which
has frozen-in rotational motion while the center-of-mass motion remained ergodic [177,
352]. A similar two-step glass transition was found with ellipsoidal particles that were
repulsive as well as attractive [178]. Highly charged and thin rods, in the form of fd-
viruses, exhibit a glass transition far beyond the isotropic-nematic coexistence region
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[353, 354]. Although these studies with fd-viruses are one of the few examples of a
glass transition study of rod-like particles with a long-ranged potential, they cannot be
resolved individually and therefore do not provide information on the particle level. As
far as we know, the only glass-transition study of anisotropic particles in 3D real-space
has been performed by Edmond et al., who used tetrahedral clusters as tracers in a host
of a colloidal supercooled fluid of hard-sphere particles [167]. The researchers showed
that rotational and translation diffusion decouple while approaching the glass transition
point; the rotational diffusion remained coupled with the viscosity for the full range of
volume fractions, whereas the translational diffusion decoupled for high enough volume
fractions. However, experimental real-space studies on the glass transition of particles
that form plastic crystals in equilibrium, remain absent. We therefore used our system
of long-ranged repulsive rod-like particles, that forms equilibrium plastic crystals [186],
to investigate particle diffusion when the volume fraction is increased towards the glass
transition point. From a theoretical point of view, a plastic crystal (or rotator phase)
of infinitely thin hard needles has been proposed as an ideal model system to study the
dynamics of the orientational glass transition [330]. Neutron scattering experiments on
ethanol confirmed the presence of such a transition in a molecular system [355].

In this chapter, we demonstrate that our system fails to crystallize above a certain
volume fraction. However, surprisingly, the particles form a plastic glass; in this phase,
rotational motion is almost free while translational motion becomes glassy. This phase
can therefore be considered as the inverse of the previously described orientational
glass. We demonstrate that the plastic glass can reversibly crystallize when an electric
field is applied to the sample. Finally, we analyse both structure and dynamics of this
transition in detail as a function of electric field strength.

9.2. Methods
9.2.1. Particle synthesis

Fluorescent silica rod-like particles were synthesized as described in Chapter 2. The
particles were dyed using fluorescein isothiocyanate (FITC, isomer I, 90%, Sigma-
Aldrich). The particles consisted of a three layered structure: a non-fluorescent core,
an FITC labelled shell (ca. 40 nm) and a non-fluorescent outer shell (ca. 100 nm). In
the second step, we modified the silica rods with octadecyltrimethoxysilane (OTMOS,
90%, Sigma-Aldrich) by an ultrasonic-assisted coating procedure. In brief, a solution of
OTMOS, butylamine (BA, 99.5%, Sigma-Aldrich) and dried toluene (1:1:10 v/v/v) was
prepared, and then 10 wt% of silica rods, that had been dried under nitrogen flow, were
added to this solution. The suspension was sonicated at 30 - 55 ◦C for 4 hours (Branson
2250). Afterwards, the colloidal rods were washed in turn with toluene, cyclohexane
and cyclohexylchloride (CHC, > 98%, Merck). Finally, the colloidal rods were dispersed
in deionized CHC for further use. The particles used in this chapter had an end-to-end
length l = 2.29 µm (δ = 6.0%), diameter d = 600 nm (δ = 6.5%), and aspect ratio
l/d = 3.8. Here, l and d are the mean length and diameter and δ is the polydispersity
(standard deviation divided by the mean).
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9.2.2. Sample preparation & Electric field setup
The particles were suspended in cyclohexyl chloride (CHC). The as received CHC

(conductivity� 1.000 pS/cm) was deionized by using molecular sieves (0.4 nm, Aldrich)
and activated aluminium oxide (Aldrich). After purification, the CHC had a conduc-
tivity as low as 5 - 10 pS/cm. In this solvent, the particles acquired a negative charge
(surface potential -70 mV) and a Debye screening length κ−1 ∼ 5 µm (see Chapter 8
for details). The sample was concentrated to a volume fraction φ ∼ 0.02 by either
sedimentation under gravity or by centrifugation with a maximum of 60 g. Rectangular
fused quartz capillaries (0.1 × 2 mm2 and 0.2 × 2 mm2, VitroCom, UK) were used as
sample cells. Electrodes consisting of a 3 nm layer of Cr and a 6 - 10 nm layer of Au were
sputter-coated on two opposing outer surfaces of these capillaries. Thermocouple alloy
wires (diameter 50 µm, Goodfellow) were connected to the electrodes with silverpaint
(SPI-paint). The ends of the wires were wrapped around standard electronic wires that
in turn were connected to the electrical set-up. We used a function generator (Agilent
33120A) to generate a sinusoidal signal with a frequency of 1 MHz and an amplitude
of 2.0 V (peak-to-peak). This signal was sent to the sample via a wide band amplifier
(Krohn-Hite, 7602M) used to vary the field strength in the sample. The field strength
was measured with a digital phosphor oscilloscope (Tektronix TDS3052). We applied
a high frequency AC field to prevent polarization of the electric double layer of the
particles. After filling the capillaries, they were fixed on a glass slide and sealed with
UV-cured glue (Norland, No. 68).

9.2.3. Electric field calculation
Because the electrodes were on the outside of the capillaries, there were three layers

of material between the two electrodes. In this case, the field strength is given by [281]

E = V

ε0

 ε1ε2ε3
d1ε2ε3 + d2ε1ε3 + d3ε1ε2

 (9.1)

with V the applied voltage, ε0 the dielectric constant of the sample, ε1,−3 the dielectric
constant of layers 1-3 and d1−3 the thickness of layers 1-3. In our experiments, layer 1
and 3 are the glass capillary walls, (thickness d ∼ 0.1 mm and ε = 3.5) and layer 2 is
(primarily) the solvent CHC (thickness d ∼ 0.1 mm and ε = 7.6). The field strength is
thus given by E = 1.9 × 10−3 V (V/µm). All field strengths in this chapter are given
in units VRMS/µm.

9.2.4. Confocal microscopy measurements
Particles were imaged using a confocal microscope (Leica SP8) equipped with a fast

12 kHz resonant scanner and a GaAsP hybrid detector (Leica HyDTM). Images with
8-bit pixel-depth were acquired using a white light laser with a selected wavelength of
488 nm. A confocal glycerol immersion objective 63x/1.3 (Leica) was used, which is
optimized for refractive index nD = 1.45 [91]. To avoid hydrodynamic interactions with
the wall, particles were imaged at least 20 µm deep into the sample. To investigate the
3D structure of the suspensions, data stacks were recorded with typical dimensions of
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512 × 256 × 120 pixels3 with voxel size 160 × 160 × 321 nm3, corresponding to 82
× 41 × 39 µm3, which were recorded with a frame-rate of 0.3 fps. To track the 3D
particle motion, data-stacks were acquired with typical dimensions of 512 × 65 × 25
pixels3 with voxel size 160 × 160 × 321 nm3, corresponding to a volume of 82 × 10 ×
8 µm3. The frame-rate for recording these 3D volumes was typically 4 fps. 2D confocal
microscopy images had dimensions of 512 × 512 pixels2 and pixel size of 150 × 150
nm2, corresponding to typically 75 × 75 µm2. The 2D images were recorded with a
frame-rate of 2 - 20 fps.

9.2.5. Analysis of static structure
Radial distribution function. To determine the average static structure in our samples,
we calculated the radial distribution function g(r). For a given particle, this function
describes the probability of finding another particle a distance r away and is given by

g(r) = 1
ρ2 〈

N∑
i=1

N∑
j 6=i

δ(ri)δ(rj − r)〉 (9.2)

with δ the Dirac delta function, ρ the bulk number density and the angular brackets
denoting an ensemble average. N is the total number of particles in the system. The
distribution is normalized such that g(r →∞) = 1.

Nematic order parameter. To quantify the 3D orientational order we calculated the 3D
nematic order parameter defined by

S3D = 3
2〈cos2 θ〉 − 1

2 , (9.3)

with θ the angle between the main axis of the rod û and the nematic director n̂. We
find S3D and n̂ by calculating the largest eigenvalue and corresponding eigenvector of
the standard 3 × 3 nematic order parameter tensor

Q3D
αβ = 1

N

N∑
i=1

3uiαuiβ − δαβ
2

, (9.4)

with uiα the α-component of the unit vector pointing along the main axis of particle i
and α = x, y, z.

Hexagonal bond order parameter. To quantify the 2D positional order we used the local
hexagonal bond-orientational order parameter ψ6k given by

ψ6k = 1
nc(k)

nc(k)∑
j=1

exp(i6θ(rjk)) (9.5)

with nc(k) the number of neighbors of particle k (which is taken to be the number of
particles that are within a certain cut-off distance rc of the particle), rjk the vector
connecting particle k and its neighbour j, θ(rjk) the angle between rjk and an arbitrary
reference axis and i in the exponent the imaginary unit. In a perfect hexagonal layer,
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the angles θ(rjk) are multiples of 60◦ and |ψ6k | = 1.

Voronoi cell construction. The Voronoi cell of a particle contains all the points in space
that are closer to the particle than to any other particle in the system. For monodisperse
particles these cells consist of flat faces and straight edges, called polyhedra. We used
a publicly available Voronoi software library (Voro++ [356]) to calculate 3D Voronoi
cells, the number of Voronoi nearest neigbours, the number of edges per Voronoi face
and the average Voronoi cell volume.

9.2.6. Analysis of particle dynamics
To study the particle dynamics, we applied our particle-fitting algorithm to time-

series of 3D confocal microscopy data-stacks, as described in detail in Chapter 4. We
calculated the mean squared displacement (MSD) given by

∆r2(t) ≡ 〈|r(t)− r(0)|2〉, (9.6)

which we fitted to the expression

∆r2(t) = 6Dt t+ 6 ε2t , (9.7)

with Dt the rotationally averaged translational diffusion coefficient and εt the error in
measurement of each of the coordinates of the particle [193].

We projected the displacements to the particle body-frame using the expressions [195]

〈∆r‖2(t)〉 ≡ 〈|[r(t)− r(0)] · û(0)|2〉 = 2D‖ t+ 2 ε2‖, (9.8)

〈∆r⊥2(t)〉 ≡ 〈|[r(t)− r(0)]× û(0)|2〉 = 4D⊥ t+ 4 ε2⊥, (9.9)

with D‖ the parallel and D⊥ the perpendicular translational diffusion coefficient, which
are related to the rotationally averaged translational diffusion coefficient via the equa-
tion

Dt = (D‖ + 2D⊥)/3. (9.10)

To quantify the rotational motion of the particles, we calculated the orientation auto-
correlation function

C(t) = 〈û(0) · û(t)〉 (9.11)

which we fitted with a stretched exponential function, given by

C(t) = (1− ε2r) exp(−(t/τr)β) (9.12)

with εr the measurement error in the determination of the direction of the main axis
of the rods, τr the typical orientation relaxation time and β the Kohlrausch exponent.
At infinite dilution we have β = 1 and τr = 1/(2Dr) with Dr the rotational diffusion
coefficient [194].
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9.2.7. Expressions for the diffusion coefficients at infinite dilution
To compare our measurements with diffusion coefficients valid for limφ→0, we used

the analytical expressions for hard cylinders at infinite dilution, as proposed by Tirado,
Martinez and de la Torre [198],

D0
⊥ = kBT

4π η l (log p+ δ⊥), (9.13)

D0
‖ = kBT

2π η l (log p+ δ‖), (9.14)

D0
t = 2

3D⊥ + 1
3D‖, (9.15)

D0
r = 3kBT

π η l3
(log p+ δr), (9.16)

with η the solvent viscosity, p = l/d the aspect ratio of the particle and δi a correction
term for the finite aspect ratio of the cylinders, given by [198]

δ⊥ = 0.839 + 0.185/p+ 0.233/p2, (9.17)
δ‖ = −0.207 + 0.980/p− 0.133/p2, (9.18)
δr = −0.662 + 0.917/p− 0.050/p2. (9.19)

Substituting l = 2.29 µm, p = 3.8 and η = 1.5 cP, results in D0
t = 0.23 µm2/s, D0

‖ =
0.26 µm2/s, D0

⊥ = 0.21 µm2/s and D0
r = 0.20 rad2/s and τ 0

R = 2.5 s.

