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Introduction

1.1 Soft Condensed Matter

The term soft condensed matter characterises a class of materials that are very common
in everyday life. Glues, paints, soaps, viruses, bacteria, blood, and many food disper-
sions like milk, mayonnaise and ice creams are all classified as soft matter systems. In
this thesis, we will concentrate on a particular type of soft matter, referred to as colloidal
suspensions, in which solid particles (colloids) with sizes between 10 nanometers to 10
micrometers are suspended in a liquid solvent. Due to the collisions of solvent molecules,
the colloids experience random pressure fluctuations that cause an irregular random walk
of the particles through the solvent, known as Brownian motion. The colloidal particles
are then able to explore the whole configurational space, and eventually reach the equi-
librium configuration that minimises the free energy. This ability of colloidal systems to
self-assemble into a particular configuration can be described using the tools of statistical
physics, with colloidal particles playing the role of atoms or molecules. However, since the
associated relevant time and length scales are much larger than in atomic and molecular
systems, direct experimental observations using advanced microscopy techniques enable
the study of many interesting physical phenomena in real space and real time. Since the
first experiments of Perrin [1] at the beginning of last century, colloids have been used
as model systems to study fundamental problems of statistical physics, like crystallisa-
tion [2–6], gas-liquid separation [7, 8], nucleation [9, 10], capillary waves at the gas-liquid
interface [11, 12], and the wetting of solid substrates [13, 14]. Nonetheless, colloids are
more than just model systems for atomic and molecular matter. In fact, the properties of
colloidal suspensions can be changed in such a way that both the strength and the range
of the interactions can be controlled independently, giving rise to complex and fascinating
phase behaviours, with no counterpart in the atomic world. As an example of parameters
that can be changed to control the phase behaviour of colloidal suspensions we mention
the shape and the density of colloids, the salt concentration, or the size and density of
added polymers. While these processes are sometimes difficult to control precisely in an
experiment, simulations are characterised by well defined parameters, and hence repre-
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2 Introduction

sent an ideal tool to explore the equilibrium properties of colloidal suspensions. Further-
more, computer simulations bridge the distance between the complexity of real experi-
ments, and the approximate descriptions of theories.

The scope of this thesis is to analyse the phase behaviour of colloidal suspensions with
computer simulations. In the rest of this introductory chapter we will briefly introduce
the simulation technique, and the models for colloidal suspensions used in this thesis. In
chapter 2, we will show results for the interfacial free energy of model colloidal suspen-
sions in contact with a single wall. In chapters 3, 4, and 5 we will analyse the effect of
confinement between two walls on the equilibrium phase behaviour of hard spheres and
colloid-polymer mixtures. Chapters 6, and 7 are dedicated to the bulk phase behaviour
of charged colloidal suspensions. In chapter 8, we analyse non-equilibrium behaviour of
colloids with short range attractive interactions.

1.2 Monte Carlo computer simulations

In this section, without any pretence to completeness, we give an introduction of the
Metropolis Monte Carlo (MC) method that is used throughout the thesis. For a com-
plete introduction to the subject of molecular simulations we refer the reader to the refer-
ences [15–18]. In fact, the scope of this section is to prepare the reader to the more detailed
simulation sections of the following chapters where advanced techniques for calculating
the free energies will be introduced.

The thermodynamics of a classical system, with constant number of particles N , in a
constant volume V , at fixed temperature T (canonical ensemble) can be derived from the
Helmholtz free energy

F =−kB T logQ , (1.1)

with the partition function

Q = 1

h3N N !

∫
d~pN d~r N exp[−H(~r N ,~pN )/kB T ] , (1.2)

where h is the Planck constant, kB is the Boltzmann constant,~r stands for the position of
the particles, ~p stands for the momenta, and H(~r N ,~pN ) is the Hamiltonian of the system.
The knowledge of the free energy is sufficient to determine all thermodynamic properties,
but unfortunately its direct computation is prohibited by the huge number of configura-
tions that must be taken into account. Already for small systems the number of configura-
tions in the integral (1.2) would require a computational time many orders of magnitude
larger than the current universe lifetime. In principle, the same problem exists for the
computation of the thermal average of an observable A

〈A〉 =
∫

d~pN d~r N A(~r N ,~pN )exp[−H(~r N ,~pN )/kB T ]∫
d~pN d~r N exp[−H(~r N ,~pN )/kB T ]

. (1.3)

The direct computation of the integrals in Eq. (1.3) is not possible due to the huge number
of configurations to be evaluated in the integral. Nevertheless, Metropolis et al. [19] de-
vised an indirect method to compute the average 〈A〉. The basic idea behind what is now
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called Metropolis Monte Carlo algorithm is to randomly generate configurations that obey
the Boltzmann distribution, and sample the observable A for a number of these configura-
tions. For a simulation in the canonical ensemble, a run is started from a configuration of
N particles in a box of volume V . The system must have a well defined potential energy U .
A particle i is selected at random. Its position ri is then changed by a random amount ∆r .
The difference in energy ∆U =U (ri +∆r )−U (ri ) between the new and old configuration
determines if the trial move is accepted or not. The new configuration is accepted, i.e. the
particle is moved to the new position, if∆U < 0, or with a probability exp(−∆U /kbT ) if the
energy difference is positive. If the move is rejected the particle i stays in the old position
ri . The trial move is repeated in a cycle. Once in a while, the value Ak of the observable A is
computed for the instantaneous configuration k. The procedure ensures that the average
over M independent and uncorrelated configurations

〈A〉 =
M∑

k=1

Ak

M
, (1.4)

is equal to the result of the average (1.3). With the MC algorithm we can estimate the
average value of an equilibrium observable and compare it with experiments, furthermore
MC simulations are not restricted to the canonical ensemble, and other quantities, like
pressure or chemical potential, can be kept fixed during the simulation.

1.3 Models of colloidal suspensions

1.3.1 Hard spheres

The first model for colloidal particles that we consider is that of hard spheres. As its name
suggests, in this model we consider perfect spheres whose interaction is zero except when
two spheres overlap, in which case the interaction is infinity. The sphere-sphere poten-
tial then reads

vi j (Ri j ) =
{ ∞ if Ri j <σ

0 otherwise
, (1.5)

where Ri j = |~Ri − ~R j | is the distance between two colloidal particles, with ~Ri the position
of the centre-of-mass of colloid i , and σ the diameter of the sphere. The variable we will
use to describe the concentration of hard spheres is the packing fraction (also called vol-
ume fraction) defined as η= π/6σ3N /V , with N the number of particles in a system with
volume V . The equilibrium phase diagram of hard spheres is well understood. The fluid
phase is stable for packing fractions η< 0.4915. Fluid and crystal phases coexist between
0.4915 < η< 0.5428. While for packing fractions η> 0.5428 the f.c.c.1 crystal phase is sta-
ble [2, 4]. Since the interaction energy of hard spheres is always zero, the crystal phase
is stabilised by entropy only, spheres in the crystal phase have more free volume than in
a disordered phase at the same density. Hard spheres contradict the notion that entropy
always brings more disorder!

1The f.c.c phase is stable with respect to the h.c.p phase [20, 21], although recently it was suggested that the
h.c.p phase is more stable at nearly close packed densities [22].
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c I

s
Figure 1.1: Illustration of the primitive model for charged colloids with diameter σ in a bath of mi-
croions with diameter σI in a solvent with dielectric constant εs .

1.3.2 Charged colloids: DLVO theory

Extension to the simple hard-sphere model must be made when colloidal particles carry
charge. The interaction between charged spherical colloids of diameter σc with charge
number Z can be modeled by a hard core plus a Coulombic interaction

u(Ri j )/kB T =
{ ∞ Ri j ≤σc

Z 2λB
Ri j

otherwise
, (1.6)

where Ri j = |~Ri −~R j | is the distance between colloid i and colloid j , λB = e2/εs kB T is the
Bjerrum length, εs is the dielectric constant of the solvent, and e is the elementary charge.
This interaction is usually screened by the addition of coions and counterions (salt) with
diameter σI . The interaction potential between microions with charge numbers ±1 is

u(ri j )/kB T =
{ ∞ ri j ≤σI

±λB
ri j

otherwise
, (1.7)

where ri j = |~ri −~r j | is the distance between microion i and microion j , and the interaction
potential between microions and colloids reads

u(|~Ri −~r j |)/kB T =
{ ∞ |~Ri −~r j | ≤ (σc +σI )/2

± ZλB

|~Ri−~r j | otherwise . (1.8)

The equations (1.6), (1.7) and (1.8) form the restricted primitive model (RPM) for charged
colloidal suspensions. Unfortunately, simulations for this model are often difficult in many
regions of the parameter space. For this reason, we will employ a coarse-grained version
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of this model that is due to Derjaguin and Landau [23], and Verwey and Overbeek [24]. In
the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a single sphere carrying charge Z
is suspended in a solvent with dielectric constant εs , and point-like co- and counter-ions
with number density far from the sphere equal to ns . The density profile of microions is
given by the Boltzmann distribution

n−(r ) = ns exp(eφ(r )/kB T ) ,

n+(r ) = ns exp(−eφ(r )/kB T ) , (1.9)

where n−(r ) and n+(r ) indicate the number density of counter- and coions respectively.
The electric potential φ is determined by the net charge density ρ(r ) = e(n+(r )−n−(r ))
through the Poisson equation

∇2φ=−4π
ρ(r )

εs
. (1.10)

Hence, the combination of equations (1.9) and (1.10) leads to the Poisson-Boltzmann
equation

∇2φ= 8π
ns

εs
sinh(eφ(r )/kB T ) . (1.11)

The solution of this equation can be very complicated to obtain, but if the potential φ is
small, it is commonplace to apply the Debye-Hückel approximation that consists in lin-
earizing the hyperbolic sine of Eq. (1.11)

e

kB T
∇2φ= κ2(eφ(r )/kB T ) , (1.12)

where we defined the inverse Debye screening length κ=
√

(8πλB ns ). The solution of the
linearized Poisson-Boltzmann equation is easily obtained and reads

φ(r ) = ZλB

σ(1+κσ/2)

exp[−κ(r −σ)]

r /σ
. (1.13)

The interaction potential between two charged spheres within the DLVO theory is then
derived assuming that the distribution of ions around each sphere is not disturbed by the
presence of the other one. The effective pair potential between the two charged spheres
carrying the same charge number Z is then given by

u(Ri j )/kB T =
{ ∞ Ri j ≤σc

Z 2

(1+κσ/2)2
λB
σ

exp[−κ(Ri j −σ)]
Ri j /σ otherwise

, (1.14)

where Ri j is the distance between spheres i and j . Clearly, we recover the hard-sphere
interaction, and hence its phase behaviour, in the high-salt limit of κσ→∞. For decreas-
ing κσ the liquid-face-centered-cubic (f.c.c.) coexistence region moves towards smaller
values of the packing fraction [25, 26]. At intermediate values of κσ the stable solid phase
transforms from the f.c.c. to a body-centered-cubic (b.c.c.) phase, and the coexistence
region moves back to higher packing fractions.
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1.3.3 Colloid-polymer mixtures

Colloid-colloid interactions can be changed by adding a second component to the sus-
pension. In this section we treat the case of added non-adsorbing polymers. Although the
interaction can be in general complicated, we consider only the case of flexible polymer
chains in a “good solvent” condition where the interactions between colloid and polymer
are hard, and the excluded volume interactions between polymer chains are small. Pro-
vided the size and the number of polymers are sufficiently high, such mixtures can phase-
separate into a colloidal gas phase that is poor in colloids and rich in polymers, and a
colloidal liquid phase that is rich in colloids and poor in polymers. The mechanism be-
hind this demixing transition is of entropic origin and is due to the so-called depletion
effect. In Fig. 1.2(a), we illustrate the mixture of spherical colloids and polymer chains.
Around each colloid there is a depletion region prohibited to the polymers due to the hard-
core interaction (the chains cannot penetrate the colloids). If two colloids approach each
other, so that two depletion zones overlap (light grey region in Fig. 1.2(a)), there is an
increase in free volume for the polymer chains, i.e. an increase in entropy [27–30]. The
increase in entropy can be described by an attractive interaction between colloidal parti-
cles. This effective attraction can also be viewed as arising from an unbalanced osmotic
pressure pushing the colloids together as polymer coils are excluded from the depletion
zones between the colloids.

Adding non-adsorbing polymer allows modification of the range and strength of at-
traction of the effective interactions between the colloidal particles. Adjusting the range
of the attraction enables manipulating the topology of the phase diagram of a colloid-
polymer mixture [8, 30–34]. Both the nature of the demixed phases as well as the colloid
and polymer concentrations at which demixing takes place depend on the range of at-
traction [8, 35]. Industrially, it is relevant to understand the phase behaviour of colloid-
polymer mixtures because colloidal particles and polymer chains are often jointly present
in various products, such as food dispersions [36, 37]. A particularly simple model for
colloid-polymer mixtures was proposed independently by Asakura and Oosawa [27, 38]
and by Vrij [28], and is often referred to as the Asakura-Oosawa-Vrij (AOV) model.

Asakura-Oosawa-Vrij model

In this model, colloids and polymers interact via a hard-sphere-like potential, as the poly-
mers are excluded from a centre-of-mass distance (σc +σp)/2 from the colloids, where
σp = 2Rg , and Rg is the radius of gyration of the polymer coils. This so-called Asakura-
Oosawa-Vrij (AOV) model [27, 28, 38, 39] is defined by the pair potentials

vcc(Ri j ) =
{ ∞ if Ri j <σc

0 otherwise,
(1.15)

where Ri j = |~Ri − ~R j | is the distance between two colloidal particles, with ~Ri the position
of the centre-of-mass of colloid i ,

vpp(ri j ) = 0, (1.16)
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Figure 1.2: a) Illustration of a mixture of spherical colloids and polymer coils. Depletion zones
(dashed lines) are inaccessible to polymers. Overlapping depletion zones between two colloids are
indicated in light grey. b) Illustration of the AOV model for colloid (dark circles) and polymer (open
circles) mixtures.

where ri j = |~ri − ~r j | is the distance between two polymers, with ~ri the position of the
centre-of-mass of polymer i and

vcp(|~Ri −~r j |) =
{ ∞ if |~Ri −~r j | < (σc +σp)/2

0 otherwise,
(1.17)

where |~Ri −~r j | is the distance between colloid i and polymer j . The AOV model is illus-
trated in Fig. 1.2(b).

The size ratio q = σp/σc is a geometric parameter that controls the range of the ef-
fective depletion interaction between the colloids. We denote the packing fraction by
ηk = (πσ3

k Nk )/(6V ), with Nk the number of particles of species k in a volume V , and
k = c,p for colloids and polymers, respectively. As alternatives to ηp, we use as a ther-
modynamic variable the polymer fugacity zp, or the polymer reservoir packing fraction ηr

p
that satisfies the (ideal gas) relation

ηr
p = π

6
σ3

pzp. (1.18)

Effective potential

Even within the context of the highly simplified AOV model, it is often more convenient to
adopt a more coarse-grained view of the binary mixture by ignoring the degrees of free-
dom of the polymer coils and using polymer-mediated effective interactions between the
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colloids. When there is a large size asymmetry between colloids and polymer it is possible
to integrate out the degrees of freedom of the polymer coils, and map the binary mix-
ture of colloids and polymers onto an effective one-component system interacting with
an effective one-component Hamiltonian [40–43]. This effective Hamiltonian consists of
zero-body, one-body, two-body, and higher-body terms. We derive an exact expression for
the polymer-mediated effective pair potential or depletion potential. The potential part of
the Hamiltonian is the sum of three interaction terms H = Hcc +Hcp +Hpp, where

Hcc = ∑
i< j

vcc(Ri j ) ,

Hcp = ∑
i

∑
j

vcp(|~Ri −~r j |) ,

Hpp = ∑
i< j

vpp(ri j ) . (1.19)

It is convenient to consider the system in the (Nc ,V , zp ,T ) ensemble, in which the fugacity
zp = Λ−3

p exp(βµp ) of the polymer coils is fixed. Here µp denotes the chemical potential
and β= 1/kB T . The thermodynamic potential F (Nc ,V , zp ,T ) can be written as

exp(−βF ) =
∞∑

Np=0

z
Np
p

Nc !Np !Λ3Nc
c

∫
V

d~RNc

∫
V

d~r Np exp[−β(Hcc +Hcp)] . (1.20)

We define an effective Hamiltonian Heff = Hcc +Ω such that

exp(−βF ) = 1

Nc !Λ3Nc
c

∫
V

d~RNc exp[−βHeff] . (1.21)

The thermodynamic potential Ω is then

exp(−βΩ) =
∞∑

Np=0

z
Np
p

Np !

∫
V

d~r Np exp[−β(Hcp)]

= exp

[
zp

∫
V

d~r exp

[
−β

Nc∑
i=0

vcp(|~Ri −~r j |)
]]

. (1.22)

Using standard diagrammatic techniques [44]βΩ is expanded in n-body interaction terms,
with n=0. . . Nc

βΩ=
Nc∑

n=0
βΩn . (1.23)

It is possible to give explicit expressions for βΩn with n=0, 1, and 2. In particular, the
zero-body term reads

βΩ0 =−zpV ,
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which corresponds to the grand-potential of a pure system of polymer at fugacity zp in a
volume V. The one-body term is

βΩ1 = zpηc (1+q)3V ,

and is related to the volume excluded to a polymer by a single colloid. The pair inter-
action term reads

βΩ2 =
Nc∑

i< j
Udep(Ri j ),

with the depletion potential [28, 38, 39, 42]

βUdep(Ri j ) =
 −ηr

p
(1+q)3

q3

[
1− 3Ri j

2(1+q)σc
+ R3

i j

2(1+q)3σ3
c

]
σc < Ri j <σc +σp

0 Ri j >σc +σp

. (1.24)

This Asakura-Oosawa pair potential describes an effective attraction whose depth increases
linearly with the polymer packing fraction in the corresponding reservoir ηr

p . The range of
the potential is given byσp . Terms with n > 2, i.e. three- and higher-body interactions, are
often neglected. However, it is important to note that for sufficiently large polymer coils,
effective three- and higher-body interactions can not always be neglected. More precisely,
we expect an increasing number of higher-body interactions to become non-zero when
q increases. It was shown [14] that the many-body character of the polymer-mediated
effective interactions between the colloids yields a bulk phase diagram that differs sub-
stantially from those found for pair-wise simple fluids. However, for size ratios q < 0.1547,
three- and many-body interactions are identical to zero and the mapping of the binary
mixture onto the effective one-component Hamiltonian based on pair-wise additive ef-
fective potentials is exact.





2

The wall-fluid interface of hard spheres and AOV
colloid-polymer mixtures

In this chapter we perform a study of the interfacial properties of a model suspension of
hard-sphere colloids with diameter σc and with the addition of non-adsorbing polymer
coils with diameter σp , described by the AOV model. We obtain from simulations the
wall-fluid interfacial free energy, γwf, for size ratios q = σp /σc = 0.6 and 1, using a novel
thermodynamic integration method for hard-core potentials, and we study the (excess)
adsorption of colloids, Γc , and of polymers, Γp , at a hard wall. Good agreement is found
between the simulation results and those from density functional theory, while the results
from scaled particle theory deviate quantitatively but reproduce some essential features.

2.1 Introduction

In Sec. 1.3.3 we explained the origin of the depletion attraction in mixtures of colloids and
polymers. When two colloids are close enough, the free volume available to polymers in-
creases, leading to an increase in entropy. Similarly, polymers are excluded from the hard
wall, and a colloid close to the wall corresponds to a configuration of higher entropy (see
Fig. 2.1(a)). Around each colloid and at the wall we have depletion layers excluded to the
polymer chains (dashed lines). When the depletion layers of the wall and a colloid overlap,
there is an increase of free volume for the polymer chains, and consequently an increase of
entropy. This mechanism can be described by an effective depletion interaction between a
colloidal particle and a planar hard wall. The wall-fluid interfacial tension of a hard-sphere
fluid in contact with a planar hard wall was calculated by Heni and Löwen [45] using a ther-
modynamic integration procedure along a path that corresponds to the growth of a wall in
a bulk system. Here, we propose a thermodynamic integration approach similar in spirit,
to determine the free energy of hard spheres and AOV colloid-polymer mixtures in contact
with a planar hard wall, from which we derive the wall-fluid interfacial tension. In addi-
tion, we studied the (excess) adsorption of colloids, Γc , and of polymers, Γp , at the hard
wall. The simulation results are checked against the predictions of density functional the-

11



12 The wall-fluid interface of hard spheres and AOV colloid-polymer mixtures

cp

Figure 2.1: (a) Illustration of a mixture of spherical colloids and polymer coils in contact with a hard
wall impenetrable to both species. Depletion zones (dashed lines) are inaccessible to polymers.
Overlapping depletion zones (light grey) are indicated in two cases, that between two colloids, and
between a colloid and a hard wall. (b) Schematic representation of the AOV model colloid-polymer
mixtures in the simulation box with two hard walls in the z direction.

ory (DFT) [46, 47] based on an extension of the Rosenfeld functional [48], and of a scaled
particle theory (SPT) [47] based on the free volume theory [30]. Technical details about
the DFT implementation that also apply to the present study are given in Ref. [49].

2.2 The hard-wall model

Since, it is not possible to simulate a semi-infinite system, we performed simulations in
a box with periodic boundary conditions in the x and y directions and two impenetrable
hard walls in the z direction (Fig. 2.1(b)). If the separation distance H is large enough
capillary effects are negligible. The wall-particle potential acting on particles of species
k = c, p reads

vwk (zk,i ) =
{

0 if σk /2 < zk,i < H −σk /2
∞ otherwise

, (2.1)

where zk,i is the z-coordinate of particle i of species k, and H is the separation distance
between the two walls.
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2.3 Overview of interfacial thermodynamics

Generally, the interfacial tension in an inhomogeneous system is the grand potential per
unit area needed to create an interface in an initially uniform bulk system at fixed chemical
potential of colloids, µc , and polymers, µp , and fixed volume V and temperature T . The
grand potential for a bulk mixture of colloids and polymers reads

Ωbulk(µc ,µp ,V ,T ) =−p(µc ,µp ,T )V , (2.2)

where p is the bulk pressure. The system in contact with an interface possesses the grand
potential

Ω(µc ,µp ,V ,T, A) =−p(µc ,µp ,T )V +γ(µc ,µp ,T )A, (2.3)

where A is the area of the interface and γ(µc ,µp ,T ) is the interfacial tension, which can
hence be expressed as

γ= Ω(µc ,µp ,V ,T, A)−Ωbulk(µc ,µp ,V ,T )

A
. (2.4)

Besides the liquid-gas interface, where γ = γlg, Eqs. (2.2), (2.3), and (2.4) apply also for a
fluid adsorbed between two parallel plates (walls), where γ = γwf, provided that the wall
separation is sufficiently large [50, 51], and that the area A is equal to the total area of the
two plates, A = 2L2, with L the linear dimension of the plates. At fixed chemical poten-
tials the number of particles in the inhomogeneous system, Nc and Np , of colloids and
polymers, respectively, will be in general different from those in the bulk, N bulk

c and N bulk
p .

The excess number of colloids and polymers per unit area, i.e. the adsorptions Γc and Γp ,
respectively, are defined as

Γc (µc ,µp ,T ) = Nc −N bulk
c

A
, (2.5)

Γp (µc ,µp ,T ) =
Np −N bulk

p

A
. (2.6)

The grand potentials (2.2) and (2.3) in differential form read

dΩbulk(µc ,µp ,V ,T ) = −N bulk
c dµc −N bulk

p dµp −pdV −SbulkdT , (2.7)

dΩ(µc ,µp ,V ,T, A) = −Nc dµc −Np dµp −pdV −SdT +γd A . (2.8)

Using Eqs. (2.7) and (2.8) and Eq. (2.4) in differential form, it is straightforward to show
[52] that the adsorptions are related to the interfacial tension through

Γc =−
(
∂γ

∂µc

)
µp ,T

and Γp =−
(
∂γ

∂µp

)
µc ,T

. (2.9)

2.3.1 Wall-fluid interfacial tension for the semi-grand canonical ensemble

To determine, from simulations, the wall-fluid tension γwf of the AOV model we should ap-
ply equation (2.4), as is manifest in the grand canonical ensemble, i.e. for constant colloid
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and polymer fugacities. However, in our simulation it is more convenient to use the semi-
grand canonical ensemble 1 fixing the number of colloids and the fugacity of the polymers.
The reason is twofold. First the interfacial tension as a function of the fugacity of polymers
can be directly compared to the DFT results of Ref. [47]. Second, fixing the number of
colloids instead of their fugacity allow us to efficiently study state points with high pack-
ing fractions of colloids; generally grand ensemble simulations are difficult to perform at
high densities due to small particle insertion probabilities. To compute the tension we
have to recast Eq. (2.4) in a way that is consistent with the semi-grand canonical ensem-
ble. The grand potentials for the bulk and the inhomogeneous system are related to the
corresponding Helmholtz free energies via a Legendre transformation,

Ωbulk(µc ,µp ,V ,T ) = F bulk(N bulk
c , N bulk

p ,V ,T )−µc N bulk
c −µp N bulk

p , (2.10)

Ω(µc ,µp ,V ,T, A) = F (Nc , Np ,V ,T, A)−µc Nc −µp Np . (2.11)

We substitute Eqs. (2.10) and (2.11) in Eq. (2.4) to obtain

γ=
F (Nc , Np )−F bulk(N bulk

c , N bulk
p )

A
−µcΓc −µpΓp , (2.12)

where we omitted the dependence on the variables V ,T,µc , and µp in the notation. Note
that the tension is not only the difference of the Helmholtz free energies, but additional
terms, µcΓc and µpΓp , arise in Eq. (2.12). One can further simplify by Taylor expanding
F (Nc , Np ,V ,T, A) around N bulk

c :

F (Nc , Np ,V ,T, A) = F (N bulk
c , Np ,V ,T, A)+ ∂F

∂Nc
(Nc −N bulk

c )+O ((Nc −N bulk
c )2). (2.13)

Keeping only the first order term, one can approximate the interfacial tension as

γ'
F (N bulk

c , Np ,V ,T, A)−F bulk(N bulk
c , N bulk

p ,V ,T )

A
−µpΓp . (2.14)

The same approximation was employed in Ref. [45] (using Np = 0 and N bulk
p = 0) to cal-

culate the interfacial free energy of hard spheres in contact with a planar hard wall. To
compute the wall tension, we need to perform two free energy calculations, one for the
bulk and one for the inhomogeneous system.

2.4 Adsorption at a hard wall from scaled-particle theory

For a system of hard spheres the scaled particle theory [53, 54] describes quite accurately
the pressure p, the hard wall-fluid interfacial tension γhs, and the (excess) adsorption Γhs,
given through the expressions

βp

ρc
= 1+ηc +η2

c

(1−ηc )3 , (2.15)

1In the literature, the name semi-grand canonical ensemble is sometimes used to indicate a different ensem-
ble. Namely, a canonical ensemble where the composition can change at fixed chemical potential difference.
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βγ̂hsσ
2
c = −9η2

c
(1+ηc )

2π(1−ηc )3 , (2.16)

Γhsσ
2
c = 9η2

c

π(1+2ηc )
− 3ηc

π
. (2.17)

The total wall-fluid tension is defined as

βγhsσ
2
c =βp/2+βγ̂hsσ

2
c . (2.18)

In particular, Eq. (2.18) with the SPT pressure (2.15) was shown to compare well with
simulation [55] and DFT [56] results.

Recently, an SPT expression for the wall-fluid tension of AOV model colloid-polymer
mixtures was derived by Wessels et al. [47] using the bulk free energy for a ternary mix-
ture obtained from free volume theory [30] as an input, and taking the limit of vanishing
concentration and infinite size of the third component. Their expression reads

βγwfσ
2
c =βγhsσ

2
c +ηr

p f (ηc ), (2.19)

where f (ηc ) = 3α(ηc )/(q2π)[1+ (1+3q + q2)τ+ (3q +4q2)τ2 +3q2τ3], τ = ηc /(1−ηc ) and
βγhsσ

2
c is given by equation (2.16) and (2.18). The polymer free volume is given by the

scaled particle theory as α(ηc ) = (1−ηc )exp(−(3q +3q2 +q3)τ− (9q2/2+3q3)τ2 −3q3τ3).
Results for γwf from equation (2.19) were found in Ref. [47] to compare reasonably well
with those from full numerical density functional calculations. In the next section we will
compare these approaches against our simulation data.

