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1
Introduction to Flowing Suspensions

“Everything flows (παντα ρει), and nothing stands still”: This wisdom was spread
by the Greek philosopher Heraclitus around 500 BC, and certainly applies to the
following. In the limited world covered by this thesis, παντα refers to a variety
of colloidal suspensions that have the common property to consist of (sub)micron
sized particles suspended in a continuous molecular medium. Flow (ρεoς) can
easily change the microstructure of these soft matter systems, and it is the aim of
the current work to find out in what way.

Particles (or droplets) are classified as colloids purely based on their size, and
can consist of any type of material. They fill the size range between atoms and
molecules, which are smaller, and granular materials, like sand grains, which are
larger. The main characteristic of colloids is the diffusive motion they perform
when suspended in a molecular liquid. This random motion was for the first time
observed by the botanist Robert Brown in 1828, who was investigating the pollen
of plants with an early light microscope. To his surprise, he saw that those seeds
were constantly in motion. He made sure that this was not due to convection
or any other flow present in his sample, and was even more astonished when he
pulverized several types of rocks and observed that this inanimate material was
moving as well [1]. Eighty years later, Albert Einstein solved the mystery of
this ‘Brownian’ motion. He showed that the diffusion of colloids is caused by
many impacts of the surrounding molecules which are several orders of magnitude
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2 Introduction

smaller [2]. For bigger objects these collisions nearly average out to zero, but
colloids are small enough to experience a net momentum transfer, resulting in the
typical random walk as was described by Brown. All this motion is caused by
thermal energy: Small, fast moving, molecules are in thermal equilibrium with the
big, slow, colloids.

Thermal motion is essential for colloidal systems, since it drives them to equi-
librium structures, in analogy to molecular systems. Colloidal suspensions exist
in many varieties and their properties can for a great deal be attributed to the
size, shape and charge of the particles, and can further be tuned by additives
like salt or polymers [3]. Thanks to the many control parameters, colloidal phase
behavior can not only mimic that of molecular systems, but can even be richer,
as was recently shown to be the case for binary mixtures of oppositely charged
colloids [4].

Throughout this thesis, we will study model systems of colloidal suspensions
consisting of monodisperse particles. In general, these particles may interact in
several ways. For instance, there are Van der Waals attractions arising from in-
teractions between fluctuating dipoles. The interaction strength is related to the
refractive index (or dielectric constant) contrast between colloids and dispersion
medium. Furthermore, electrostatic repulsions are present in systems of equally
charged colloids. The range over which these charged particles interact depends on
the concentration of (micro-)ions in the system. These ions screen the charges on
the particles, and their concentration determines the ‘softness’ of the interaction
potential. In watery systems, the electrostatic repulsions stabilize the colloidal
suspension against aggregation. In apolar systems, in which colloids carry less
charge, colloidal stability is achieved by covering the particle surface with polymer
chains. The overlap of these polymer ‘hairs’ of two almost touching particles then
causes a steric repulsion, that keeps the particles apart.

In this Chapter, we will first introduce the three colloidal model systems that
will make their appearance later in this thesis. Second, we zoom in on the prepa-
ration of the home-made plexiglass spheres that are extensively used in this work.
Furthermore, we discuss the main imaging technique, i.e. confocal scanning laser
microscopy, and show that effects of shear flow in soft matter are expected to oc-
cur at such time and length scales, that they are suited for studies in real space.
Finally, we present an outline for the rest of the thesis.

1.1. Colloidal model systems

The trick to prepare a well-defined model system usually lies in minimizing most
of the possible interactions, and focus on one type in particular. For example, to
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obtain a system of ‘hard spheres’ the Van der Waals attractions are minimized
by choosing a solvent with a similar refractive index as the particles. At the
same time, electrostatic repulsions are screened away by the addition of sufficient
salt. The only important interaction remaining is then the steric repulsion. The
properties of such system are discussed below. Subsequently, we consider systems
of attractive spheres, and rods.