9.3. Results
9.3.1. Plastic glass phase

When the volume fraction of the suspension of long-ranged repulsive silica rods
exceeded approximately φ = 0.015, the system failed to crystallize into a plastic crystal
(see Ref. 186 and Chapter 8), but instead formed a ‘plastic glass’. This phase lacked
long-ranged positional order, as can be clearly seen in Fig. 9.1a for a suspension with
φ ∼ 0.02. The particles were caged by their neighbours, and therefore translational
motion was slowed down dramatically, whereas rotational motion remained almost free.
This is illustrated by the superposition of 125 frames, measured over a time-interval
∆t = 12.5 s, in Fig. 9.1b. This time interval corresponds to ∆t = 5 τ 0

r , with τ 0
r the

orientation relaxation time at infinite dilution, or equivalently to ∆t = 48 τ 0
t , with τ 0

t

the time for the rod to diffuse over its own diameter at infinite dilution.
On longer time-scales, however, there were significant positional rearrangements in

the sample. These rearrangements are indicated in Fig. 9.1c, which shows an intensity
average over 2000 frames, corresponding to a time interval of ∆t = 200.0 s. Expressed in
units of relaxation times at infinite dilution, this time interval is given by ∆t = 79 τ 0

r or
∆t = 757 τ 0

t . In Fig. 9.1c, particles with low mobility appear as spherical spots, whereas
the local rearrangements resulted in blurred lines. It is clear that the dynamics in
the system were spatially heterogeneous, reminiscent of the dynamical heterogeneities
observed in suspensions of hard spheres on approach of the glass transition [58, 59].
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Figure 9.1. A ‘plastic glass’ phase of long-ranged repulsive rods. The volume
fraction φ ∼ 0.02, which is higher than the volume fraction where a plastic
crystal phase becomes stable. (a) A single confocal microscopy snapshot shows
the absence of long-ranged positional order. (b) A maximum projection of
125 individual images, measured over 12.5 s, shows that although there was
significant rotational motion, the rods were positionally caged during this time
interval. (c) An average of 2000 frames, measured over 200 s, shows that
there were spatially heterogeneous rearrangements during this time interval.
(d) Close-up of the region indicated in (c) with the (white) dashed line. The
colours correspond to averages over time-intervals of 20 s (as indicated in the
figure). The dotted circles indicate particles with low mobility, whereas the
dashed arrows indicate particles with high mobility. All scale bars are 15 µm.

Fig. 9.1d shows a close-up of the region indicated with the white dashed line in Fig. 9.1c.
The colours correspond to averages over time-intervals of ∆t = 20 s (as indicated in
the figure). The dotted circles indicate particles with low mobility, whereas the dashed
arrows indicate local (collective) rearrangements of particles with higher mobility. We
found that these collective rearrangements occurred often in a circular motion, or loop,
around a less mobile particle. Due to these rearrangements, the average translational
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motion was not completely frozen-in and therefore this phase can be described as a
supercooled plastic liquid close to the glass transition. We however prefer the term
‘plastic glass’ and will use this terminology in the rest of this chapter.

Figure 9.2. 3D quantitative analysis of the dynamics in the ‘plastic glass’
phase. (a) xy- and (b) xz-projections of the translational trajectories of
the rods. (c) Positional and (d) rotational trajectory of a particle that
remained caged during the time of the experiment. (e) Positional and (f)
rotational trajectory of a particle that escaped its cage. (g) The mean squared
displacement. Parallel and perpendicular components as indicated in the
figure. The (black) dashed line has unity slope, the (red) continuous line
is a linear fit for t > 80 s and was used to extract a value for the rotationally
averaged diffusion coefficient Dt/D

0
t = 0.016. (h) The orientation correlation

function. The (black) dashed line is for free rotation, the (red) continuous line
is a fit to equation (9.12), resulting in τ0

r /τr = 0.36 and β = 0.63.
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In Fig. 9.2, we show results of a quantitative 3D analysis of the plastic glass. We
tracked approximately 150 particles over 526 s. Projections of the individual trans-
lational trajectories in the xy-plane (Fig. 9.2a) and xz-plane (Fig. 9.2b) over a time
interval of 132 s confirm that particle motion was strongly confined. However, particle
trajectories were often irregularly shaped and elongated, which was due to the local
structure and the local rearrangements. A translational trajectory and corresponding
rotational trajectory of a particle that remained caged during the time of the experiment
is shown in Fig. 9.2c and Fig. 9.2d respectively. In Fig. 9.2e, a translational trajectory in
shown of a particle that escaped its cage and Fig. 9.2f shows its corresponding rotational
trajectory. Notice that although Fig. 9.2d and Fig. 9.2f indicate significant rotational
motion, not all angles were visited with equal probability.

To quantify the average translational motion, we calculated the rotationally averaged
mean squared displacement (MSD), as shown in Fig. 9.2g, as well as the parallel 〈∆r2

‖〉
and perpendicular 〈∆r2

⊥〉 components. Although the MSD does not show a pronounced
plateau, the slope at intermediate time-scale is significantly lower than unity (∆r2 ∼
t0.42 for 5 s < t < 12 s). The lack of a pronounced plateau is possibly due to the extreme
long-range repulsions (or softness) in the system. Fitting the MSD to equation (9.7)
for t > 80 s (indicated by the red line in Fig. 9.2g) resulted in Dt/D

0
t = 0.016, which

indicates that the translational diffusion at that time-interval was slowed down by two
orders of magnitude compared to the diffusion at infinite dilution. For t > 80 s, we
measured that ∆r2 ∼ t0.66 indicating that the process was still sub-diffusive.

The rotational motion, however, was much less hindered. We calculated the orien-
tation auto-correlation function C(t). A fit to expression (9.12) resulted in τ 0

r /τr =
0.36 and β = 0.63, indicating that the rotational motion was slowed down by only
a factor of 3 and not yet ‘glassy’ or frozen-in. This means that there is an order of
magnitude difference in the slowing down of the translational and rotational motion of
these soft rod-like particles, which is a remarkable example of strong decoupling of the
glass transitions of the positional and rotational degrees of freedom.
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9.3.2. Reversible electric field switch
Although the plastic glass described in the previous section lacks long-ranged order,

it is possible to induce complete crystallization of the sample, with particles aligned and
on a 3D lattice, by applying a high frequency AC electric field. It is quite intriguing,
however, that when the field is turned off, the crystal returns to the plastic glass phase.
This transition is illustrated in Fig. 9.3 and in Supporting Movies 1-2 in Appendix B.4.

a b c

d e f

E-field off

E-field off E-field off

E-field on E-field on

E-field on

g

g

g E g E

g E g

time→

time→
Figure 9.3. Reversible switching between a plastic glass and a crystal. (a)
Particles rotated, though they were positionally ‘caged’ without any long-
ranged positional order. (b) Directly after application of an AC electric field
(E = 90 V/mm, turned on by hand in ∼ 5 s), particles aligned with the field.
(c) Ordered clusters were formed that grew larger in time. (d) After 40 min
the sample was fully crystalline. (e) Directly after the field had been turned
off, an intermediate plastic crystal-like phase was observed. (f) After ∼ 2 min,
the long-ranged positional order was lost, particle orientations became random
and the particles remained positionally caged. All scale-bars are 10 µm.

Initially, the field was off (Fig. 9.3a) and particles could rotate significantly (see also
Fig. 9.2). When the AC electric field (1 MHz, E = 90 V/mm) was increased to full
strength in ∼ 5 s, all particles aligned immediately with the field direction (Fig. 9.3b).
Because the positions were still disordered, this can be seen as a plastic glass → glass
transition. Within minutes, positionally ordered clusters started to form and grew larger
as a function of time, see the bottom right corner in Fig. 9.3c. After approximately 40
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minutes, the sample was completely crystalline (Fig. 9.3d), completing this nucleation-
and-growth type of transition from glass → crystal. Directly after the field had been
turned off (Fig. 9.3e), some particles started to rotate, although not uniformly at all,
while the crystalline lattice was still preserved, resulting in a crystal → plastic crystal
transition. However, the plastic-crystal lattice remained stable for only a brief period
of time (∼ 2 min), after which all long-ranged order disappeared and rotational motion
increased, resulting in a final plastic crystal → plastic glass transition.

9.3.3. 3D structure analysis of the plastic glass and the crystal phase
Before we analyse the dynamics of the plastic glass to crystal transition, we first show

results of the 3D static structure of both phases. Figs. 9.4a,b show a 3D reconstruction
of the plastic glass, obtained from confocal microscopy data. The total volume of the
data stack was 50 × 50 × 48 µm3, containing 2567 particles. The colours in Figs. 9.4a,b
correspond to the 3D orientation of the particles. The orientation distribution in
Fig. 9.4c shows that all angles were accessible with, on average, equal probability,
i.e. there was no average orientational order in the system. Figs. 9.4d,e show a 3D
reconstruction of a crystalline phase that was formed under application of an electric
field of E = 90 V/mm. The volume of the data stack was 45 × 46 × 41 µm3, containing
2379 particles. The particles ordered into a body centred cubic (bcc) phase that was
elongated in the field (z) direction. A view from the bcc(110) plane (Fig. 9.4d) shows
the large inter-particle spacing and the long-ranged 3D crystalline order. The view from
the bcc(100) plane (Fig. 9.4e) shows that there is a significant elongation in the field
(z) direction. For a perfect bcc lattice, the (red) dashed diamond should be a square.
We measured inscribed angles of 76◦ and 104◦, corresponding to an elongation factor
in the z-direction of 1.28. The strong alignment of the particles is indicated by the
orientation distribution of the particles in Fig. 9.4f.

Results on the calculation of the radial distribution function g(r/l) are shown in
Fig. 9.5, with the average end-to-end length of the rods l = 2.29 µm. The green line
in Fig. 9.5a corresponds to the plastic glass and indicates the liquid-like order of this
phase. The position of the first peak indicates the large inter-particle spacing (r = 1.5 l),
which is due to the long-range repulsion between the rods. The red line corresponds to
the crystalline phase, formed under application of an electric field of E = 90 V/mm.
The inter-particle spacing remained approximately the same (r = 1.4 l), however, the
well-defined peaks correspond (to a large extent) with the black peaks of a perfect bcc
latice. The subtle mismatch with a perfect bcc lattice is due to the elongation in the
z-direction. The blue line in Fig. 9.5b shows the same data for the crystalline phase but
with all z coordinates scaled with 0.75, which resulted in the best fit with the perfect
bcc lattice (in steps of 0.05).