In addition, we derive an SPT expression for the adsorption of the AOV model at a hard
wall starting from equation (2.19) and building derivatives according to (2.9). The colloid
chemical potential obtained from the free volume theory [30] is

βµc =βµhs(ηc )−ηr
p
α

′

q3 , (2.20)

where βµhs(ηc ) = ηc (14−13ηc +5η2
c )/(2(1−ηc )3)− log(1−ηc )+ log(6ηc /π) is the SPT ex-

pression of the chemical potential of a system of pure hard spheres at packing fraction ηc

and α
′ = ∂α/∂ηc . We compute the colloidal adsorption using equation (2.9)

Γcσ
2
c =−∂βγwf(µc ,µp )σ2

c

∂βµc
=−∂βγwf(ηc ,µp )σ2

c

∂ηc

∂ηc

∂βµc
, (2.21)

where
∂ηc (µc ,µp )

∂βµc
=

(
∂βµc (ηc ,µp )

∂ηc

)−1

, (2.22)

is computed using equation (2.20). The final expression reads

Γcσ
2
c = Γhsσ

2
c

1+ηr
p

f
′

βγ
′
hsσ

2
c

1−ηr
p

α
′′

βµ
′
hsq3

 , (2.23)
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where f
′ = ∂ f /∂ηc , γ

′
hs = ∂γhs/∂ηc , µ

′
hs = ∂µhs/∂ηc and α

′′ = ∂2α/∂η2
c . We note that the

hard-sphere limit is obtained correctly for ηr
p = 0. We also calculate the polymer ad-

sorption

Γpσ
2
c =−∂βγwf(ηc ,µp )σ2

c

∂βµp
=−ηr

p f −
(
∂βγhs(ηc )σ2

c

∂ηc
+ηr

p
∂ f (ηc )

∂ηc

)
∂ηc

∂βµp
. (2.24)

Rewriting Eq. (2.20) as

ηr
p = βµhs(ηc )−βµc

α
′ q3, (2.25)

we arrive at

∂ηc

∂βµp
= ηr

p

(
∂ηr

p

∂ηc

)−1

=
ηr

pα
′

q3βµ′
hs −ηr

pα
′′ . (2.26)

The final expression then reads

Γp (ηc )σ2
c =−(βγwf −βγhs)σ2

c +ηr
p
α

′

q3 Γc (ηc )σ2
c . (2.27)

2.5 Thermodynamic integration of hard-core potentials

As explained in section 1.2 the free energy cannot be measured directly in a Monte Carlo
simulation. However, there exists indirect methods to evaluate the free energy. In this sec-
tion we explain one of these methods, called thermodynamic integration [18] that relate
the free energy of the system of interest to that of a reference system. Here we introduce
a thermodynamic integration method to compute the free energy of hard-core systems,
that was inspired by the earlier work of Heni and Löwen [45]. The free energy can be
expressed as

F (Nc , Np ,V ,T, A,λ=λmax) = Fi d (Nc , Np ,V ,T,λ= 0)+
∫ λmax

λ=0
dλ

〈
∂F

∂λ

〉
λ

. (2.28)

The reference system is chosen to be an ideal gas, so Fi d (Nc , Np ,V ,T,λ= 0) is the Helmholtz
free energy of Nc ideal colloids and Np ideal polymers in a volume V at temperature T . We
then introduce the suitable auxiliary Hamiltonian for the AOV model

Hλ =λ

(
Nc∑

i< j
Vcc (Ri j )+

Nc∑
i=1

Np∑
j=1

Vcp (|~Ri −~r j |)+ε
Nc∑
i=1

Vwc (zc,i )+ε
Np∑
i=1

Vw p (zp,i )

)
, (2.29)

where we approximate the hard-core potentials with penetrable potentials. Note that the
method can be applied to pure hard spheres by setting Vcp = 0, and Vw p = 0. The inter-
action potential is switched on adiabatically using the coupling parameter λ. In principle,
our system of interest is described by the Hamiltonian (2.29) only in the limit λmax →∞,
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Figure 2.2: Comparison between soft-potential approximations of the hard-core potential.

but also for sufficiently high values of λmax the system reduces to our system of inter-
est with hard-core potentials. Clearly, λmax should be sufficiently large to ensure that the
system is indeed behaving as the hard-core system of interest. On the other hand, λmax

should not be too large, as this would make the numerical integration less accurate. The
integrand function of Eq. (2.28)〈

∂F

∂λ

〉
λ

=
〈
∂Hλ

∂λ

〉
λ

=
〈

Hλ

λ

〉
λ

, (2.30)

can now be computed in a MC simulation. For λ = 0, this system reduces to an ideal
gas, while for λ→∞, the system describes the AOV model given by Eqs. (1.15)-(1.17), and
Eq. (2.1) in bulk (ε = 0) or confined by two walls (ε = 1).

There are different choices possible for the penetrable potentials, here we will present
three different options, illustrated in Fig. 2.2.

2.5.1 Step function

The simplest approximation for the hard-core potential is the step function. In this ap-
proximation the colloid-colloid interaction reads

Vcc (Ri j ) =Θ(σc −Ri j ), (2.31)

where Ri j = |~Ri − ~R j | is the distance between two colloidal particles, with ~Ri the position
of the centre-of-mass of colloid i , and Θ(x) is the Heaviside step function. Likewise we
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define the interaction potential between the colloids and the polymers as

Vcp (|~Ri −~r j |) =Θ
(

(σc +σp )

2
−|~Ri −~r j |

)
, (2.32)

with~r j the position of the centre-of-mass of polymer j . The interaction between the walls
and the particles of species k = c, p is

Vwk (zk,i ) =Θ
(σk

2
− zk,i

)
+Θ

(σk

2
− (Hk − zk,i )

)
, (2.33)

where zk,i is the z-coordinate of particle i of species k.

2.5.2 Triangular function

For this model the colloid-colloid interaction reads

Vcc (Ri j ) =
{

1.0− Ri j

σc
if Ri j <σc

0 otherwise
, (2.34)

where Ri j = |~Ri − ~R j | is the distance between two colloidal particles, with ~Ri the position
of the centre-of-mass of colloid i . The colloid-polymer interaction reads

Vcp (|~Ri −~r j |) =
{

1.0− |~Ri−~r j |
(σc+σp )/2 if |~Ri −~r j | < (σc +σp )/2

0 otherwise
, (2.35)

with~r j the position of the centre-of-mass of polymer j . The interaction between the walls
and the particles of species k = c, p is

Vwk (zk,i ) =
{

1.0− zk,i
σk /2 if zk,i <σk /2

0 otherwise
, (2.36)

where zk,i is the z-coordinate of particle i of species k.

2.5.3 Cut exponential function

The colloid-colloid interaction reads

vcc (Ri j ) =
{
εexp(−ARi j ) if Ri j <σc

0 otherwise
, (2.37)

where Ri j = |~Ri − ~R j | is the distance between two colloidal particles, with ~Ri the posi-
tion of the centre-of-mass of colloid i , and A is an adjustable parameter (A is set equal to
two in Fig. 2.2). Likewise we define the interaction potential between the colloids and
the polymers as

Vcp (|~Ri −~r j |) =
{
εexp(−B|~Ri −~r j |) if |~Ri −~r j | < (σc +σp )/2
0 otherwise

, (2.38)
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with~r j the position of the centre-of-mass of polymer j , and B is an adjustable parameter.
The interaction between the walls and the particles of species k = c, p is

vwi (zk,i ) =
{
εexp(−Czk,i ) if zk,i <σk /2
0 otherwise

, (2.39)

where zk,i is the z-coordinate of particle i of species k, and C is an adjustable parameter.

2.6 Simulation details

The free energy is obtained from Eq. (2.28). The integrals are evaluated using a 21-point
Gauss-Kronrod formula, where 5000-15000 MC cycles per particle are used for the sam-
pling of each integration point. The wall-fluid interfacial tension is then computed using
equation (2.14). The number of colloids N bulk

c , the chemical potential of the polymers µp ,
and the volume V = L×L×H are fixed. We perform semi-grand canonical ensemble sim-
ulations of the AOV model in bulk and a separate simulation of the AOV model confined
by two walls, and measure the average number of polymer in the bulk, 〈N bulk

p 〉, and in the
confined system, 〈Np〉. In the second step, we perform two separate thermodynamic in-
tegrations (in the canonical ensemble) to obtain the free energy of the bulk system with
N bulk

c colloids and 〈N bulk
p 〉 polymers in a volume V , and the confined system of volume V

with N bulk
c colloids and 〈Np〉 polymers. In the canonical ensemble simulations, the chem-

ical potential of the polymers is determined as a consistency check. Typical numbers of
the colloids and the polymers are N bulk

c = 54−900 and N bulk
p = 0−20000, while the volume

of the simulation box is about V = (1200−3000)σ3
c and H > 16σc . The errors are estimated

by calculating the standard deviation from 4 or 5 independent simulations.
To study the (excess) adsorption of colloid-polymer mixtures at a planar hard wall we

simulated both the bulk mixture and the mixture in contact with the hard wall in two in-
dependent Monte Carlo simulations in the grand canonical ensemble and hence we con-
sidered only statepoints of low colloid packing fraction ηc . After discarding 50000 MC
steps per particle for equilibration, we take the average of the number of particles for an-
other 50000 MC steps per particle. The differences in particle numbers (per unit area)
in the confined system and in the bulk system then give the adsorption of both species
via Eqs. (2.5) and (2.6).

2.7 Wall-fluid interfacial tension of hard spheres

In this section we present the results on the interfacial tension of hard spheres from sim-
ulation, SPT and DFT. As shown in Fig. 2.3, the tension increases upon increasing packing
fraction, as expected since the wall tension is related to the work that needs to be done
for inserting the hard wall in the fluid. The agreement between simulations and density
functional theory [47, 56] is remarkably good. The equation (2.18) with the SPT pressure
overestimates the wall-fluid tension at high density. On the other hand, the prediction of
the expression (2.18) with the Carnahan-Starling expression for the pressure [45] underes-
timates the simulation results at high density.
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Figure 2.3: The reduced wall-fluid interfacial tension βγσ2 of hard spheres adsorbed at a hard wall
as a function of the colloidal packing fraction ηc . We compare our simulation results for the step
potential (open circles), and the exponential cut function (filled triangles), with Monte Carlo sim-
ulations of the triangular potential [45] (open squares) and Molecular Dynamics simulations [55]
(crosses). The dotted line indicates the result from SPT interfacial tension plus SPT pressure, the
dashed line indicate results of SPT interfacial tension plus the Carnahan-Starling pressure, and the
solid line denotes the DFT result. Inset: Blow up of the high density region.

We now analyse the differences between the results obtained from using the step func-
tion, triangular function and cut-exponential function as penetrable potentials. As shown
in Fig. 2.3, the step potential performs very well up to a packing fraction ηc = 0.4, but
for higher densities the error bars are huge. This is due to equilibration problems: the
step potential is unable to discriminate between different degrees of overlaps between
two spheres, with the result of huge fluctuations in the integration results at high packing
fraction. The equilibration problems for the step potential can be solved by using a poten-
tial whose value changes as a function of the distance between the colloids. The choice
of Heni and Löwen [45] was the triangular potential. The triangular potential equilibrates
better than the step potential, but as shown in Fig. 2.3, the performance at high density is
not good. This is due to the slow convergence of the triangular function to the real hard-
sphere potential. i.e. hard-sphere behaviour is reached only for very high values of the
parameter λmax. To combine the good convergence of the step potential and the good
equilibration of the triangular potential we use the cut exponential function. As shown in
Fig. 2.3, the statistical error of the integration with this potential remains small also at very
high density. In fact, the limit is set by the onset of prefreezing [57] for ηc ' 0.485, where
the thermodynamic integration fails.
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Figure 2.4: Phase diagram of the AOV model for size ratio q = 1 as obtained from simulations, taken
from Refs. [14] (symbols), and free volume theory [30] (dashed line) as a function of the colloid pack-
ing fraction ηc and the polymer reservoir packing fraction ηr

p . F and S denote the stable fluid and
solid (fcc) phase. F+F and F+S denote, respectively, the stable fluid-fluid, and fluid-solid coexistence
region.

2.8 Wall-fluid interfacial tension of model colloid-polymer mix-
tures

We determined the wall-fluid interfacial tension for AOV colloid-polymer mixtures of size
ratio q = 0.6 and q = 1 for different values of the polymer reservoir packing fraction ηr

p and
of the colloid packing fraction ηc . Since we are interested in the low-density regions, we
applied the thermodynamic integration with the step potential.

The addition of nonadsorbing polymers to a colloidal suspension of hard spheres can
induce a phase separation. In Fig. 2.4 we show the bulk phase diagram for size ratio q = 1
from previous simulations [14] in the (ηr

p ,ηc ) representation. For comparison, we also
plot the phase diagram obtained from free volume theory, which is equivalent to our DFT
phase diagram [30]. At ηr

p = 0 we find the freezing transition of the pure hard-sphere sys-

tem with packing fractions η f
c ' 0.494 and ηs

c ' 0.545 for the coexisting fluid and solid
phase, respectively. The critical point is estimated to be at ηr

p,cr i t = 0.86, while DFT, equiv-

alent to the free-volume theory predicts ηr
p,cr i t = 0.638. For ηr

p < ηr
p,cr i t , we recover the

hard-sphere freezing transition, i.e. there is a stable fluid phase for ηc < 0.494, a fluid-
solid coexistence region for 0.494 < ηc < 0.545, and a stable solid phase (fcc crystal) for
ηc > 0.545. For ηr

p > ηr
p,cr i t , a fluid-fluid coexistence region appears where the system
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demixes in a colloidal liquid phase, rich in colloids and poor in polymers, and a colloidal
gas phase, that is poor in colloids and rich in polymers. The triple point, where the gas,
the liquid, and the solid are in coexistence, is located at ηr

p,triple = 6. For ηr
p > ηr

p,triple, the

fluid-fluid coexistence region disappears, and a wide crystal-fluid coexistence region ap-
pears. The overall phase diagram is analogous to that of a simple fluids upon identifying
ηr

p with the inverse temperature. Despite differences near the critical point, DFT and sim-
ulations results are in good agreement for state points at ηr

p > 1.5. In Fig. 2.5(a) and Fig.
2.5(c) we show the wall-fluid tension for state points below the gas-liquid critical point
for size ratio q = 0.6 and q = 1, respectively. For comparison, we also plot the results for
pure hard spheres (ηr

p = 0). The addition of non-adsorbing polymers to a suspension of
hard-sphere colloids (i.e. increasing ηr

p ) increases the wall-fluid interfacial tension. For
ηc = 0, the wall-tension is the work done to introduce an impenetrable wall in an ideal gas
of polymers divided by the total area: βγ(ηc = 0) =βP i dσp /2, where βP i d = ρr

p is the bulk
pressure of the ideal gas of polymer and σp /2 is the thickness of the depletion layer of the
polymer at the wall. For small ηc , the slope of the tension is smaller than in the hard sphere
case and for ηr

p ≥ 0.4 it is negative. This is due to the attractive interaction that arises be-
tween the colloidal particles and the walls. For large ηc the interfacial tension approaches
that of pure hard spheres as at high colloid density the number of polymers in the mixture
rapidly approaches zero. Simulations and DFT are in good agreement for all state points
that we considered. The SPT predicts correctly the value at ηc = 0, but it systematically
overestimates the wall-fluid tensions for all values of ηc > 0. One can show that the low
ηc expansion violates an exact wall sum rule [58]. The deviation increases with increasing
ηr

p . In Fig. 2.5(b) we show the results for size ratio q = 0.6 for state points that are at higher
ηr

p than the DFT gas-liquid critical point. We did not calculate the binodal with com-
puter simulation, but the system was still in the one phase region of the phase diagram
for ηr

p = 0.5 and 0.6. For comparison, we also plot the results from DFT and SPT. Note
that DFT results are only shown in the stable gas and liquid regimes and are hence discon-
nected from each other, showing the biphasic region at intermediate ηc . In Fig. 2.5(d) we
show the results for the size ratio q = 1 for state points that are at higher ηr

p than the DFT
gas-liquid critical point. For small ηc the SPT fails to reproduce the slope of the curves,
due to the absence of colloid correlations (layering) near the hard wall in SPT theory.

We now turn our attention to the adsorption of colloids and polymers at a hard wall,
as defined by Eqs. (2.5), and (2.6). We compare the simulation results with those from
DFT and SPT. In Figs. 2.6(a) and 2.6(c), we show the results on the colloidal adsorption
while in Figs. 2.6(b), and 2.6(d), we show the results on polymer adsorption for size ra-
tio q=0.6 and q=1, respectively. We notice that increasing the number of polymers in the
system (i.e. increasing ηr

p ) the adsorption of colloids increases; the colloids are attracted
at the hard wall by the depletion interaction. As shown by the polymer adsorption the in-
crease in number of colloidal particles at the walls is followed by a decrease of the number
of adsorbed polymers while increasing the total number of polymers in the system. The
agreement between simulations and DFT is good. This is not surprising since the DFT is
known to provide an accurate description of the colloid-polymer mixture at a planar hard
wall [59]. The SPT equations reproduce the ηc =0 limit correctly. For ηc 6= 0 the essential
features are reproduced but with low accuracy. We also note that the differences in SPT
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Figure 2.5: The wall-fluid interfacial tension of the model colloid-polymer mixture adsorbed against
a hard wall. The symbols denote simulation results, dotted curves denote SPT results [47], the solid
curves denote DFT results [47]. (a) Size ratio q = 0.6 and ηr

p =0, 0.2, and 0.4; (b) size ratio q = 0.6 and
ηr

p =0.5, 0.6, and 0.7; (c) size ratio q = 1 and ηr
p =0, 0.2, and 0.4; (d) size ratio q = 1 and ηr

p =0.7, 0.9,
and 1.0.

are larger for increasing polymer reservoir packing fraction and for size ratio q=0.6. The
SPT performance is worse when the number of polymers in the mixture is relatively high
compared to the number of colloids.

2.9 Conclusions

In conclusion we investigated the wall-fluid tension of the AOV model colloid-polymer
mixtures of size ratio q = 0.6 and q = 1 using Monte Carlo computer simulations. We
used a thermodynamic integration method to determine the free energy of the bulk sys-
tem and the inhomogeneous system. The wall-fluid interfacial tension is the surface ex-
cess free energy per unit area, and is in good agreement with the DFT results. The SPT
wall-fluid interfacial tension is in overall agreement with simulations, but the comparison
is worse for increasing polymer reservoir packing fraction. We also investigated the col-
loid and polymer adsorption of the colloid-polymer mixture at a planar hard wall and we
found good agreement with DFT results. We derived a SPT expression for the adsorption
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Figure 2.6: The adsorption Γσ2
c of the colloid-polymer mixture at a hard wall as a function of the

average colloid packing fraction 〈ηc 〉. Simulation results for polymer reservoir packing fraction ηr
p =

0 (open triangles), ηr
p = 0.2 (open circles), and ηr

p = 0.4 (open squares) are compared with results
from DFT (solid lines) and SPT (dashed lines). The DFT results for ηr

p = 0 are omitted for clarity. a)
Colloid adsorption for size ratio q=0.6; b) Polymer adsorption for q=0.6; c) Colloid adsorption for
q=1; d) Polymer adsorption for q=1.

of colloid-polymer mixtures at a hard wall. The expression reproduces the essential fea-
tures of the adsorption, but with low accuracy. Our thermodynamic integration technique
is well suited to determine the free energy of confined crystals and will be used in the next
chapter to predict the full phase behaviour of confined hard spheres.

Acknowledgements: The DFT calculations presented in this chapter were carried out
by Paul P. F. Wessels and Matthias Schmidt.
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Hard spheres confined between two hard walls

In this chapter we study the phase behaviour of hard spheres confined between two par-
allel hard plates. We determine the full equilibrium phase diagram for arbitrary densities
and plate separations from one to five hard-sphere diameters using free energy calcula-
tions. We find a first-order fluid-solid transition, which corresponds to either capillary
freezing or melting depending on the plate separation. The coexisting solid phase consists
of crystalline layers with either triangular (4) or square (ä) symmetry. Increasing the plate
separation, we find a sequence of crystal structures from · · ·n4→ (n +1)ä→ (n +1)4···,
where n is the number of crystal layers, in agreement with experiments on colloids. At
high densities, the transitions between square to triangular phases are intervened by in-
termediate structures, e.g., prism, buckled, and rhombic phases.

3.1 Introduction

The physics of confined systems is important in different fields of modern technology, like
lubrication, adhesion and nanotechnology. The study of simple models is instrumental in
understanding the behaviour of complex systems. As such the hard-sphere system plays
an important role in statistical physics; it serves as a reference system for determining the
structure and phase behaviour of complex fluids, both in theory and simulations. The bulk
phase behaviour of hard spheres is now well understood. At sufficiently high densities, the
spheres can maximise their entropy by forming an ordered crystal phase [4, 60]. The in-
sertion of a hard wall in such a fluid decreases the number of hard-sphere configurations.
The system can increase its entropy by the spontaneous formation of crystalline layers
with triangular symmetry, the (111) plane, at the wall, while the bulk is still a fluid [57]. It is
induced by the presence of a single wall and should not be confused with capillary freez-
ing. Capillary freezing denotes the phenomenon of confinement-induced freezing of the
whole fluid in the pore at thermodynamic state points where the bulk is still a fluid. This
transition depends strongly on the plate separation. The opposite phenomenon, called
capillary melting, can also occur. The capillary induces melting for thermodynamic state
points that correspond to a crystal in the bulk. Confinement can also change dramatically

25



26 Hard spheres confined between two hard walls

the equilibrium crystal structure. In 1983 Pieranski [61] reported a sequence of layered
solid structures with triangular and square symmetry for colloidal hard spheres confined
in a wedge. The buckling phase was later observed by Weiss et al. [62], but the sequence
of high density structures is determined more accurately in recent experiments [63, 64],
with the observation of prism phases with both square and triangular symmetry. Recently
Cohen [65] studied configurations of confined hard spheres under shear, demonstrating
the importance of the equilibrium configurations in the rheological properties. Despite
the great number of theoretical and simulation studies on confined hard spheres [66–68],
the full equilibrium phase behaviour is yet unknown. In fact, many of the previous studies
were based on an order parameter analysis, which fails dramatically in discriminating the
different structures at high densities and large plate separations. More importantly, free
energy calculations of confined hard spheres are prohibited so far due to the lack of an
efficient thermodynamic integration path which relates the free energy of interest to that
of a reference system, while a further complication arises from the enormous number of
possible solid phases that has to be considered. Hence, it is unresolved whether the exper-
imentally observed phases are stabilised kinetically or are thermodynamically stable.

Figure 3.1: Illustration of hard spheres with diameter σ, confined between parallel hard plates of
area A = Lx Ly and a separation distance H .

In this chapter, we use an efficient thermodynamic integration path that enable us to
calculate the free energy of densely packed and confined hard spheres, with high accuracy
close to the fluid-solid transition. This method allow us to determine the stability of the
structures found in experiments. To this end we perform explicit free energy calculations
to map out the full phase diagram for plate separations from 1 to 5 hard-sphere diame-
ters. We report a high number of thermodynamically stable crystal structures including
triangular, square, buckling, rhombic, and prism phases, and a cascade of corresponding
solid-solid transformations. In addition, the free energy calculations allow us to determine
the chemical potential at coexistence, that was inaccessible in previous simulations. From
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the analysis of the chemical potential, we find an intriguing sequence of capillary freezing
and melting transitions coupled to a structural phase transition of the confined crystal. We
note that our new method and results are also relevant for confined simple fluids [69–71]
and self-assembled biological systems [72]. In addition, the structure of dense packings of
spheres explains the shape of for instance snowflakes, bee honeycombs, and foams, and it
is of great importance for fundamental research, e.g., solid state physics and crystallogra-
phy, and for applications like communication science or powder technology [73, 74].

3.2 Model and Method

Our model system consists of N hard spheres with diameterσ, confined between two par-
allel hard plates of area A = Lx Ly (Fig. 3.1). In each layer we used approximately 200
particles. We use the packing fraction η=πσ3N /(6AH) as a dimensionless density, where
H is the distance between two plates.

We first determined the trial structures carrying out Monte Carlo (MC) simulations in
a box, which was allowed to change its shape to accommodate different types of crys-
tals. The ratio Lx /Ly could vary while H and A were fixed. Trial solid structures were
obtained from crystals with triangular or square symmetry relaxed with MC moves while
slowly increasing the density by expanding the spheres. The free energy F for the result-
ing equilibrated structures was calculated as a function of η and H . We used the standard
thermodynamic integration technique [18], but with a new and efficient path based on
the cut-exponential function introduced in section 2.5 (see also Fig. 2.2). Neither the step
function nor the triangular function have the necessary accuracy to compute the free en-
ergy at the coexisting densities. The sphere-sphere potential reads

vi j (Ri j ) =
{
εexp(−ARi j ) if Ri j <σc

0 otherwise
, (3.1)

and the wall-fluid potential

vwi (z) =
{
εexp(−Bzi ) if zi <σc /2
0 otherwise

, (3.2)

where Ri j is the distance between spheres i and j , zi is the distance of sphere i to the
nearest wall, A and B are adjustable parameters that are kept fixed during the simulations,
and ε is the integration parameter. This penetrable potential enabled us to change grad-
ually from a non-interacting system to the confined hard-core system of interest. The
limit ε→∞ yields the hard-core interaction defined by equation (1.5), but convergence of
the thermodynamic integration was already obtained for ε∼ 70kB T . The reference states
(ε = 0kB T ) are the ideal gas and the Einstein crystal for the fluid and solid phase, respec-
tively. We used a 21-point Gaussian quadrature for the numerical integrations and the
ensemble averages are calculated from runs with 40000 MC cycles (attempts to displace
each particle once), after first equilibrating the system during 20000 MC cycles. We deter-
mined phase coexistence by equating the grand potentials Ω= F −µN [50].
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Figure 3.2: The equilibrium phase diagram of hard spheres with diameter σ confined between two
parallel hard walls in the plate separation H - packing fraction η representation. The white, shaded
and dotted regions indicate the stable one-phase region, the two-phase coexistence region, and the
forbidden region, respectively.

3.3 Results

To validate the approach described in the previous section, we perform simulations of
a bulk system of hard spheres and we find that the packing fractions of the coexisting
fluid and face-centered-cubic (fcc) solid phase are given by η f = 0.4915±0.0005 and ηs =
0.5428±0.0005, respectively. The pressure and the chemical potential at coexistence are
βPσ3 = 11.57±0.10 and βµ= 16.08±0.10. These results are in good agreement with ear-
lier results [60, 75]. Furthermore, to validate the approach for confined systems, we de-
termine at bulk coexistence the wall-fluid interfacial tension βγwfσ

2 = 1.990±0.007, and
the wall-solid interfacial tension for the (111) and (100) planes of the fcc phase, βγ111

ws σ
2 =

1.457±0.018 and βγ100
ws σ

2 = 2.106±0.021. As already shown in Fig. 2.3 these results are in
agreement with previous simulations [45], but the statistical error is one order of magni-
tude smaller due to our new thermodynamic integration path.

Employing this approach we determine the phase behaviour of confined hard spheres
for plate separations 1 < H/σ ≤ 5. Fig. 3.2 displays the full phase diagram based on free
energy calculations in the H −η representation. The white regions of the phase diagram
denote the stable one-phase regions. The shaded regions indicate coexistence between
fluid and solid or two solid phases, and the dotted region is forbidden as it exceeds the
maximum packing fraction of confined hard spheres. At low densities, we observe a sta-
ble fluid phase followed by a fluid-solid transition upon increasing the density. The os-
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Figure 3.3: Stable solid structures of confined hard spheres. (a) The triangular phase 24 (b) The
square phase 2ä (c) The buckling phase 2B (d) The rhombic phase 2R (e),(g) The prism phase
with square symmetry 3Pä (f),(h) The prism phase with triangular symmetry 3P4. In (a)-(f) the
point of view is at an angle of 30◦ to the z direction. In (g),(h) the point of view is at an angle of
90◦. Different shades indicate particles in different planes ((a)-(d)) or particles belonging to different
prism structures ((e)-(h)).
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Table 3.1: List of intermediate structures In as found in our simulations and in the experiments of
Fontecha [64].