1.1.1. Hard spheres

In hard sphere systems particles can not overlap, but do not interact otherwise.
In other words, the hard sphere potential is zero everywhere, except upon touching:
Then the repulsion steeply raises to infinity. For a system in which the particles
also have no dimensions, the pressure p, number density (N/V ) and temperature
T are related through the ideal gas law: pV = NkBT , with kB the Boltzmann
constant. In an attempt to adjust this equation of state for hard spheres one
should, instead of the whole volume V , only take into account the volume avail-
able (to insert a new particle). This available, or free, volume is smaller than V ,
because the present particles exclude part of the space for others (see Fig. 1.1).
At low volume fraction the total excluded volume is directly related to the size
and the number of particles. At higher volume fractions the excluded volumes
of individual particles overlap, which effectively leaves more free space (Fig. 1.1).
It is, however, not trivial to calculate the (average) overlap volume at a certain
concentration, since it depends on the specific positions of the particles, and all

Figure 1.1. A hard-sphere system effectively gains free volume (light

gray area) when the excluded volumes of the individual particles (white

zone) overlap.
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fluid crystal

Figure 1.2. Phase diagram of hard spheres. Whether or not the

system is ordered depends solely on their volume fraction φspheres. The

dashed line shows the fraction of crystals in the system.

possible configurations should be considered. For this reason, even today no an-
alytic expression for the equation of state of hard spheres exists, although good
approximations are available [5, 6].

As a consequence, the first proof for a crystal-fluid transition in hard sphere
systems had to come from simulations. In 1957, both Wood and Jacobsen [7] and
Alder and Wainwright [8] showed that systems with repulsive interactions alone
could indeed display an order-disorder transition. The transition is driven purely
by entropy: Particles gain free volume, and lower the free energy, by organizing
themselves in ordered arrays. In 1968, when more more powerful computers had
become available, Hoover and Ree obtained accurate values for the freezing and
melting volume fractions [9]: φfreezing = 0.494 and φmelting = 0.545. At intermedi-
ate concentrations both phases coexist (see Fig. 1.2).

Experimental confirmation for this phase behavior came in 1986. At that time,
Pusey and Van Megen realized a system of (nearly) hard spheres by suspending
sterically stabilized plexiglass particles in an apolar, refractive index matching, sol-
vent [10]. From then onwards, these poly(methyl methacrylate) (PMMA) spheres
became more widely used in colloid science, and also scattering experiments of
this system under shear were reported [11]. Nowadays, PMMA-particles are well-
established as model (hard) spheres, and also play a key role in this work.

1.1.2. Attractive spheres

Molecular systems usually display a richer phase behavior than the hard sphere
systems discussed before. Water, for example, can exist as vapor, (liquid) water or
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Figure 1.3. The depletion attraction between colloidal spheres. Each

colloid excludes part of the volume for polymers (white area). Overlap

of these depletion zones increases the free volume (light gray area) for

the polymer.

ice. Both in the vapor and liquid the molecules are disordered and the phases only
differ in density. Attractions are essential for the fact that those two disordered
phases can exist next to each other. The molecular attractions arise from dipole-
dipole interactions. Apparently, at certain circumstances, the system finds its
lowest free energy by splitting up into dense phase (liquid) and a less dense phase
(gas). Although colloids can also interact via (induced) dipole interactions, we
have in these systems a much easier tool to control the strength and the range
of attraction. The addition of (non-adsorbing) polymers induces an attraction
between two colloidal particles, or two parallel plates, as was first demonstrated
by Asakura and Oosawa [12], and later by Vrij [13].

In the most simple description of a colloid-polymer mixture, the colloidal spheres
interact as hard spheres, while the tenuous polymer coils are allowed to overlap.
The interaction between a polymer and a sphere is again hard sphere like: A
polymer chain can not penetrate a sphere. This means that around each sphere
there is a zone from which the polymer is depleted (see Fig. 1.3). When colloids
come so near that their depleted zones overlap, polymers can not enter the region
in between anymore. This causes an osmotic pressure difference that pushes the
particles further together. So, though there are still only repulsions present in the
system, the spheres effectively attract. This depletion attraction is thus a purely
entropic effect. Another way to see why it is favorable for two spheres to come
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fluid phase
colloidal gas (top) and

liquid phase (bottom)

0
0

Figure 1.4. Schematic phase diagram of colloid-polymer mixtures.

At low concentrations of colloids and polymers one phase is observed.

At higher concentrations the system splits up in a phase with many

colloids and few polymers (colloidal liquid) and a phase with a lot

of polymers and few colloids (colloidal gas). Though not indicated,

a (hard sphere like) freezing transition is expected at higher colloid

volume fraction.

together, is by realizing that when the depleted zones overlap, the polymers gain
free volume. In finding the most stable state the system may therefore split up
into a colloid rich (polymer poor) phase and a colloid poor (polymer rich) phase.