In Appendix A, we estimated the strength of the dipole-dipole interactions in our sys-
tem of long-ranged repulsive rods, for various particle configurations and field strengths
E, which can also be found in the Supplementary Information of Ref. 186. For particles
aligned by an electric field E = 90 V/mm, we found an average inter-particle distance
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Figure 9.4. Static structure of the plastic glass and the crystalline phase.
(a-b) 3D reconstruction of a plastic glass phase and (d-e) of the crystalline
phase, obtained from 3D confocal microscopy data analysis. Particles are
color-coded according to their orientation. (c) The orientation distribution
of the particles in the plastic glass phase shows that all angles are accessible,
with equal probability. (d-e) Crystalline phase formed under application of an
electric field E = 90 V/mm. The particles formed a body centered cubic (bcc)
phase that was elongated in the field (z) direction. (d) View from the bcc(110)
plane. (e) The view from the bcc(100) plane shows that there is a significant
elongation in the field (z) direction. For a perfect bcc lattice, the (red) dashed
diamond should be a square. (f) The distribution of the orientations of the
particles in the crystalline phase indicates the alignment with the electric field.

of r = 1.4 l, determined from the g(r/l) of the crystalline phase in Fig. 9.5. For these
two parameters, assuming completely aligned particles, the dipole-dipole interaction is
much smaller than kBT . This demonstrates that the contribution of the dipole-dipole
interactions to the stability of the crystal phase can be neglected. The elongation of the
bcc lattice along the field direction must therefore be completely due to the anisotropy
of the particle and its electrostatic repulsive potential. Calculations based on rod-like
particles with a screened Yukawa potential should give further insight into the observed
phenomenon, which is left for future research.
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Figure 9.5. 3D radial distribution functions g(r/l), with the end-to-end
length of the particle l = 2.29 µm. (a) The green line corresponds to the
plastic glass, with no field applied. The red line is for a crystalline phase
formed under application of an electric field E = 90 V/mm. Notice the large
inter-particle spacing (first peak positioned at 1.4 l), the long-ranged order in
the sample and the subtle mismatch with the perfect bcc lattice. (b) 3D radial
distribution function for the original data of the crystal (red) and the same
data with all z-coordinates scaled by 0.75 (blue)

The final analysis that we performed on the 3D structures is based on a calculation
of Voronoi cells, shown in Fig. 9.6. The particles in the plastic glass had on average
14 Voronoi nearest neighbours (Fig. 9.6a) and Voronoi faces with on average 5 edges
(Fig. 9.6b), representing the number of particles surrounding a near-neighbour bond.
These two distributions are almost identical to the distributions of a glass consisting of
hard spheres [46] or spheres with a long-range repulsive potential [346,347]. During the
transition to a crystal, the distribution of Voronoi neighbours became strongly peaked,
however, an average number of 14 remained (Fig. 9.6c). Additionally, the distribution
of the edges per Voronoi face was split into two peaks positioned at 4 and 6 (Fig. 9.6d).
These values correspond well with the Voronoi cell of a perfect bcc crystal-lattice which
is a truncated octahedron. A schematic of a truncated octahedron is shown in Fig. 9.6e,
which shows that it contains 6 faces with 4 edges and 8 faces with 6 edges. Although the
number of nearest neighbours stayed constant during the transition, we will later show
in more detail that the transition proceeded via a heterogeneous, nucleation-and-growth
type of process.

Finally, we determined the distribution of the Voronoi cell volumes, shown in Fig. 9.6f.
The distribution of the crystal is narrower but its average (34.9 ± 0.02 µm3) is close
to the value for the glass (34.3 ± 0.03 µm3). Using the hard-core particle dimensions
(as measured with TEM), both values correspond to a volume fraction of φ = 0.017.
This value is indeed higher than the range of volume fractions where a plastic-crystal
phase was found (see Chapter 8 and Ref. 186). Interestingly, if we assume for a rotating
particle in the glass phase an ‘effective spherical particle volume’ with diameter deff ≈
1.5 l (based on the first peak in the g(r), see Fig. 9.5a), we find φeff ≈ 0.59, a value
remarkably close to the glass transition volume fraction for hard-spheres.
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Figure 9.6. 3D Voronoi analysis. (a-b) The distribution of the plastic glass
has on average 14 Voronoi neighbours and Voronoi faces with on average 5
edges. (c-d) The number of neighbours of the crystal is strongly peaked at 14
and the number of edges peaked at 4 and 6, which is in correspondence with
the Voronoi cell of a perfect bcc crystal, i.e. a truncated octahedron (e). (f)
Distribution of the Voronoi cell volume, which is inversely proportional to the
local particle volume fraction. The distribution of the crystal is narrower but
its average (34.9 ± 0.02 µm3) is close to the value for the glass (34.3 ± 0.03
µm3). Using the hard-core particle dimensions, these values correspond to a
volume fraction of approximately φ = 0.017.

9.3.4. Plastic glass to crystal transition as a function of electric field strength
We will now focus our attention to the reversibility of the transition between the

plastic glass and the crystal as a function of field strength. Fig. 9.7 shows a step wise up-
ramp in electric field strength in steps of 22.5 V/mm. The duration of each measurement
was 141 s and the time interval between measurements was 4 min. Figs. 9.7b-e show
that upon increasing the electric field strength, positional order increased. For the
highest field strength (Fig. 9.7e, E = 90 V/mm), the particles were strongly aligned
with the field direction and particles locally ordered into a regular 3D lattice. However,
the sample was poly-crystalline over larger distances (approximately 100 µm) and, addi-
tionally, small unordered domains still existed. We therefore let the sample equilibrate
for approximately 1 hour under a constant field strength of E = 90 V/mm. During this
time interval, the sample became completely crystalline. Before we discuss the results
on the crystallization (and coarsening of domains) during this 1 hour time-interval
(shown in Fig. 9.11), we will show results on the changes in the system when the field
was turned down again (in the same number of steps as the up-ramp), indicated in
Fig. 9.8. Notice that it is already clear from comparing Fig. 9.7e and Fig. 9.8a (both
under constant field strength E = 90 V/mm but with the 1 hour time-interval between
them) that positional order increased significantly.
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Figure 9.7. Electric field induced transition from a plastic glass phase to a
crystalline phase. The duration of each measurement was 141 s and the time
interval between measurements was 4 min. The left shows projections of the 3D
translational trajectories in the xy-plane. The right shows a typical rotational
trajectory of a single particle. (a) Plastic glass phase. (b) Weak alignment of
the particles with the field. (c) Some rotational motion was still possible, local
regions with higher positional order started to appear. (d) Strong alignment
of the particles, however complete crystalline order was not yet present. (e)
Ordered domains of particles were present.
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Figure 9.8. Electric field induced transition from a crystalline phase to a
plastic glass phase. The duration of each measurement was 141s and the
time interval between measurements was 4 min. The left shows projections of
the 3D translational trajectories in the xy-plane. The right shows a typical
rotational trajectory of a single particle. (a) Particles were aligned with the
field direction and the sample was completely crystalline. (b) Crystalline order
still persisted upon lowering the field strength. (c) Intermediate plastic crystal
phase. (d) Significant particle rotation was possible at this field strength and
the crystalline lattice disappeared completely. (e) The sample was again in the
plastic glass phase.
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Starting form the fully crystalline state (Fig. 9.8a), the electric field strength was
lowered in steps and particles regained their rotational freedom. Eventually, the crys-
talline lattice became unstable until it completely disappeared (Fig. 9.8e) and the
system returned to the plastic glass phase. For an electric field strength E = 45 V/mm
(Fig. 9.8c), short-ranged positional order was still present while particles were able to
rotate significantly, i.e. there was an intermediate plastic-crystal phase present. Notice
that this plastic-crystal phase was not observed during the up-ramp (Fig. 9.7c). When
the field strength was further lowered to E = 23 V/mm (Fig. 9.8d), rotational motion
significantly increased and the crystal lattice became unstable.

For each of the 3D data sets illustrated in Fig. 9.7 and Fig. 9.8, we calculated the
nematic order parameter S3D, the rotational relaxation time τr, the average local hexag-
onal bond-order parameter 〈|ψ6|〉 and the translational diffusion coefficient Dt. The
results are summarized in Fig. 9.9. The normalized translational diffusion coefficient
Dt/D

0
t was determined from a fit to equation (9.7) in the intermediate diffusion regime

(between ∆t = 7 s and ∆t = 16 s), which corresponds to either the motion of the
particle in its cage or to the motion around its lattice position for particles in a plastic

Figure 9.9. Reversible electric field switching (in stages) between a plastic
glass phase and a crystalline phase. There was 4 min between each
measurement, except between point 5 and 6, which was approximately 1
hour. (a) Nematic order parameter S3D. (b) Rotational relaxation time τ0/τr.
(c) Average local hexagonal bond-order parameter 〈|ψ6|〉. (d) Intermediate
rotationally averaged diffusion coefficient Dt/D

0
t .
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glass or a crystalline phase respectively. The normalized (inverse) rotational relaxation
time τ0/τr was obtained from a fit to equation (9.12). The bond-order parameter ψ6
was determined from the xy-coordinates of particles in a thin 3D volume (perpendicular
to the field) with ∆z = 4.5 µm, which corresponds approximately to the first minimum
in the g(r) of both the glassy phase and crystalline phase (Fig. 9.5a).

Fig. 9.9a shows that during the up-ramp, particles became aligned. The largest
increase in particle alignment was between step 2 and 3 (E = 23 V/mm to E = 45
V/mm) where the nematic order parameter S3D increased from 0.22 to 0.72. This
increase was accompanied by an order of magnitude decrease of the rotational corre-
lation time (Fig. 9.9b). The rotational motion further decreased as a function of field
strength, however, when the field was turned down again, there was a strong hysteresis
effect in the rotational relaxation times (Fig. 9.9b). This effect cannot be explained
by field alignment alone, since the orientational order in the system did not show any
hysteresis (Fig. 9.9a). The reason for it is that the positional structure also changed
as a function of field strength (and time). Upon application of the field, particles
aligned and started to order, indicated by the increase of 〈|ψ6|〉 during the up-ramp
(Fig. 9.9c). The increase in positional order was accompanied by a decrease in both
translational motion (Fig. 9.9d) and rotational motion (Fig. 9.9b). However, notice that
the rotational relaxation time τ0/τr (Fig. 9.9b) drops one order of magnitude between
step 2 and 3 (E = 23 V/mm and E = 45 V/mm), which is distinctly different from its
translational counterpart, which stays almost constant at that point. Between point
5 and 6, there was 1 hour of equilibration time during which the sample became fully
crystalline, explaining the large increase in 〈|ψ6|〉 at constant field strength (Fig. 9.9c).
This resulted in significant hysteresis in all the parameters except for the nematic order
parameter (Fig. 9.9a). In contrast with the up-ramp, there was now a metastable
plastic crystal phase at step 8 (E = 45 V/mm). When the field was decreased from E

= 45 V/mm to E = 23 V/mm (step 8 to 9), rotational motion increased two orders
of magnitude (Fig. 9.9b) and the plastic crystalline lattice melted almost completely
(Fig. 9.9c). This step was also accompanied by the strongest increase in translational
motion (one order of magnitude).

To summarize, we can conclude that upon stepwise increase of an electric field, parti-
cles aligned first and then started to order positionally. This process was accompanied
by a decrease of more than one order of magnitude in both translational and rotation
motion. However, the crystallization process was not completed until approximately 1
hour, resulting in strong hysteresis in both translational and rotational motion when
the field was turned down again. When the field strength dropped below approximately
E = 45 V/mm, the (plastic) crystalline lattice became unstable, and completely melted
within minutes, returning to its original plastic glassy state.