Phase Transition Simulation1 Experiment
I1 14→ 2ä 2B 2B

I2 2ä→ 24 2R 2R

I3 24→ 3ä 2P4+2Pä 2P4+2Pä
I4 3ä→ 34 3R+3Pä 3R+3Pä+3P4
I5 34→ 4ä 3P4+4B 3Pä
I6 4ä→ 44 4Pä+4R+4P4 4Pä+4P4
I7 44→ 5ä 4P4 4P4, 4Pä, H 2

I8 5ä→ 54 5Pä+4P4+5R 5P 3

I9 54→ 6ä 5P4 no data
I10 6ä→ 64 5Pä+5P4 no data

cillations in the freezing and melting lines reflect the (in)commensurability of the crystal
structures with the available space between the walls. For the crystal phases, we follow
the convention introduced by Pieranski [61], where n4 denotes a stack of n triangular
layers, and nä a stack of n square layers. For H/σ → 1, the stable crystal phase con-
sists of a single triangular layer 14, which packs more efficiently than the square layer.
As the gap between the plates increases, crystal slabs with triangular (Fig. 3.3(a)) and
square packings (Fig. 3.3(b)) are alternately stable. We find the characteristic sequence
· · ·n4→ (n +1)ä→ (n +1)4, which consists of an n4→ (n +1)ä transformation where
both the number of layers and the symmetry change followed by an (n +1)ä→ (n +1)4
transformation where only the symmetry changes. This sequence is driven by a compe-
tition of a smaller height of n square layers compared to n triangular layers and a more
efficient packing of triangular layers w.r.t. square layers. When the available gap is larger
than required for the n4 structure, but smaller than for (n +1)ä, intermediate structures
may become stable. Similar arguments can be used for the intervention of intermediate
structures in the (n +1)ä→ (n +1)4 transformation. Especially at high packing fractions,
the spheres can increase their packing by adopting interpolating structures. In Fig. 3.2
we report the boundaries of the interpolating regions In. Each region represents one or
more interpolating structures, that are listed in Tab. 3.1, according to the standard no-
tation. Within the resolution of our simulations, it is difficult to draw the phase bound-
aries of all the intermediate structures in In, but in Tab. 3.1 the thermodynamically stable
structures are listed in the order they appear upon increasing H and η. We also compare
our sequence of structures with the experimental one [64]. The experiments considered
charged particles, but we do not expect that the soft repulsion has a strong effect on the
observed structures at high densities. The agreement is excellent at small plate separa-
tions. The buckling phase 2B (Fig. 3.3(c)) interpolates between the 14 and 2ä phases.
In the 2B phase, the 14 structure is split into two sublayers consisting of rows that are
displaced in height and which can transform smoothly into 2ä structure upon increas-
ing the gap. The rhombic phase 2R (Fig. 3.3(d)) is found between the 2ä and 24 phases.
The rhombic phase is also stable between the nä and n4 phases for n ≤ 5, but not in the
whole region. In addition, we find that at higher n the interpolating structures are mainly
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prism phases. In agreement with experiments, we find two types of prisms, one with a
square base nPä (Fig. 3.3(e)), and one with a triangular base nP4 (Fig. 3.3(f)), where n
indicates the number of particles in the lateral dimension of the prism base. As shown in
Fig. 3.3(g),(h), these structures display large gaps as a result of periodically repeated stack-
ing faults in the packing which, nevertheless, allow particles to pack more efficiently, than
a phase consisting of parallel planes of particles. For n > 3, differences between simula-
tions and experiments emerge. We find that the stability region of interpolating structures
between n4, and (n+1)ädecreases for larger H , becoming invisible on the scale of Fig. 3.2
for I 9 = 54→ 6ä. On the other hand, the region of stability of the interpolating structures
between nä and n4 increases while increasing the wall separation, becoming stable also
at low packing fractions for the transitions I 8 = 5ä→ 54, and possibly I 10 = 6ä→ 64. We
also note that the solid-solid transitions are first-order with a clear density jump at low η,
but they get weaker (and maybe even continuous) upon approaching the maximum pack-
ing limit. In addition, the rhombic and buckling phases are highly degenerate as we find
zig-zag and linear buckling or rhombic phases, and a combination of those.

412101 61 0281
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Figure 3.4: Chemical potential βµ at fluid-solid coexistence, for different wall separations H/σ. The
symbols are the simulation results for the triangular (4) and square structures (ä). The thin dashed
line is a guide to the eye. The thick continuous line indicate the value of the bulk freezing chemical
potential βµ= 16.08. The thick dashed and dotted curves are the prediction of the Kelvin equation
for the (111), and (100) planes parallel to the walls, respectively.

We now turn our attention to the fluid-solid transition. In Fig. 3.4, we plot the chem-
ical potential βµcap at the freezing transition of the confined system as a function of H .
The freezing for crystal slabs with a triangular symmetry are denoted by triangles, while
the square symmetry is displayed by squares. We find strong oscillations in the chemical



32 Hard spheres confined between two hard walls

potential reminiscent to the (in)commensurability of the crystal structures with plate sep-
aration. The highest values for βµcap are reached at the transition region n4→ (n +1)ä,
corresponding to plate separations where both structures are incommensurate and hence
unfavourable. In this regime, βµcap can reach values that are higher than the bulk freezing
chemical potential βµbulk (the black vertical line in Fig. 3.4), corresponding to capillary
melting, while the freezing transitions with βµcap lower than the bulk value correspond
to capillary freezing. Hence, we find a re-entrant capillary freezing/melting behaviour for
wall separations 1 < H/σ< 3.5. In addition, we compare our results with the predictions of
the Kelvin equation[52]: βµcap =βµbulk−πσ3/3H(γw f −γw s )/(ηs −η f ) using the parame-
ters determined in our simulations. The thick dashed line in Fig. 3.4 is the prediction of the
Kelvin equation for the (111) crystal plane (triangular order) at the walls, while the dotted
line is that for the (100) plane (square order). The Kelvin equation predicts capillary freez-
ing for the triangular structure and capillary melting for the square structures. The Kelvin
equation predictions are in reasonable agreement with our simulations for triangular or-
der for wall separation as small as H/σ∼ 4, but deviates for smaller H , while the prediction
for the square structure is in agreement only at very small H . It is surprising to find quali-
tative agreement at small H since the Kelvin equation is valid in the limit H/σ→∞.

3.4 Conclusion

In summary, we have calculated the equilibrium phase diagram of confined hard spheres
using free energy calculations with a novel integration path. The high density sequence of
structures is in good agreement with experimental results. We find that the prism phases
are thermodynamically stable also at lower densities, and this work will, hopefully, stim-
ulate further experimental investigations, for a quantitative comparison at intermediate
packing fractions. In addition, our results show an intriguing sequence of melting and
freezing transitions upon increasing the distance between the walls of a slit which is in
contact with a bulk reservoir. The mechanical behaviour is therefore very sensitive on the
degree of confinement, and the knowledge of the phase diagram can help the understand-
ing and fabrication of new materials. The transition from confined to bulk behaviour, and
the interface between different solid structures (studied in lower dimensions in Ref. [76])
represent interesting directions for future investigations.
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Colloid-polymer mixtures confined between two
parallel planar walls

We investigate the fluid-fluid demixing transition in inhomogeneous AOV colloid-polymer
mixtures confined between two parallel plates with separation distances between one
and ten colloid diameters. Two different types of confinement induced by a pair of par-
allel walls are considered, namely either through two hard walls or through two semi-
permeable walls that repel colloids but allow polymers to freely penetrate. For hard (semi-
permeable) walls we find that the capillary binodal is shifted towards higher (lower) poly-
mer fugacities and lower (higher) colloid fugacities as compared to the bulk binodal; this
implies capillary condensation (evaporation) of the colloidal liquid phase in the slit. A
macroscopic treatment is provided by a novel symmetric Kelvin equation for general bi-
nary mixtures, based on the proximity in chemical potentials of statepoints at capillary
coexistence and the reference bulk coexistence. Results for capillary binodals compare
well with those obtained from the classic version of the Kelvin equation due to Evans and
Marini Bettolo Marconi [J. Chem. Phys. 86, 7138 (1987)], and are quantitatively accurate
away from the fluid-fluid critical point, even at small wall separations. However, the sig-
nificant shift of the critical polymer fugacity towards higher values upon increasing con-
finement, as found in simulations, is not reproduced. For hard walls the density profiles
of polymers and colloids inside the slit display oscillations due to packing effects for all
statepoints. For semi-permeable walls either similar structuring or flat profiles are found,
depending on the statepoint considered.

4.1 Introduction

Capillary effects that are induced by the confinement of a system are crucial to a variety of
phenomena. An everyday example is the capillary rise, against gravity, of the meniscus of a
free gas-liquid interface at the wall of a container that encompasses the fluid. The contact
angle at which the gas-liquid interface hits the wall is described by Young’s equation [52],
γlg cosθ = γwg −γwl, where the relevant interfacial tensions are those between the coexist-
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ing liquid and gas phase, γlg, the wall and the gas phase, γwg, and the wall and the liquid
phase, γwl. When the contact angle is finite, 0 < θ < π, the liquid phase partially wets the
wall; for θ = 0 a macroscopic layer of liquid grows between the wall and the gas phase far
away from the wall, hence the liquid completely wets the wall; for θ =π a correspondingly
reversed situation occurs: a macroscopic layer of gas grows between the wall and the liq-
uid phase far away from the wall, hence the wall is completely “wet” by the gas phase and
drying occurs. All these phenomena are driven by the influence of a single wall on the fluid.

Different, but related effects occur under confinement of fluids in pores, e.g. between
two parallel planar walls. The phase diagram of such a confined system can differ sig-
nificantly from that in bulk [77, 78]. Depending on the nature of the interactions between
fluid particles and the walls, the bulk gas with chemical potential µ<µsat, where µsat is the
value at saturation, can condense inside the pore and form a dense confined liquid phase.
This capillary phase transition is accompanied by a jump in the adsorption isotherm at a
given value of µ < µsat. Confinement may lead to stabilization of a phase that is unstable
(or at least metastable) in bulk for a given statepoint. As opposed to capillary condensa-
tion the opposite effect, referred to as capillary evaporation, is also feasible: A fluid with
chemical potential µ > µsat forms a liquid in bulk, but evaporates inside the capillary. A
simple, yet powerful, way to quantitatively describe capillary phase transitions is based
on the Kelvin equation, derived from a macroscopic treatment of the thermodynamics of
the inhomogeneous system. For capillaries with planar slit-like geometries [50], it pre-
dicts that liquid-gas coexistence inside the slit will occur at µ=µsat+γlg cos(θ)/h, where h
is the separation distance between the two walls. Hence, contact angles 0 ≤ θ <π/2 corre-
spond to capillary condensation, while π/2 < θ ≤ π corresponds to capillary evaporation.
In this chapter we investigate capillary phenomena occurring on a mesoscopic scale using
a simple model for a mixture of sterically-stabilized colloidal particles and non-adsorbing
polymer coils confined between two parallel planar walls. As explained in section 1.3.3,
polymers induce an attractive interaction between two colloids, and between colloids and
a hard wall. This attractive interaction is responsible for the complete wetting of the col-
loidal liquid phase at a hard wall [14, 59, 79–81]. Complete wetting of the colloidal liquid
is actually observed in experimental realizations of colloid-polymer mixtures in contact
with glass substrates [82, 83] or glass substrates that possess the same coating with an
organophilic group as the colloidal particles do [13]. On the other hand, experiments [84]
with polymer-grafted substrates (of the same chemical nature as the dissolved polymers)
showed that the contact angle is larger than π/2. Although the structure of the polymer
coating was not studied in detail, Wijting et al. [84] expect the polymers to form a fluffy
layer with a distribution of loops and tails. Such a layer is known to diminish the depletion
interaction between colloidal particles and the substrate [85]. Wessels et al. [47] modelled
this type of substrate using a semi-permeable wall, that is completely penetrable to the
polymers but act like a hard wall on the colloids. Using DFT they predict complete drying.
More recently the behavior of the mixtures in contact with porous walls was investigated,
and both wetting of the surface and drying into the porous matrix depending on the pre-
cise path in the phase diagram were found [86]. Porous walls are wet by the liquid phase,
with a transition from partial to complete wetting at a polymer fugacity zp almost inde-
pendent on the porosity of the wall.

Although much research has been devoted to the understanding of the behavior of the
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mixture in contact with a single wall, few studies have been reported on the effect of con-
finement on the phase behavior of the mixture. Computer simulations and theory were
used to study porous matrices. When impenetrable to both components they were found
to induce capillary condensation, whereas matrices penetrable to the polymers, but not
to the colloids, induce capillary evaporation [87, 88]. Furthermore laser induced confine-
ment [89] was found to induce capillary condensation. The only experimental result on
capillary condensation that we are aware of is that by Aarts and Lekkerker [83]. These
authors found capillary condensation for colloid-polymer mixtures confined in a wedge
formed by a glass bead placed on a glass substrate.

The aim of the present chapter is to determine the phase behavior and the structure of
colloid-polymer mixtures confined between two parallel planar walls for a complete range
of wall separation distances. We focus on the fluid part of the phase diagram, and present
results for hard walls and semi-permeable walls, obtained from computer simulations and
density functional theory. We also investigate the structure of the mixtures inside the pore,
and derive and test a generalized Kelvin equation for binary mixtures confined in slit-like
pores and compare its predictions with our simulation results.

4.2 Model

The mixture of colloids and polymers is described by the AOV model we introduced in
section 1.3.3.

The hard walls are modelled such that neither polymers nor colloids can penetrate the
walls. The wall-particle potential acting on species k = c,p is

vwk(z) =
{

0 if −(H −σk )/2 < z < (H −σk )/2
∞ otherwise,

(4.1)

where z is the coordinate normal to the walls, and H is the wall separation distance. We
define the volume of the system as V = AH , where A is the (lateral) area of the confining
walls. Fig. 4.1(a) shows an illustration of the model.

Semi-permeable walls are defined by the external potential

vwk(z) =
{

0 if −(Hk −σk )/2 < z < (Hk −σk )/2
∞ otherwise,

(4.2)

where Hc is the wall separation distance that the colloids experience, while Hp is the wall
separation distance that the polymers feel; the latter can be interpreted as the distance be-
tween substrate walls. We define the volume as V = AHc. Fig. 4.1(b) shows an illustration
of this model. Any choice of Hp > Hc +2σp leads to decoupling of the (inner) colloid and
(outer) polymer wall, since the ideal gas of polymers cannot mediate correlations from
the substrate to the interior of the system.

4.3 Simulation method

We perform Gibbs Ensemble Monte Carlo (GEMC) simulations to determine the phase be-
havior of the AOV model in bulk and confined between two parallel planar walls. The num-
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Figure 4.1: (a) Illustration of the AOV model of hard-sphere colloids (dark-grey circles) of diameter
σc and ideal polymers (light-grey circles) of diameter σp confined between parallel hard walls of
area A and separation distance H . Colloids behave as hard spheres, polymers cannot penetrate
colloids, and polymers may freely overlap. The walls are impenetrable to both components. The
z-axis is perpendicular to both walls, and the origin is located in the middle of the slit. (b) Same as
in (a) but for walls that are penetrable for polymers and impenetrable for colloids (semi-permeable
walls) of area A and separation distance Hc. Polymers are confined between parallel hard walls
(continuous line) with separation distance Hp. This is a model for substrates at distance Hp coated
with a polymer brush (not shown) of thickness (Hp−Hc)/2; the free distance between both polymer
brushes is Hc. Solute polymers (light-grey circles) are able to penetrate the brush (dashed lines) but
not the substrate; the brush acts like a hard wall to the colloids.

ber of colloids Nc, the number of polymers Np, and the volume V are kept fixed and are
divided into two separate subsystems a and b with volume V a and V b, respectively, with
the constraints that V =V a+V b , Nc = N a

c +N b
c and Np = N a

p+N b
p . The two subsystems are

allowed to exchange both particles and volume in order to satisfy the conditions for phase
equilibrium, i.e., equality in both phases of the chemical potentials of the two species and
of the pressure. The method can be applied to bulk as well as to confined systems [90, 91],
and will be described briefly below; for more details, we refer the reader to Ref. [18].

The bulk equilibrium conditions between two coexisting phases require equal tem-
perature T , equal chemical potential µi for each species i (i = c,p in our case) and equal
pressure P . In our model, the temperature T is irrelevant; because of the hard-core na-
ture of the interaction potentials it acts only as a scaling factor setting the thermal energy
scale. In the GEMC method, the two coexisting phases are simulated simultaneously in
two separate (cubic) boxes with standard periodic boundary conditions. The acceptance
probability for a trial move to displace a randomly selected particle is

P = min{1,exp[−β(Unew −Uold)]}, (4.3)
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where

exp[−β(Unew −Uold)] =
{

1 if βUnew = 0
0 if βUnew =∞ (4.4)

with Unew and Uold the energy of the new and old generated configuration, andβ= 1/(kB T )
the inverse temperature with kB being the Boltzmann constant. Note that Uold = 0 as con-
figurations with Uold =∞ are excluded by a vanishing Boltzmann factor (regardless of the
temperature). Transfer of (single) particles between the two boxes is used to satisfy equal
chemical potential for both species. We select at random which subsystem is the donor
and which is the recipient as well as the species (colloid or polymer) of the particle trans-
fer. Subsequently, a specific particle is randomly selected in the donor box and transferred
to a random position in the recipient box with probability

P = min

{
1,

Na
i Vb

(Nb
i +1)Va

exp[−β(Unew −Uold)]

}
, (4.5)

where i = c,p is the species of the selected particle, V a is the volume of the donor box and
V b is the volume of the recipient box.

In addition, volume changes of the boxes are used to satisfy the condition of equal
pressure in both subsystems. We hence perform a random walk in ln(Va/Vb) with the
acceptance probability

P = min
{
1,R exp[−β(Unew −Uold)]

}
, (4.6)

where

R =
(

V a
new

V a
old

)N a
c +N a

p+1 (
V b

new

V b
old

)N b
c +N b

p+1

, (4.7)

and with the condition that the total volume V = V a
old +V b

old = V a
new +V b

new is constant ,
where the subscript old (new) marks quantities before (after) the trial move.

Phase equilibria in confined geometries, like e.g. inside slit pores as considered here,
can be determined by either determining the adsorption isotherm in simulation or by em-
ploying the GEMC simulation method extended to a slit pore [91]. In the first method,
the pore is coupled to a reservoir of bulk fluid. The adsorption of the fluid inside the
pore is then measured at constant temperature for different bulk densities of the reser-
voir, i.e. the chemical potentials of the various species are fixed. A jump in the adsorption
isotherm corresponds to capillary condensation or evaporation in the slit pore. However,
this method is inaccurate for determining phase coexistence due to hysteresis.

In order to determine the binodal lines, we hence employ the GEMC method adapted
to a slit pore [91]: Two separate simulation boxes are simulated, one containing the con-
fined gas and one containing the confined liquid. Each box has periodic boundary con-
ditions in both directions parallel to the walls. Capillary coexistence implies equality of
temperature, chemical potentials for both species as well as equality of the wall-fluid in-
terfacial tension. Fulfilling the first two conditions is performed similar to the procedure
for determining bulk phase equilibria, i.e. using particle displacements with acceptance
probability given by Eq. (4.3) and particle transfers with acceptance probability given by
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Eq. (4.5). We satisfy the third requirement of equal wall-fluid interfacial tension in both
phases by exchanging wall area (and hence volume) between the two boxes, while fixing
both the wall separation distance H in each box as well as the total lateral area of both
boxes Aa + Ab = A is constant, with Aa and Ab the area of the subsystems a and b, re-
spectively. A random walk in ln(Aa/Ab) is then performed with an acceptance probability
given by

P = min
{
1,R exp[−β(Unew −Uold)]

}
, (4.8)

with

R =
(

Aa
new

Aa
old

)N a
c +N a

p+1 (
Ab

new

Ab
old

)N b
c +N b

p+1

. (4.9)

We determine the fugacities of the colloids and of the polymers by applying the GEMC
version of the particle insertion method [92]

za,b
k =

〈
V a,b

N a,b
k +1

exp[−β∆U ]

〉−1

k = c,p (4.10)

where a,b label the two simulation boxes and ∆U is the energy defined by the acceptance
rule of Eq. (4.5). We determine the densities of the two coexisting phases by sampling his-
tograms of the probability density P (ηc,ηp) to observe the packing fractions ηp and ηc for
the polymers and colloids, respectively. The two maxima of P (ηc,ηp) correspond to the
coexisting packing fractions in the thermodynamic limit [92]. Statistical uncertainties of
the sampled quantities were determined by performing three or four independent sets of
simulations. The standard deviation of the results from the simulation sets was used as
the error estimate.

4.4 Kelvin equation for binary mixtures

We derive expressions for the shift in chemical potentials for the gas-liquid binodal of a bi-
nary mixture confined between parallel plates assuming knowledge of bulk quantities like
the bulk coexisting densities, the chemical potentials at bulk coexistence, and the liquid-
wall and gas-wall interfacial tensions, γwl and γwg, respectively. Using a macroscopic pic-
ture we employ the grand potential of the mixture confined in a slit of two parallel walls
with area A and separation distance h between the two walls 1

Ω(µc,µp) = Ahω(µc,µp)+2Aγ(µc,µp,h), (4.11)

where µc and µp are the chemical potentials of colloids and polymers, respectively, ω is
the bulk grand potential density (per unit volume), and 2γ is the interfacial tension of the
mixture and the plates at distance h. For large h, we can approximate the latter quantity by
twice the interfacial tension of the mixture in contact with a single wall, e.g., 2γwα(µc,µp),

1We will discuss the relationship of h to our model parameter H (see Sec. 4.2) in more detail in Sec. 4.5.5.
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where α=l,g are for the liquid and the gas phase, respectively. The aim is to predict the
grand potential in the capillary given the knowledge of the thermodynamics of the bulk
at coexistence, i.e. at a statepoint specified through the bulk values of the chemical po-
tentials µ∗

c and µ∗
p. Hence, we can reexpress the chemical potentials of both species for

the confined fluid as µc = µ∗
c +∆µc and µp = µ∗

p +∆µp. Quantities at coexistence carry a
superscript α = l,g, where l,g indicate liquid and gas respectively.

The thermodynamic relations for the bulk densities of the colloids and polymers, ρc

and ρp , respectively, read

ρc =− ∂ω

∂µc

∣∣∣∣
µp

, ρp =− ∂ω

∂µp

∣∣∣∣
µc

, (4.12)

while the (excess) adsorption of the colloids and the polymers, Γc and Γp , are given by

Γc = ∂γwα

∂µc

∣∣∣∣
µp

, Γp = ∂γwα

∂µp

∣∣∣∣
µc

. (4.13)

Using Eqs. (4.12) and (4.13), we can perform a Taylor expansion of the right hand side
of Eq. (4.11)

1

Ah
Ω(µc,µp) ≈ ω(µ∗

c ,µ∗
p)−ραc∆µc −ραp∆µp

+ 2

h

[
γwα+Γαc∆µc +Γαp∆µp

]
, (4.14)

where the bulk densities, ραc and ραp , and the (excess) adsorptions, Γαc and Γαp , are evalu-
ated in one of the coexisting phases α= l,g at the statepoint given by µ∗

c and µ∗
p.

We next consider the capillary to be at phase coexistence, i.e. we might envisage two
capillaries in contact with each other, one being filled with gas, the other being filled with
liquid. Phase equilibrium between both capillaries implies equality of the chemical po-
tential of each species and of the grand potential in both phases,

Ωg(µc,µp) =Ωl(µc,µp), (4.15)

whereΩg andΩl is the grand potential of the gas and the liquid phase, respectively. Using
the approximation (4.14) in (4.15) yields(

ρl
c −ρg

c −
2

h
(Γl

c −Γg
c)

)
∆µc

+
(
ρl

p −ρg
p −

2

h
(Γl

p −Γg
p)

)
∆µp

= 2

h

(
γwl(µ

∗
c ,µ∗

p)−γwg(µ∗
c ,µ∗

p)
)
. (4.16)

In the limit h is large compared with the microscopic lengths and that the adsorp-
tions remain finite, we can neglect the terms proportional to (Γl

i −Γ
g
i )/h. Hence, Eq. (4.16)

simplifies to (
ρl

c −ρg
c
)
∆µc +

(
ρl

p −ρg
p
)
∆µp = 2

h

(
γwl −γwg

)
, (4.17)
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which constitutes a single equation for the two unknown shifts in the chemical potentials,
∆µc and ∆µp. In order to obtain a closed system of equations one requires another as-
sumption. We will present three different approaches in the following. Each approach can
be viewed as a different choice of an “optimal” bulk reference state as illustrated in Fig.
4.2. A comparison with the numerical results will be presented in Sec. 4.5.5.

4.4.1 Constant Polymer Chemical Potential

The bulk reference state is chosen to be at the same polymer chemical potential. This
requirement is similar to imposing the same temperature in a simple substance. The op-
timal bulk reference state with the same chemical potential of polymers leads to

∆µp = 0. (4.18)

Eqs. (4.17) and (4.18) readily yield a one-component Kelvin equation

∆µc = 2

h

γwl −γwg

ρl
c −ρg

c

. (4.19)

Clearly this result can be obtained with less labour by directly dealing with the effec-
tive one-component system of colloids interacting with a depletion potential, and rather
serves as a illustration for the validity of the reasoning leading to Eq. (4.17).

4.4.2 Constant Pressure

This reference state was used by Evans and Marini Bettolo Marconi in Ref. [50]. The bulk
reference state is chosen to possess the same pressure. In order to derive a corresponding
condition consider the (finite difference version of the) Gibbs-Duhem relation

(S/V )∆T −∆P +ρc∆µc +ρp∆µp = 0, (4.20)

where S is the entropy. Clearly, for athermal systems ∆T = 0. We use (4.20) to compare the
statepoint at capillary coexistence with the reference statepoint at bulk coexistence that
possesses the same pressure, i.e. ∆P = 0, hence

∆µp =−ρ
α
c

ραp
∆µc, α= g, l. (4.21)

As shown in Fig. 4.2 the constant pressure paths (for which the Gibbs-Duhem relation is
a good approximation close to the bulk binodal) have a discontinuity at bulk coexistence.
To predict the capillary phase behavior for statepoints that lie on the gas side of the bulk
gas-liquid binodal (hence to predict capillary condensation), the correct reference state is
the coexisting gas phase, and we use (4.21) with α= g. Together with (4.17) we obtain the
classic result for capillary condensation,

∆µc = 2

h

γwl −γwg

ρl
c − (ρg

c/ρg
p)ρl

p

,

∆µp = 2

h

γwl −γwg

ρl
p − (ρg

p/ρg
c)ρl

c

. (4.22)
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Figure 4.2: Phase diagram of the AOV model with size ratio q = σp/σc = 1 as a function of the col-
loidal chemical potential µc and the polymer chemical potential µp. The bulk binodal from free
volume theory (thick continuous curve) is shown along with isobaric lines (thin continuous curves)
for two bulk reference points. The thick dashed curves indicate the normal paths for the same ref-
erence points. The thin dashed curves are an illustration of the possible prediction of the Kelvin
equation for the capillary binodals. For clarity we omitted the paths with constant polymer chemi-
cal potential.

Alternatively, predicting the capillary phase behavior for statepoints that lie on the liquid
side of the bulk gas-liquid binodal (and to predict capillary evaporation), we choose the
coexisting liquid phase as a reference. Eq. (4.21) with α = l together with Eq. (4.17) leads
to the following result for capillary evaporation

∆µc = − 2

h

γwl −γwg

ρ
g
c − (ρl

c/ρl
p)ρg

p

,

∆µp = − 2

h

γwl −γwg

ρ
g
p − (ρl

p/ρl
c)ρg

c

. (4.23)

The derivation presented here yields the same results as given in Ref. [50], where a sin-
gle capillary is considered in contact with a bulk reservoir. We note that this procedure
leads to two different equations for the two phenomena of capillary condensation and
evaporation.
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4.4.3 Normal Path Relation

As a third and novel alternative we choose the reference state such that the statepoint
of interest lies on a path in the phase diagram that crosses the bulk liquid-gas binodal
in perpendicular (or normal) direction in the plane of chemical potentials. This implies
optimizing proximity in the µc −µp plane between both statepoints.

The corresponding relation can readily be established starting from the relation of the
slope of the bulk binodal to the difference in coexisting densities,

dµc

dµp

∣∣∣∣
coex

=−
ρl

p −ρg
p

ρl
c −ρg

c

. (4.24)

Hence a path normal to the bulk binodal is given by

dµc

dµp

∣∣∣∣
normal

= ρl
c −ρg

c

ρl
p −ρg

p

, (4.25)

from which we deduce the finite-difference version

∆µp =
ρl

p −ρg
p

ρl
c −ρg

c

∆µc, (4.26)

which, together with Eq. (4.17) yields

∆µc = 2

h
(γwl −γwg)

ρl
c −ρg

c

(ρl
c −ρg

c)2 + (ρl
p −ρg

p)2
,

∆µp = 2

h
(γwl −γwg)

ρl
p −ρg

p

(ρl
c −ρg

c)2 + (ρl
p −ρl

p)2
, (4.27)

valid both for capillary condensation and evaporation. As shown in Fig. 4.2 the normal
paths are symmetric with respect to the gas and liquid side of the bulk binodal. The some-
what subtle choice of the reference state, which is different for the two phenomena in
section 4.4.2, resulting in using either Eq. (4.22) or Eq (4.23) is now avoided. The proce-
dure described here leads to one equation, which can be used for both phenomena. This
might be advantageous for mixtures where the corresponding phases are less obvious, like
e.g. confined liquid crystals.

4.5 Results

In this section, we focus on AOV colloid-polymer mixtures with a size ratio q = 1, a pre-
viously well-studied and also experimentally accessible case. We have performed GEMC
simulations with 4×108 steps discarding the initial 108 steps for equilibration. The accep-
tance probability of particle displacement was kept around 10% to 20%, the acceptance
probability for volume exchanges was around 50%, while the acceptance probability for
transfer of particles was strongly dependent on the statepoint and varied between 50% and
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Figure 4.3: Bulk phase diagram of the AOV model with size ratio q = σp/σc = 1 as a function of the
colloidal packing fraction ηc and the polymer reservoir packing fraction ηr

p. Coexistence is along

the horizontal tie lines (not shown). Shown are GEMC simulation results for volumes V = 3000σ3
c

(circles) and V = 1250σ3
c (diamonds), as well as the simulation results from Ref. [14] (squares). We

also display the result of the fit of Eqs. (4.28) and (4.29) (solid line) to the simulation data to and the
binodal obtained from DFT, or, equivalently, free volume theory (dashed line).

5% for the polymers and from 10% to less than 0.1% for the colloids. Fig. 4.3 shows the bulk
phase diagram obtained from simulations with a simulation box of volume V = 3000σ3

c .
Simulation runs with smaller system sizes display negligible finite size effects. In the ηc-
ηr

p representation, the shape of the binodal is similar to that of a simple fluid upon iden-
tifying ηr

p with inverse temperature. The tielines, connecting the coexisting phases, are
horizontal (not shown) as ηr

p possesses the same value in the two coexisting phases. We
have checked that our results agree well with those obtained by Dijkstra and van Roij [14]
who performed simulations of an effective one component system, which was obtained by
formally integrating out the degrees of freedom of the polymers in the partition function.