Whether or not the depletion attraction can lead to phase separation depends
on strength and range of the attraction. Phase separation into colloidal liquid and
colloidal gas occurs if the interaction strength between the spheres is of order kBT ,
and its range lies in the order of the colloidal diameter. In Fig. 1.4 we sketch the
phase diagram of a system with such interaction potential.

The typical strength of the attraction (kBT ) together with the colloidal length
scale (R) are also responsible for the ultra low interfacial tension σ associated
with colloidal gas-liquid interfaces: σ ∝ kBT/R2. The interfacial tension in colloid
polymer mixtures is typically a million times smaller than in molecular systems.

For this thesis, a system of attractive spheres is realized experimentally by
preparing a mixture of poly(methyl methacrylate) colloids and non-adsorbing
poly(styrene) in the apolar solvent decalin.

1.1.3. Rods

Suspensions of colloidal rods are known to show a transition from an isotropic to
a nematic state, when exceeding a certain particle concentration. In the isotropic
phase particles are randomly oriented, while in the nematic phase they are aligned.
What drives the isotropic to nematic phase transition is the fact that rods can gain
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isotropic phase nematic phase0
0

Figure 1.5. Schematic representation of the phase diagram of rod-

polymer mixtures. In the sketch of isotropic and nematic phase only

the rods are shown, polymers are left out.

translational freedom by giving up part of their orientational freedom, when they
align in a nematic phase. The isotropic to nematic transition occurs already at low
volume fraction of rods, since a long thin rod will exclude a volume, much larger
than its own, for other rods. The larger the aspect ratio (length over diameter),
the lower the volume fraction at which the transition occurs. Theoretically, the
phase behavior of hard rods was already derived by Onsager in 1949 [14]. Later,
the theory was extended for semi-flexible rods though the ideas stay basically the
same.

Like in the sphere suspensions discussed before, non-adsorbing polymers effec-
tively induce attractions between rods. The attraction range is determined by
polymer size, and can lead different phase diagrams [15]. In the simplest scenario,
the phase behavior is basically the same as for hard rods, with the only difference
that the coexistence range, where both the isotropic and nematic phase are present,
is broadened (Fig. 1.5). Our experimental rod suspension, consisting of fd -virus to
which dextran is added as a polymer, displays this kind of phase behavior. In case
the polymers would have been smaller, or larger, an additional coexistence region
of two types of nematic, or two types of isotropic phases, respectively, would have
been observed. In addition, more ordered phases, such as smectic phases, are also
possible.

1.2. The art of making colloids: The chemistry

For our studies it is important to have at our disposal model systems that are
highly monodisperse. In nature, nice examples of (reasonably) monodisperse col-
loidal systems can be found. For instance, one can think of natural opal, which
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consists of ordered arrays of equally sized colloidal silica spheres. Popular exam-
ples from the field of biology are DNA or viruses. The rod suspensions we just
introduced consist of fd-virus (L = 880 nm, d = 6.6 nm, with a persistence length
of 2.2 µm). These rods are produced by first growing a colony of E-coli host
bacteria, which are subsequently infected by the virus. The virus then reproduces
itself at the expense of its host [15].

Another route to obtain colloidal systems with the desired properties is via
chemical synthesis. One of the first procedures to obtain monodisperse colloidal
spheres was introduced by Stöber et al. in 1968 [16]. They presented a straightfor-
ward way to produce monodisperse silica spheres from a mixture of tetraalkoxysi-
lanes, ammonia, alcohol and water. This method can produce particles in a size
range from 50 nm to 2 µm, and became the method of choice. Silica colloids can
be coated with an extraordinary wide range of chemicals. This makes it possi-
ble to disperse them also in apolar solvents and to tune their interactions. For
the preparation of colloidal systems in the apolar solvents the work of Antl and
co-workers has also been of great importance [17]. In this basically single step
method, poly(methyl methacrylate) (PMMA) spheres were synthesized via a dis-
persion polymerization reaction. By a slight modification of the procedure one can
also obtain fluorescent spheres [18], that are highly suited for studies with con-
focal microscopy. Furthermore, the PMMA-spheres have the advantage that not
only their refractive index can be matched to the dispersion medium, but their
density as well. The latter motivates our choice for PMMA-particles, since in
our microscopy study we need to avoid sedimentation in systems of large spheres
(diameter > 1 µm) to keep an homogeneous volume fraction.