In Fig. 9.10 we further illustrate another characteristic of the electric-field induced
transition. Fig. 9.10a shows that the x, y and z components of the mean squared
displacement (MSD) for particles in the plastic glass phase are equal, i.e. translational
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motion, as measured in the laboratory-frame, was isotropic. In the fully crystalline
phase (formed under field strength E = 90 V/mm), the MSD reached a distinct plateau
after ∼ 5 s (indicating that particles were confined to a lattice), however, there was a
clear difference between the plateau values perpendicular to the field (α⊥ =

√
〈∆x2〉 =

0.31 µm or α⊥ =
√
〈∆y2〉 = 0.30 µm) and parallel to the field (α‖ =

√
〈∆z2〉 = 0.37

µm). The ratio α‖/α⊥ = 1.19 − 1.23 seems to agree with the elongation of the bcc
lattice in the z-direction (see Fig. 9.4e). The average vibrational amplitude

√
〈∆r2〉/2

was 0.40 µm (see Chapter 8 for the explanation of the factor 2), which is 13% of the
inter-particle spacing of 3.2 µm and is due to the softness of the crystal.

To monitor the anisotropy in the diffusion (along the field direction) as a function of
field strength, we calculated the ratio of the MSD displacement in the z and x directions
after a fixed time-interval τ = 16 s, given by 〈∆z2〉τ/〈∆x2〉τ . We used this quantity
because at lower field strength, where there were no well defined crystalline lattices, the
plateau values in the MSD were also not well defined. Fig. 9.10c shows that during the

Figure 9.10. Anisotropic diffusion in the crystalline phases. The x, y and z
components of the mean squared displacement (MSD) are shown for (a) the
plastic glass phase (E = 0) and (b) the crystalline phase (E = 90 V/mm). The
ratio of the plateau values in the crystalline phase

√
〈∆z2〉/〈∆y2〉 = 1.23 seems

to correspond with the elongation of the crystalline lattice in the z-direction
(see Fig.9.4e). (c) Ratio of the MSD displacement in the z and x direction
(〈∆z2〉τ/〈∆x2〉τ ) with τ = 16 s.
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down-ramp (step 6 to 8), this quantity first increased, until the lattice became unstable
(between step 8 and 9) after which we found isotropic diffusion again.

Finally, we show some details on the crystallization process at constant electric field
strength. Fig. 9.11 shows image sequences of the crystallization process after the field
had been increased in steps of 22.5 V/mm to a final field strength of E = 90 V/mm, as
shown in Fig. 9.7. Figs. 9.11a-d show superpositions of 200 xy confocal microscopy im-
ages each (measured over 100 s). The total time time between Fig. 9.11a and Fig. 9.11d
was 28 min. Because the images were acquired under application of constant electric
field E = 90 V/mm, all particles were strongly aligned with the field (perpendicular to
the page). Initially, regions with high positional order and regions with less positional
order were found to exist together (Fig. 9.11a). Over time, the highly ordered regions
grew larger and coarsened until the sample was completely crystalline (Fig. 9.11d).
The crystallization process thus seemed to proceed via a nucleation-and-growth type
of mechanism. Figs. 9.11e-h show close-ups of local positional rearrangements during
the crystallization process, both in the more disordered and in the crystalline phase.
Similar to the rearrangements in the (unaligned) plastic glass phase (Fig. 9.1d), the

Figure 9.11. Crystallization after the electric field was step-wise increased
to E = 90 V/mm. (a-d) Superpositions of 200 xy confocal microscopy images
measured over 100 s. The total time between (a) and (d) is 28 min. All scale-
bars are 10 µm. (e-h) Close-up of local rearrangements in both disordered
and ordered regions. (i) Positional trajectories of particles, from the region
indicated by the white dashed line in (c), obtained after 2D particle tracking
(total duration 100 s). The local rearrangement (loop) is clearly visible.
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rearrangements in the less ordered regions (Figs. 9.11e-g) were often found to occur
in a (circular) loop. The rearrangements in the highly ordered (or crystalline) regions
(Fig. 9.11h) were along the lattice direction of the crystal. Fig. 9.11i shows the projected
particle trajectories from the region indicated by the white dashed line in Fig. 9.11c.
The rearrangement loop, close to the disordered-ordered ‘interface’ is clearly visible.

9.4. Conclusion
We demonstrated that when the volume fraction of a suspension of long-ranged

repulsive silica rods is increased above a critical value (φ ∼ 0.015), the system failed to
crystallize into a plastic crystal phase. Instead of forming an orientational glass, a plastic
glass was found. Particles lacked long-ranged positional order and translational motion
was slowed down by two orders of magnitude, whereas rotational motion remained
almost free, which is a remarkable demonstration of the decoupling of the glass transi-
tions of the positional and rotational degrees of freedom. Interestingly, this plastic glass
phase could be switched reversibly to a fully ordered crystal upon application of a high
frequency AC electric field. Upon stepwise increase of the field strength, particles in the
plastic glass phase aligned with the field direction first and then started to crystallize.
The crystallization process resembled a nucleation-and-growth type of mechanism and
was not completed until approximately 1 hour. During this process, both translational
and rotational motion decreased by more than one order of magnitude. We determined
that the particles ordered into a stretched bcc crystalline lattice, which was elongated
in the electric field direction by ∼ 25%. When the field strength was decreased in
steps again, strong hysteresis and a metastable plastic crystal phase were found. When
the field strength dropped below approximately E = 45 V/mm, the crystalline lattice
became unstable, and completely melted within minutes, returning to its original plastic
glassy state again. Apparently, the crystal is destabilized by free particle rotations, and
a plastic crystal is unstable with respect to a plastic glass.

The ability to follow the 3D rotations of the particles quantitatively in real-space
gives unprecedented possibilities to study this new type of glass transition. Although
we determined that the dipole-dipole interactions are almost negligible, future work is
needed to better understand the stability of both phases, such as the contribution of
the anisotropic repulsive potential and the entropy, as well as (metastable) dynamical
phenomena such as the collective rearrangements and a possible coupling between
translational motion, rotational motion and positional order (as a function of volume
fraction).
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A
Electric Field Induced Dipole-Dipole

Interactions
In this appendix, we estimate the electric-field induced dipole-dipole pair interaction
potential as a function of field strength and rod-rod separation, which can also be
found in the Supplementary Information of Ref. 186. The shape of our rods is nearly
a spherocylinder with a length l (end to end) and a diameter d. To simplify the
calculation, we make four assumptions:
1. a dipole is regarded as two point charges with a separation of (l − d) at a distance
d/2 from the two ends [357].

2. the dipole moment is only induced by the applied electric field, and not influenced
by its neighbours or its surface charge (double layer)

3. the long axis of the rods has the same orientation as the field
4. the rods cannot overlap
The dielectric polarizability of a particle is dependent on its shape. However, they are
not easily analytically solved except for some simple geometries such as spheres and
ellipsoids [358]. A numerical approach is probably needed for other more complicated
particle shapes such as for the spherocylinder shape of our rods. For simplification, we
use an ellipsoidal approximation of our spherocylinder rods to estimate their dielectric
polarizability. A numerical study has already shown that the polarizability of a circular
cylinder differs less than 10% from that of an ellipsoid with the same volume and aspect
ratio [358]. Therefore, we also expect that such an approximation is reasonable for our
particles. Based on the following calculation results that the maximum interaction
potential is at most on the order of kBT , we think that the difference in shape does not
change the results significantly.

The dipole moment p of a colloidal particle is the product of the polarizability αe
and the applied field E

p = αeE (A.1)
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The normalized polarizability is given as:

α = αe
εsvp

(A.2)

with εs the dielectric constant of the solvent and vp the particle volume. For a pro-
late ellipsoid, with three orthogonal semi axes of ax, ay, and az, with ay = az, the
polarizability in the ax direction is given by [358]

αx = εp − εs
εs + (εp − εs)Nx

(A.3)

Nx = 1− e2

2e3

(
ln 1 + e

1− e − 2e
)

(A.4)

e =
√

1− (ay/ax)2 (A.5)

Where εp is the dielectric constant of the particle, Nx is called the depolarization
factor in the ax direction, and e is the eccentricity of the ellipsoid. For the other
depolarization factors Ny or Nz, interchange ax, ay, and az. We estimate the point
charge q from the effective dipole moment peff by

q = peff
l − d

(A.6)

Next, we calculate the pair interaction energy of two aligned rods along the electric
field separated by a distance r using Coulomb’s law

Udip = 1
4πε0εs

∑
i 6=j,α,β

qiβqjα
riβ − rjα

. (A.7)

Equation (A.7) can be further expanded to formula (A.8), where θ is the angle between
the center-to-center direction of the two rods and the electrical field.

Udip = q2

4πεsε0

(2
r
− 1√

r2 sin2 θ + (r cos θ − (l − d))2
− 1√

r2 sin2 θ + (r cos θ + (l − d))2

)
(A.8)

Using equation (A.8), we plot Udip as a function of θ (0 - 2π) (see Fig. A.1) with four
different center-to-center distances r. The curves indicate that Udip is dependent on
both θ, r and Erms. For constant r, the maximum attractive potential occurs for θ
= 0 or θ = π, which corresponds to a head-to-toe arrangement, and the maximum
repulsive potential occurs for θ = π/2 or 3π/2, which corresponds to a side-by-side
arrangement. These interactions are less than 1 kBT if r/l > 1.5 for the head-to-toe
structure and if r/l > 1 for rods in side-by-side structure, with l the end-to-end length
of the rod (see Fig. A.2). For the highest fields used, Erms = 400 V/mm, the maximum
attractive Udip is only around 1.26 kBT for r = 3 µm (corresponding to φ ∼ 0.02)
at θ equal to 0 or π. Furthermore, when φ is lower, then r is larger, for example,
r = 5.7 µm for φ ∼ 0.005. In this case, the Udip is two orders of magnitude lower
than the thermal energy. Additionally, for the quantitative measurements in the high
volume fraction range in Chapter 9 (φ ∼ 0.02), the field strength was always < 100
V/mm. These results suggest that the electric-field-induced dipole-dipole interactions
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are considerably less than 1 kBT even at the highest field strengths used. Therefore,
dipole-dipole interactions are negligible in the experiments described in Chapter 8 and
Chapter 9.

Figure A.1. The dipole-dipole interaction potential as a function of the angle
between the center-to-center direction and the applied field. (a) Erms = 100
V/mm. (b) Erms = 200 V/mm. (c) Erms = 300 V/mm. (d) Erms = 400 V
mm. The model parameters are: l = 2.29 µm, d = 0.6 µm, εrod = 4.5 and
εCHC = 7.4.
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Figure A.2. The dipole-dipole interaction potential as a function of the rod-
rod separation at a fixed center-to-center direction. (a,c) parallel to and (b,d)
perpendicular to the applied electric field. The model parameters are: l = 2.29
µm, d = 0.6 µm, εrod = 4.5 and εCHC = 7.4.
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B.1. Out-of-equilibrium Crystallization in Hard-Sphere
Colloidal Fluids Driven by Oscillatory Shear

Confocal microscopy time-series are shown of oscillatory shear-induced crystallization
of spherical particles with diameter σ = 2.07 µm and polydispersity δ = 3.0%. The
particles were in a fluid phase in equilibrium with volume fraction φ = 0.49 ± 0.01.
The images show a view of the velocity-vorticity plane and were acquired at the zero
velocity plane. The shear was started at t = 0.
1. Formation of a shear-induced oscillatory twinned fcc phase

An oscillatory twinned fcc phase was induced by applying oscillatory shear with
Peclet number Pe = 0.5 and maximum strain amplitude γmax = 0.3. The time-series
were recorded with 2.4 fps and displayed with 10 fps. The field-of-view is 60 × 63
µm2.