To estimate the location of the critical point, we fitted the binodals using the scal-
ing law

ηl
c −ηg

c = A

(
1

(ηr
p)crit

− 1

ηr
p

)β
(4.28)

and the law of rectilinear diameter

ηl
c +ηg

c = 2(ηc)crit +B

(
1

(ηr
p)crit

− 1

ηr
p

)
, (4.29)
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where ηl
c is the colloid packing fraction of the coexisting liquid phase, ηg

c is the colloid
packing fraction of the coexisting gas phase and the subscript “crit“ indicates the value at
the critical point. A and B are two free parameters determined from the fit, and β = 0.32
is the three-dimensional Ising critical exponent. We used the standard functional form
of the two laws [18] but replaced the temperature by the inverse of the polymer reservoir
packing fraction. The continuous curve in Fig. 4.3 is the result of the fit of Eqs. (4.28) and
(4.29). The fit is remarkably good, but we point out that this only gives an estimate of
the critical point. To get a more precise value of the critical packing fractions, it would be
necessary to carry out simulations in a region of the phase diagram much closer to the
critical point than is possible with GEMC.

In Fig. 4.3, we also compare our results with those obtained from density functional
theory (DFT). We use the approximation for the Helmholtz excess free energy for the AOV
model as given in [46]. For given external potential, the density functional is numerically
minimized using a standard iteration procedure. The discrepancies between theory and
simulation can be understood by considering that the DFT for homogeneous (bulk) fluid
states of the AOV model is equivalent to the free volume theory of Lekkerkerker et al. [30].
Dijkstra et al. [43] showed that this theory is equivalent to a first order Taylor expansion
of the free energy around ηr

p = 0

βF (Nc,V ,ηr
p) =βF (Nc,V ,ηr

p = 0)+
∫ ηr

p

0
d(ηr

p)′
(
∂βF (Nc,V , (ηr

p)′)
∂(ηr

p)′

)
(ηr

p)′

' βF (Nc,V ,ηr
p = 0)− 6

πσ3
p
ηr

p <Vfree >ηr
p=0 , (4.30)

neglecting terms O ((ηr
p)2) and where 〈Vfree〉ηr

p=0 is the free volume available for the poly-
mer in the pure hard-sphere reference system. It is evident in Fig. 4.3 that the theory
(dashed curve) performs better at high ηc where the system is so crowded that it resem-
bles the reference hard-sphere system and 〈Vfree〉(ηr

p)′=0 ' 〈Vfree〉(ηr
p)′=ηr

p
. For very small

ηc the free volume is close to the total volume of the system V for both the pure hard-
sphere reference system and the actual mixture. For high ηr

p, the gas-liquid coexistence is
very broad and quantitatively well-predicted by the theory. The critical point of the AOV
mixture for size ratio q = 1 is in the region of ηc ∼ 0.1 and the theory underestimates the
critical value of ηr

p. Furthermore, the discrepancy in location of the critical point arises
from the mean-field critical exponent of the theory against the 3D Ising critical exponent
of the simulation [93].

4.5.1 Phase diagrams

First we present the results for the colloid-polymer mixtures confined between two smooth,
planar hard walls at distance H . In Fig. 4.4(a) we show a set of phase diagrams for H/σc =
∞ (bulk), 10, 5, 3, and 2, in the ηc-ηr

p representation. Upon decreasing the plate separa-
tion distance H/σc, the critical value of ηr

p shifts to higher values, in accordance with the
decrease in critical temperature of simple fluids. The theoretical binodals agree well with
those from simulation, except close to the critical point. The theory underestimates for
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Figure 4.4: Capillary phase diagram of the AOV model with size ratio q = σp/σc = 1 confined be-
tween parallel hard walls with separation distance H/σc=2, 3, 5, 10 and ∞. (a) As a function of
colloid packing fraction ηc and polymer reservoir packing fraction ηr

p. Shown are results from sim-

ulation (symbols) and DFT (continuous lines).(b) As a function of colloid fugacity zcσ
3
c and polymer

reservoir packing fraction ηr
p. Statepoint A is in the gas region of the phase diagram for wall separa-

tion distances H/σc =∞, 10, and 5 and in the liquid region of the phase diagram for wall separation
distances H/σc = 3 and 2. The arrow indicates the direction of the binodal shift upon increasing
confinement (decreasing values of H/σc) of the mixture between parallel hard walls.

all plate separations the critical value of ηr
p, as it does for the bulk system [14]. We ob-

serve that the deviation increases upon decreasing H/σc. In Tab. 4.1 we show the critical
packing fractions obtained from the fit of Eqs. (4.28) and (4.29) and from DFT. We used the
3-dimensional Ising critical exponent for all wall separations. Although recent studies [94]
suggests a critical behavior for small wall separations that is neither three-dimensional,
nor two-dimensional, the difference is likely to be negligible at the level of precision of
our GEMC simulations.

In Fig. 4.4(b) we show a set of phase diagrams for H/σc = ∞, 10, 5, 3, and 2 in the
zc-ηr

p representation. The coexistence gap in colloid packing fractions collapses to a line
since two phases at coexistence possess the same colloid fugacity. Note that the system
is in the gas phase for fugacity zc < zsat

c , while it is in the liquid phase for zc > zsat
c , where

zsat
c denotes the colloid fugacity at bulk coexistence. Statepoint A is gas-like for H/σc ≥ 5,

but is liquid-like for H/σc ≤ 3. Hence, planar slits with H/σc ≤ 3 are filled with liquid
phase, while the bulk reservoir is in the gas phase, proving the occurrence of capillary
condensation upon reducing the width of the slit that is in contact with a bulk gas. Figs.
4.5(a),(b) shows typical colloid-polymer configurations of a coexisting colloidal liquid and
gas phase confined between parallel hard walls at a distance H/σc =10.

We now turn our attention to colloid-polymer mixtures confined between two smooth,
planar semi-permeable walls at distance Hc. In Fig. 4.6(a) we show a set of phase diagrams
for Hc/σc =∞, 10, 4, and 2 in the ηc-ηr

p representation. Upon increasing the confinement
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(a) (b)

(c) (d)

Figure 4.5: Snapshots from computer simulations of the model colloid-polymer mixture with a
polymer-colloid size ratio q = σp/σc = 1. Colloids (light grey) and polymers (dark grey) are im-
mersed between two parallel plates. (a), (b) Hard walls with separation distance H/σc = 10 and
orientation perpendicular to the horizontal axis. Shown is the confined colloidal liquid phase (a)
in coexistence with the confined colloidal gas phase (b). The polymer reservoir packing fraction is
ηr

p = 1.088. (c), (d) Semi-permeable walls with separation distance Hc/σc = 10, and orientation per-
pendicular to the horizontal axis. Shown is the confined colloidal liquid phase (c) in coexistence
with the confined colloidal gas phase (d). The polymer reservoir packing fraction is ηr

p = 1.394.
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Table 4.1: Capillary critical points of the AOV model between parallel hard walls with separation
distance H/σc =∞,10,5,3, and 2 obtained from simulations using the fit of Eqs. (4.28) and (4.29),
and from DFT.

H/σc (ηr
p)crit (ηc)crit DFT (ηr

p)crit DFT (ηc)crit

∞ 0.86(1) 0.117(2) 0.638 0.103
10 1.00(1) 0.124(1) 0.670 0.120
5 1.09(1) 0.123(2) 0.710 0.111
3 1.27(2) 0.116(3) 0.815 0.100
2 1.76(2) 0.119(1) 1.044 0.091

(via reduction of Hc/σc), the critical value of ηr
p shifts to higher values. The trend is similar

to the behavior of the slit with hard walls, although we find a smaller shift of the critical
point (see Tab. 4.2). In Fig. 4.6(b) we show a set of phase diagrams for H/σc = ∞,10,4,
and 2 in the zc-ηr

p representation. Statepoint B is liquid-like for Hc/σc ≥ 10, but is gas-
like for Hc/σc ≤ 2. Hence, planar slits with Hc/σc ≤ 2 are filled with gas, while the bulk
reservoir is in the liquid phase, indicating the occurrence of capillary evaporation. Typ-
ical colloid-polymer configurations of the colloidal liquid phase in coexistence with the
colloidal gas phase immersed between two parallel semi-permeable walls with Hc /σc =10,
are shown in Fig. 4.5(c),(d).

Table 4.2: Capillary critical points of the AOV model between parallel semi-permeable plates with
separation distance H/σc =∞,10,4, and 2 obtained from simulations using the fit of Eqs. (4.28) and
(4.29), and from DFT.

H/σc (ηr
p)crit (ηc)crit DFT (ηr

p)crit DFT (ηc)crit

∞ 0.86(1) 0.117(2) 0.638 0.103
10 1.09(2) 0.13(1) 0.660 0.075
4 1.11(4) 0.10(3) 0.699 0.076
2 1.29(1) 0.11(4) 0.818 0.092

4.5.2 Structure at coexistence

We next analyze the density profiles of both species at capillary coexistence of gas and liq-
uid phases. Such fluid states are translationally invariant against lateral displacements,
and the density distributions (of both species) depend solely on the (perpendicular) dis-
tance from the walls. We compare theoretical and simulation results for coexistence states
at the same values for ηr

p. In practice, we have used the result for ηr
p from the simula-

tions, and have calculated the corresponding DFT profiles. The value for zc used in the
DFT calculations was adjusted according to the respective theoretical capillary binodal.
Recall that the quantitative differences in results for the capillary binodals from simula-
tion and theory are small.
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Figure 4.6: Capillary phase diagram showing the gas-liquid binodal for the AOV model with q =
σp/σc = 1 between two parallel semi-permeable walls with separation distances Hc/σc=2, 4, 10, ∞.
(a) As a function of colloid packing fraction ηc and polymer reservoir packing fraction ηr

p. Shown

are results from simulations (symbols) and DFT (lines). (b) As a function of colloid fugacity zcσ
3
c

and polymer reservoir packing fraction ηr
p. The arrow indicates the direction of the shift of the bin-

odal upon increasing confinement of the mixture (decreasing values of Hc/σc) between two parallel
semi-permeable walls.

The results for a slit of hard walls are shown in Fig. 4.7. The colloidal profiles in the
liquid phase display strong layering at either wall. For a wall separation H/σc = 10, at
ηr

p = 1.23±0.01, and zcσ
3
c = 66.3±0.1 these oscillations decay to flat, bulk-like behavior in

the center of the slit. For smaller wall separations, namely H/σc = 5, at ηr
p = 1.39±0.01,

and zcσ
3
c = 99.4±0.3, H/σc = 3, at ηr

p = 1.68±0.01, and zcσ
3
c = 128±2, and H/σc = 2, at

ηr
p = 2.23±0.01, and zcσ

3
c = 228±10, we observe the presence of 5, 3, and 2 well-defined

layers of particles, respectively. Although their density is much lower, the polymers in the
liquid phase display similar behavior. The layering is weaker, but we can observe that a
maximum in the colloid profile corresponds also to a maximum in the polymer profile.
This result suggests that for such low concentrations polymers behave as hard spheres
as packing effects are concerned. In the gas phase, for wall separations H/σc = 10 and
5, we find strong adsorption of the colloids at both walls, (see also the snapshot in Fig.
4.5(b)), and a tendency of the polymers to desorb from the walls. In the center of the
slit almost no colloids are present and the polymers display flat density profiles with a
packing fraction very similar to the polymer reservoir packing fraction. For wall separation
distances H/σc = 3 and 2, we observe an almost flat polymer density profile, while the
density of the colloids is very low throughout the slit. Different from the liquid profiles, a
maximum in the colloidal profile corresponds to a minimum of the polymer profiles.

Fig. 4.8 displays density profiles for the slit of semi-permeable walls. For wall separa-
tion distance of Hc/σc = 10, at ηr

p = 1.39±0.01, and zcσ
3
c = 167±5, we clearly observe for

the liquid state points the presence of a gas layer between the wall and the liquid phase
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Figure 4.7: Density profiles of the coexisting liquid (left) and gas (right) phases of the AOV
model confined between parallel hard walls with separation distance: a) H/σc=10, at ηr

p=1.23(1),

zcσ
3
c=66.3(1), b) H/σc=5 at ηr

p=1.39(1), zcσ
3
c=99.4(3), c) H/σc=3, at ηr

p=1.68(1), zcσ
3
c=128(2), and d)

H/σc=2, at ηr
p=2.23(1), zcσ

3
c=228(10). Shown are results from simulations for the density profiles of

the colloids (crosses) and polymers (circles), along with results from DFT (full lines).
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centered in the slit. For wall separation Hc/σc = 4, at ηr
p = 1.35±0.01, and zcσ

3
c = 318±10

the gas layers at the walls disappear and indications of layering effects appear. For wall
separation Hc/σc = 2, at ηr

p = 1.61±0.01, and zcσ
3
c = 2950±200 the colloid density pro-

file displays very significant peaks at both walls. Moreover, we do find layering at larger
wall separations, for statepoints well inside the liquid phase. We will discuss this in more
detail in the next section. In the gas phase, the density of colloids is very low throughout
the slit, while the polymer density profile is almost flat with a packing fraction close to the
polymer reservoir packing fraction.

The comparison between DFT and simulation indicates good agreement of results
from both approaches. Differences in structure can be traced back to differences in the
phase diagrams. For fixed ηr

p the DFT predicts higher colloid densities and smaller poly-
mer densities, and these differences are reflected by the discrepancies in the profiles. For
wall separations where the statepoint is close to the critical point the agreement is worse,
especially close to the walls. Such discrepancies between simulation and DFT were present
also for the wall-fluid tension and the adsorption of colloid-polymer mixtures studied in
chapter 2.

4.5.3 Structure off-coexistence

We next consider density profiles for a fixed statepoint off-coexistence. For slits with hard
walls we chose statepoint A (ηr

p=1.49 and ln(zcσ
3
c)=4.6) of Fig. 4.4(b), that lies in the sta-

ble gas region of the bulk phase diagram. We carried out simulations for wall separation
distances H/σc = 10,5,3, and 2. Fig. 4.9 shows that for wall separations H/σc = 10 and
5 the slit is filled with gas. However, for wall separation of H/σc = 3 we observe that the
capillary fills with liquid. Hence, for this particular statepoint, the critical wall separation
distance for capillary condensation lies between 3 and 5 colloid diameters, consistently
with the findings of Sec. 4.5.1. Reducing the wall separation to H/σc = 2, the liquid phase
remains stable. The density profiles in the gas phase possess adsorption peaks in the col-
loid profile, and corresponding desorption peaks in the polymer profiles. In the liquid
phase we observe strong layering of the colloids, and, to a lesser extent, of the polymers.
The agreement between simulation and DFT results is good. The differences seem to be
related to the vicinity of statepoint A to the critical point. The critical point for wall sep-
aration H/σc = 3, and 5, is much closer to statepoint A than the critical points for wall
separations H/σc = 10, and 2, where we find a better agreement between simulation and
theory profiles.

We next discuss the structure of the mixture inside the slit with semi-permeable walls
(Fig. 4.10). We fix the fugacities of both species to those at statepoint B (ηr

p=1.60 and

ln(zcσ
3
c)=7.3), see Fig. 4.6(b). The statepoint B is in the liquid part of the bulk phase

diagram phase. The liquid fills slits with wall separations Hc/σc = 10, and 4, while for
Hc/σc = 2 the slit is filled with gas. This is an indication of capillary evaporation consistent
with the findings of Sec. 4.5.1. The liquid phase is characterized by structureless polymer
profiles, and a layering of colloids for both Hc/σc = 10, and 4. Note that we did not ob-
serve such layering for the statepoints at coexistence (see previous section). Simulation
and theory are in good agreement at all wall separations.
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Figure 4.8: Density profiles of the coexisting liquid (left) and gas (right) phases of the AOV model
confined between two parallel semi-permeable walls with varying separation distance: a) Hc/σc=10,
at ηr

p=1.39(1), zcσ
3
c=167(5), b) Hc/σc=4, at ηr

p=1.35(1), zcσ
3
c=318(10), and c) Hc/σc=2, at ηr

p=1.61(1),

zcσ
3
c=2950(200). Shown are results from simulations for the density profiles of the colloids (crosses)

and polymers (circles), and results from DFT (full lines).
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Figure 4.9: Density profiles of the AOV model with q = 1 between parallel hard walls with varying
separation distance: a) H/σc=10, b) Hc/σc= 5, c) Hc/σc=3, and d) Hc/σc=2 at statepoint A of the
phase diagram of Fig. 4.4(b), i.e., for polymer reservoir packing fractionηr

p = 1.49 and colloid fugacity

ln(zcσ
3
c) = 4.6. Shown are results from simulations for the density profiles of the colloids (crosses)

and polymers (circles), and results from DFT (full lines).

4.5.4 Two dimensional limit

We next analyze the dimensional crossover from three to two spatial dimensions by re-
ducing the distance of the hard walls towards H/σc → 1. The two-dimensional system
encountered for H/σc = 1 is identical to a two-dimensional mixture of colloidal hard discs
and ideal polymer discs. Two-dimensional mixtures were previously studied with both
theory [95, 96], and experiments [97]. For H very close to σp the polymer reservoir pack-
ing fraction scales as

ηr
p ∼ π

6

Npσ
3
p

A(H −σp)
. (4.31)

We eliminate the divergence using scaled variables for the polymer reservoir packing frac-
tion ηr

p(H −σp)/H and for the colloidal fugacity zc(H −σc)/H . Effectively, we map the
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Figure 4.10: Density profiles of the AOV model between two parallel semi-permeable walls with
varying separation distance: a) Hc/σc=10, b) Hc/σc=4, and c) Hc/σc=2 at statepoint B of the phase
diagram of Fig. 4.6(b), i.e., for polymer reservoir packing fraction ηr

p = 1.60 and colloid fugacity

ln(zcσ
3
c) = 7.3. Shown are results from simulations for the density profiles of the colloids (crosses)

and polymers (circles), and results from DFT (full lines).

three-dimensional system with packing fractionsηi =πσ3
i Ni/(6AH) to the two-dimensional

system with packing fractions ηi = πσ2
i Ni /(4A), where i = c,p.

In Fig. 4.11(a) we plot the phase diagrams in the scaled ηr
p −ηc representation and we

observe that the binodals for H/σc = 1.01 and H/σc = 1.005 are superimposed, demon-
strating that this is a reliable estimate for the binodals of the 2-dimensional system. The
comparison with a two-dimensional DFT [96] equivalent to a two-dimensional free vol-
ume theory [95] indicates poorer agreement as in the three-dimensional case. The dis-
crepancy in the critical polymer reservoir packing fraction is substantial. We also find that
in this representation the binodals of the three-dimensional system of the slits collapse
over the bulk binodal, indicating a scaling of the critical value of ηr

p as (ηr
p)crit ∼ 1/(H−σp).

In Fig. 4.11(b) we see that the collapse of the binodals onto a master curve in the scaled
ηr

p− scaled zc representation is not as good as in the other representation, moreover the
sequence of binodals is inverted, indicating that the critical value of the colloid fugacity
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scales differently.
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Figure 4.11: Phase diagrams showing the binodals for the AOV model between parallel hard walls
with separation distance H/σc = ∞,10,5,3,2,1.01, and 1.005. Shown are results from simulation
(symbols), from three-dimensional DFT (dashed curves), and from DFT for the AOV model in two
dimensions (full lines). (a) The gas-liquid binodal as a function of the scaled variable ηr

p(H −σp)/H

and ηc; (b) The gas-liquid binodals as a function of the scaled variables zcσ
3
c(H −σc)/H and ηr

p(H −
σp)/H .

4.5.5 Kelvin equation

In this section, we compare the simulation results with the predictions of the Kelvin equa-
tions that we derived in section 4.4. First, we address the relationship of the parameter h,
we used in the Kelvin equations, to our model parameter H . There are two, a priori equiv-
alent, choices that we investigate, namely h = H , and h = H−σc . Second, the Kelvin equa-
tions need, as an input, the difference of the gas and liquid tensions at the wall interface.
Since this data are not readily available we will assume, in the case of capillary conden-
sation, the relation γw g −γwl = γl g , strictly valid only in the complete wetting regime, to
hold at all state points considered. Likewise, for the capillary evaporation case, we assume
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γwl −γw g = γl g , valid in the complete drying regime to hold at all state points. For the
liquid-gas interfacial γlg tension we use DFT data from Ref. [98].

Figs. 4.12(a) and 4.12(c) display the simulation results for the hard wall slit together
with the predictions of the Kelvin equations (4.18), (4.22), and (4.27) for h = H−σc, and h =
H respectively. The Kelvin equation (4.18), derived from the path with constant polymer
chemical potential, is superimposed at all separation distances with the Kelvin equation
(4.22) derived using the constant pressure path. This is consistent with the observation
of Aarts and Lekkerker [83]. Now we can offer an alternative explanation. As shown in Fig
4.2, for the capillary condensation case the bulk in the gas phase (polymer rich phase), and
the path with constant polymer chemical potential is almost equivalent to the constant
pressure path. In other words, the bulk reference point for Eq. (4.18) and Eq. (4.22) is very
similar in the case of capillary condensation. The Kelvin equation (4.27) derived using
a normal path, predict a smaller shift with respect to Eq. (4.22). To estimate the error
introduced by the complete wetting approximation (γw g−γwl = γl g ), we show a few points
(filled diamonds) predicted by Eq. (4.22) using the actual difference in wall tensions, as
published in our previous work [99].

The Figs. 4.12(b) and 4.12(d) display the simulation results for the semi-permeable
wall slit together with the predictions of the Kelvin equations (4.18), (4.23), and (4.27) for
h = H −σc, and h = H respectively. The prediction of Eq. (4.23) and (4.27) are super-
imposed at all separation distances considered. This is surprising since they are derived
from very different "paths", as shown in Fig. 4.2.

We can conclude that the Kelvin equation we derived using a novel approach, gives
predictions that are consistent, and in quantitative agreement with the prediction of the
classic equation. In addition our equation is the same for capillary condensation and
evaporation, and the choice of reference state, which is different for both phenomena,
is avoided. As the Kelvin equation is based on macroscopic arguments, it is surprising
that we find reasonable quantitative agreement for nearly two-dimensional systems. The
shift of the critical polymer fugacity towards higher values upon increasing confinement,
as found in simulations, is not reproduced, because the Kelvin equation is entirely based
on properties of the (semi)infinite system. Finally, the two choices of h we presented give
essentially the same results for wall separations H/σc as small as 4.

4.6 Conclusions

In conclusion, we have studied the effect of strong confinement provided by two parallel
walls on the phase behavior and structure of model mixtures of colloids and polymers of
size ratio q = 1. The densities of the gas and liquid phases at coexistence, as well as the
chemical potentials were computed by GEMC simulations and DFT. Two different models
of confining walls were investigated: i) Hard walls, impenetrable to both colloids and poly-
mers, as a model for glass walls in contact with colloid-polymer mixtures were found to
stabilize the liquid phase for statepoints that lie in the gas part of the bulk phase diagram;
this effect is referred to as capillary condensation. ii) Semi-permeable walls, impenetrable
to colloids but penetrable to polymers, could be experimentally realized using polymer
coated substrates [84]. If the coating density is not too high the polymer brushes can act
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Figure 4.12: Phase diagram of colloid-polymer mixtures in the colloidal chemical potential

log(zcσ
3
c) and the polymer reservoir packing fraction ηr

p representation. (a) Results for slits with
hard walls, and h = H −σc . (b) Results for the slit with semi-permeable walls , and h = H −σc . (c)
Results for the slits with hard walls, and h = H . (d) Results for the slit with semi-permeable walls,
and h = H . In (a) and (c) the simulation results (symbols) are compared with the prediction of the
Kelvin equations (4.18), (4.22), and (4.27) assuming complete wetting (γw g −γwl = γl g ). The filled
diamonds are results from Eq. (4.22) using the difference in wall tensions γw g −γwl taken from Ref.
[99]. In (b) and (d) the simulation results (symbols) are compared with the prediction of the Kelvin
equations (4.18), (4.23), and (4.27) assuming complete drying (γwl −γw g = γl g ). For the liquid-gas
interfacial tension γlg we used DFT data from Ref. [98]. Few lines are superimposed, see text for the
explanation.
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as impenetrable for colloids while being penetrable for polymers. We find that the effect of
semi-permeable walls is to stabilize the gas phase for statepoints in the liquid part of the
bulk phase diagram; this effect is referred to as capillary evaporation. Both capillary evap-
oration and condensation are consistently predicted by GEMC simulations and DFT. The
differences between simulations and DFT in the vicinity of the critical point are confirmed
for bulk mixtures and were found to be larger for the confined mixtures. The differences
reach a maximum in the limit of two-dimensional colloid-polymer mixtures.

We have studied the structure of the mixture between parallel walls by measuring the
density profiles in the direction normal to the confining walls. For the liquid phase, rich
in colloids and poor in polymers, we found layering of colloids with an oscillation period
roughly equal to the diameter of the particles for all wall separations and statepoints con-
sidered. In the case of semi-permeable walls, the structure, i.e. the layering of colloids and
the adsorption or desorption of gas layers at the semi-permeable walls, depends strongly
on the statepoint and on the lengthscale of the confinement. For the gas phase, rich in
polymers and poor in colloids, we found flat polymer profiles with moderate desorption
of polymers from the hard walls. We found that density oscillations for colloids and poly-
mers are correlated in the liquid phase and anti-correlated in the gas phase. This can
be understood by the following argument. In the liquid phase the fraction of polymers
is small and a polymer is always surrounded by other colloids to which it interacts with
an hard-core potential. Clearly the polymer structure must be similar to that of the col-
loids. In the gas phase the fraction of polymers is large with respect to the colloids and
the entropy is increased by segregation of colloids, so if a region is locally denser in poly-
mer than the average polymer density, it will be more dilute in colloids. The comparison
between simulation and DFT is overall good, with small differences in the vicinity of the
critical point. Our findings of capillary condensation for hard walls and capillary evapora-
tion for semi-permeable walls are consistent with the experimental findings by Aarts and
Lekkerker [83] and Wijting et al. [13, 84]. In the next chapter we will study confinement
effects by including excluded volume interactions between polymer coils. The model has
given accurate results for the bulk phase diagram [100].

Acknowledgements: The DFT calculations presented in this chapter were carried out
by Matthias Schmidt.
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Effect of excluded volume interactions on
colloid-polymer mixtures confined between two

parallel planar walls

We study bulk and confined colloid-polymer mixtures using grand canonical Monte Carlo
simulations. Colloidal particles are treated as hard spheres, while the polymer chains
are described as soft repulsive spheres. The polymer-polymer, colloid-polymer, and wall-
polymer interactions are described by the potential derived by Bolhuis and Louis [101]. We
compared our results with those of the Asakura-Oosawa-Vrij model, that treats the poly-
mers as ideal particles. We find that the number of polymers needed to drive the demixing
transition is larger for the interacting polymers, and the gas-liquid interfacial tension is
smaller. When the system is confined between two hard parallel plates, we find capillary
condensation. This effect is slightly suppressed by the interactions between the polymers.

5.1 Introduction

In the previous chapter we studied confined colloid-polymer mixtures modelled by the
Asakura-Oosawa-Vrij model (AOV) [27, 28, 38]. The polymer chains were described as
spheres with a radius equal to the radius of gyration of the polymer coils. Polymer spheres
could freely overlap, while they were excluded by a centre of mass distance from the col-
loidal particles. The AOV model has been extensively studied in the past years, and it was
shown that it can qualitatively describe the bulk [30, 32, 35, 43, 46, 96, 102–104], and in-
terfacial phase behaviour [13, 14, 81, 82, 84, 105], of mixtures of colloids and polymers.
A similar level of agreement was found for the interfacial tension of the gas-liquid [104,
106, 107] and wall-fluid interfaces [47, 49, 107], and for the phase behaviour of confined
systems [83, 97, 99, 108–110].

The quantitative discrepancies between experimental results and the AOV model re-
sults can arise from a number of reasons, like non-ideal solvent conditions [111], colloid-
induced polymer compression [112], effect of charges on the colloidal surface [113, 114],

59
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or polymer excluded volume interactions. In this chapter, we will concentrate on the lat-
ter aspect. The simplest inclusion of polymer interactions was done by introducing a step
function interaction between the polymers, i.e. an energy penalty for the overlaps of two
polymers. The step potential was used to study the bulk phase diagram and interfacial ten-
sion [115, 116], the contact angle of the colloidal liquid-gas interface and a hard wall [49],
as well as the stability of the floating liquid phase in sedimenting colloid-polymer mix-
tures [117]. This approach gives results that are in better agreement with experiments
when compared against the AOV model, but the height of the step potential must be in-
troduced as an additional free parameter. Furthermore, we expect the polymer-colloid
interaction to be modified as well when considering excluded volume interactions be-
tween polymers.

Aarts et al. [118] extended the free volume theory [30] to include polymer interactions,
while a well studied theoretical approach for the gas-liquid interfacial tension is the square
gradient approximation [98, 118–120].