The initial reaction mixture contains methyl methacrylate monomers (MM)
dissolved in an apolar solvent in the presence of a graft copolymer built up by
MM-backbone with poly(12-hydrostearic acid)-chains, that will stabilize colloidal
particles as soon as they are formed. The concentration of monomers is high,
typically about 40 weight percent. When the temperature is raised, the unsta-
ble compound azo-bis-isobutyronitrile (ADIB) that is added in a small quantity,
dissociates, and initiates a radical polymerization reaction of the methyl methacry-
late monomers. As the MM-chains grow longer, their solubility decreases, and at
a certain stage the polymers collapse into solid particles. For obtaining equally
sized particles, it is important that this nucleation occurs in a short time interval.
After nucleation, the particles continue to grow further, till all the monomers have
reacted. During this diffusion limited growth, and after, the graft copolymer sta-
bilizes the particles against aggregation. The stabilizer is an important component
for the PMMA-synthesis, and needs to be prepared beforehand.
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methyl methacrylate (MM)

methacrylic acid (MA)

Monomers inside the PMMA-particle:

fluorescent dye coupled to monomer

Stabilizing graft copolymer:

methyl methacrylate (MM)

glycidyl methacrylate (GM)

hydroxystearin acid (HS)

Figure 1.6. Composition of a poly(methylmethacrylate) (PMMA)

particle [18]. The polymer mainly consists of units of methyl methacry-

late, with occasionally a monomer with an attached fluorescent dye,

and a methacrylic acid unit, which can be chemically coupled to the

graft copolymer in a separate step. The side chains of this polymer,

poly(12-hydroxystearic acid) (PHS), sterically stabilize the particles.

Initially, the stabilizer is physically adsorbed to the particles. Adding a small
fraction of methacrylic acid (MA) during the polymerization reaction, allows to
chemically attach the stabilizer chains to PMMA-particle in a next step (Fig. 1.6).
This so-called locking makes further handling of the colloids easier, since the sta-
bilizing PHS will stay on the particle surface, also when the colloids are (many
times) transferred to different dispersion media. Thanks to the sterical stabiliza-
tion, it is also possible to store the PMMA colloids in a dried form, as powder,
and to redisperse them later in the desired solvent.

An elegant way to make fluorescent PMMA particles is to chemically incor-
porate a dye in the polymer chain. This can be done by preparing fluores-
cent monomers beforehand. Different dyes can be incorporated. For the sys-
tems used in Chapters 2 and 3, rhodamine-B-isothiocyanate was first coupled
to aminostyrene. The reaction takes place in ethanol, and occurs immediately.
The styrene group in the resulting rhodamine-amino-styrene (RAS) copolymer-
izes with the methacrylate monomers. Rhodamine labeled particles appear pink
and can be excited either with the 543 nm line of a helium-neon laser, or the
567 nm line from an argon krypton laser. To obtain (yellow) particles that can
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be excited with the argon laser line of 488 nm, the fluorescent monomer NBD-
MEAM (4-methylaminoethylmethacrylate-7-nitrobenzo-2-oxa-diazol) can be in-
corporated [18].

Almost all particles used in this thesis are produced in a single step process that
results in fully labeled particles. However, it is possible synthesize more advanced
core-shell particles, in which only the core is fluorescent [19]. In order to keep the
particles core-shell, it was required to fix the polymer chains inside the particle:
Otherwise, the diffusion of the polymer chains eventually spreads the dye over the
whole particle volume. This was achieved by a constant well-proportioned addition
of the cross-linking monomer ethylene glycol dimethacrylate (EGDM), which has
two methacrylate groups that both participate in the polymerization reaction and
connect different parts of the chain.

1.3. Confocal microscopy

The major experimental technique to investigate the colloidal suspensions used
in this thesis is confocal scanning laser microscopy (CSLM). The confocal mi-
croscope was invented in 1955, and patented in 1961, by Marvin Minsky [20].
Minsky’s motivation to build a high resolution microscope was born at the time of
his graduate studies when he, in his search to understand the working mechanism
of the human brain, unsuccessfully, tried to visualize (stained) neurons. These
cells are densely packed and highly interwoven, and by using a conventional light
microscope Minsky encountered the problem of scattering: Light rays from points
out of the focal plane transformed the outcoming image into a ‘meaningless blur’.