2. Formation of a shear-induced sliding layer phase
A sliding layer phase was induced by applying oscillatory shear with Peclet number
Pe = 0.5 and maximum strain amplitude γmax = 0.6. The time-series were recorded
with 2.4 fps and displayed with 10 fps. The field-of-view is 58 × 62 µm2.

Confocal microscopy time-series are shown of melting of the shear-induced crystalline
phases due to cessation of the shear. The particles had a diameter σ = 2.64 µm
and polydispersity δ = 2.5%. The images show a view of what was previously the
velocity-vorticity plane and were acquired in the middle of the shear cell.

3. Melting of an oscillatory twinned fcc phase after cessation of the shear
An oscillatory twinned fcc phase was induced by applying oscillatory shear with

https://www.dropbox.com/s/dt50uxb093ehvz4/20101020_Series050_t_correlated_in_frame_shifted_crop_blur.avi
https://www.dropbox.com/s/zwhyqyx7j6kndyc/20101020_Series036_t_correlated_in_frame_shifted_crop_blur.avi
https://www.dropbox.com/s/3e9e1mtvx71oh32/20120823_shear_melting_Series078_t.avi
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Peclet number Pe = 2.0 and maximum strain amplitude γmax = 0.3 for a duration of
150 τB. At t = 0 the shear was stopped. The volume fraction φ = 0.46 ± 0.02. The
time-series were recorded with 0.6 fps and displayed with 10 fps. The field-of-view
is 122 × 122 µm2.

4. Melting of a sliding layer phase after cessation of the shear
A sliding layer phase was induced by applying oscillatory shear with Peclet number
Pe = 1.0 and maximum strain amplitude γmax = 0.6 for a duration of 79 τB. At
t = 0 the shear was stopped. The volume fraction φ = 0.47 ± 0.02. The time-series
were recorded with 1.2 fps and displayed with 20 fps. The field-of-view is 122 × 122
µm2.

B.2. Rheology and Real-Space Analysis of Colloidal Silica
Rods under Shear

Confocal microscopy times-series are shown of a suspension of rod-like particles under
shear. The particles had an end-to-end length l = 5.2 µm (11%), diameter d = 0.67
µm (8%) and aspect ratio l/d = 7.8, dispersed in 85 wt% glycerol water (viscosity η =
92 cP). The initial volume fraction of the suspension was φ = 0.25. Steady shear was
applied with a cone-plate rheometer with a transparent bottom plate that allowed for
confocal microscopy imaging. The movies show a view of the velocity-vorticity plane.
Images were shifted backwards with a magnitude equal to the average displacement,
i.e. the movies show a view of the frame that moves with the average speed of the
suspension. The field-of-view is 37 × 37 µm2.
1. Shear rate γ̇ = 1 s−1

Images were recorded 20 µm above the bottom plate with 71 fps. The movie is
displayed at 15 fps.

2. Shear rate γ̇ = 2 s−1

Images were recorded 4 µm above the bottom plate with 10 fps. The movie is
displayed at 15 fps.

3. Shear rate γ̇ = 5 s−1

Images were recorded 4 µm above the bottom plate with 10 fps. The movie is
displayed at 15 fps.

B.3. Switching Plastic Crystals of Colloidal Rods with Elec-
tric Fields

Confocal microscopy time-series are shown of long-range repulsive silica rods dis-
persed in de-ionized cyclohexylchloride (CHC). All time-series show a view of the xy-
plane (perpendicular to gravity).
1. Brownian motion of rods in a plastic crystal phase.

The movie shows the bcc(110) plane of a plastic crystal of colloidal rods. The rods
have length l = 2.36 µm (6.3%), diameter d = 0.58 µm (10.6%) and aspect ratio

https://www.dropbox.com/s/zsay19usm9d2k35/20120824_shear_melting_Series042_t.avi
https://www.dropbox.com/s/32qe5cqxyefv8dc/xytz_rate1_1_0008_20mu_shiftedmovie.avi
https://www.dropbox.com/s/l97bkwkm4p1dvsb/rate_2_4mufromslide_1_shiftedmovie.avi
https://www.dropbox.com/s/yk3z90t48jvxwuj/rate5_10fps_4mufrombottomslide_1_shifted.avi
https://www.dropbox.com/s/gu4d0pstwn36hjx/ncomms4092-s2.mov
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l/d = 4.1 (system R1). The movie was taken at 0.5 fps and displayed at 10 fps. The
window size is 71.2 µm × 71.2 µm.

2. Rotational trajectory of a single rod in a plastic crystal
The rotational trajectory is shown of a rod with length l = 2.29 µm (6.0%), diameter
d = 0.60 µmm (6.5%) and aspect ratio l/d = 3.8 (system R2). The movie was taken
in x-y-z-t mode at 69.1 fps and displayed in x-y-t mode at 15.4 fps. The window size
is 24.9 µm × 17.8 µm.

3. A plastic glass of rods
Brownian motion of rods R1 in a plastic glass phase is shown. The movie was taken
at 1.22 fps and displayed at 6 fps. The window size is 59.5 µm × 59.5 µm.

4. Slow switching of a plastic crystal
A slow electric field switch is shown between the ON-state (same orientation) and the
OFF-state (random orientation). It shows a slow alignment of rods R2 in a (110)
plane in a plastic BCC phase in response to an electric field. The field strength
increases first to 59.6 V/mm and then decreases to zero in steps. The nematic order
parameter increased and decreased correspondingly. The movie was taken at 1 fps
and displayed at 20 fps. The window size is 68.0 µm × 68.0 µm.

5. Fast switching of a plastic crystal
A fast electric field switch is shown between the ON-state (same orientation) and
OFF-state (random orientation). This movie shows a fast on-off response of rods R2
in a BCC(110) plane of a plastic crystal phase by using an external field. The field
was quickly switched on and off by pressing a button. The nematic order parameter
quickly changed correspondingly. The movie was taken at 1 fps and displayed at 5 fps.

B.4. Plastic Glass to Crystal Transition in a System of
Long-Range Repulsive Rods

Confocal microscopy time-series are shown of long-range repulsive silica rods dis-
persed in de-ionized cyclohexylchloride (CHC). The particles had an average length l
= 2.29 µm (6.0%), diameter d = 0.60 µmm (6.5%) and aspect ratio l/d = 3.8 (system
R2). Both time-series show a view of the xy-plane (perpendicular to gravity). Due
to the high (effective) volume fraction, the particles failed to crystallize into a plastic
crystal, but instead formed a ‘plastic glass’.

1. ‘Plastic glass’ to crystal transition
An AC electric field (1 MHz, perpendicular to the field-of-view) was turned on slowly
by hand (in ∼ 5 s) to E = 90 V/mm. Crystalline regions slowly started to form.
The movie was recorded with 2 fps and displayed with 8 fps. The total timespan of

https://www.dropbox.com/s/08bohb1eu42k1qf/ncomms4092-s3.mov
https://www.dropbox.com/s/d48zw3vnmnqomu5/ncomms4092-s4.mov
https://www.dropbox.com/s/vrll9qz8lf4rzqk/ncomms4092-s5.mov
https://www.dropbox.com/s/kw7uq44nlp7rwsg/ncomms4092-s6.mov
https://www.dropbox.com/s/yx8b3iae58w3c82/Series082_crop_blur_1-1000_8fps.avi
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the movie is 500 s. The field-of-view is 66 × 66 µm2.

2. Crystal to ‘plastic glass’ transition
After approximately 1 hour, the sample was completely crystalline, and the electric
field (E = 90 V/mm) was turned off again. The crystal melted within minutes. The
movie was recorded with 10 fps and displayed with 10 fps. The total timespan of
the movie is 100 s. The field-of-view is 66 × 66 µm2.

https://www.dropbox.com/s/pft0h4q81at9418/Series105_crop_substack_1-1000_10fps.avi


Summary
Colloidal particles are applied throughout industry, for example in paints, food, personal
care products, ceramics and pharmaceutics. The characterization of the structure and
dynamics of colloidal suspensions is therefore important for many industrial applica-
tions. Besides their industrial significance, colloids can also be used as a valuable model
system to study fundamental questions in condensed matter physics. Because of their
size, colloids are much slower than atoms or simple molecules, yet they can display the
same equilibrium phase behavior. Furthermore, colloids are easily manipulated with
external fields and they are large enough to be observed in real-space with an optical
microscope. Phenomena such as crystallization, the glass transition and flow-induced
behavior of spherical colloids have been extensively studied in 3D real-space over the
last decades. However, despite the recent increase in synthesis methods that produce
(shape) anisotropic colloids, quantitative 3D real-space studies of anisotropic colloids
still remain scarce. In this thesis, we therefore investigated the self-assembly of not
only colloidal spheres but also of suspensions of (shape anisotropic) colloidal rods. The
colloidal spheres consisted of poly(methyl methacrylate) (PMMA), the rod-like particles
consisted of silica and both particles were fluorescently labeled. In analogy with the
spherical particles, we developed a new image processing method that allowed us to
study the rod-like particles in 3D real-space on the single particle level using confocal
microscopy. We manipulated and directed their self-assembly process by application of
three external fields: shear, gravity, and electric fields.

This thesis is organized in two parts. In the first part, consisting of Chapters 2 - 4,
we described the methodology that we developed to analyse the structure of colloidal
suspensions in real-space. In the second part of this thesis, consisting of Chapters 5 -
9, we investigated the self-assembly of spherical and rod-like particles in external fields
on the single particle level.

In Chapter 2 we first described the general properties of the colloidal suspensions
presented in this thesis and we described the imaging techniques that we applied to
investigate their self-assembly. We used colloidal spheres, consisting of poly(methyl
methacrylate) (PMMA) dispersed in a mixture of cis-decahydronaphthalene (cis-decalin)
in cyclohexyl bromide (CHB) saturated with the salt tetrabutylammonium bromide
(TBAB). We also used rod-like silica particles which were dispersed in either a mixture
of glycerol and water, a mixture of dimethylsulfoxide (DMSO) and water or in pure
(de-ionized) cyclohexylchloride (CHC). In this chapter, we also described the basics of
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confocal microscopy imaging and the effect of the point spread function (PSF) on the
imaging of rod-like particles.

In Chapter 3 we presented two methods to calibrate axial distances in 3D confocal
microscopy that are both accurate and easily implemented. Often, there is a refractive-
index mismatch between the sample and the immersion fluid used for imaging, resulting
in a distortion of axial distances. Using one of our calibration methods, we measured
the axial scaling factors as a function of refractive-index mismatch for high-aperture
confocal microscopy imaging. We found that our scaling factors are almost completely
linearly dependent on refractive index and that they were in good agreement with
theoretical predictions that take the full vectorial properties of light into account.
There was however a strong deviation from the theoretical predictions using (high-
angle) geometrical optics, which predict much lower scaling factors.