Another approach is to describe the polymers as soft spheres [101], with effective in-
teractions derived from inversion of the centre of mass (CM) correlation functions in lat-
tice Self-Avoiding-Walk (SAW) polymer simulations. This approach generates soft density-
dependent potentials for the polymer-polymer and colloid-polymer interactions, that give
accurate results in the determination of the bulk phase behaviour [100]. In a similar ap-
proach, proposed by Jusufi et al. [121], the effective potentials are derived from off-lattice
molecular dynamics simulations of SAW polymer chains. These potentials were used to
study the bulk phase behaviour [122, 123], and the gas-liquid interfacial tension [124] of
colloid-polymer mixtures, leading to results in quantitative agreement with experiments.

A one component perturbative DFT that uses the potentials of Bolhuis and Louis [101]
was developed by Moncho-Jorda et al. [125] to study confined systems and the gas-liquid
tension. In this chapter, we study the influence of excluded volume interactions on the
phase behaviour of confined colloid-polymer mixtures with Monte Carlo computer simu-
lations. We treat the interactions according to those derived by Bolhuis and Louis [101].

5.2 Model

The colloids are treated as hard spheres and the corresponding pair potential reads

vcc(Ri j ) =
{ ∞ if Ri j <σc

0 otherwise,
(5.1)

where Ri j = |~Ri − ~R j | is the distance between two colloidal particles, with ~Ri the position
of the centre of mass of colloid i . For the polymer-polymer, colloid-polymer, and wall-
polymer potentials we utilise the expressions obtained by Bolhuis and Louis [101] fitting
their simulation results of a system of SAW polymer chains on a lattice, with 500 segments,
and radius of gyration Rg =16.83 lattice units at zero concentration. We introduce the over-
lap concentration ρ∗ defined by the equation 4/3πρ∗R3

g = 1, and the polymer reservoir
packing fraction ηr

p = ρr
p/ρ∗, with ρr

p the density in the reservoir of pure polymers in os-
motic equilibrium with the two-component system of interest.
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The density dependent polymer-polymer effective interaction, originally derived by Bol-
huis and Louis [101], reads

vpp(ri j ,ηr
p ) =

3∑
k=1

ak (ηr
p )exp(−ri j /bk (ηr

p ))2, (5.2)

where ri j = |~ri −~r j | is the distance between two polymers, with~ri the position of the centre
of mass of polymer i . The density-dependent parameters are linear in the density ak = a0

k+
a1

kη
r
p , and bk = b0

k +b1
kη

r
p . All coefficients, with the exclusions of b3

k , are given in table 5.1.

The coefficients b3
k are fixed by imposing the equality of the mean field equation of state

P/ρp = 1+ρp v̂(0;ρp )/2 , (5.3)

for the fitted potentials and the SAW simulations, where the function

v̂(0;ρp ) = 4π
∫

r 2vpp(r,ρp )dr (5.4)

is the k = 0 component of the Fourier transform of the polymer-polymer pair potential. In
practice, the condition is satisfied by imposing the equality between

v̂(0;ηr
p ) =π3/2

3∑
i=1

ai (ηr
p )bi (ηr

p )3 , (5.5)

derived from Eq. (5.2) and

v̂(0;ηr
p ) = 4π(1.2902+0.28132ηr

p +0.13676(ηr
p )2 −0.040892(ηr

p )3) (5.6)

derived using Eq. (5.3) and the potentials obtained from the inversion of the radial distri-
bution function from SAW simulations.

Table 5.1: Coefficients for the density dependent parameters of the polymer-polymer interaction
potential vpp defined in Eq. (5.2).

k=1 k=2 k=3

a0
k 1.47409 -0.23210 0.63897

a1
k -0.07689 0.03132 0.24193

b0
k 0.98137 0.42123 /

b1
k -0.05681 -0.02628 /

The concentration dependent colloid-polymer potential reads [100]

vcp(|~Ri −~r j |,ηr
p ) =

2∑
k=1

ck (ηr
p )exp(−((|~Ri −~r j |−ek (ηr

p ))/dk (ηr
p ))2), (5.7)
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Table 5.2: Coefficients for the density dependent parameters of the colloid-polymer interaction po-
tential vcp defined in of Eq. (5.7).

k=1 k=2

c0
k 5.5610 1.8477

c1
k -0.8042 1.4759

d 0
k 0.7751 1.2720

d 1
k -0.1151 0.1052

e0
k 0.4082 0.0

e1
k 0.1410 0.0

where |~Ri −~r j | is the distance between colloid i and polymer j . The density-dependent
parameters are linear in density, i.e., ck = c0

k + c1
kη

r
p , dk = d 0

k +d 1
kη

r
p , and ek = e0

k + e1
kη

r
p .

The coefficients are given in table 5.2.
The interaction between colloidal particles and the hard wall is hard-sphere-like, that

is the colloidal particles can not penetrate the walls. The interaction between polymers
and the hard wall [101] reads

vwp(z,ηr
p ) = f0(ηr

p )exp[ f1(ηr
p )z + f2(ηr

p )z2 + f3(ηr
p )z3], (5.8)

where z is the distance between the wall and the centre of mass of the polymer. The pa-
rameters have a quadratic density dependence fk (ηr

p ) = f 0
k + f 1

k η
r
p + f 2

k (ηr
p )2, with k=0, 1,

2, 3. The coefficients are given in table 5.3.

Table 5.3: Coefficients for the density dependent parameters of the wall-polymer interaction poten-
tial vwp defined in Eq. (5.8).

k=0 k=1 k=2 k=3

f 0
k 62.7242 -6.4093 2.5081 -0.6904

f 1
k 56.4595 -3.8880 5.1562 -1.5519

f 2
k -29.9283 2.0442 -2.1336 0.5973

5.3 Method

We carried out Monte Carlo simulations in the grand canonical ensemble, i.e. with fixed
volume, temperature, and chemical potentials µc and µp , of colloids and polymers, re-
spectively. We determine the potentials given in the previous section, at the polymer reser-
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Figure 5.1: Interaction potentials for the polymer density ηr
p = 1.02995. (a) Pair potential between

polymers βvpp (full line), and between polymers and colloids βvcp (dashed line). (b) Wall-polymer
potential βvwp as a function of the distance z/σc of the polymer centre of mass from the wall.

voir packing fraction ηr
p (µp ) calculated by inversion of the equation of state

µp /kB T = log(ρr
p R3

g )+0.04658+11.05ρr
p R3

g +35.48(ρr
p R3

g )2 −15.71(ρr
p R3

g )3 . (5.9)

This chemical potential was derived by integration of the Gibbs-Duhem equation with the
pressure given by Eq. (5.3) and Eq. (5.6).

To study phase coexistence, we sample the probability P (Nc )|zc ,ηr
p

of observing Nc col-
loids in a volume V at fixed colloid fugacity zc and fixed polymer reservoir packing frac-
tion ηr

p , using the successive umbrella sampling [126]. We use the histogram reweighting
technique to obtain the probability distribution for any z ′

c once P (Nc )|zc ,ηr
p

is known for
a given zc :

lnP (Nc )|z ′c ,ηr
p
= lnP (Nc )|zc ,ηr

p
+ ln

(
z ′

c

zc

)
Nc . (5.10)

At phase coexistence, the distribution function P (Nc ) becomes bimodal with two sepa-
rate peaks of equal area for the colloidal liquid and gas phases. We determine which z ′

c
satisfies the equal area rule∫ 〈Nc 〉

0
P (Nc )|z ′c ,ηr

p
d Nc =

∫ ∞

〈Nc 〉
P (Nc )|z ′c ,ηr

p
d Nc , (5.11)

with the average number of colloids

〈Nc〉 =
∫ ∞

0
Nc P (Nc )|zc ,ηr

p
d Nc , (5.12)

using the histogram reweighting equation (5.10). The simulations are carried out in a cu-
bic box V = L ×L × H , and the sampling of the probability ratio P (N )/P (N + 1) is done,
in each window, until the difference between two successive samplings of the probability
ratio is smaller than 5× 10−4.



64 Effect of excluded volume interactions on colloid-polymer mixtures

The liquid-gas interfacial tension γlg is obtained from P (Nc )|z ′c ,ηr
p

at coexistence [127]

γlg =
1

2L2

[
ln

(
P (N g

c,max)+P (N l
c,max)

2

)
− ln(P (Nc,min))

]
(5.13)

where P (N g
c,max) and P (N l

c,max) are the maxima of the gas and liquid peaks, respectively,
and P (Nc,min) is the minimum between the two peaks.

5.4 Results

In Sec. 5.2 we explained the straightforward, but nontrivial procedure for generating the
interaction potentials. It is therefore important to check the internal consistency of our
calculations. Fig. 5.2 shows the predictions of the equation of state (5.9) plotted against
simulations results of a grand canonical simulation of pure polymers interacting with the
potential (5.2). In the range of chemical potentials that are relevant for the gas-liquid sep-
aration the simulation results are consistent with the equation of state.
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η
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µ pσ c3

equation of state
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Figure 5.2: The chemical potential µpσ
3
c as a function of the polymer packing fraction ηr

p , in a sys-
tem of pure polymers. The equation of state (5.9) (line) is compared with the results of a grand
canonical simulation (circles) of pure polymers interacting with the potential (5.2).

5.4.1 Bulk phase behaviour and gas-liquid interfacial tension

In Fig. 5.3 we present the bulk phase diagram obtained from the grand canonical sim-
ulations with successive umbrella sampling and histogram reweighting. In particular,
Fig. 5.3(a) shows the phase diagram in the polymer packing fraction ηp , colloid packing
fraction ηc representation. These results are consistent with the findings of Bolhuis et al.
[100]. The free volume theory [128] extended to include excluded volume polymer in-
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Figure 5.3: Phase diagram of bulk colloid-polymer mixtures with size ratio q=1.05 for volume V=516

σ3
c (circles) and V=2304 σ3

c (squares). Also shown are the binodals of the AOV model with size ratio
q = 1.0 (dashed lines). (a) Polymer packing fraction ηp , colloid packing fraction ηc representation.
Shown are also the results of Bolhuis et al. [100] (continuous line), the results of the free volume
theory with polymer interactions [118] (dashed line) and the experimental results of de Hoog and
Lekkerkerker [102] (diamonds). (b) Polymer reservoir packing fraction ηr

p , colloid packing fraction
ηc representation.

teractions [118], overestimates the simulation results by almost a factor two. This result
may be explained by the renormalisation group theory expression used to evaluate the
polymer interactions, that underestimates the correlation length of the polymers. Also
shown are the experimental results of de Hoog and Lekkerkerker [102]. The experimen-
tal polymer concentration is much larger than our simulation results. This discrepancy
can be explained by considering the measurements of Wijting et al. [129] on depletion
forces in the same colloid-polymer system used in Ref. [102]. They found that the deple-
tion forces are much smaller then expected, probably due to adsorption of the polymers
on the colloidal surface.

Fig. 5.3(b) shows the phase diagram in the polymer reservoir packing fraction ηr
p , col-

loids packing fraction ηc representation. The discrepancy between our results and those
of Bolhuis et al. [100] are due to a slightly different equation of state used for the conversion
of the chemical potential µp at coexistence to the polymer packing fraction in the reser-
voir ηr

p . The binodal has a critical point at lower ηr
p , and the density difference between

the gas and liquid phases increases for increasing ηr
p . This phase diagram is equivalent

to the temperature-density phase diagram of a simple fluid, with the polymer reservoir
packing fraction playing the role of an inverse temperature.

In Fig. 5.4, we present the simulation results of the dimensionless interfacial tension
βγg lσ

2
c for the gas-liquid interface, as a function of the difference in packing fraction be-

tween the gas and the liquid phases. The excluded volume interactions lead to a lower
interfacial tension than in the case of ideal polymers. The comparison between our re-
sults and the experiments of Aarts et al. [82] is quantitatively better than the results of the
AOV model, although de Hoog and Lekkerkerker [102] show that it is difficult to obtain
accurate interfacial tension measurements. In addition, we compare our results with the
predictions of the extended free volume theory plus a square gradient approximation to
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evaluate the tension [120], and the density functional theory (DFT) of Moncho-Jorda et al.
[125]. The DFT uses the same interaction potentials used in this work but restricted to the
effective pairwise potential between colloids. The predictions of the two theories are very
close to each other and to the simulation results.
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Figure 5.4: Dimensionless interfacial tension βγσ2
c between the gas and liquid phases, as a function

of the difference ∆η = ηl −ηg between the packing fractions of the coexisting liquid (ηl ) and gas
(ηg ) phases. Results for the interacting polymers with size ratio q = 1.05 (circles) are compared with
the results for the AOV model with size ratio q = 1.0 (square). Triangles denote experimental results
of de Hoog and Lekkerkerker [102] (triangles up) and Aarts et al. [82] (triangles down). The thick
continuous line indicates the predictions of the DFT of Moncho-Jorda et al. [125], while the dashed
lines are the predictions of the square gradient approximation theory of Aarts et al. [120].

5.4.2 Confined system: Capillary condensation

Fig. 5.5 shows the phase diagram of colloid-polymer mixtures confined between hard
walls with separation distance H/σc =∞, 16, 8, 4, 2. In particular, Fig. 5.5(a) shows the
phase diagram of colloid-polymer mixtures in the polymer reservoir packing fraction ηp ,
colloid packing fraction ηc representation, and Fig. 5.5(b) shows the phase diagram of
colloid-polymer mixtures in the polymer packing fraction ηr

p , colloid packing fraction ηc

representation. The critical points of the confined systems shift towards higher ηr
p for de-

creasing wall separation. The density difference for the AOV model at fixed ηr
p , decreases

for decreasing separation distance.
Fig. 5.6 displays the phase diagram in the polymer chemical potential µp , colloid

chemical potential µc representation. The binodals collapse to a single line because of
the condition of gas-liquid coexistence. Regions above the binodal are gas like, while re-
gions below the binodal are liquid like. We find a shift of the binodals towards higher poly-
mer chemical potential and smaller colloid chemical potential indicating the occurrence
of capillary condensation.
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Figure 5.5: Phase diagram of colloid-polymer mixtures confined between model walls with distance
H/σc =∞, 16, 8, 4, 2. (a) Polymer packing fraction ηp , colloid packing fraction ηc representation.
(b) Polymer reservoir packing fraction ηr

p , colloid packing fraction ηc representation.
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Figure 5.6: Phase diagram of colloid-polymer mixtures confined between model walls with distance
H/σc =∞, 16, 8, 4, 2, in the polymer chemical potential µp , colloid chemical potential µc represen-
tation. In (b) we show a blow-up of the phase diagram. For clarity the results of H/σc = 2 are not
shown.
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Also shown in Fig. 5.6 are the predictions of the Kelvin equation [109]

µc = µBulk
c + 2

h
(γwl −γwg)

ρl
c −ρg

c

(ρl
c −ρg

c)2 + (ρl
p −ρg

p)2
,

µp = µBulk
p + 2

h
(γwl −γwg)

ρl
p −ρg

p

(ρl
c −ρg

c)2 + (ρl
p −ρl

p)2
, (5.14)

The predictions of the Kelvin equation are in good agreement with the simulation results
for H/σc =16, and 8, but underestimates the shift for H/σc =4, and 2.

5.5 Conclusions

In this chapter, we have investigated bulk and confined colloid-polymer mixtures, using
Monte Carlo computer simulations. Colloids behaved as hard spheres, while polymers
were described as soft repulsive spheres. Colloid-polymer, polymer-polymer, and wall-
polymer density dependent interactions were described by the potentials derived by Bol-
huis and Louis [101]. We find a bulk phase behaviour consistent with the findings of Bol-
huis et al. [100]. The behaviour is also similar to the prediction of the AOV model, but the
binodal line lies at higher polymer packing fractions, i.e., the number of polymers needed
for the demixing transition is larger. These results are in agreement with the findings of
other authors [100, 119, 120, 124]. The comparison of our phase diagram with experi-
ments [102] is found to be poor for the size ratio q = 1.05 considered here. This is sur-
prising, since the same interaction potentials provided good agreement with experiments
at a smaller size ratio [101]. In fact, this discrepancy can be explained by considering the
results of Wijting et al. [129] on depletion potential measurements on the same colloid-
polymer mixtures used in the phase behaviour experiments. These measurements con-
cluded that the depletion attraction was smaller than expected, probably due to polymer
adsorption on the surface of the colloids.

On the other hand, better agreement is found for the gas-liquid interfacial tension
when compared to the experiments of Aarts et al. [82] for the same system. Our results
show that the gas-liquid interfacial tension is smaller for the interacting polymers than for
the AOV model. This is in agreement with the works of other authors, on colloid-polymer
mixtures with interacting polymers [116, 120, 124, 125]. Both the square gradient approxi-
mation and the DFT provide a good description of the simulation results.

In addition, we studied the phase behaviour of the mixture confined between parallel
walls with separation distance H/σc =16, 8, 4, and 2. We find that the hard walls induce
capillary condensation, and that the theoretical predictions of the Kelvin equation are in
reasonable agreement with the simulation results for H/σc =16 and 8, but underestimate
the binodal shifts for H/σc =4 and 2.

Acknowledgements: I want to thank Arturo Moncho Jordá and Dirk G. A. L. Aarts for
sending me their interfacial tension data.
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Phase behaviour of model charged colloid-polymer
mixtures

We study the stability of mixtures of highly screened repulsive charged spheres and non-
adsorbing ideal polymer chains with Monte Carlo computer simulations and free volume
theory. The effective interaction between charged colloids is described by a screened-
Coulomb pair potential. In the free volume theory the ideal polymer chains are treated as
spheres that are excluded from the colloids by a hard-core interaction, whereas the inter-
action between two ideal chains is set to zero. In computer simulations we use the two-
body (Asakura-Oosawa pair potential) approximation to the effective one-component Ham-
iltonian of the charged colloids. Both our results obtained from simulations and from free
volume theory show similar trends. We find that the screened-Coulomb repulsion coun-
teracts the effect of the effective polymer-mediated attraction. For mixtures of small poly-
mers and relatively large charged colloidal spheres, the fluid-crystal transition shifts to sig-
nificantly larger polymer concentrations with increasing range of the screened-Coulomb
repulsion. For relatively large polymers, the effect of the screened-Coulomb repulsion
is weaker. The resulting fluid-fluid binodal is only slightly shifted towards larger poly-
mer concentrations upon increasing the range of the screened-Coulomb repulsion. Our
results show that the miscibility of dispersions containing charged colloids and neutral
non-adsorbing polymers increases upon increasing the range of the screened-Coulomb
repulsion, or upon lowering the salt concentration, especially when the polymers are small
compared to the colloids.

6.1 Introduction

Many stable dispersions containing spherical colloids consist of particles that can be char-
acterised by a pair potential containing an additional soft repulsive tail. An example is a
stable dispersion of charged colloids in an aqueous salt solution for which the interactions
are described by the Derjaguin-Landau [23], and Verwey-Overbeek [24] (DLVO) theory that
we introduced in section 1.3.2. This theory predicts that the effective pair interaction be-

69
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tween charged colloids consists of a hard-core repulsion due to the finite size of the col-
loids and a screened-Coulomb (Yukawa) repulsion with the screening length given by the
Debye length κ−1 of the solvent. The screening length κ−1 defines the thickness of the
double layer of opposite charge surrounding each colloid. The range κ−1 of the screened-
Coulomb repulsion is a function of the salt concentration of the solvent, the dielectric
constant and the temperature. Adjusting the salt concentration may influence the stabil-
ity of a dispersion of charged colloids mixed with a neutral depletion agent in a common
aqueous salt solution [36, 130–132]. Hebert [130] studied the precipitation of the charged,
rod-like tobacco mosaic virus (TMV) by adding the neutral polymer polyethylene glycol
(PEG). At similar PEG concentrations, precipitation of TMV was enhanced by adding salt.
Patel and Russel [133] studied the phase behaviour of mixtures of charged polystyrene
latex colloids and dextran as (neutral) polymer chains and reported a significant shift to-
wards higher polymer concentrations of the fluid-fluid binodal curve as compared to pre-
dictions for neutral polymer chains mixed with hard spheres. Grinberg and Tolstoguzov
[36] presented generalised phase diagrams of proteins mixed with neutral non-adsorbing
polysaccharides in aqueous salt solutions. The miscibility was shown to increase when
the ionic strength of the solvent was lowered. Finet and Tardieu [131] studied the stability
of solutions of the lens protein crystalline. Adding an excess of salt to this system does not
destabilise the protein dispersion. Hence, it follows that the effective attractions between
the proteins are absent or are very weak in the case of screened charges. Adding PEG how-
ever induces significant attractions [131], and results in a shift of the liquid-liquid phase
transition to higher temperatures [134]. Adding excess salt and PEG induces instant phase
separation [131]. A similar synergetic effect of salt and PEG was found in aqueous solu-
tions of (spherical) brome mosaic virus particles [132]. In conclusion, the trend found in
experimental studies on mixtures of charged ’colloids’ plus neutral polymers is that the
miscibility is increased upon decreasing the salt concentration, i.e., increasing the range
of the screened-Coulomb repulsion.

In the light of these findings it is important to study theoretically mixtures of colloids
with a screened-Coulomb repulsion mixed with neutral polymer chains and to investi-
gate whether the trend found in many experimental studies is recovered. The amount of
theoretical work performed so far is rather limited. Ferreira et al. [135] made a polymer
reference interaction site model (PRISM) analysis up to the level of the pair interaction
and computed gas-liquid spinodal curves from the effective colloid-colloid structure fac-
tor. Denton and Schmidt [113] proposed a simple theory yielding the gas-liquid binodal
curve. The fluid-solid coexistence curves were not considered and none of these theo-
ries were tested against computer simulations. Here we study the effect of a screened-
Coulomb interaction on the total effective colloid-colloid interaction and on the resulting
gas-liquid and fluid-solid phase transitions in a charged colloid dispersion with added
non-adsorbing polymers. We demonstrate the fluid-solid coexistence is especially sensi-
tive to the screened-Coulomb repulsion.
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Figure 6.1: Pair interaction between two colloidal spheres with hard-core diameter σc interacting
with a Yukawa pair potential Ucc (equation 6.1) and an effective depletion interaction Udep (equa-
tion 6.5) due to the presence of non-adsorbing polymer coils with an effective diameterσp . The total
effective interaction Utot (equation 6.4) is denoted by the full curve. The Yukawa repulsion is charac-
terised by βε= 20 and κσc = 100. The depletion interactions are: (a) for a size ratio q =σp /σc = 0.1
and polymer reservoir packing fraction φr

p =0.2, (b) q = 0.6 and φr
p =1.

6.2 The model

We consider a suspension of charged colloidal spheres immersed together with non-adsorbing
polymer in a common solvent. The effective pair interaction between the charged col-
loidal spheres with hard-core diameter σc , reads

Ucc(Ri j ) =
{ ∞ for Ri j <σc

ε
(

exp(−κσc (Ri j /σc−1))
Ri j /σc

)
otherwise

, (6.1)

where Ri j = |Ri −R j | and Ri are the positions of the centres of the colloids. The range of the

repulsive tail is set by the inverse Debye screening length κσc =
√

8πλBσ
2
cρ

r
s , which is re-

lated to the salt concentration ρr
s in the reservoir, and to the Bjerrum lengthλB = e2/εs kB T

with kB Boltzmann’s constant, T the temperature, and εs the dielectric constant of the sol-
vent. The strength of the repulsion of the repulsive Yukawa interaction is determined by
the parameter ε = (Z /(1+κσc /2))2λB /σc . In figure 6.1 an example of a typical Yukawa
repulsion is given by the dot-dashed curves for βε= 20 and κσc = 100. Here β= 1/kB T .

Different procedures [136–140] exist that give the same functional form of the effec-

tive potential (6.1), but with a density dependent κ̃σc =
√

(4πλBσ
2
c (Zρc +2ρs )), where ρc

and ρs are, respectively, the densities of colloidal particles and added salt ion pairs, in the
system. The density ρs depends on the colloidal density and is smaller then the reservoir
density due to salt exclusion or Donnan equilibrium [141–143]. For typical values of the
parameters used in this work,βε= 20 and κσc = 50, the effective κ̃ differ from the reservoir

κσc =
√

8πλBσ
2
cρ

r
s by less than 1% for a colloid density near close-packing ρs = 1.4σ−3

c
when one applies Donnan equilibrium. Hence salt partitioning is hardly perceptible for
the salt conditions considered here.
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The polymers are described by the AOV model [28, 38, 39] framework, described in
section 1.3.3. The colloid-polymer potential Ucp , and the polymer-polymer potential Upp

reads

Ucp (Ri − r j ) =
{ ∞ for |Ri − r j | < (σc + σp )/2

0 otherwise
(6.2)

Upp (ri j ) = 0 , (6.3)

where Ri and r j are the positions of the centres of the colloids and the polymer coils, re-
spectively, and ri j = |ri − r j |. The full AOV model is recovered by setting ε to zero in the
effective potential (6.1).

Monte-Carlo simulations are carried out with the Hamiltonian

Utot(Ri j ) = Ucc(Ri j ) + Udep(Ri j ). (6.4)

where the depletion potential Udep, is the effective Hamiltonian derived for the AOV model
in Sec. 1.3.3, and truncated at the pairwise term. It reads

βUdep(Ri j ,µp ) = −
πσ3

pρ
r
p

6

(1+q)3

q3

[
1− 3Ri j

2(1+q)σc
+

R3
i j

2(1+q)3σ3
c

]
for σc < Ri j <σc +σp (6.5)

= 0 for Ri j >σc +σp

where we define the size ratio q = σp /σc . This Asakura-Oosawa pair potential describes
an effective attraction whose depth increases linearly with the polymer density in the cor-
responding reservoir ρr

p . For convenience, we define the relative polymer concentration

φr
p ≡ πσ3

pρ
r
p /6. Hence, φr

p = 1 defines the overlap concentration of the polymer solution.
The range of the potential is given by σp . The depletion interaction Udep(Ri j ) is plotted as
the dashed curves for q = 0.1 and φr

p =0.2 in figure 6.1(a), for q = 0.6 and φr
p = 1 in figure

6.1(b). By adjusting q and φr
p one can manipulate the range and strength of the depletion

interaction. We chose φr
p such that βUdep(σc ) =−3.5 for every value of q .

Examples of Utot(Ri j ) are plotted in figure 6.1 as the full curves, which are the sums
of equations (6.1) and (6.5), denoted by the dot-dashed and dashed lines, respectively.
For q = 0.1 (figure 6.1(a)) there is a significant effect of the repulsive tail on the effective
interaction as compared to the pure depletion contribution Udep(Ri j ). There is, however,
still some attraction in the Utot(Ri j ) curve between the charged repulsive spheres though it
is significantly reduced as compared to the pure Udep(Ri j ) result. In figures 6.1(b) the main
part of the pair interaction curve Utot(Ri j ) is identical to the pure depletion part Udep(Ri j )
for q = 0.6 and q = 1. Only the attraction at short interparticle distances is affected.

6.3 Simulation details

This section describes the technical details of the simulations. We consider the total effec-
tive one-component Hamiltonian of the colloids at fixed polymer fugacity zp

H(zp ) = Hcc + Hdep(zp ) (6.6)
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where the Hamiltonian Hcc consists of a sum of colloid-colloid pair potentials Ucc, which
can be split into a sum of hard-sphere potentials UHS and a sum of repulsive Yukawa po-
tentials:

Hcc =
Nc∑

i< j
Ucc(Ri j ) =

Nc∑
i< j

UHS(Ri j )+
Nc∑

i< j
UYuk(Ri j ) (6.7)

with

UYuk(Ri j ) = ε
exp(κσc (Ri j /σc −1))

Ri j /σc
for Ri j >σc (6.8)

and Hdep a sum of depletion potentials Udep (6.5):

Hdep(zp ) =
Nc∑

i< j
Udep(Ri j ; zp ). (6.9)

The equation of state for charged hard spheres was obtained with MC simulations in
the constant pressure ensemble. We carried out simulations in a cubic box with N = 350
colloids for the fluid phase, and N = 576 colloids for the solid f.c.c. phase. We used 250000
sweeps per particle for equilibration, and the average density was sampled for 250000
sweeps per particle.