An ideal microscope would examine each point of the sample and measure the
light scattered or absorbed by that point. Minsky realized, years later, that this
could be achieved by illuminating the sample point by point, instead of all at once.
In addition, the light coming from out-of-focus points (that is already largely re-
duced compared to bright field microscopy) can be rejected by placing a pinhole
just before the detector. In this way, the view is confined to a thin slice of the
sample, and the signal to noise ratio is enormously improved. Minsky did not leave
this as an idea, but actually succeeded in building a prototype himself. His inven-
tion remained relatively unrecognized for decades, and his ideas became accessible
for a larger public only in 1988, when he was invited to write an article about
it [21]. Finally, the introduction of lasers and computer controlled scanning and
imaging techniques made that confocal microscopes became commercially avail-
able. At present, confocal microscopy is widely used in soft matter physics, while
its main application still lies in the field of biology.
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point

detector

focal plane

pinhole

pinhole

dichroic mirror

objective

sample

laser

glass plate

Figure 1.7. Beam path in an (inverted) confocal scanning laser mi-

croscope in fluorescence mode. The excitation beam is reflected at the

dichroic mirror and focussed in a point in the sample. Emitted light

from this point initially follows the same path backwards, then passes

the dichroic mirror and hits the detector. Light that due to scattering

was emitted from another point in the sample, will be filtered out, since

most of it will not pass the pinhole in front of the detector.

Confocal microscopy can be applied in both transmission and reflection mode,
but (arguably) the most powerful way to use a confocal microscope is in fluores-
cence mode. The quality of images then depends on fluorescence of the probes,
and scattering is no longer required for seeing the objects in the first place. This
allows to reduce scattering by matching the refractive index of solvent and object.
This method is ideal for imaging colloidal suspensions in real space, and makes it
possible to quantitatively study three dimensional colloidal systems on the single
particle level. In fluorescence microscopy, the excitation and emission beam can
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be splitted based on their wavelength using a dichroic mirror. The beam path in
a confocal fluorescence microscope is displayed in Fig. 1.7.

The in-plane resolution r of the microscope is determined by the wavelength
and the numerical aperture (NA) of the objective lens: r ∝ λ/NA. For our study
of micrometer-sized fluorescent colloids in a refractive index matching solvent (n =
1.5), we use high numerical aperture objectives (NA = 1.4). In combination with
light of a typical wavelength of 500 nm this results in a resolution of ∼ 200 nm.
In the vertical direction the resolving power of a confocal microscope is about 3
times lower than in-plane. This means that (fully labeled) particles larger than a
micrometer, like the 1.7 µm diameter spheres we use in Chapter 3, can be resolved
in three dimensions.

The price for the higher resolution in a confocal scanning microscope is paid
by the time it takes to build up an image: Scanning microscopy is much slower
than conventional microscopy. Recent developments in confocal microscopy are
therefore mainly motivated by the wish to increase the frame rate, while keeping
a high signal to noise ratio. An alternative for the scanning microscope is found
in the spinning disk confocal. Here, a rotating Nipkow disk containing an array
lenses depicts the all points of the image simultaneously, increasing the imaging
rate with at least a factor 10. In this thesis, we make use of a scanning microscope,
which in its working principle still strongly resembles Minsky’s original version.

1.4. Colloids in flow

The behavior of colloids in flow is important in different kinds of applications.
Common examples of colloidal suspensions are milk or paint, and the understand-
ing of their flow behavior has impact on the coating and food industry. More
fascinating applications are found in (future) high-tech products in the field of
photonics [22] or microfluidics [23]. In photonics, shear can assist in fabricating
large monocrystalline structures, built up by colloidal particles (size of the wave-
length of light). In microfluidics, the understanding of flow of ‘complex fluids’ in
micro-channels becomes increasingly important for the implementation of these
devices in sensors and ‘lab-on-a-chip’ applications. Also from a fundamental point
of view, the combination of colloids and flow is interesting: Due to their long
length and time scales colloidal systems can easily and controllably be brought
out-of-equilibrium. This might lead to both new behavior, and the understanding
of already observed phenomena, like shear melting, on a single particle level.

Shear flow is a rather simple type of flow, which is characterized by only one non-
zero velocity component, and a velocity gradient (= shear rate γ̇) perpendicular
to the velocity direction. For instance, the flow of a viscous liquid between two
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sliding parallel plates is such a shearing flow: The flow direction parallel to plates,
whereas the gradient is perpendicular. Poiseuille flow, i.e. pressure flow in a
tube, is another example. Here, the velocity gradient is directed along the tube
radius. In our investigations we use a cone-plate shear cell to study flowing colloidal
suspensions. The rotating cone and plate drag along the confined fluid, and set
up a well defined shear flow.