In Chapter 4 we presented a new particle-fitting algorithm that can extract the po-
sitions and orientations of fluorescent rod-like particles from three dimensional confocal
microscopy data stacks. The algorithm is tailored to work even when the fluorescent
signals of the particles overlap considerably and a threshold method and subsequent
clusters analysis alone do not suffice. We demonstrated that our algorithm correctly
identified all five coordinates of uniaxial particles in both a concentrated disordered
phase and a liquid-crystalline smectic-B phase. The algorithm also worked on confocal
microscopy images of other uni-axial symmetric particles such as dumbbells and on
3D electron tomography reconstructions of gold nanorods. We also gave examples of
position and orientation fitting from 2D images of concentrated 3D samples of silica
rods and PMMA dumbbells. Lastly, we determined the accuracy of the algorithm using
both simulated and experimental confocal microscopy data-stacks of diffusing silica rods
in a dilute suspension.

We studied the oscillatory shear-induced crystallization in hard-sphere colloidal fluids
in Chapter 5. We performed experiments on PMMA colloids and non-equilibrium
Brownian Dynamics (NEBD) simulations. All samples in both experiments and simu-
lation were below the coexistence density of hard-sphere freezing, so the shear induced
crystals were out-of-equilibrium and melted after cessation of the shear. The physics
was therefore fundamentally different from shear-induced crystallization in jammed
or glassy systems. We investigated two distinct oscillatory shear-induced phases: an
oscillatory twinned fcc phase and a sliding layer phase. For the twinned fcc phase,
the crystallization seemed to proceed via a nucleation-and-growth type of mechanism.
For the sliding layer phase, however, we found a much more continuous crystallization
process. The simulation results (without hydrodynamic interactions and an enforced
linear shear profile) were in strong agreement with the experiments, suggesting that
hydrodynamic interactions did not strongly affect the shear-induced structures. We
also presented preliminary experimental results on the melting of these phases, which
occurred immediately after cessation of the shear.

In Chapter 6 we investigated the phase behavior of fluorescent rod-like silica parti-
cles in a gravitational field. When left to sediment, these particles formed equilibrium
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liquid crystal phases, such as nematic and smectic phases. With confocal microscopy
and our new particle fitting algorithm we determined all 3D positions and orientations
of these particles, even in the most concentrated liquid crystal phases, for aspect ratios
up to l/d = 5.4. We found a smectic-B phase with small regions of AAA-stacked
crystalline layers. Additionally, we determined the complete equilibrium density profile
of a sediment of coexisting isotropic and smectic-B phases in 3D real-space. At the
isotropic - smectic-B interface, we found a difference between the inflection points
of the density and the nematic order parameter, which agrees well with theoretical
predictions. We also measured the 2D (projected) orientation distributions of both
nematic and smectic phases of particles with aspect ratio l/d > 7. We compared our
results to theory and simulations on both hard and soft spherocylinders and found a
reasonable to good agreement. At the end of the chapter we also presented preliminary
results on super-resolution imaging of a smectic phase.

The phase behaviour of the fluorescent silica rods under shear was investigated
in Chapter 7. We used two different shear cell configurations that both allowed
simultaneous confocal microscopy measurements to be made while the system was
sheared. Steady shear flow was successfully applied to align rods with an aspect ratio
l/d = 6.0, and create shear-aligned para-nematic and para-columnar liquid crystal
phases. The application of oscillatory shear led to the formation of para-smectic-
like domains in a sample that was previously in a shear-aligned para-nematic state.
Rheological measurements on rod-like particles, with aspect ratio l/d = 7.8 and initial
volume fraction φ ∼ 0.3, were characterized by pronounced shear thinning behaviour, a
Newtonian regime and (the onset of) shear-thickening for increasing shear rate. How-
ever, we could not directly correlate the rheological measurements with the suspension
microstructure. Although these experiments were only preliminary, they gave a strong
indication that shear is a powerful external field to align colloidal liquid crystal phases
over larger areas, which could for instance be applied in spin coating.

In the last two chapters of this thesis, we changed the interaction potential of the silica
rods from hard to long-range repulsive by strongly lowering the salt concentration of
the solvent. In Chapter 8 we demonstrated by quantitative three-dimensional studies
that these charged rod-like colloidal particles formed three-dimensional plastic crystals
(or rotator phases) and plastic glasses if their repulsions extended significantly beyond
their length. We also showed that these plastic phases could be reversibly switched
to full crystals by an electric field. These new phases provide insight into the role of
rotations in phase behaviour and could be useful for photonic applications.

In Chapter 9, we further investigated the plastic glass phase formed by the long-
range repulsive silica rods. In this phase, particles lacked long-ranged positional order
and translational motion was frozen-in, whereas rotational motion remained almost
free. This phenomenon is a remarkable demonstration of the decoupling of the glass
transitions associated with the positional and rotational degrees of freedom. Moreover,
this glassy phase could completely crystallize into a stretched body-centered-cubic (bcc)
lattice upon application of an AC electric field. Intriguingly, when the field was turned
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off, the crystal became unstable and the sample returned to the plastic glass phase.
The ability to follow the 3D rotations of the particles quantitatively in real-space gives
unprecedented possibilities to study this new type of glass transition and its connection
to crystallization.



Samenvatting voor een breder publiek
In dit proefschrift staat onderzoek beschreven op het gebied van colloïdale suspensies.
Dit zijn mengsels die bestaan uit kleine deeltjes van ongeveer een micrometer groot,
die zich bevinden in een vloeistof. Hoewel de term ‘colloïdale suspensie’ (of kortweg
‘colloïd’) over het algemeen niet erg bekend is, zijn we er elke dag mee in aanraking. Vele
voedselproducten zijn colloïden, zoals melk, mayonaise en boter, maar ook cosmetische
producten zoals scheerschuim en gezichtscrème zijn voorbeelden van colloïden. Verder
behoren bijvoorbeeld ook verf, boorvloeistof en klei tot de colloïden. Bovendien worden
colloïden toegepast in moderne elektronica, zoals de elektronische inkt in e-readers.
Het begrijpen van de eigenschappen van colloïden is daarom belangrijk voor een groot
aantal sectoren in de industrie.

Hoewel de eigenschappen van de deeltjes in de vloeistof erg kunnen verschillen per
colloïd, hebben ze een belangrijke overeenkomst: door continue botsingen met de
moleculen in de vloeistof zijn de deeltjes voortdurend in beweging. De richting waarin de
deeltjes zich bewegen is echter volledig willekeurig en verandert ook voortdurend. Deze
willekeurige manier van beweging staat bekend als ‘Brownse beweging’, maar wordt
ook wel ‘dronkemansloop’ genoemd. Echter, onder de juiste condities kunnen deze
willekeurig bewegende deeltjes zich spontaan ordenen in regelmatige structuren. Dit
heet zelforganisatie. Sommige colloïden kunnen zelfs vergelijkbare of dezelfde structuren
vormen als atomen of moleculen. Hoewel de individuele deeltjes in een colloïdale
suspensie niet te zien zijn met het blote oog, zijn ze wel een factor duizend groter
dan atomen of eenvoudige moleculen. Ze kunnen daardoor direct worden bekeken met
een optische microscoop, wat analyse van hun structuur tot in detail mogelijk maakt.
Bovendien zijn de bewegingen van colloïdale deeltjes veel langzamer dan die van atomen,
wat het mogelijk maakt om ze een lange tijd te volgen tijdens een experiment. Daarom
worden colloïdale suspensies ook wel gezien als een modelsysteem voor onderzoek naar
fundamentele vragen in de natuurkunde van zowel vloeistoffen als vaste stoffen.

In dit proefschrift hebben we colloïdale modelsystemen gebruikt om verschillende
vormen van zelforganisatie te onderzoeken. Het is bekend dat de zelforganisatie sterk
afhangt van de vorm van de deeltjes en van hun onderlinge interactie. Het meeste sim-
pele en veelgebruikte modelsysteem bestaat daarom uit colloïdale bollen die, behalve dat
ze niet indrukbaar zijn, geen onderlinge interactie hebben, zogenoemde ‘harde bollen’.
Als de bollen niet te veel verschillen in grootte en het systeem in thermodynamisch
evenwicht is, zijn er maar twee toestanden mogelijk waarin het zich kan bevinden: een
vloeistof bij lage dichtheid (die wanordelijk is) en een kristal bij hoge dichtheid (die
volledig geordend is). In dit proefschrift hebben we echter ook een recent ontwikkeld
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modelsysteem gebruikt van harde staafvormige colloïden. Dit systeem kan een rijkdom
aan nieuwe structuren vormen. Staafvormige colloïden kunnen namelijk structuren (of
fasen) vormen die deels eigenschappen hebben van een vloeistof en deels die van een
kristal. Dit worden daarom ‘vloeibare kristallen’ genoemd. Zo kunnen staafvormige
deeltjes in een nematische fase verkeren, waarin de oriëntaties van de deeltjes geordend
zijn, maar de posities nog steeds wanordelijk zijn. Bij hogere dichtheden, kunnen de
deeltjes zich vervolgens ook positioneel ordenen door lagen te vormen. Men spreekt
dan van een smectische fase. Afhankelijk van de orde binnen de lagen bestaat er een
reeks aan verschillende smectische fasen. Voor nog hogere dichtheden, stapelen de lagen
precies regelmatig op elkaar en is er sprake van een kristal. De bekendste toepassing
van vloeibare kristallen (gemaakt van staafvormige moleculen) is overigens in LCD-
schermen (Liquid Crystal Displays).

Behalve door de vorm van de deeltjes, kan de zelforganisatie ook sterk worden bepaald
door invloeden van buitenaf. In dit proefschrift gebruiken we daarom in totaal drie
verschillende externe velden om de zelforganisatie te sturen, te weten: zwaartekracht,
een elektrisch veld en (vloeistof)stroming. Deze externe (kracht)velden hebben invloed
op de positionele orde van de deeltjes. In het geval van de staafjes kunnen de externe
velden ook gebruikt worden om de oriëntaties van de deeltjes te beïnvloeden.

Zowel de bollen als de staven hebben we een fluorescente kleurstof gegeven, zodat ze
kunnen worden bestudeerd met behulp van confocale microscopie. In vergelijking met
een normale microscoop heeft de confocale microscoop een hogere resolutie en is er de
mogelijkheid om 3D beelden te maken van de deeltjes in de vloeistof. Met computer-
algoritmes kunnen vervolgens de posities (en de oriëntaties) van de deeltjes worden
bepaald op basis van de 3D beelden. Zo is het mogelijk om een 3D reconstructie te
maken van de structuur van het systeem en om lokale orde in detail te analyseren.

Dit proefschrift bestaat uit twee delen. In het eerste deel, bestaande uit Hoofd-
stukken 2 - 4, worden de methodes beschreven die we hebben ontwikkeld om de structuur
van onze colloïdale modelsystemen te analyseren met behulp van confocale microscopie.
In het tweede deel van deze thesis, bestaande uit Hoofdstukken 5 - 9, hebben we de
zelforganisatie van colloïdale bollen en staven in externe velden onderzocht op het niveau
van individuele deeltjes.

In Hoofdstuk 2 beschreven we allereerst de algemene eigenschappen van de col-
loïdale suspensies die we hebben gebruikt. We maakten gebruik van colloïdale bollen,
gemaakt van poly(methyl methacrylaat) (PMMA, ook wel bekend als plexiglas) in een
mengsel van de organische oplosmiddelen. Voor het modelsysteem van staafvormige
deeltjes gebruikten we een recent ontwikkelde synthese, waarmee je staafjes van silica
(het belangrijkste bestanddeel van glas) kan maken. Voor de staven gebruikten we
zowel organische als anorganische oplosmiddelen. In dit hoofdstuk beschreven we ook
het gebruik van confocale microscopie om fluorescente colloïden te bestuderen.