To determine the free energy we carried out thermodynamic integration. The con-
tribution of the Yukawa potential, for the fluid phase, was calculated by introducing the
auxiliary Hamiltonian

H f lui d
cc,λ =

Nc∑
i< j

UHS(Ri j )+λ
Nc∑

i< j
UYuk(Ri j ) (6.10)

where 0 ≤ λ ≤ 1 is a dimensionless coupling parameter: at λ = 0 the auxiliary Hamilto-
nian is that of a pure system of Nc hard spheres, while at λ= 1 it is the Hamiltonian of Nc

charged spheres. The free energy is determined by applying the standard λ-integration
technique [18]

fc (Nc ,V ) = fHS(Nc ,V ,λ= 0) + vc

V

∫ 1

0
dλ

〈
Nc∑

i< j
βUYuk(Ri j )

〉
Nc ,V ,λ

. (6.11)

The angular brackets denote a canonical average over a system of Nc particles interacting

with the Hamiltonian H f lui d
cc,λ , while fHS(Nc ,V ,λ= 0) is the free energy of a system of hard

spheres, for which we use the Carnahan-Starling expression [144]. We start the canonical
simulations from a random, non-overlapping configuration, and use 15000 MC sweeps
per particle for equilibration and typically 15000 production moves for each value of the
coupling parameter λ. In principle, the free energy of the solid phase can be computed
with the same technique using the Hall expression for the free energy of the hard-sphere
crystal [145]. However the latter is only properly defined for packing fractions larger than
the value at hard sphere freezing ηc = 0.545, while charged spheres can yield crystal phases
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at lower packing fractions. A different technique is used for the solid phase by introducing
the auxiliary Hamiltonian

H sol i d
cc,λ =

Nc∑
i< j

Ucc(Ri j ) + λkB T
Nc∑
i=1

(ri − ro,i )2/σ2
c , (6.12)

where ro,i denote the ideal lattice position of particle i in a fcc crystal. The free energy is
computed by applying the integration technique introduced by Frenkel and co-workers
[146, 147]

fc (Nc ,V ) = f C M
ei n (Nc ,V ,λ=λmax )+ fcor r (Nc ,V )

− vc

V

∫ λmax

0
dλ

〈
Nc∑
i=1

(ri − ro,i )2/σ2
c

〉C M

λ

, (6.13)

where the angular brackets denote a canonical average of the mean square displacement
of Nc particles interacting with the Hamiltonian H sol i d

cc,λ , while the superscript C M denotes
that it is calculated for a crystal with fixed centre of mass. The parameter λmax is chosen
such that for λ = λmax the system behaves like a non-interacting Einstein crystal with
fixed centre of mass and Madelung energy UYuk(rNc

0 ), i.e., the potential energy of a crystal
with all particles at their ideal lattice positions. Typical values for λmax range from 1000
to 100000 for high densities. The free energy of a non-interacting Einstein crystal with
fixed centre of mass reads

f C M
ei n (Nc ,V ,λ=λmax ) = vc

V
βUYuk(rNc

0 )− 3(Nc −1)vc

2V
ln

[
π

λmax

]
+ (Nc −1)vc

V
ln

[
Λ3

c

σ3
c

]
(6.14)

The correction term fcor r arises when the constraint on the centre of masses is released,
i.e., the Helmholtz free energy difference between the unconstrained and constrained
crystal:

fcor r (Nc ,V ) = vc

V
ln

[
Λ3

V N 1/2
c

]
. (6.15)

The equilibration is done for 15000 MC steps per particle, and the averages are taken for
15000 MC steps per particle.

To determine the free energy contribution of the AOV depletion potential fdep we em-
ploy a second thermodynamic integration for the solid and fluid phase:

fdep = f (Nc ,V ,ρr
p )− f (Nc ,V ,ρr

p = 0)

=
∫ ρr

p

0
dρr

p
′
(
∂ f (Nc ,V ,ρr

p
′)

∂ρr
p
′

)
Nc ,V ,ρr

p
′

(6.16)

The system at ρr
p = 0 is a system of colloids interacting with pair potentials Ucc. The in-

tegral is calculated by dividing the interval [0,ρr
p ] in 20 to 30 equally spaced intervals. We
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used 10000 MC steps per particles for equilibration, while averages were taken for 20000
MC steps per particle. In addition we used the integrand to determine the number density
of ideal polymer in the system using the thermodynamic relation(

∂ f (Nc ,V ,ρr
p )

∂ρr
p

)
=

(
∂ f (Nc ,V , zp )

∂zp

)
=−vc

〈ρp〉ρr
p

ρr
p

(6.17)

6.4 Theory

6.4.1 Charged colloids

In this section we propose a simple description for charged colloidal suspensions. We
consider the screened-Coulomb repulsion as a perturbation of the hard-sphere interac-
tion which is only valid for highly screened colloidal suspensions. The effective volume
fraction ηe of the charged repulsive spheres is approximated as

ηe =
(
σe

σc

)3

ηc = m ηc (6.18)

where ηc ≡ πσ3
cρc /6 with ρc the colloid number density and σe the effective diameter of

the spheres defined by the Barker-Henderson relation [148]:

σe = σc +
∫ ∞

σc

(
1 − exp[−βUcc(r )]

)
dr (6.19)

which is a useful way to generalise pair potentials of various shapes [149], in particular,
perturbations from hard-sphere behaviour (see [44]). Instead of Ucc defined in equation
(6.1) one may use any other form for a (soft) repulsion. The physical effects are contained
in the value for m. Since we assume that a collection of charged spheres behave similarly
as a collection of pure hard spheres plus a small perturbation, we may use the Carnahan-
Starling (CS) expression [144] for the Helmholtz free energy to describe the thermody-
namic properties of the fluid of charged spheres:

m f fluid
c (ηc ,T ) = ηe lnηe + 4η2

e − 3η3
e

(1 − ηe )2 − ηe +ηe ln
6Λ3

c

πσ3
c

(6.20)

where Λc is the thermal wavelength of the colloids and where the hard-sphere volume
fraction ηc in the classical CS expression is replaced by the effective volume fraction ηe , de-
fined in equations (6.18) and (6.19). In equation (6.20) we use (as in [118]) the normalised
Helmholtz free energy fc , defined as βFc vc /V , where Fc is the Helmholtz free energy, and
vc = πσ3

c /6 is the volume of a single colloid.
The equation of state of the face-centred-cubic (fcc) crystal phase of pure hard spheres

is described accurately by the expression proposed by Hall [145]. Likewise, the equation
of state for the fcc crystal phase of the charged spheres reads

m f
crystal

c (ηc ,T ) = ηe

(
2.1306 + 3ln

[
ηe

1−ηe /ηcp

])
+ηe ln

6Λ3
c

πσ3
c

(6.21)
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containing the volume fraction at close packing ηcp =π
p

2/6 ≈ 0.74. The quantity 2.1306 is
derived from computer simulation results [146]. The osmotic pressureβΠc vc = ηc∂ fc /∂ηc−
fc reads

mβΠfluid
c vc (ηc ,T ) = ηe + η2

e + η3
e − η4

e

(1 − ηe )3 , (6.22)

for the fluid phase and

mβΠ
crystal
c vc (ηc ,T ) = 3ηe

1 − ηe /ηcp
, (6.23)

for the f.c.c. crystal.

6.4.2 Charged colloid-polymer mixtures

A simple approach that successfully describes the stability of polymer-colloid mixtures
is the semi-grand canonical free volume or osmotic equilibrium theory [30, 128]. In this
approach, a macroscopic volume V at temperature T is considered, that contains Nc col-
loids together with polymer chains and solvent, which are in osmotic equilibrium with a
reservoir containing only solvent and polymer chains. Hence, the system is considered
in the (Nc ,V , zp ,T ) ensemble, in which the number of colloids Nc and the fugacity of the
polymer chains zp are fixed. Consider the thermodynamic identity [43]:

βF (Nc ,V , zp ) = βF (Nc ,V , zp = 0) +
∫ zp

0
d zp

′
(
∂βF (Nc ,V , zp

′)
∂zp

′

)
zp

′
(6.24)

where we dropped the temperature dependence for convenience. The integrand can now
be Taylor expanded about zp = 0:

βF (Nc ,V , zp ) = βF (Nc ,V , zp = 0)+ zp

(
∂βF (Nc ,V , zp )

∂zp

)
zp=0

+O (z2
p )+·· · (6.25)

where the partial derivative can be written as(
∂βF (Nc ,V , zp )

∂zp

)
zp=0

=
(
∂F

∂µp

)
zp=0

∂βµp

∂zp
=−

〈Np〉zp=0

zp
. (6.26)

The number of polymer chains 〈Np〉zp=0 can be related by definition to the averaged free
volume that is available for the polymer chains 〈V f r ee〉zp=0 in the system of spheres that
is undistorted by the addition of polymers:

〈Np〉zp=0 ≡ ρr
p〈V f r ee〉zp=0. (6.27)

where ρr
p is the density of ideal polymer in the corresponding reservoir. Defining the free

volume fraction α ≡ 〈V f r ee〉zp=0/V , we can rewrite equation (6.24) as:

βF (Nc ,V , zp ) = βF (Nc ,V , zp = 0) − αρr
pV +O (z2

p )+·· · (6.28)
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The free volume theory [30] retains only the first-order term, neglecting terms O (z2
p ) and

higher. With this assumption the normalised thermodynamic potential f ≡ βF vc /V can
be written as the sum of two terms:

f (Nc ,V , zp ) = fc (Nc ,V )−αφr
p q−3 (6.29)

The first term in equation (6.29) is the normalised Helmholtz free energy f (Nc ,V , zp =
0) ≡ fc (Nc ,V ) of a ’pure colloid’ fluid at a given ηc , while the second can be interpreted
as a perturbation due to the presence of polymer chains. Note that equation (6.24)-(6.29)
holds for any colloid-polymer and polymer-polymer interactions within the assumptions
that are made.

All information about the interactions between colloid and polymer is contained in the
variation ofαwith ηc . For our model and the AOV model, the free volume fractionα can be
calculated accurately from scaled particle theory [30, 150] (see e.g. Meijer and Frenkel [35]
for a comparison with computer simulation results). Once the coexisting colloid volume
fractions are determined for given φr

p , the actual relative polymer concentrations can be
obtained in the coexisting phases fromφp ≡αφr

p . The expression for the free volume frac-
tion of polymer chains in a mixture of charged spheres using scaled particle theory reads

α = (1 − ηc )exp(−Aγ − Bγ2 − Cζ − 3Cζ2 − 3Cζ3), (6.30)

where γ= ηc /(1−ηc ), ζ= ηe /(1−ηe ), A = 3q + 3q2, B = 9q2/2, and C = q3. An explicit
derivation is given in section 6.4.3. Equation (6.30) reduces to the classical expression of
Lekkerkerker et al. [30] for the case ηe = ηc (m = 1). The free volume available for the
polymer chains is thus mainly a function of the pure hard-sphere volume fraction ηc ; it is
only affected by the screened-Coulomb repulsion at high colloid volume fractions or large
polymer chains. In the derivation of equation (6.30) an equal statistical weight is assigned
to all (non-overlapping) hard-sphere configurations, whereas the weight should involve
the polymer-mediated effective interactions and the screened-Coulomb interactions. We
expect our results to be accurate only if σe /σc − 1 << q . If the depletion layers become
small compared to σe −σc one expects hardly any overlap of depletion layers.

6.4.3 Free volume fraction in a charged sphere dispersion

We consider the free volume fraction α that is available for ideal polymer chains in a sea
of charged spheres with diameter σc . As the centre-of-mass of the polymer chains is ex-
cluded from the centre-of-mass of the charged colloids by a distance (σc +σp )/2 and the
polymer interactions are ideal, α is just the free volume fraction for a single hard-sphere
with diameter σp in a sea of charged spheres. This free volume fraction α can be deter-
mined from the chemical potential of the polymer chains. The chemical potential for in-
serting a polymer in a sea of charged spheres consists of an ideal gas term and a work
term W .

βµp = lnρpΛ
3
p +W (6.31)

Following Widom’s particle insertion method [151], the required work to insert a polymer
W is equal to βW = − lnα. The work W can be determined from scaled particle theory,
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that considers two limits. In this theory, the size of the particle is scaled with a parameter
x. In the limit x ¿ 1, the polymer coils reduce to points, and hence the volume fraction
available to the polymer is simply unity minus the sum of the overall hard-sphere volumes
plus the depletion layers around them:

α(x ¿ 1) = 1− π

6
ρc

(
σc + xσp

)3 (6.32)

where ρc = Nc /V is the number of colloidal spheres per volume (related to ηc via ηc =
πρcσ

3
c /6). Hence, it follows

βW (x ¿ 1) = − ln
[

1− π

6
ρc

(
σc + xσp

)3
]

(6.33)

On the other hand, if x À 1, the work required to insert a polymer coil in a sea of charged
spheres, is approximately the work to create a hole with the size of the polymer coil, which
is equal to the volume of the polymer coil times the osmotic pressure Πc of the disper-
sion of charged colloids:

W (x À 1) = π

6
x3σ3

pΠc . (6.34)

In scaled particle theory, W (x ¿ 1) is expanded about x = 0 up to order x2 and W (x À 1)
is added as the x3 term.

W (x) = W (x = 0) + x

(
∂W

∂x

)
x=0

+ 1

2
x2

(
∂2W

∂x2

)
x=0

+ π

6
x3σ3

pΠc (6.35)

Scaling the polymer coils to the desired size by x = 1, yields

βW (x = 1) = − ln
[
1−ηc

] + 3qγ + 1

2

(
6q2γ + 9q2γ2)

+ π

6
σ3

pβΠc (6.36)

where γ = ηc /(1−ηc ). Hence α follows straightforwardly from W ≡ W (x = 1). For pure
hard spheres one usually takes the Percus-Yevick result for the pressureΠHS from the virial
route (see [44]) since it is consistent with SPT

βΠHS

ρc
= 1 + ηc + η2

c(
1 − ηc

)3 = 1

1 − ηc
+ 3ηc(

1 − ηc
)2 + 3η2

c(
1 − ηc

)3 (6.37)

Inserting this expression for ΠHS into equation 6.36 for Πc yields

βw = − ln
[
1−ηc

] + (A + C )γ + (B + 3C )γ2 + 3Cγ3 (6.38)

where A, B , and C , are defined below equation 6.30. Hence, we arrive at the standard SPT
result for the free volume fraction of ideal polymer in a sea of hard spheres [30]

α = (
1−ηc

)
exp

[−(
(A + C )γ + (B + 3C )γ2 + 3Cγ3)] (6.39)
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In case of colloidal spheres interacting with a Yukawa pair potential, we rewrite equa-
tion (6.37) following the approach outlined in section 3 giving a pressure

βΠYuk

ρc
= 1 + ηe + η2

e(
1 − ηe

)3 = 1

1 − ηe
+ 3ηe(

1 − ηe
)2 + 3η2

e(
1 − ηe

)3 (6.40)

where ηe is defined by equation (6.18). Using this expression forΠc in equation 6.36 yields
equation 6.30.

6.5 Results

6.5.1 Hard spheres

Let us first check the accuracy of equations (6.20) and (6.21) on the level of the result-
ing osmotic pressure Πc . Results using equations (6.22) and (6.23) with Ucc(Ri j ) given by
equation (6.1) are plotted in figure 6.2 (curves) and are compared with computer simula-
tion data (symbols), for βε= 20 and 1/κσc equals 0 (full curves, open circles), 0.01 (dotted
curve, filled squares) and 0.02 (dashed curve, open triangles), corresponding to m = 1,
1.110 and 1.225, respectively. The results for pressures below βΠc vc = 6.2 correspond to
the colloidal fluid phase, while the results for larger pressures correspond to the fcc crys-
tal. Figure 6.2 shows that the pressure increases upon increasing the range of the soft
repulsion. The simulation results are well described by equation (6.22) (see the results for

Figure 6.2: Pressure of a dispersion of charged colloidal spheres interacting with Ucc(Ri j ) (see equa-
tion (6.1)) for βε = 20 and 1/κσc = 0 (open circles, full curves), 0.01 (filled squares, dotted curves),
and 0.02 (open triangles, dashed curves), corresponding to m = 1,1.110, and 1.225, respectively, in
equation (6.18). The symbols denote the simulation results, while the curves denote the theoretical
predictions of equations (6.22) (lower set of pressures) and (6.23) (upper set).
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βΠc vc < 6.2.) for the fluid phase for m = 1, m = 1.110 and m = 1.225. In addition, the
results for the solid phase using equation (6.23) (βΠc vc > 6.2) agree well with the simu-
lations for m = 1, m = 1.110 and m = 1.225. Our results demonstrate that for sufficiently
short-ranged soft repulsions, the screened-Coulomb interaction can be treated as a per-
turbation of the hard-sphere potential using the Barker-Henderson relation (6.19). The

Figure 6.3: Fluid-solid (fcc) transition of charged colloidal spheres interacting with a hard-core re-
pulsive Yukawa potential (6.1) with a) βε = 20 and b) βε = 39. Open symbols denote simulation
results of pure hard spheres taken from Ref. [60]. Filled circles denote the simulation results of Hyn-
ninen and Dijkstra [26]. Full curves correspond to the theoretical predictions as described in section
6.4.

fluid-solid transition, first established for pure hard spheres by Alder and Wainwright [2]
and Wood and Jacobson [152], can now be studied as a function of the softness of the re-
pulsive tail. We determine the densities of the coexisting phases by equating the osmotic
pressures and the chemical potentials βµ = ∂ fc /∂ηc using equations (6.20) and (6.21). It
becomes evident that the Ansatz of equations (6.18), (6.19), (6.20) and (6.21) is expected to
be useful only for short-ranged soft repulsions, so forσe 'σc or 1/κσc → 0. In order to test
whether this approach is valid for relatively short-ranged soft repulsions, we compare the
predicted fluid-solid transitions with computer simulation data for small values of 1/κσc .

In figure 6.3, the fluid-solid binodals calculated for 1/κσc < 0.04 are plotted as the full
curves. In figure 6.3(a), the βε= 20 case is considered. The dots are computer simulation
results by Hynninen and Dijkstra [26]. Open symbols are the pure hard-sphere computer
simulation results of Hoover and Ree [60]. For 1/κσc < 0.02 the agreement is excellent
though for larger Debye lengths deviations are found. This deviation is not surprising since
the simple theoretical method is based on a perturbation from the hard-sphere system and
is, hence, expected to be only accurate for very small values of 1/κσc . Still, this simple the-
ory for charged colloidal sphere dispersions suffices our purpose of studying the stability
of charged colloid-polymer mixtures in the regime of 1/κσc < 0.02. To be more specific,
this means that our Ansatz describes well the case of colloidal particles with a diameter of,
say, σc = 100 nm with a Debye length smaller than about 2 nm or, equivalently, an ionic
strength > 0.02M (in the case of monovalent ions in water at room temperature). Actually,
in nature, the ionic strength in aqueous salt concentrations is usually above 0.02M , so for
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large spheres we still capture the biologically relevant ionic strength regime. For globular
proteins we can only compare with experimental data at significant salt concentrations
but we can still make estimates of the main trends. In figure 6.3(b), we compare our theo-
retical results (full curves) with computer simulation data (crosses) for βε= 39. Again, our
Ansatz is in fair agreement with the computer simulation results (data points) [26]. Hence
we validated our approach to describe the fluid and fcc crystal equations of state and the
fluid-solid transition of a charged sphere dispersion for 1/κσc < 0.02. This provides a base
for studying the effect of adding non-adsorbing polymer to such a suspension.

6.5.2 Results for model charged colloid-polymer mixtures

We study the stability of a mixture of charged colloidal spheres and non-adsorbing poly-
mer chains in a common (background) solvent. In figure 6.4 we compare the result of the
free volume fraction α as a function of the colloid volume fraction ηc of equation (6.30)
with Monte Carlo simulation results for 〈ρp〉zp /ρr

p using equation (6.17) for q = 0.1. It is
worth mentioning that α is evaluated in the pure charged-colloid system in the free vol-
ume theory, i.e., zp = 0, while 〈ρp〉zp /ρr

p from simulations do depend on zp . In the sim-
ulations, however, we use zp along the bulk binodals as shown in figure 6.1 (which will
be discussed later). The theoretical curves in figure 6.4 show only a slight effect of the

Figure 6.4: Free volume fractionα≡ 〈V f r ee 〉zp=0/V for a mixture of charged colloids and ideal poly-
mer with size ratio q = σp /σc = 0.1 as a function of hard-core volume fraction ηc . The screened-
Coulomb repulsion is characterised by βε = 20 and various values of κσc . Full, dotted and dashed
curves represent equation (6.30) for κσc =∞ (m = 1), 100 (m = 1.110) and 80 (m = 1.138), respec-
tively. Note that the differences in the theoretical curves are only noticeable at high ηc .The symbols
with errorbars denote the Monte Carlo simulation results for 〈ρp 〉zp /ρr

p using equation (6.17) for
κσc =∞ (closed squares), κσc = 100 (open circles) and κσc = 80 (closed triangles), where we used
zp at bulk coexistence (see figure 6.6).

screened-Coulomb repulsion on α for ηc > 0.4. Within the statistical error bars, no signifi-
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cant effect of the screened-Coulomb repulsion was detected in the simulations on the free
volume fraction. Moreover, the zp -dependence is hardly noticeable. We thus conclude
that equation (6.30) is accurate for short-ranged screened-Coulomb repulsions for q = 0.1
or, equivalently, that the effect of the screened-Coulomb repulsion on α is negligible.

We can now analyse the effect of the screened-Coulomb repulsion on the phase be-
haviour. The osmotic pressures Π and colloid chemical potentials µc can be found by
differentiation of the Helmholtz free energy (6.29). The colloid volume fractions in each
of the coexisting phases, η1

c and η2
c , are obtained by equating µc and Π at fixed polymer

reservoir concentration φr
p . The Helmholtz free energy density (6.21) is used for the solid

phase, while equation (6.20) is employed for the fluid.

In figure 6.5(a), we plot the phase diagram using the free volume theory (6.29) for a size
ratio q = 0.1 and (κσc )−1 = 0.0, 0.005, 0.01, and 0.0125 in the (ηc ,φr

p ) plane. For (κσc )−1 = 0
and φr

p = 0, we recover the well-known pure hard-sphere freezing transition at ηc = 0.494
and 0.545 [60]. In the case of charged spheres, the freezing transition at φr

p = 0 shifts to
lower colloid volume fractions ηc , which is in line with the results in figure 6.3, and is due
to a larger effective volume of the charged spheres. Figure 6.5(a), shows clearly that the
fluid-solid transition widens upon increasing the polymer concentration. More specifi-
cally, the broadening of the freezing transition shifts to higher φr

p with increasing range of

the screened-Coulomb repulsion (κσc )−1. This can be explained as follows. Upon increas-
ing the range of the screened-Coulomb repulsion, ηe = mηc , and hence fc , increases. At
the same time the free volume fraction α is not affected significantly (see figure 6.4) upon
adding a screened-Coulomb repulsion. So, in order to attain a similar effect on f (see
Eq. (6.29)), a higher polymer concentration is required to broaden the freezing transition.

For larger values of q , say q > 0.4, a fluid-fluid coexistence becomes stable in the AOV
model, which dominates the phase behaviour at colloid volume fractions ηc < 0.49. In
analogy with figures 6.1(b) and 6.1(c) we choose q = 0.6 and 1 and study the effect of the
repulsive screened-Coulomb interaction on the fluid-solid and fluid-fluid transition. In
figures 6.5(b),(c), we plot the predictions from free volume theory in the (ηc ,φr

p ) represen-
tation for q = 0.6 and q = 1.0, respectively. We again find that the freezing transition at
φr

p = 0 shifts to lower colloid volume fractions ηc upon increasing (κσc )−1. In addition,
figures 6.5(b),(c) show that the fluid-fluid demixing shifts to higher φr

p with increasing

range of the screened-Coulomb repulsion (κσc )−1. Hence, the trends are similar as for
q = 0.1. The screened-Coulomb repulsion reduces the depletion effect. The critical points
are indicated as the filled circles in figure 6.5(b),(c), and they indicate that the critical col-
loid volume fraction ηc shifts to somewhat smaller values upon increasing the range of
the soft repulsion.

To test the validity of the predictions from free volume theory, we compare our re-
sults with Monte Carlo simulations. We determine the phase diagram of the effective one-
component system by calculating the dimensionless free energy density f = βF vc /V as
a function of the colloid packing fraction ηc and the fugacity of the polymer chains zp as
explained in section 6.3. For non-interacting chains the fugacity zp equals the density of
polymer chains ρr

p in the corresponding reservoir. In order to map out the phase diagram
we determine the total free energy density f (ηc , zp ) for many state points (ηc , zp ) in sim-
ulations. We employ common tangent constructions at fixed zp to obtain the coexisting
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(a)

(b)

(c)

Figure 6.5: Phase diagram of a mixture of charged spheres and ideal polymer as obtained from free
volume theory as a function of the colloid volume fractions ηc and the ideal polymer reservoir con-
centrationφr

p . The screened-Coulomb repulsion (6.1) is characterised by βε= 20 and various values
of κσc as indicated. F and S denote the stable fluid and solid fcc phase. F + S denotes the stable
fluid-solid coexistence region. F +F denotes the stable fluid-fluid coexistence region (a) For size
ratio q = 0.1. (b) For size ratio q = 0.6. (c) For size ratio q = 1.0.
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(a)

(b)

(c)

Figure 6.6: Phase diagram of a mixture of charged spheres and ideal polymer as obtained from sim-
ulations of the effective pair potential (6.4) as a function of the colloid volume fractions ηc and the
ideal polymer reservoir concentration φr

p . The screened-Coulomb repulsion (6.1) is characterised
by βε = 20 and various values of κσc as indicated. The curves serve as a guide to the eye. Open
circles correspond to the pure hard-sphere case (κσc )−1 = 0, closed circles to a screened-Coulomb
repulsion with (κσc )−1 = 0.01 and open triangles to (κσc )−1 = 0.0125. F and S denote the stable
fluid and solid fcc phase. F +S denotes the stable fluid-solid coexistence region. (a) For size ratio
q = 0.1. (b) For size ratio q = 0.6. (c) For size ratio q = 1.0.
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phases [42]. Fgure 6.6(a) shows the simulation phase diagram for size ratio q = 0.1. The
results agree semi-quantitatively with the prediction of the theory shown in figure 6.5(a).
The main difference is due to the fact that the results of both approaches deviate already
for the AOV model (hard-sphere colloids with ideal polymer, i.e., (κσc )−1 = 0) [43]. For the
AOV model, the theoretical binodal is shifted with a factor of about 1.3 in φr

p compared
to the simulations. This factor between the theoretical predictions and the simulation re-
sults is about 1.2 when the screened-Coulomb repulsion is added. We also compare the
free volume theory results for the phase behaviour for q = 0.6 and 1 as shown in figures
6.5(b),(c) with computer simulations. The phase diagrams obtained from Monte Carlo
simulations of the effective one-component systems are plotted in figure 6.6(b), and figure
6.6(c), for size ratios q = 0.6, and q = 1.0, respectively. The main theoretical trends are also
found in the simulation results. Again, the data of the simulations suggest that a higher
polymer concentration is required to induce the fluid-fluid transition upon increasing the
range of the soft repulsion. We stress that the free volume theory incorporates some of
the many-body effects which are present at large q , while our simulations are based on
a two-body approximation to the effective Hamiltonian. It is therefore difficult to make
a direct comparison between the simulation results and those obtained from free volume
theory. However, for q ≤ 0.1547, the mapping of the charged colloid-polymer mixture onto
an effective one-component Hamiltonian based on depletion pair potentials is exact and
thus a direct comparison is feasible for our results for q = 0.1.

Finally, we convert the polymer reservoir concentrationφr
p to that in the actual system

φp . Figure 6.7(a) shows the conversion of the phase diagram of figure 6.5(a) for q = 0.1 and
βε = 20 and Debye screening lengths (κσc )−1 = 0 (dashed curves; the pure hard-sphere
case), (κσc )−1 = 0.005 (dot-dashed curves), (κσc )−1 = 0.01 (full curves) and 0.0125 (dotted
curves). The phase stability of a mixture of charged colloids and neutral polymer chains
in an aqueous salt solution is thus expected to depend very sensitively on the screening
length, and thus on the salt concentration, at least for small size ratios q . In figure 6.7(b),
we investigate the effect of βε on the phase behaviour. We plot the converted phase di-
agram for the same set of parameters as in figure 6.7(a), i.e., q = 0.1 and varying Debye
screening lengths (κσc )−1, but with βε = 39 instead of βε = 20. There is a striking simi-
larity between the two sets of results and, hence, we conclude that the effect of βε is not
significant. For larger values of βε, the system becomes more sensitive to κσc and thus to
the salt concentration. Figure 6.7(c) shows the conversion of the phase diagram as shown
in figure 6.5(c) for q = 1.0 and βε = 20 and Debye screening lengths (κσc )−1 = 0 (dashed
curves; the pure hard-sphere case), (κσc )−1 = 0.01 (full curves) and 0.02 (dotted curves).

It follows that an increase of the reduced Debye length (κσc )−1 shifts the fluid-fluid
coexistence curves upwards. Using a PRISM approach, Ferreira et al. [135] also found
this trend for the spinodal curve of the demixing fluid (see their figure 6.6) based on de-
termining the composition where the inverse structure factor vanishes in the long wave-
length limit. Figures 6.5(c) and 6.7(c) show clearly that the shift in polymer concentration
of the fluid-fluid binodals for q = 1 is weak compared to the shift in the fluid-solid bin-
odals for small q .

A relevant quantity that measures the relative influence of the screened-Coulomb re-
pulsive pair interaction is (κσp )−1 or (κσc q)−1. Hence, the size of the polymer chains (or
the depletion thickness) as compared to the range of the repulsion determines the relative
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(a)

(b)

(c)

Figure 6.7: Same as figure 6.5 but as a function of the actual ideal polymer concentration φp . The
filled circles indicate the location of the gas-liquid critical points. The inset is a blow-up of the critical
region of the liquid-gas binodal.
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importance of the screened-Coulomb repulsion on the total effective depletion interac-
tion. In biological systems such as charged proteins mixed with neutral polysaccharides,
where often κ−1 < σc q , we expect that the phase behaviour is only moderately sensitive
to the salt concentration. Decreasing the salt concentration significantly is then expected
to stabilise the charged biocolloid dispersion against depletion-induced demixing. This
explains the enhanced miscibility found in mixtures of proteins mixed with neutral non-
adsorbing polysaccharides in aqueous salt solutions [36]. In many charged colloidal dis-
persions the soft repulsion is expected to suppress the depletion effect. In several applica-
tions such as paints and food dispersions where colloidal particles are mixed with polymer
chains, a screened-Coulomb repulsion helps stabilising the dispersion.