In Hoofdstuk 3 presenteerden we twee methoden om de afstanden in 3D confocale
microscopie te ijken. Het licht dat gebruikt wordt om de colloïden af te beelden moet
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door verschillende materialen heen voordat het op een sensor valt en er een beeld van
wordt gemaakt. Vaak is er een onderling verschil in hoe sterk deze materialen het licht
afbuigen, wat resulteert in een vertekening van het beeld (denk aan de vertekening die
je ziet bij een rietje in een glas water). Met behulp van onze ijk-methoden hebben
we de grootte van de vertekening (of afwijking) gemeten voor verschillende materialen.
Daardoor is het toch mogelijk om nauwkeurig de werkelijke afstanden en volumes te
bepalen in de colloïdale suspensies.

We ontwikkelden ook een nieuw computer-algoritme om de posities en oriëntaties te
bepalen van de staafvormige deeltjes aan de hand van 3D digitale beelden, beschreven in
Hoofdstuk 4. Het algoritme was toegespitst om zelfs nog te werken als de fluorescente
signalen van de deeltjes sterk overlappen en simpele methoden op basis van een drem-
pelwaarde niet meer toereikend zijn. We hebben aangetoond dat we met behulp van het
algoritme de coördinaten van alle staven konden bepalen, zowel in een geconcentreerde
wanordelijke fase als in een smectische-B fase. We hebben ook de nauwkeurigheid van
het algoritme bepaald aan de hand van gesimuleerde en experimentele beelden van de
Brownse beweging van individuele staafjes.

Hoofdstukken 5 - 9 bevatten toepassingen van deze technieken. In Hoofdstuk 5
hebben we de invloed van stroming op de structuur van een suspensie van colloïdale
bollen bestudeerd. Dit hebben we gedaan met zowel experimenten als met computer-
simulaties. De evenwichtssituatie van de suspensies was die van een vloeistof maar door
een trillende vloeistofstroom aan te leggen organiseerden de deeltjes zich toch in een
geordende structuur die lijkt op een kristal. Omdat dit niet de evenwichtssituatie van
het systeem was, verdween de geordende structuur vrijwel direct nadat de stroming
werd uitgezet. Afhankelijk van de amplitude van de oscillatie werden er verschillende
structuren gevormd. Voor twee van deze structuren hebben we het kristallisatie proces
bestudeerd. We constateerden dat het voor de eerste heel continu verliep, terwijl de
tweede veel minder continu was en erg leek op het kristallisatieproces dat zich normaal
gesproken in de evenwichtssituatie afspeelt.

In Hoofdstuk 6 hebben we de vloeibare kristalfasen bestudeerd, die de silica staven
vormden onder invloed van zwaartekracht. Doordat de deeltjes zwaarder waren dan
het oplosmiddel, vormde zich na verloop van tijd een geconcentreerd sediment op de
bodem. Het was al bekend dat de deeltjes spontaan nematische en smectische fasen
vormen in dit sediment. Maar met ons nieuw ontwikkelde algoritme konden we deze
fase nu in detail bekijken en analyseren. Zo bleek dat er ook kleine gebieden waren waar
de deeltjes een kristalfase hadden gevormd. Opvallend was, dat de lagen van deeltjes
niet alternerend op elkaar waren gestapeld (in een ABC stapeling, zoals voorspeld
door computersimulaties) maar precies bovenop elkaar waren gestapeld (dus in een
AAA stapeling). Ook hebben we de overgang kunnen onderzoeken van een volledig
wanordelijke fase en een smectische fase en hebben we een 3D reconstructie kunnen
maken van zogenoemde ‘dwarsliggers’. Dit zijn individuele staafjes die dwars op de
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gemiddelde richting van het vloeibare kristal liggen, een fenomeen dat in de jaren 90 is
voorspeld aan de hand van computersimulaties.

We onderzochten in Hoofdstuk 7 de invloed van (vloeistof)stroming op de staaf-
vormige deeltjes. Door gebruik te maken van een constante stroming konden we de
staven uitlijnen in de richting van de stroom. Door een trillende stroming op te leggen
konden we kleine smectische gebieden laten ontstaan. We hebben ook gemeten hoe de
viscositeit (een maat voor hoe makkelijk iets stroomt, ook wel stroperigheid genoemd)
verandert als functie van de kracht waarmee de stroming wordt opgelegd. Hieruit bleek
dat de viscositeit eerst afneemt naarmate de kracht toeneemt. Dit gebeurt bijvoorbeeld
ook als ketchup ook de fles wordt geknepen: hoe harder je knijpt, hoe makkelijker
het stroomt. Vervolgens was er een regime waar de viscositeit constant was. Dit is
meestal het geval bij vloeistoffen waar geen deeltjes in zitten, zoals bijvoorbeeld zuiver
water. Uiteindelijk nam de viscositeit weer toe naarmate de kracht groter werd. Dit
fenomeen is duidelijk te voelen als je door een mengsel van maizena en water roert:
als je hard genoeg roert (en voldoende maizena gebruikt), kan de weerstand plotseling
heel sterk toenemen. Het verklaren van de veranderingen in de viscositeit, aan de hand
van de onderlinge structuur van de deeltjes, is een complex (en industrieel belangrijk)
probleem. Hoewel de metingen in dit hoofdstuk daarvoor een eerste aanzet geven, is
meer onderzoek nodig om dit volledig te verklaren.

In de laatste twee hoofdstukken van dit proefschrift hebben we de staven een sterk
afstotende wisselwerking (of interactie) gegeven.

In Hoofdstuk 8 hebben we aangetoond (met behulp van 3D reconstructies en
analyses) dat de sterk afstotende staven een plastisch kristal kunnen vormen. In een
plastisch kristal bevinden de staafjes zich in een regelmatig kristalrooster, maar doordat
de onderlinge afstoting ze bewegingsruimte biedt, kunnen ze nog wel vrij roteren.
Hierdoor zijn hun oriëntaties wanordelijk, zoals in een vloeistof. In een plastisch kristal
zijn de posities dus weliswaar geordend maar de oriëntaties niet, wat precies omgekeerd
is bij een nematische fase. Vandaar dat een plastisch kristal wordt beschouwd als
een broertje van een vloeibaar kristal. Ook lieten we zien dat bij hogere dichtheden
een ‘plastische glasfase’ werd gevormd. Hierbij zijn de deeltjes positioneel niet meer
geordend, maar roteren nog wel. Door de hoge dichtheid gedraagt het materiaal zich
toch als een vaste stof. We toonden aan dat beide plastische fasen konden worden
omgezet in een 3D kristal met behulp van een extern elektrisch veld. Dit proces was
omkeerbaar: wanneer het elektrisch veld werd uitgezet keerde het materiaal terug naar
zijn oorspronkelijke fase. Dit effect kan van pas komen in bijvoorbeeld de ontwikkeling
van kleurenbeeldschermen op basis van elektronische inkt.

In het laatste hoofdstuk van dit proefschrift, Hoofdstuk 9, hebben we de plastische
glasfase verder onderzocht, waarbij we nadrukkelijk naar de 3D verplaatsingen en
rotaties van de deeltjes hebben gekeken. Ook de transitie naar een volledig kristal, onder
invloed van een extern elektrisch veld, hebben we stap voor stap geanalyseerd. Daaruit
bleek dat er (subtiele) verschillen zijn in het heen- en terugschakelen van het materiaal.
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De techniek die wij hebben ontwikkeld om de 3D rotaties van individuele deeltjes te
volgen biedt een hoop nieuwe mogelijkheden voor onderzoek naar de glasovergang, een
fenomeen dat ondanks decennia van onderzoek nog steeds niet goed wordt begrepen.



232 Samenvatting voor een breder publiek



Dankwoord
Dit proefschrift is uiteraard niet alleen door mijzelf tot stand gekomen. Vandaar dat
ik iedereen wil bedanken die hier de afgelopen jaren (op wat voor manier dan ook) aan
heeft bijgedragen.

Ten eerste wil ik mijn promotor Alfons van Blaaderen bedanken voor de mogelijkheid
om een promotieonderzoek te doen in een bijzonder inspirerende omgeving. Deze
omgeving, gecombineerd met jouw enthousiasme en nieuwe ideeën, heeft geleid tot de
vele verschillende projecten (en side-projecten) waar ik aan heb kunnen werken tijdens
mijn promotie. Ook de state-of-the-art apparatuur (lees: SP8) kwam voor mij op precies
het juiste moment. Daarnaast waardeer ik de uitvoerige wetenschappelijke gesprekken
die we in de afgelopen vier jaar hebben gevoerd en de vrijheid die ik heb gehad om
nieuwe richtingen in te slaan met mijn onderzoek.

Uiteraard wil ik ook mijn copromotor Arnout Imhof bedanken voor zijn begeleiding.
Bedankt dat ik altijd kon binnenlopen voor vragen of advies. Met name de laatste
periode van mijn promotie heb ik aardig beslag gelegd op je tijd maar bedankt dat je
altijd in groot detail naar mijn werk hebt gekeken en hebt voorzien van commentaar.

Ook wil ik Marjolein Dijkstra en René van Roij bedanken voor de vele suggesties,
discussies en samenwerkingen op het gebied van de ‘harde (en zachte) staafjes’. Bedankt
ook voor jullie steun in de aanloop naar en tijdens de conferentie in Lissabon. Ook
bedankt aan de rest van de vaste staf, Patrick, Krassimir, Marijn, Marcel en Laura,
voor jullie input en advies. Laura, bedankt voor alle wetenschappelijke discussies,
inzichten in de Canadese samenleving en voor het corrigeren van mijn Engels!

Van mijn directe collega’s wil ik allereerst een paar mensen in het bijzonder bedanken.
Michiel, zonder jouw computercodes en analyse methoden zou dit proefschrift er heel
anders hebben uitgezien. Na zo’n drie jaar gezamenlijk testen en verbeteren, is nu het
algemeen beschikbaar stellen van de ‘3D rod fitting methode’ in zicht! Bedankt voor
je geduld en de tijd die je (tussendoor) steeds hebt weten vrij te maken. Ook bedankt
voor je vele adviezen en onze gesprekken over shear, dynamica, glazen, fotografie, etc.,
gedurende zo’n vijf jaar inmiddels! Anke, sinds onze gezamenlijke shear-experimenten
aan staafjes hebben deze deeltjes centraal gestaan als onderwerp van mijn project. De
vele discussies en antwoorden over de staafjes-systemen hebben enorm veel bijgedragen
aan mijn werk, heel erg bedankt daarvoor (mijn kopie van je thesis is inmiddels uit
elkaar gevallen, dat zegt wel genoeg denk ik). Teun, het is vrijwel onmogelijk om



234 Dankwoord

cynisch of chagrijnig te zijn in jouw gezelschap! Met veel plezier denk ik terug aan onze
partijtjes GO, oud-en-nieuw in Berlijn met ‘the Hoff’ en de skype-sessies over de ‘swirls
paper’. Anjan, thank you for your patient explanantions on anything related to colloids.
I also enjoyed our conversations on everything outside academia and your great sense
of humour! Ernest, wie had gedacht bij speciale relativiteitstheorie dat we jaren later
samen achter een confocal in het AMC zouden zitten? Liquid Matter in Wenen was
top met jou als lokale gids.