6.6 Conclusions

We have studied the effect of a short-ranged screened-Coulomb repulsion on the phase
stability of mixtures containing charged spheres and non-adsorbing polymer chains. The
charged spheres are described as hard spheres with an additional screened-Coulomb or
Yukawa repulsion with the screening length given by the Debye length κ−1, setting the
range of the soft repulsion. The phase behaviour of the charged sphere dispersion is de-
scribed using standard expressions for the colloidal hard-sphere fluid and fcc crystal with
the hard-sphere volume fraction replaced by an effective volume fraction that depends on
the Yukawa interaction between the spheres. Our results obtained from free volume the-
ory and Monte Carlo simulations show that the additional screened-Coulomb repulsion
reduces the depletion effect. For mixtures of small polymers plus relatively large charged
spheres the fluid-solid transition is shifted to significantly larger polymer concentrations
with increasing Debye screening length κ−1, while for relatively larger polymers the effect
is weaker: the resulting fluid-fluid binodal is affected weakly by adding a short-ranged
soft repulsion. In general, the range of the screened-Coulomb repulsion compared to the
range of the depletion attraction determines qualitatively the reduction of the depletion
effect, and hence, the shift of the fluid-fluid and fluid-solid binodals correspondingly. In
conclusion, a mixture of charge-stabilised colloids and non-adsorbing polymers at large
concentrations of both components can be stabilised by lowering the salt concentration,
which increases the range of the screened-Coulomb interaction of the colloids.

Acknowledgements: The theoretical calculations presented in this chapter were per-
formed by Remco Tuinier.
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Gas-liquid phase separation in oppositely charged
colloids: stability and interfacial tension

We study the phase behaviour and the interfacial tension of the screened Coulomb (Yukawa)
restricted primitive model (YRPM) of oppositely charged hard spheres with diameterσ us-
ing Monte Carlo simulations. We determine the gas-liquid and gas-solid phase transition
using free energy calculations and grand-canonical Monte Carlo simulations for varying
inverse Debye screening length κ. We find that the gas-liquid phase separation is stable
for κσ ≤ 4, and that the critical temperature decreases upon increasing the screening of
the interaction (decreasing the range of the interaction). In addition, we determine the
gas-liquid interfacial tension using grand-canonical Monte Carlo simulations. The inter-
facial tension decreases upon increasing the range of the interaction. In particular, we find
that simple scaling can be used to relate the interfacial tension of the YRPM to that of the
restricted primitive model, where particles interact with bare Coulomb interactions.

7.1 Introduction

Coulombic interactions are important in a wide variety of physical systems such as elec-
trolytes, molten salts, plasmas, colloidal suspensions, micelles, microemulsions, and liq-
uid metals. The screened Coulomb (Yukawa) potential arises naturally for charged par-
ticles in the presence of a screening distribution of microions. The phase behaviour of a
pure system of hard spheres interacting with screened Coulomb potentials has been well-
studied and the phase diagram displays stable fluid, fcc, bcc crystal phase [26, 153–155].
In this chapter, we study a binary fluid of oppositely charged particles using computer
simulations. While the phase diagram of the restricted primitive model (RPM), consisting
of a binary mixture of equally sized hard spheres carrying opposite charges of equal mag-
nitude, and interacting with bare Coulombic interactions, has been widely studied [156–
163], there is little information available on the phase diagram of the Yukawa restricted
primitive model (YRPM), where the hard spheres of diameter σ interact with screened
Coulomb potentials ui j =±εσexp[−κ(ri j −σ)]/ri j , with ri j the distance between particles

89
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i and j , ε the contact value, and κ the Debye screening parameter (inverse of the Debye
screening length). Recently Hynninen et al. [164], determined the full phase diagram of the
YRPM for a screening parameter κσ = 6. At high temperatures, the system behaves like a
pure hard-sphere system, with a transition between a fluid and a substitutionally disor-
dered fcc phase, where the opposite charges are distributed randomly on a fcc lattice. At
lower temperatures, a dilute gas phase coexists with a high density CsCl solid phase, and
the gas-liquid transition is metastable with respect to freezing. At high densities, various
solid-solid transitions appear, e.g., a transition from CsCl to CuAu and from CuAu to the
tetragonal phase. Overall the system exhibits a phase behaviour in striking similarity with
the RPM phase diagram [158–161, 164], which displays a fluid-disordered fcc transition
at high temperatures, a stable gas-liquid transition at low temperatures, and a fluid-solid
transition at higher densities. Since the RPM is the limit of the YRPM for κσ→ 0, we expect
a crossover from a metastable to a stable gas-liquid transition for 0 < κσ< 6.

The gas-liquid transition for a similar model with pair potential ui j = εexp[−κ(ri j−σ)],
has been studied using computer simulations [165–167]. This interaction potential differs
by a factor σ/ri j from our model. The factor σ/ri j is of the order of unity, and we expect
the effect on the phase behaviour to be small. This allows us to compare the results of Refs.
[165–167] with the results of the YRPM. In particular Caballero et al. [166], investigated the
critical temperature as a function of the screening parameter. In a later paper [167], the
stability of the gas-liquid separation with respect to the gas-solid transition was estimated
by computing the melting density of the CsCl structure. This technique overestimates the
stability of the gas-liquid binodal, with respect to our free energy calculations. We will dis-
cuss the relationship between our results and those of Ref. [167] in more detail in Sec. IV.

An experimental realisation of the YRPM is provided by charge-stabilised colloidal sus-
pensions. Recently, it was shown experimentally that the charge on the colloids can be
tuned in such a way that oppositely charged colloids can form large equilibrium ionic col-
loidal crystals [5, 164, 168, 169]. Experiments, theory, and simulations based on screened
Coulomb interactions are in good agreement. The system studied in Refs. [5, 164] had a
Debye screening parameter κσ∼ 7, and a gas-liquid phase separation was not observed.

The critical temperature and structure of the YRPM has also been studied using inte-
gral equation theory [170], but no information on the stability of the gas-liquid transition
with respect to freezing has been given.

In this chapter, we determine the value of the screening parameterκσ at which the gas-
liquid transition becomes stable for oppositely charged colloids. To this end, we perform
Monte Carlo simulations to compute the Helmholtz free energies of the fluid and solid
phases of the YRPM. We also study the dependence of the critical parameters and the gas-
liquid interfacial tension on the interaction range. The critical parameters and the values
of the interfacial tension are calculated using histogram reweighting methods and grand-
canonical Monte Carlo simulations.

7.2 Model

We investigate the Yukawa restricted primitive model (YRPM) consisting of N spherical
particles with a hard-core diameter σ in a volume V . Half of the spheres carry a posi-
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tive charge and the other half a negative charge of the same magnitude. The pair inter-
action reads

βu(ri j ) =


∞ ri j ≤σ

± εY

kB T

exp[−κ(ri j −σ)]

ri j /σ
σ< ri j < rcut

0 otherwise

, (7.1)

where ri j is the distance between spheres i and j , κ the screening parameter, β ≡ 1/kB T
the inverse temperature with kB the Boltzmann constant and T the temperature, and εY

the contact value of the potential. The cut-off value is rcut = 3.6σ. The interaction is at-
tractive for oppositely charged spheres, and repulsive for like-charged spheres. We define
a reduced temperature T ∗

Y = kB T /εY and measure particle density in terms of the packing
fraction η = (πσ3/6)N /V .

According to the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [23, 24] explained
in section 1.3.2, the effective pair potential between two charged spheres carrying the
same number Z of elementary charges e suspended in a sea of salt ions with density ρs

is given by Eq. (7.1) with a contact value

εY

kB T
= Z 2

(1+κσ/2)2

λB

σ
. (7.2)

The Debye screening parameter reads κ=√
8πλBρs , where λB = e2/εs kB T is the Bjerrum

length and εs is the dielectric constant of the solvent. It must be noted that, more recent
theories on same charged colloidal spheres suspended in a sea of salt ions yield poten-
tials of the form of Eq. (7.1), but with screening parameters that depend on the charged
colloid concentration [40, 136–139, 171, 172]. However, the exact functional form is yet
unknown [173] and different theories predict varying functional forms. Furthermore, the
DLVO theory was not originally derived for oppositely charged spheres, but it can be ex-
tended using the linear superposition approximation (LSA) to obtain the potential given
by Eqs. (7.1) and (7.2) [174]. The extended DLVO theory has been shown to give good
agreement with Poisson-Boltzmann [175] and primitive model calculations [176] at small
κσ, justifying the use potential in Eq. (7.1) with the contact value given by Eq. (7.2). We
will refer to the DLVO theory extended by the LSA simply as the DLVO theory. To facilitate
the comparison between the results of the DLVO theory for different screening lengths κ,
we define a reduced temperature T ∗

C = σ/Z 2λB that is independent of κ and equal to the
the definition of the reduced temperature of the RPM.

7.3 Simulation Methods

In order to determine the stable phase for a given state point, we compute the Helmholtz
free energy as a function of η and T ∗

Y . As the free energy cannot be measured directly in
a Monte Carlo simulation, we use thermodynamic integration [18, 146, 147] to relate the
free energy of the YRPM system to that of a reference system, whose free energy is known.
In the thermodynamic integration of the fluid phase, we use the hard-sphere fluid as the
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reference state, whereas in the solid phase, the reference state is the Einstein crystal. We
use a 10-point Gaussian quadrature for the numerical integrations and the ensemble av-
erages are calculated from runs with 40000 MC cycles (attempts to displace each particle
once), after first equilibrating the system during 20000 MC cycles. Employing a common
tangent construction on the fluid free energy density curves as a function of η, we find
the points of tangency that correspond to the densities of the coexisting gas and liquid
phase. A similar common tangent construction is used to determine the coexistence be-
tween the fluid and solid phases, and to check whether the gas-liquid separation is stable
with respect to the fluid-solid phase coexistence. In addition, we perform a more detailed
study of the gas-liquid binodal using methods based on histogram reweighting. To this
end, we employ grand-canonical Monte Carlo simulations with successive umbrella sam-
pling [126] to overcome the free energy barrier between the liquid and gas phases. In the
successive umbrella sampling method, the probability P (N )|z+,z− of having N particles at
fugacity z = z+ = z−, with z+ and z− the fugacity of positively and negatively charged col-
loids, respectively, is obtained by sampling successively ’windows’ of particle numbers at
a fixed volume V = L3. In each window, the number of spheres N is allowed to fluctuate
by one particle, i.e., between 0 and 1 in the first window, 1 and 2 in the second window,
etc. We choose at random whether to make an attempt to insert or to remove a particle
such that, on average, the system is charge neutral. The sampling of the probability ra-
tio P (N )/P (N + 1) is done, in each window, until the difference between two successive
samplings of the probability ratio is smaller than 10−3. At phase coexistence, the (nor-
malised) distribution function P (N )|z becomes bimodal, with two separate peaks of equal
area for the liquid and gas phases. To determine phase coexistence we calculate the av-
erage number of particles

〈N〉 =
∫ ∞

0
N P (N )|z d N . (7.3)

Subsequently, we use the histogram reweighting technique [177] to determine the fugacity
z ′ for which the equal area rule∫ 〈N〉

0
P (N )|z ′d N =

∫ ∞

〈N〉
P (N )|z ′d N , (7.4)

which is the condition for phase coexistence, is satisfied.
The gas-liquid interfacial tension γlg for a finite system with volume V = L3 is obtained

from P (N )|z ′ at coexistence:

βγlg,L = 1

2L2

[
ln

(
P (N g

max)+P (N l
max)

2

)
− ln(P (Nmin))

]
, (7.5)

where P (N g
max) and P (N l

max) are the maxima of the gas and liquid peaks, respectively, and
P (Nmin) is the minimum between the two peaks. We determine the bulk interfacial tension
γlg by performing simulations for a range of system sizes and by extrapolating the results
to the infinite system size using the relation [127, 178, 179]

βγlg,L =βγlg −
x lnL

2L2 − ln A

2L2 , (7.6)
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where A and x are generally unknown. The finite size scaling is performed using the sim-
ulation results for box lengths L/σ =8, 10, 12, and 14.

The critical temperature Tcr and critical packing fraction ηcr are determined by fit-
ting the scaling law

ηl −ηg = f1(Tcr −T )0.32, (7.7)

and the law of rectilinear diameters

ηl +ηg

2
= ηcr + f2(Tcr −T ), (7.8)

to the simulation results for the gas (ηg ) and liquid (ηl ) packing fractions, where f1 and
f2 are fitting parameters.

7.4 Results

We compute the phase diagram using thermodynamic integration and grand-canonical
Monte Carlo simulations for screening parameters κσ=2, 3, 4, 4.5, and 6. In Fig. 7.1, we
show the resulting phase diagrams in the (η,T ∗

Y ) plane, together with the κσ=0 phase di-
agram from Refs. [161] (fluid-solid) and [156, 157] (gas-liquid). The squares denote the
results from the free energy calculations, and the circles represent the gas-liquid binodal
obtained from the grand-canonical Monte Carlo simulations. We find good agreement
between both results. The shaded areas in Figs. 7.1(e)-(f) represent the metastable gas-
liquid regions for screening parameters κσ= 6 and 4.5. For smaller screening parameters,
κσ=4, 3, and 2, the gas-liquid transition is stable, and the phase diagram resembles that of
a simple fluid. At sufficiently low temperatures, a gas-liquid phase separation (metastable
for screening parameters κσ = 6 and 4.5) appears at low densities and a fluid-solid tran-
sition at high density. At the triple point, the gas, liquid, and the solid phase are in coex-
istence, while at the critical point, the gas and the liquid phase have the same density. At
temperatures below the triple point, a dilute gas coexists with a high density solid, and at
temperatures higher than the critical temperature, a fluid coexists with a solid phase. Fig-
ure 7.1 shows that the region of stable liquid phase increases upon increasing the range of
the interaction, i.e., decreasing κσ. For simple fluids with short-range attractive Yukawa
interactions, square-well attractions, and depletion attractions, the relationship between
the range of the attractive interactions and the stability of the gas-liquid transition has
been well-studied by computer simulations, density functional calculations, and integral
equation theories [180–186]. These studies show that the minimum range of attractions
required for a stable gas-liquid transition is about one sixth of the range of the repulsions.

Our results show that the gas-liquid coexistence is stable for κσ≤ 4, and therefore con-
tradict the findings of Ref. [167], where an estimate κσ≤ 25 was given. In this comparison,
we have to keep in mind that the pair potential used in Ref. [167] did not include the fac-
tor 1/r , which we include. To study the effect of this factor, we repeated our free energy
calculations using the pair potential of Ref. [167] for screening length κσ = 6. The results
for this model are presented in Fig. 7.1(f) with a dashed line. We find that there is no qual-
itative difference between the two models; both predict a metastable gas-liquid transition
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Figure 7.1: Phase diagrams of the YRPM in the reduced temperature T∗
Y - packing fraction η repre-

sentation for varying Debye screening parameter (a) κσ = 0 from Refs. [156, 157, 161]; (b) κσ = 2;
(c) κσ=3; (d) κσ = 4; (e) κσ = 4.5; (f) κσ = 6. The squares are the results from the free energy cal-
culations and the circles are the results from the grand-canonical Monte Carlo simulations. F and S
denote the stable fluid and solid (CsCl) phase. F + S and F + F denote, respectively, stable fluid-solid
and (meta)stable gas-liquid coexistence region (the shaded regions are metastable). The dashed line
in (f) indicates the results of the model used by Caballero and Puertas [167]. The lines are a guide to
the eye. Tie lines (not shown) are horizontal.
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for screening length κσ= 6. In Ref. [167], the stability of the gas-liquid transition was de-
termined from the cross-over between the freezing line and the liquid branch of the gas-
liquid binodal. The cross-over point was recognised as the gas-liquid-solid triple point.
When the triple point was at a lower temperature than the critical point, the gas-liquid
phase separation was considered stable. Since the CsCl structure melts in the middle of
the broad gas-solid coexistence, the criteria used in Ref. [167] would indicate a stable gas-
liquid separation, whereas our free energy calculations show that it is, in fact, metastable.
We argue that the computation of the melting line cannot be used to determine the stabil-
ity of gas-liquid transition with respect to a broad gas-solid coexistence region.
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Figure 7.2: Binodals of the YRPM for screening parameter κσ=2, and cutoff values rcut/σ=2.3, 3.6,
and 5 in the (η,T∗

Y ) representation. Statistical errors are of the order of the symbol size. The lines are
a guide to the eye.

It is interesting to note that previous simulation studies of a one-component hard-
core attractive Yukawa fluid predict a stable gas-liquid transition for κσ = 3.9, while it is
metastable for κσ = 7 [180, 186], which compares well with our results.

Table 7.1: Critical temperatures T∗
Y,cr and packing fractions ηcr for the YRPM for different values of

the Debye screening parameter κσ. The GMSA theory data is from Ref. [170].

Simulation GMSA theory
κσ T ∗

Y,cr ηcr T ∗
Y,cr ηcr

6 0.1755 (5) 0.162(8) 0.16053 0.07875
4 0.1626 (1) 0.114(3) 0.16498 0.06263
3 0.1467(1) 0.100(1) 0.16240 0.05009
2 0.1232(8) 0.083(1)
0 0.0490(3)1 0.037(3) 0.07858 0.00758
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In Figure 7.2, we analyse the effect of the cutoff value of equation (7.1) on the liquid-gas
binodal. Huge deviations are expected as the interaction becomes longer ranged. We used
three different cutoff values rcut/σ= 2.3,3.6,5 for the calculation of the liquid-gas binodal
for our longest range interaction (κσ= 2). The binodals for cutoff values rcut/σ= 3.6, and
5 are equivalent within the statistical accuracy, thereby justifying the choice of a cutoff
value rcut/σ = 3.6 in all subsequent calculations.
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Figure 7.3: Binodals and the critical points of the YRPM for screening parameters κσ=0, 2, 3, and 4,
in the (η,T∗

Y ) representation. Crosses denote the location of the critical points. The binodal for κσ=0
(RPM) is taken from Ref. [156] and the critical point from Ref. [187]. The lines are a guide to the eye.

Table 7.1 summarises the critical temperatures T ∗
Y,cr and critical packing fractions ηcr

as found from our simulations and from the generalised mean spherical approximation
(GMSA) theory [170] for different values of κσ, while Figure 7.3 shows the (stable) gas-
liquid binodals for κσ=2, 3, and 4, in the (η,T ∗

Y ) representation. Table I and Fig. 7.3 show
that, for 0 ≤ κσ ≤ 6, the reduced critical temperature T ∗

Y,cr and the critical packing frac-
tion ηcr decrease for increasing range of the interaction, i.e., decreasing κσ, in agreement
with the findings of Caballero et al. [166]. The non-monotonic behaviour of the critical
temperature as a function of κσ that was reported in Ref. [166] for screening parameters
κσ> 10 is in the region where we claim the gas-liquid phase separation to be metastable.
As can be seen from Table I, the GMSA theory predicts a non-monotonic behaviour of the
critical temperature as a function of κσ. Comparing the theoretical results with our simu-
lations, we observe that the GMSA theory overestimates the critical temperature for κσ< 6
and underestimates it at κσ= 6. On the other hand, the GMSA theory underestimates the
critical packing fraction for all values of κσ.

Figure 7.4(a) shows the binodals of the YRPM and the RPM in the corresponding state
representation, where the reduced temperature T ∗

Y is scaled with the critical temperature
T ∗

Y,cr, and the packing fraction η is scaled with the critical packing fraction ηcr. We see
that the binodals do not collapse on a single master-curve, but instead, the RPM binodal
(where κσ= 0) differs considerably from the YRPM binodals (where κσ= 2,3, and 4). This
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Figure 7.4: (a) Binodals of the YRPM and the RPM in the corresponding state representation for
Debye screening parameters κσ= 2,3, and 4. The reduced temperature T∗

Y is scaled with the critical
temperature T∗

Y,cr and the packing fraction η is scaled with the critical packing fraction ηcr. The
binodal for κσ=0 (RPM) is from Ref. [156] and the critical point from Ref. [187]. (b) The difference in
coexisting packing fractions ∆ηlg = ηl −ηg is plotted against 1−T∗

Y /T∗
Y,cr.

finding is in agreement with the prediction of the GMSA theory [170]. In Fig. 7.4(b), we plot
the width of the gas-liquid separation, ∆ηlg = ηl −ηg , as a function of 1−T ∗

Y /T ∗
Y,cr. We see

that for a fixed 1−T ∗
Y /T ∗

Y,cr, the width of the gas-liquid separation decreases with increasing
range of the interaction, resulting in a smaller density gap between the coexisting liquid
and gas phase for longer-ranged interactions.

Figure 7.5 shows the gas-liquid interfacial tension, scaled with the contact value energy
εY, for different values of the screening parameter κσ. For comparison, we also show the
interfacial tension of the RPM from Ref. [188]. As can be seen from Fig. 7.5, the value of the
dimensionless interfacial tension increases with increasingκσ. This can be understood on
the basis of Fig. 7.4(b), which shows that, with increasing κσ, the density gap of the coex-
istence region increases, meaning that the interfacial tension increases. The inset of figure
7.5 shows a log-log plot of γlgσ

2/εY versus 1−T ∗
Y /T ∗

Y,cr in the vicinity of the critical point,
which can be used to extract an estimate for the critical exponent of the correlation length
ν. We found 2ν' 1.1 for all screening parametersκσ, by performing a linear fit on the data,
which differs from the Ising model result 2ν = 1.32 [127], and from the accepted value of
2ν= 1.26 [189, 190]. The value of the correlation length is very sensitive to the extrapolated
surface tension to infinite system sizes. In order to improve the statistical accuracy of the
simulations, larger system sizes, as well as longer runs are needed, especially close to the
critical point. Nevertheless, our results are compatible within the simulation error, with
the theoretical prediction of the correlation length (dashed line in the inset of figure 7.5).

We now interpret our results in view of the DLVO theory. In the DLVO theory, the con-
tact value εY , and hence the reduced temperature T ∗

Y = kB T /εY, depend on the salt con-
centration ρs through the screening parameter κσ, see Eq. (7.2). In Fig. 7.6(a), we plot the
gas-liquid binodals and critical points for κσ=0, 2, 3, and 4, using the reduced temperature
T ∗

C = σ/Z 2λB that does not depend on κσ. As can be seen from Fig. 7.6(a), the reduced
critical temperature T ∗

C ,cr decreases with increasing κσ, or salt concentration. This means
that, at a fixed T ∗

C and at a statepoint inside the gas-liquid coexistence region, adding salt
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Figure 7.6: (a) Binodals of the YRPM, for Debye screening parameters κσ =0, 2, 3, and 4, in the
reduced temperature T∗

C and the packing fraction η representation. The binodal for κσ=0 (RPM) is
from Ref. [156] and the critical point from Ref. [187]. (b) Dimensionless gas-liquid interfacial tension
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decreases the density difference between the gas and the liquid phases, until, at the criti-
cal salt concentration, the density difference disappears. This finding could be confirmed
by performing simulations with explicit co- and counterions [173, 191], and could be used
to experimentally test the validity of the DLVO theory for oppositely charged colloids. Fig-

ure 7.6(b) shows the interfacial tension scaled with the contact value εC = Z 2kB TλB
σ , and

as can be seen, the interfacial tensions for different κσ collapse to a single line. This sug-
gests that the interfacial tension is determined solely by the contact value and not by the
range of the interaction.

7.5 Conclusions

We have used a combination of MC free energy calculations and grand-canonical MC sim-
ulations to determine the stability and the interfacial tension of the gas-liquid phase sepa-
ration in a binary mixture of oppositely charged hard spheres, which interact via screened-
Coulomb (Yukawa) potentials. We find that the gas-liquid coexistence is stable with re-
spect to gas-solid coexistence for values of the screening parameter κσ ≤ 4. This value is
similar to what is found for the single component attractive Yukawa model [186], where
the gas-liquid transition is stable at κσ = 4 and metastable at κσ = 7.

We have studied the dependence of the critical temperature as a function of the range
of the Yukawa interaction. If the contact value of the interaction potential does not de-
pend on the screening length, it is possible to define a reduced critical temperature simply
as the inverse of the Yukawa contact value. With this definition, the reduced critical tem-
perature decreases upon increasing the range of the interaction, which is in agreement
with Ref. [166].

We have related the Yukawa restricted primitive model (YRPM) to the DLVO theory,
which was recently used to explain experimental results on oppositely charged colloids [5,
164, 169, 192]. The DLVO theory predicts a contact value that depends on the screening
length. Thus, in order to facilitate the comparison between the results for different screen-
ing lengths, we define a temperature scale that is independent of the screening length. The
natural choice is the reduced temperature of the RPM, which is the limit of zero screen-
ing length of the DLVO theory. With this definition, the reduced critical temperature de-
creases upon increasing the range of the interaction. This means that upon adding salt to
a system at fixed temperature and at a statepoint in the gas-liquid coexistence region, the
density difference between the gas and liquid phases decreases, and finally disappears at
the critical salt concentration. This prediction could be tested by computer simulations
with explicit co- and counterions [173, 191], and could be used to study experimentally
the validity of the DLVO theory for oppositely charged colloids.

Finally, we have studied the gas-liquid interfacial tension using histogram reweight-
ing methods. We find that the dimensionless tension decreases for decreasing screening
parameter. Upon scaling the interfacial tension with the contact value of the Coulomb
interaction, we observed a collapse of the interfacial tensions onto a single curve. This
means that for state points at coexistence and at the same scaled temperature T ∗

C /T ∗
C,cr,

the interfacial tension is determined solely by the contact value and not by the range of
the interaction. There might be a possible connection with the well known similarities be-
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tween the structures of the RPM and of the YRPM. Larsen and Rogde [193] noted that their
Monte Carlo results for the radial distribution functions of the YRPM were similar to those
obtained for the RPM at different state points. The structurally equivalent states were fur-
ther investigated by Copestake and Evans [194] and by Leote de Carvalho and Evans [170].
This correspondence is due to the screening of charges in the RPM, which in turn is due
to charge ordering.[170, 193, 194] Consequently, the potential of mean force between two
ions decays more rapidly than the bare Coulomb potential, and for certain state points the
potentials of mean force will be similar for the YRPM and the RPM.



8

Brownian dynamics simulations of
phase-separating colloid-polymer mixtures

We study a mixture of monodisperse colloidal hard spheres and ideal polymers described
by an effective one-component system, in which the colloids interact with a short-range
effective Asakura-Oosawa potential. We determine the equilibrium bulk phase diagram
using free energy calculations. The phase diagram displays a broad fluid-solid coexis-
tence region and a metastable gas-liquid regime. We divide the phase diagram in dif-
ferent kinetic regimes according to Evans et al. [195]. We carry out Brownian dynamics
simulations to study the dynamic evolution of the different kinetic pathways. In agree-
ment with Cates et al. [196], we find a fluid of ‘long-lived’ clusters in the binodal regime
at low colloid packing fractions. In the spinodal regime, we observe at low colloid pack-
ing fractions a phase of crowded clusters that can merge and break-up again, and a ki-
netic arrested spinodal decomposition at higher packing fractions. At even higher colloid
densities, a homogeneous gel phase is observed, which can be viewed as an attractive
glass phase. The structure of the clusters are crystal-like at low attractive interactions and
glassy at high attraction strengths.

8.1 Introduction

The structure and the equilibrium phase behaviour of colloid-polymer mixtures and of
particles with short-range interactions in general depend strongly on the range and the
strength of the interaction [29, 30, 32, 35, 43]. The scenario is further enriched by the
presence of non-ergodic states like glasses [4, 197–199] and gel-like phases [200–207] that
can form in certain regions of the phase diagram [208].

A fluid of hard spheres crystallises when the packing fraction is larger than η = 0.545
but arrests into a colloidal glass phase for packing fractions larger than η& 0.58 [4]. In a
colloidal glass, the particles are arrested as they become localised in a "cage" formed by
the surrounding spheres [199]. Hence, the system is trapped in a non-ergodic state, and
the lowest free energy state, i.e., the ordered crystal phase, is unreachable. Experiments on

101
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colloidal hard spheres in a space-shuttle (microgravity) show, however, crystallisation at
η= 0.619 [209], while vitrification is observed for these samples on earth (normal gravity).
It is clear that an external field, e.g., gravity or a centrifugal field, has a pronounced effect
on the glass transition.

Interestingly, the addition of non-adsorbing polymer, resulting in an effective attrac-
tion between the colloids can enhance the relaxation processes, the cage of surrounding
particles becomes looser due to the natural tendency of particles to get closer together.
Therefore, the particles can escape the cage and the system can crystallise. The so-called
‘repulsive’ glass transition moves towards higher packing fractions upon increasing the
attraction between the particles. Nevertheless, for increasing attraction strengths the par-
ticles become more and more localised due to long-lived bonds between the neighbouring
particles. This type of arrested state due to bonding is called an attractive glass. The in-
terpretation of glassy dynamics is mainly due to the developments of the Mode Coupling
Theory (MCT) [210–213].