I would also like to thank all my other colleagues that I had the pleasure to work
with over the last four years. I thank my roommates Marlous, Nina, Michiel, Matthieu,
Rao, Djamel, Tian-Song and Wiebke for many conversations, related or unrelated to
science, and for a great atmosphere (pushing the ‘Little Miss Sunshine’ minivan around
the parking lot was memorable). Bo, Rao, Marlous, Tian-Song, Bing, Jissy, Djamel,
Bas, Henriëtte and Zdenek, thank you for collaborating with me on various topics.
Matthieu and Frank, thank you for your help with simulations and theory. Johan,
thanks for the large amount of PMMA (I blame it on the shear-cell). Judith, Chris and
Peter: thank you for your extensive help with my research. My thanks also goes out to
all current and former SCM members: John, Simone, Guido, Nick, Wessel, Chanming,
Da, Tonnishtha, Somil, Rik, Murphy, Berend, Vasileios, Fabian, Harini, Srivatssan,
Thomas (from the ITF), Peter, Joost, Bart, Ahmet, Simone B, Ran, Carlos, Christina,
Lin, Marion, Thea and Marjoke, although this list is probably not complete, for which
I apologize. Furthermore, I would also like to thank the Biophysics group, especially
Hans, Gerhard, Dave and Helene. I would also like to thank the people that I’ve met
(or joined me) during graduate schools and conferences. Frank, Marlous, Jissy, Anke,
Simone, Dima and Marco, the summerschool in Corsica was the best start of my PhD
that I could have imagined. Luckily the harpoon made it safely back to its proud
owner... I would also like to thank the ‘2011 Han-sur-Lesse crowd’ for a great week
(except for the ‘local flu’) and for the follow-up trip to Berlin. Jissy, Marjolein and
Nick, the training course in Edinburgh was inspiring. Bo, Jissy, Djamel and Arnout:
Sendai was quite an experience, I still have vivid memories of the encouter with the
Emperor and Empress of Japan and of the beef tongue specialities. Special thanks to
Daisuke Nagao for showing us around on- and off-campus.

It was a delight to supervise my students, Tim and Chris. Tim, je bleef me verrassen
met nieuwe vragen en onverwachte experimentele resultaten, wat heeft geleid tot een
waardevolle samenwerking met de theoretici en een recente publicatie. Chris, thank
you for all the work that you performed: a significant part of both the synthesis and
the analysis in Chapter 6 is based on your work. So thanks to both of you!

I also thank John Kelly for getting me out of the lab and onto the squash court on a
regular basis. My time is running out to improve my game (so far I counted only one



Dankwoord 235

real win...). Ook bedankt aan Dries, Jildou, Esger en Brigitte voor de nodige afleiding!

There are several people from outside Utrecht that I would like to thank: Andrea
Fortini en Matthias Schmidt for our collaboration on shear. I thank Michiel Hermes,
Rut Besseling (not related), Job Thijssen and Niek Hijnen for support during my stay
in Edinburgh. I thank Anand Yethiraj for useful discussion and collaboration. I also
thank the program manager of M2i, Derk Bol, for his continued support and Mark
Boerakker and Damien Reardon from DSM for their interest in my project. Another
thanks goes out to Vincent Schoonderwoert and Hans van der Voort from SVI and
Patrick van Wieringen and Henk den Hartog from Leica. And finally, Harry Linders,
our conversations in the final stages of my PhD were a delight.

Aan mijn vrienden en familie: bedankt voor jullie steun, begrip en/of afleiding de
afgelopen jaren!

Dennis, Thomas, Stephan, Beelen, Peter, Frank, Mark en Bart (en aanhang) bedankt
voor de talloze avonden, weekenden en vakanties, voor de interesse in mijn werk (weer
lekker promoveren morgen?) en voor het accepteren van uit de hand gelopen discussies
over bijv. trillingen en piramides. Ook mijn huisgenoten op ‘de van mollem’, Stephan
en Thomas, bedankt!

Ook wil ik graag Cor en Els bedanken voor hun continue betrokkenheid bij alles wat
mij bezighoudt, en voor de fantastische en ontspannen sfeer tijdens etentjes, schouw-
burgbezoeken en weekenden samen met Jasper, Liedeke en Sanny, ook jullie bedankt!

Pap en mam, bedankt voor jullie onvoorwaardelijke steun en geloof in mij. Bedankt
dat jullie mijn wetenschappelijke interesses altijd hebben aangemoedigd, en ik waardeer
jullie geduld en vertrouwen enorm. Tijdens mijn promotietijd heeft jullie advies en
positieve instelling me altijd weer weten te motiveren.

Joris en Cecile, heel erg bedankt voor jullie medeleven en betrokkenheid tijdens mijn
gehele promotietijd. Jullie energie en opgewekte verhalen doen me altijd goed! Laten
we snel weer een bezoek aan Londen plannen! Lieve Mira, ik weet dat je het maar
moeilijk kon bevatten dat ik na een jaar onderzoek aan ‘bolletjes’, nog eens vrijwillig
vier jaar verder ging. Toch waardeer ik je eigenwijze kijk op dingen en je humor heel
erg, bedankt!

Lieve Sas, jij bent de enige die werkelijk alle ups en downs heeft meegemaakt van
de laatste jaren. Geen enkel detail heb ik je bespaard en toch heb ik je nooit kunnen
betrappen op het feit dat je niet zat te luisteren. Ik heb grote bewondering voor
hoe je bent omgegaan met alles rondom de afronding van dit proefschrift. Ik ben
onvoorstelbaar dankbaar voor je liefde en ik kan me geen beter vooruitzicht bedenken
dan de verloren dagen zo snel mogelijk met je in te halen!



236 Dankwoord



List of Publications
This thesis is partially based on the following publications:

• A. Kuijk, A. Imhof, M.H.W. Verkuijlen, T.H. Besseling, E. R.H. van Eck & A.
van Blaaderen, Colloidal silica rods: material properties and fluorescent labeling,
Particle & Particle Systems Characterization 31, 706-713 (2014) - Chapter 2

• T.H. Besseling, J. Jose & A. van Blaaderen, Methods to calibrate and scale
axial distance in confocal microscopy as a function of refractive index, Journal of
Microscopy, accepted, arXiv:1404.3952v1 (2014) - Chapter 3

• T.H. Besseling / M. Hermes, A. Kuijk, B. de Nijs, T.-S. Deng, M. Dijkstra, A.
Imhof & A. van Blaaderen, Determination of the positions and orientations of con-
centrated rod-like colloids from 3D microscopy data, Journal of Physics: Condensed
Matter, accepted, arXiv:1406.4985v1 (2014) - Chapter 4

• T.H. Besseling, M. Hermes, A. Fortini, M. Dijkstra, A. Imhof & A. van Blaaderen,
Oscillatory shear-induced 3D crystalline order in colloidal hard-sphere fluids, Soft
Matter 8, 6931-6939 (2012) - Chapter 5

• T.H. Besseling, M. Hermes, A. Fortini, M. Dijkstra, A. Imhof, & A. van Blaaderen,
Out-of-equilibrium crystallization kinetics in colloidal hard-sphere fluids driven by
oscillatory shear, in preparation - Chapter 5

• T.H. Besseling, A. Imhof & A. van Blaaderen, Real-space measurements of nematic
and smectic phases of monodisperse colloidal silica rods, submitted (2014) - Chapter 6

• T.H. Besseling, C. Kennedy, A. Imhof & A. van Blaaderen, Experimental mea-
surement of the equation of state of hard rods, in preparation - Chapter 6

• B. Liu, T.H. Besseling, M. Hermes, A. F. Demirörs, A. Imhof & A. van Blaaderen,
Switching plastic crystals of colloidal rods with electric fields, Nature Communica-
tions 5, 3092 (2014) - Chapter 8

• T.H. Besseling, B. Liu, M. Hermes, A. Imhof & A. van Blaaderen, Reversible
martensitic plastic glass to crystal transition in a system of long-range repulsive
rods, in preparation - Chapter 9



238 List of Publications

Other publications by the author:

• T. Vissers, T.H. Besseling, A. van Blaaderen & A. Imhof, Sustained rotational
instabilities and crystalization in driven suspensions of oppositely charged colloids,
submitted (2014)

• B.W. Kwaadgras, T.H. Besseling, T. J. Coopmans, A. Imhof, A. van Blaaderen,
M. Dijkstra & R. van Roij. Orientation of a dielectric rod near a planar electrode,
Physical Chemistry Chemical Physics, DOI: 10.1039/c4cp02799j (2014)

• B. Liu, T.H. Besseling, A. van Blaaderen & A. Imhof, Confinement induced crystal
- plastic crystal transitions in rod-like particles with long-ranged repulsion, submitted
(2014)



About the author
Thijs Besseling was born on March 26, 1984 in Fiesole, Italy. He attended secondary
school at the Gymnasium Haganum in the Hague, from which he graduated in 2002.
After graduation, he spend a year travelling in Thailand and Australia. In 2003, he
started his studies at the Utrecht University, where he studied Chemistry for one year
and obtained a BSc degree in Science and Innovation Management. He graduated from
Utrecht University with a MSc degree in Physics (cum laude) in 2010. He performed
his MSc research project in the Soft Condensed Matter group at Utrecht University,
under the supervision of Prof. Alfons van Blaaderen and Prof. Marjolein Dijkstra. As
a MSc student, he received the 1st Poster Prize in the Crystal & Structural Research
Group during an NWO-CW Study Group Meeting in Veldhoven. In 2010, he continued
to work in the same group as a PhD student, the results of which are described in this
thesis. Parts of this thesis are published in international peer-reviewed journals. He
received a European Soft Matter Infrastructure (ESMI) grant for a research project in
the Soft Matter Physics group at the University of Edinburgh, which he performed
in Jan. 2012. Oral presentations were given at various national and international
conferences, including the 8th Liquid Matter Conference in Vienna, the 14th conference
on the International Association of Colloid and Interface Scientists in Sendai (Japan),
Physics@FOM in Veldhoven and the 9th Liquid Matter Conference in Lisbon. In 2011,
he received a poster prize for ‘Best innovative research value’ during a conference of
the Materials Innovation Institute (M2i) in Noordwijkerhout. Part of his research was
highlighted in the Dutch newspaper ‘de Volkskrant’ on Jan. 25, 2014.




	Chapter 1. Introduction
	 Part 1.  Methods to Analyse Colloidal Particles in Real-Space
	Chapter 2. Suspension Characterisation and General Techniques
	Chapter 3. Calibration and Scaling of Axial Distances in Confocal Microscopy as a Function of Refractive Index
	Chapter 4. Determination of the Positions and Orientations of Concentrated Rod-like Colloids from Microscopy Data

	 Part 2.  Self-assembly of Colloidal Spheres and Rods
	Chapter 5. Out-of-Equilibrium Crystallization in Hard-Sphere Colloidal Fluids Driven by Oscillatory Shear
	Chapter 6. Synthesis and Phase Behaviour of a Model System of Rod-like Silica Particles
	Chapter 7. Rheology and Real-Space Analysis of Colloidal Silica Rods under Shear
	Chapter 8. Switching Plastic Crystals of Colloidal Rods with Electric Fields
	Chapter 9. Plastic Glass to Crystal Transition in a System of Long-Range Repulsive Rods
	Bibliography
	Appendix A. Electric Field Induced Dipole-Dipole Interactions
	Appendix B. Supporting Movies
	Summary
	Samenvatting voor een breder publiek
	Dankwoord
	List of Publications
	About the author