Recent studies show that the transition from fluid to attractive glass moves towards
lower packing fractions for increasing attraction, until it meets the metastable gas-liquid
binodal on the liquid side [214, 215]. This finding supports the hypothesis that gel-like
states are due to an MCT-like dynamical arrest of a percolating cluster in the system:
the phase separation is arrested because the liquid-like clusters crosses the glass transi-
tion [204]. It is worth noting that a percolating arrested cluster is required to sustain stress
in a macroscopic gel. These clusters can result from spinodal decomposition, binodal
decomposition (nucleation and growth) [196], or diffusion limited aggregation for suffi-
ciently high attractions, when the particles stick irreversible to each other. On the other
hand other mechanisms like aggregation or percolation [200, 216–221], can be responsi-
ble for the gel transition. Recent experiments [206] identified indeed the importance of
the MCT glass transition in the formation of gels in the region of the metastable gas-liquid
phase separation. At these intermediate packing fractions gelation is driven by a spinodal
decomposition into an interconnected colloid-rich network, followed by dynamic arrest
due to a local glass transition [206]. However, some differences in the ageing dynamics
between high density glasses and the percolated structures were pointed out by Foffi et al.
[222]. At lower packing fraction a state of disconnected (glassy) clusters exists as a pre-
cursor to gelation [205, 223–226]. Subsequently, these clusters can grow and form a gel by
cluster-cluster aggregation. At even lower colloid packing fractions, ‘long-lived’ fluid clus-
ters has been reported recently in experiments on colloid-polymer mixtures [227]. It is
important to stress that these clusters are not stabilised by a competition between short-
range attractions and long-range Coulombic repulsions as in Ref. [224, 228, 229]. The
mechanisms behind all these non-equilibrium structures and their relation with the equi-
librium phase diagram and distinct kinetic pathways are still unclear.

In many simulation studies on the gel formation and the glass transition, it is com-
mon place to suppress the metastable phase separation by adding a long-range repulsive
barrier [196, 230] or by decreasing the maximum valency [207, 231]. In addition, a poly-
disperse system of colloids is often used to prevent crystallisation. However, the effect
of these changes to the particle interactions on the bulk phase diagram is never investi-
gated in great detail.

In this chapter, we study a monodisperse system of hard spheres with short range at-
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tractive interactions. It is straightforward to determine the equilibrium phase diagram
for this system using free energy calculations. We then perform extensive Brownian dy-
namics simulations at fixed range of interaction and varying colloid packing fractions and
strengths of the interaction. We study the morphology of the resulting crystallites, glassy
and gel-like phases, and their relation to the equilibrium phase diagram and the different
available kinetic pathways [195, 232].

8.2 Model and Method

We study a system of Nc hard spheres of diameter σc and non-adsorbing polymers with
diameter σp described by the AOV model. The polymers induce a short range attractive
interaction between the colloids given by the AO potential (1.24)

βUdep(Ri j ) =
 −ηr

p
(1+q)3

q3

[
1− 3Ri j

2(1+q)σc
+ R3

i j

2(1+q)3σ3
c

]
σc < Ri j <σc +σp

0 Ri j >σc +σp

(8.1)

where Ri j = |~Ri − ~R j | is the distance between two colloidal particles, with ~Ri the position
of the centre-of-mass of colloid i . The size ratio q = σp /σc determines the range of the
interaction. The polymer reservoir packing fraction ηr

p = π/6σ3
pρ

r
p , is proportional to the

density of polymer ρr
p in a reservoir in osmotic contact with the system of interest. This

parameter controls the strength of attraction. In addition, we defineβU =βUdep(Ri j =σc )
as a measure of the interaction strength.

We determine the phase diagram by calculating the dimensionless free energy den-
sity f = βF /V as a function of the colloid packing fraction ηc and the polymer reservoir
packing fraction ηr

p with Monte Carlo simulations. We use thermodynamic integration to
relate the free energy of the effective system to that of a reference system at the same col-
loid volume fraction ηc . To this end, we write the total free energy density as the sum
of two contributions

f (Nc ,V ,ηr
p ) = fc (Nc ,V )+ fdep(Nc ,V ,ηr

p ) , (8.2)

where fc (Nc ,V ) is the free energy density of a system of Nc hard spheres in a volume V , for
which we used the Carnahan-Starling expression [144] for the fluid phase, and the Hall ex-
pression [233] for the face-centred-cubic (f.c.c.) solid phase. The free energy density fdep

is the contribution of the depletion potential (8.1) to the free energy density, and it is com-
puted using the λ-integration [18]. In order to map out the phase diagram we determine
the total free energy density f (ηc ,ηr

p ) for many state points (ηc ,ηr
p ) in simulations, and we

employ common tangent constructions at fixed ηr
p to obtain the coexisting phases [42].

To study the dynamics of the system we carry out standard Brownian dynamics [15]
simulations based on the Langevin equation for Nc particles of radius rc = σc /2, and
mass m

m~̈ri =−~∇Ui −ξ~̇ri +~Fi , (8.3)
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where Ui is the potential energy of particle i in the field of N −1 particles, ξ is the friction
coefficient, and ~Fi is a random force acting on particle i . We neglect the inertia term m~̈ri

and the equation (8.3) reduces to

~̇ri = 1

ξ
(−~∇Ui +~Fi ) , (8.4)

that we solve using the Euler forward algorithm. The time step δt is chosen to be much
larger than the velocity relaxation time (' mD0/kB T ), and much smaller than the diffusion
time τD = r 2

c /D0, where D0 is the Stokes-Einstein diffusion coefficient. We use Stokes law
for the friction coefficient ξ = 6πνrc , where ν is the viscosity of the solvent. We neglect
all hydrodynamic interactions between the particles. The random forces ~Fi mimic the
interaction between particles and solvent, and are sampled from a Gaussian distribution
with variance 2D0δt . The random force and the dissipative term provide the system with
a heat bath at constant temperature. In the Brownian dynamics simulation we replace the
hard-core potential with the repulsive soft potential 1/r 36.

We characterise the local structure around a particle i by the set of numbers

qlm(i ) = 1

Nb(i )

Nb (i )∑
j

Ylm(~ri j ) , (8.5)

where Yl m(~ri j ) are spherical harmonics, ~ri j is a unit vector in the direction of the bond
between particle i and particle j . The sum runs over all Nb(i ) neighbours of particle i . We
then construct the dot product

q(i j ) =~ql (i ) ·~ql ( j ) =
l∑

m=−l
qlm(i )q∗

lm( j ) , (8.6)

where i and j are neighbouring particles, and q∗
lm(i ) is the complex conjugate of qlm(i ).

We normalised the vector ~ql (i ), such that ~ql (i ) ·~ql (i ) = 1. In our analysis two particles are
defined as neighbours if their separation is smaller then a cutoff value of 1.25 σc , corre-
sponding to the position of the minimum between the first and second peak of the radial
distribution function. Two particles are defined to be joined by a crystal bond if the factor
q(i j ) > 0.5. Particle i is crystal-like if at least 7 of its bonds with neighbouring particles are
crystal-like [234]. As in other studies [10] we use the l=6 order parameter.

8.3 Results

Fig. 8.1 shows the equilibrium phase diagram obtained from free energy calculations for
size ratio q = 0.15, in the attraction energyβU (polymer reservoir packing fraction ηr

p ), col-
loid packing fraction representation. For βU =0 we recover the hard sphere phase diagram
with a fluid phase at packing fraction ηc ' 0.494, at coexistence with an f.c.c. crystal at
packing fraction ηc ' 0.545. For increasing βU the region of fluid-solid coexistence opens
up. At the critical energy βUcr '2.3 ( (ηr

p )cr ' 0.316) we find a metastable gas-liquid tran-
sition. In Fig. 8.1 we plot the metastable gas-liquid binodal and spinodal denoted by the
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circles and crosses, respectively. The geometric percolation line indicates at which col-
loid packing fraction one cluster spans the system with a probability of 50% [235]. Note
that the percolation line crosses the gas-solid binodal and that the percolation line follows
closely the gas-liquid spinodal.
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Figure 8.1: Phase diagram in the attraction energy βU colloid packing fraction ηc representation.
The squares indicate the fluid-solid coexistence densities. Also shown are the metastable gas-liquid
binodal (circles) and spinodal (crosses). The dotted lines are a guide to the eye. The dashed line
indicate the geometric percolation transition, while the continuous line is the limit of the region of
clusters formation. The dark shaded area is the region where the fraction of crystalline particles is
larger than 0.2. The thin continuous line indicates the transition from ergodic to non-ergodic fluid
of clusters according to Segrè et al. [223].

For the topology of the phase diagram considered here we can identify five differ-
ent regimes using the Cahn construction [236] on the free energy density curves shown
schematically in Fig. 8.2. Following the notation of Evans et al. [195] we indicate the ki-
netic regimes as E, F, G, L, and M, as shown in Fig. 8.1. The common tangent construction
in Fig. 8.2(a) shows that for all statepoints with ηg as < ηc < ηcr y the system can lower its
free energy by gas-solid phase separation with coexisting densities ηg as and ηcr y . Con-
sider the initial state point A denoted by an asterisk on Fig. 8.2(a), which is in regime E.
Drawing a tangent (line α) to this point one can easily see that the tangent lies below the
gas minimum, but above the solid minimum. Hence, ’positive’ free energy ∆ f is avail-
able to nucleate the crystal phase from the fluid phase. For higher ηr

p typical free energy
density curves are drawn in Fig. 8.2(b). The curves show three minima, corresponding to
the gas, liquid and crystal phase. Moreover one can observe a stable gas-solid transition
and a metastable gas-liquid transition shown by the two corresponding common tangent
constructions (line α and β, respectively). One can now divide the free energy curve for
the fluid phase in five different regions. If we consider an initial state in regime M, that
is outside the metastable gas-liquid coexistence region, we can easily see that the tangent
to a point on the fluid branch lies below the gas minimum, but above the solid minimum.
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Hence, only crystallites can be nucleated which must be coated with gas phase because no
tangent can be drawn between the liquid and the crystal phase. Similarly, one can deter-
mine that in regime F, either crystal nucleation from the supersaturated gas phase is pos-
sible, or more likely crystal formation from an intermediate liquid phase. Regime G corre-
sponds to spinodal decomposition of gas and liquid. Subsequently crystallites can be nu-
cleated from the dense phase. In regime L gas bubbles or crystals can be nucleated. In this
chapter we concentrate on the pathways F, G, and L, where there is a competition between
gas-liquid phase separation and crystal nucleation [195]. Furthermore non-equilibrium
effects like aggregation and glass transition can influence the kinetics dramatically [196].
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Figure 8.2: Schematic fluid and solid free energy density curves of a system with short range attrac-
tive interaction at fixed interaction strength βU (ηr

p ). (a) Low attraction strength. Only gas-solid
phase separation is possible. The vertical dashed lines indicate the packing fractions ηg as and ηcr y
of the coexisting gas and solid phase, respectively. Also shown is the common tangent between
the fluid and solid curves (line β) and the tangent (line α) to the state point A. (b) High attrac-
tion strength. The fluid free energy curve shows two minima, corresponding to the metastable gas
and liquid phases, with packing fractions ηg as and ηl i q , respectively. Vertical dashed lines indicate
the position of the minima in the free energy curves. Vertical dotted lines denote the limit of the
spinodal decomposition region. The line α indicate the common tangents between gas and liquid
phases, while the line β is the common tangent between between the gas and solid phases.

In order to study the dynamic evolution of the different kinetic regimes we carry out
Brownian dynamics simulations in a box with dimension Lx ×Ly ×Lz with number of par-
ticles Nc ranging from 600 to 1000. The time step is chosen to be δt = 5×10−6τB . Start-
ing from homogenous configurations the system is instantaneously quenched to a state
point in one of the kinetic regimes. We studied the evolution of the system for a total time
t = 35τB , plus few runs up to t = 105τB to evaluate the ageing of the quenched structures.

In Fig. 8.3 we report examples of the calculated fraction fcr of crystal-like particles as
a function of the interaction energy U /kB T for varying colloid packing fraction ηc . We
observe a sharp increase of crystal nucleation for energies larger than the critical energy.
The fraction of crystal-like particles reaches a maximum and slowly decreases for increas-
ing attraction energy. The dark grey area in Fig. 8.1 shows the region where fcr > 0.2 at
t = 35τB . For U /kB T & 3.26 (ηr

p ' 0.45) the fraction of crystalline particles is almost zero
and the system is glassy. In Ref. [237] the attractive glass transition was predicted to be at
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Figure 8.3: Fraction of crystal-like particles as a function of the interaction energy (a) ηc =0.10. (b)
ηc =0.25. (c) ηc =0.40

.

ηr
p ' 0.43 for a system with size ratio q = 0.1, and using a pair potential that included a

long-range repulsive barrier to prevent gas-liquid phase separation. This value is remark-
ably close to our estimate. Note that the boundary is nearly horizontal which is consistent
with the picture that gel formation is due to the intersection of the attractive glass line
with the gas-liquid binodal.

In regime F we observe the nucleation of fluid-like clusters (Fig. 8.4(a)) as expected
on the basis of the Cahn construction. For attraction energy βU '2.5 (ηr

p =0.34) we ob-
serve that the fluid clusters subsequently transform into crystal-like clusters. At higher
attraction energy βU '4.35 (ηr

p =0.6) which is in regime G the clusters remain in a fluid-
like (probably glassy) state, with few crystal-like particles (Fig. 8.4(b)). Fig. 8.5 shows the
evolution in the number of clusters in the simulation box for packing fraction ηc =0.10. In
Fig. 8.5(a) we show the evolution of the number of clusters for a state point within path-
way F. We observe the formation of clusters due to nucleation. The number of clusters
decreases exponentially due to coalescence or growth.

We observe cluster formation also for the state points whose evolution is reported in
Fig. 8.5(b),(c) that correspond to state points within regime G. The spinodal decomposi-
tion is much faster than crystal nucleation because there are no energy barriers involved.
Fig. 8.6 shows the evolution in the number of clusters in the simulation box for packing
fraction ηc =0.25. All these state points lie in regime G. Fig. 8.6(a) shows the evolution for
energy βU '2.3 (ηr

p =0.32). There is immediate percolation due to spinodal decomposi-
tion, but the increasing noise at longer times indicates the formation of reversible clusters
in the system, the clusters can form and break-up again (Fig. 8.7(a)). The thick continuous
line in Fig. 8.1 shows the crossover between the region where the spinodal decomposition
is arrested (right side), and the region (left side) where clusters can form due to coarsen-
ing of spinodal decomposition or aggregation. Moreover another line (thin continuous
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Figure 8.4: Simulation snapshots for colloid packing fraction ηc =0.10 at time t/ts = 21×106. Dark
particles are crystalline, while light particles are fluid like. (a) ηr

p =0.34 (regime F). The diameter of
the fluid particles is reduced by a factor 1/3. (b) ηr

p =0.60 (regime G). In (a) we observe the formation
of clusters due to nucleation of the liquid phase in the gas phase. Subsequently, the fluid clusters nu-
cleate the crystal phase. In (b) we observe the formation of clusters due to spinodal decomposition.
The reversible clusters can break and merge, remain glassy and correspond to weak gelation.
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Figure 8.5: Number of clusters for colloid packing fraction ηc =0.10 as a function of time t/ts , where

ts = 103δt is the sampling interval. (a) ηr
p =0.34. (b) ηr

p =0.38. (c) ηr
p =0.60. In (a) the cluster formation

is due to nucleation of the liquid phase. The fluid clusters can aggregate or nucleate the crystal phase
(kinetic pathway F). In (c) the cluster formation is due to spinodal decomposition (kinetic pathway
G). The state point (b) is at the boundary between spinodal decomposition and nucleation.
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line in Fig. 8.1) can be drawn in regime G that denotes the crossover from fluid of mobile
clusters to a weak gel that consist of kinetically arrested clusters similar as the arrest of
particles in a repulsive glass.

Figs. 8.6(b),(c) show the time evolution of the number of clusters in the system for
interaction energies βU '2.8, and βU '4.4, respectively. The spinodal decomposition
is arrested, resulting in a long-lived percolating cluster. For interaction energy βU '2.8
(ηr

p =0.38) crystallites can form in the system (Fig. 8.7(b)), while for βU '4.4 (ηr
p =0.6) the

branches are glassy (Fig. 8.7(c)).
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Figure 8.6: Number of clusters for colloid packing fraction ηc =0.25 (kinetic pathway G) as a function

of time t/ts , where ts = 103δt is the sampling interval. (a) ηr
p =0.32. (b) ηr

p =0.38. (c) ηr
p =0.60. In (a)

we observe fluctuations in the number of clusters at high t/ts , this indicates the presence of clusters
in the system. While in (b),(c) a single cluster is formed at small t/ts , and survives for the entire
simulation time.

In regime L the initial homogeneous fluid can nucleate a gas or a crystal phase. We ob-
serve the formation of voids in the structure, but we are unable to discriminate between
gas nucleation or particle crowding. In this region we observe that the branches crys-
tallise (Fig. 8.8(a)) at low attraction energy, but remain glassy at higher attraction energy
(Fig. 8.8(b)).

8.4 Conclusions

We studied the dynamical evolution of a phase separating system of hard spheres with
short range attractive interactions. We find a well-defined region in the phase diagram
where crystallites formed during the simulations. This region is limited at low attractions
by a fluid phase (of clusters), and at high attractive interactions by a gel-like phase. The
nucleation of crystallites is dramatically enhanced by the metastable gas-liquid phase sep-
aration.
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Figure 8.7: The same as Fig. 8.4, but for colloid packing fraction ηc =0.25 (regime G). (a) ηr
p =0.32. (b)

ηr
p =0.38. (c) ηr

p =0.60. In (a) the structure is that of a fluid of crowding, reversible clusters, that can
break and merge. In (b) and (c) we observe a single long-lived cluster that can be crystalline (b) or
glassy (c).

Figure 8.8: The same as Fig. 8.4, but for colloid packing fraction ηc =0.40 (regime L) and t/ts = 7×103.
(a) ηr

p =0.34. (b) ηr
p =0.60. In (a) we observe the formation of voids and subsequently the nucleation

of crystal structures in the fluid branches. In (b) we observe the formation of voids but the structure
remains glassy, corresponding to a spatially homogeneous gel or attractive glass.
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We studied the competition between gas-liquid phase separation and crystal nucle-
ation. Upon quenching the system well-inside the metastable gas-liquid coexistence re-
gion we find the immediate formation of clusters. The clusters can be formed through
spinodal decomposition, nucleation and growth or kinetic aggregation. The structure of
the clusters can be crystal-like or glassy.

We can distinguish different regions in the phase diagram that partly coincide with ki-
netic regions. In regime F, we observe ’long-lived’ compact clusters that are formed by nu-
cleation and growth. These clusters are stable over the simulation time probably because
they cannot adapt their shapes to allow coalescence on the Smoluchowski timescale. A
fluid of clusters was recently observed by Lu et al. [227]. In regime G, we find the forma-
tion of an interconnected network of colloid-rich and colloid-poor regions, due to spin-
odal decomposition. At low packing fraction the network coarsens into long-lived non-
equilibrium clusters that can merge and break-up again. At sufficiently high packing frac-
tion these reversible clusters can get arrested due to crowding of clusters (type III gels in
the notation of Cates et al. [196]) which is the ’weak gelation’ as the particles bonding is
reversible. The crossover from mobile fluid clusters to arrested clusters was observed ex-
perimentally by Segrè et al. [223].

At higher colloid packing fractions in regime G the spinodal decomposition is imme-
diately arrested into a percolated network. The fluid branches can nucleate the crystal
phase, and for higher attraction we observe glassy branches. These structures are type II
gels in the notation of Cates et al. [196]. Type II gels are driven by spinodal decomposition
into a percolating colloid-rich network that can get arrested at sufficiently high polymer
reservoir packing fraction or interaction energy. The ageing of the crystal-like network can
proceed very fast leading to a collapse of the branches, but can sometimes survive for the
entire simulation time. The glass-like arrest of the spinodal decomposition was observed
experimentally by Manley et al. [206].

In regime L we observe percolated structures with thick branches with crystal or glassy
structure. These structure corresponds to type I gels in the notation of Cates et al. [196],
which are spatially homogeneous gels at high colloid packing fraction and might be related
to the attractive glass.
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Summary

In this thesis, we have presented computer simulation results on the bulk and interfacial
phase behaviour of colloidal suspensions. In the first part, consisting of chapters 2, 3, 4,
and 5, we have studied inhomogeneous systems. In particular, in chapter 2 we have devel-
oped and tested a simulation technique to calculate the free energy of hard-core systems.
This technique was used to calculate the interfacial free energy of colloidal hard spheres
and with the addition of non-adsorbing polymer coils. Good agreement was found be-
tween the simulation results and those from density functional theory. On the other hand,
qualitative agreement was found between simulations and scaled particle theory. In chap-
ter 3 we have determined the equilibrium phases of a system of hard spheres confined
between two parallel hard walls for plate separations from one to five hard-sphere diame-
ters. We found a fluid-solid transition, which corresponded to either capillary freezing or
melting depending on the plate separation. The coexisting solid phase consisted of crys-
talline layers with either triangular or square symmetry. At high densities, intermediate
structures, e.g., prism, buckled, and rhombic phases, were found. In chapter 4, we have
analysed colloid-polymer mixtures confined between two parallel plates. Colloids were
described as hard spheres, while polymers were described as overlapping spheres and are
excluded from the colloidal surfaces by a hard-core diameter. We have considered dif-
ferent types of confinement, namely either through two hard walls or through two semi-
permeable walls that repel colloids but allowed polymers to freely penetrate. For hard
walls we found capillary condensation, while for semi-permeable walls we found capil-
lary evaporation. For hard walls the density profiles of polymers and colloids inside the
slit displayed oscillations due to packing effects for all statepoints. For semi-permeable
walls either similar structuring or flat density profiles were found, depending on the state-
point considered. In chapter 5, we have analysed a model of colloid-polymer mixtures
with interacting polymers. We found that the number of polymers needed to drive the
demixing transition is larger for the interacting polymers, and the gas-liquid interfacial
tension is smaller. When the system was confined between two hard parallel plates we
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found capillary condensation. This effect was slightly suppressed by the interactions be-
tween the polymers.

In the second part of the thesis, consisting of chapters 6, 7, and 8, we have analysed
the bulk behaviour of colloidal suspensions. In chapter 6, we have studied the stability
of mixtures of highly screened repulsive charged spheres and non-adsorbing ideal poly-
mer chains. We found that the screened-Coulomb repulsion counteracts the effect of
the effective polymer-mediated attraction. For mixtures of small polymers and relatively
large charged colloidal spheres, the fluid-crystal transition shifted to significantly larger
polymer concentrations with increasing range of the screened-Coulomb repulsion. For
relatively large polymers, the effect of the screened-Coulomb repulsion was found to be
weaker. The resulting fluid-fluid binodal was only slightly shifted towards larger polymer
concentrations upon increasing the range of the screened-Coulomb repulsion. In chap-
ter 7, we have studied the phase behaviour and the interfacial tension of the screened
Coulomb (Yukawa) restricted primitive model (YRPM) of oppositely charged hard spheres.
We found the gas-liquid phase separation to be stable for κσ≤ 4. The critical temperature
decreased upon increasing the screening of the interaction (decreasing the range of the
interaction), while the interfacial tension decreased upon increasing the range of the in-
teraction. In chapter 8, we have studied a mixture of monodisperse colloidal hard spheres
and ideal polymers described by an effective one-component system. The equilibrium
phase diagram was divided in different kinetic regimes. We carried out Brownian dynam-
ics simulations to study the dynamic evolution of the different kinetic pathways. We found
a fluid of ‘long-lived’ clusters in the binodal regime at low colloid packing fractions. In the
spinodal regime, we observed at low colloid packing fractions a phase of crowded clusters
that could merge and break-up again, and a kinetic arrested spinodal decomposition at
higher packing fractions. At even higher colloid densities, a homogeneous gel phase was
observed. The structure of the clusters were crystal-like at low attractive interactions and
glassy at high attraction strengths.



Samenvatting

In dit proefschrift bestuderen we met behulp van computer simulaties het fasegedrag van
colloïdale suspensies in bulk en begrensde geometrieën. In het eerste deel bestaande uit
de hoofdstukken 2, 3, 4 en 5, hebben we inhomogene systemen bestudeerd. In het bijzon-
der hebben we in hoofdstuk 2 een simulatietechniek ontwikkeld om de grensvlakspan-
ning te berekenen van harde bollen met niet-adsorberende polymeren tegen een harde
wand. We hebben goede overeenkomst gevonden tussen de simulaties en dichtheidsfunc-
tionaaltheorie en kwalitatieve overeenkomst met geschaalde deeltjestheorie. In hoofd-
stuk 3 hebben we de evenwichtsfases van een systeem van harde bollen tussen twee par-
allelle harde wanden bepaald voor plaatafstanden variërend van een tot vijf deeltjesdi-
ameters. We hebben een vloeistof–vaste-stoffaseovergang gevonden, wat overeenkomt,
afhankelijk van de afstand tussen de platen, met capillair bevriezen of capillair smelten.
De coëxisterende vaste-stoffase bestaat uit kristallijne lagen met een driehoekige of een
vierkante symmetrie. Bij hogere dichtheden werden tussenstructuren gevormd, bijvoor-
beeld prisma’s, scheefgetrokken en rhombische fases. In hoofdstuk 4 hebben we het fasege-
drag van colloïd-polymeer mengsels tussen twee platen bestudeerd. We hebben de col-
loïden beschreven als harde bollen, terwijl de polymeren beschreven worden als bollen
die wèl met elkaar maar niet met de colloïden mogen overlappen. We hebben zowel het
effect van harde wanden als dat van semi-permeabele wanden onderzocht. De semi-
permeabele wanden laten wel de polymeren door, maar niet de colloïden. In het geval van
harde wanden vinden we capillaire condensatie, terwijl we capillaire evaporatie vinden
bij polymeer doorlatende wanden. In het geval van harde wanden vinden we oscillaties
in de dichtheidsprofielen van de colloïden en de polymeren als gevolg van pakkingsef-
fecten. Bij semi-permeabele wanden vinden we òf oscillerende òf vlakke dichtheidsprofie-
len, afhankelijk van het precieze fase punt. In hoofdstuk 5 hebben we mengsels van col-
loïden met interagerende polymeren bestudeerd. We vinden dat voor interagerende poly-
meren veel hogere polymeerconcentraties nodig zijn om een gas-vloeistof evenwicht te in-
duceren dan voor ideale polymeren en dat de daarbij behorende gas-vloeistof grensvlakspan-
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ning veel lager is. Wanneer we dit systeem tussen twee harde wanden plaatsen vinden we
capillaire condensatie. Dit effect is echter zwakker door de interacties tussen de poly-
meren.

In het tweede deel van het proefschrift bestaande uit hoofdstukken 6, 7, en 8, hebben
we het bulkgedrag van colloïdale suspensies geanalyseerd. In hoofdstuk 6, hebben we
de stabiliteit bestudeerd van mengsels van sterk afgeschermd repulsief geladen bollen
en niet-adsorberende ideale polymeer ketens. We hebben gevonden dat de afgescher-
mde Coulomb repulsie het effect van de effectieve polymeergeïnduceerde attracties tegen-
werkt. Voor mengsels van kleine polymeren en relatief grote geladen colloïdale bollen ver-
schuift de vloeistof-kristal overgang naar significant hogere polymeer concentraties wan-
neer het bereik van de afgeschermde Coulomb repulsie groter wordt. Voor relatief grote
polymeren vinden we dat het effect van de afgeschermde Coulomb (Yukawa) repulsie
zwakker is. De resulterende gas-vloeistof binodaal verschuift naar iets hogere polymeer
concentraties wanneer het bereik van de afgeschermde Coulomb repulsie groter wordt.
In hoofdstuk 7, hebben we het fasegedrag en de oppervlaktespanning bestudeerd van het
Yukawa beperkte primitieve model (YRPM) van tegengesteld geladen harde bollen. We
vinden dat de gas-vloeistoffasescheiding stabiel is voor κσ ≤ 4. De waarde van de kri-
tische temperatuur neemt af bij toenemende afscherming van de wisselwerking (afne-
mende dracht van de wisselwerking), terwijl de oppervlaktespanning juist afneemt bij
toenemende dracht van de wisselwerking. In hoofdstuk 8 hebben we een mengsel van
monodisperse colloïdale harde bollen en ideale polymeren bestudeerd in een effectief
een-component systeem. Het evenwichtsfasediagram wordt opgedeeld in verschillende
kinetische regimes. We hebben Brownse dynamica simulaties uitgevoerd om de verschil-
lende kinetische paden te bestuderen. In het binodale regime, bij lage volumefracties aan
colloïden, ontdekten we een vloeistof bestaande uit langlevende clusters. In het spinodale
regime, wederom bij lage volumefracties aan colloïden, vinden we dicht op elkaar gepakte
clusters, die kunnen samenvloeien en weer kunnen opbreken. Daarnaast vinden we in
het spinodale regime, ditmaal bij iets hogere volumefracties aan colloïden, een kinetisch
bevroren spinodale ontmenging. Bij nog hogere dichtheden aan colloïden wordt een ho-
mogene gelachtige toestand waargenomen. De structuur van de clusters is kristallijn bij
zwakke attracties tussen de colloïden en glasachtig bij sterke aantrekkingskrachten.
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