The shear cell used for the measurements in this thesis is recently developed
and suited to be placed on top of a microscope. The main characteristic of the
cell is that the rotational velocity of both cone and plate can independently be
controlled. Cone and plate rotate in opposite directions, so that at a certain
height in the sample a plane is not moving. The relative speeds of cone and
plane determine the height of this stationary layer. This gives the possibility to
quantitatively study a sheared colloidal suspension in the bulk of the suspension.

The time constant characterizing the applied flow is given by the inverse shear
rate (1/γ̇). In general, the importance of shear is expressed by the dimensionless
Deborah number

De = γ̇τ, (1.1)

comparing the deformation rate to the “characteristic” relaxation time of the sys-
tem τ . Soft matter systems are easy to manipulate by flow, meaning that low
shear rates can already have an effect, because the typical relaxation times are
long.

In colloidal suspensions the applied shear is often compared to the diffusion
time of the particles: When the deformation is applied slowly with respect to the
Brownian relaxation time τB , the system has time to relax back to its equilibrium
structure, and no significant change of the microstructure is expected. The Brown-
ian relaxation time is related to the time it takes for a particle to diffuse over a
distance of it own size (R): τB = R2/D, with diffusion coefficient D ∝ kBT/ηR.
More specifically, the relative importance of shear is then measured by the Péclet
number:

Pe = γ̇τB =
ηγ̇R3

kBT
. (1.2)

When Pe exceeds unity, diffusion of particles will no longer be rapid enough to
relax the shear distorted microstructure back to equilibrium. For micrometer-
sized particles, the Brownian time lies typically in the order of seconds, so that
this already occurs at experimentally easily accessible shear rates.
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The diffusion time is not the only characteristic relaxation time in colloidal
suspensions. In phase separated systems interfaces bring along there own char-
acteristic time. The time scale connected to such an interface is not only related
to the viscosity η, but also to its interfacial tension σ. One can argue that in
these situations the interface will be affected as soon as γ̇τcap > 1, where the
τcap = ηLcap/σ the capillary time, and Lcap the capillary length. Capillary relax-
ation time and Brownian relaxation time differ especially near the critical point.

1.5. Scope of this thesis

In this thesis we investigate the behavior of the three model systems introduced
in Section 1.1 in shear flow by means of confocal microscopy. First of all, the
experimental setup will be described in detail (Chapter 2). The first experiments
with this cell are presented and it is shown how flow profiles in a sheared col-
loidal suspension can be deduced from microscopy images. In Chapter 3, we focus
our study on hard sphere colloidal crystals in shear flow. To that end, we use
rhodamine labeled poly(methyl methacrylate) spheres, with a diameter of 1.7 µm.
This allows quantitative investigations on the particle level. In this way, we obtain
more insight in the process of shear melting.

We continue our study with slightly more complex systems: mixtures of col-
loids and polymers. This mixture undergoes a gas-liquid phase separation. The
poly(methyl methacrylate) spheres used here are an order of magnitude smaller
(50 nm and 150 nm in diameter in Chapter 4 and 5, respectively), and can not be
individually resolved by confocal microscopy. However, the length scales connected
to the interface are in the order of micrometers, which does allow quantitative mi-
croscopy investigations. We first concentrate on the demixing process under shear
(Chapter 4), and then on the fluctuations on the sheared interface itself (Chapter
5).

Finally, in Chapter 6, we consider a system of colloidal rods in shear flow. Here,
we use the shear flow to reach a well defined, aligned, homogeneous initial state
and follow the phase separation process after quenching to zero shear. By varying
the rod concentrations we obtain more information on the phase diagram of these
systems. We conclude the thesis with a summary (also in Dutch).
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The Counter Rotating Cone-Plate Shear Cell

Abstract

We report on novel possibilities to study colloidal suspensions in a steady shear field

in real space. Fluorescence confocal microscopy is combined with the use of a counter-

rotating cone-plate shear cell. This allows imaging of individual particles in the bulk of

a sheared suspension in a stationary plane. Moreover, this plane of zero velocity can

be moved in the velocity gradient direction while keeping the shear rate constant. The

colloidal system under study consists of rhodamine labelled PMMA spheres in a nearly

density and refractive index matched mixture of cyclohexylbromide and cis-decalin. We

show measured flow profiles in both the fluid and the crystalline phase and find indications

for shear banding in the case of a sheared crystal. Furthermore, we show that, thanks

to the counter-rotating principle of the cone-plate shear cell, a layer of particles in the

bulk of a sheared crystalline suspension can be imaged for a prolonged time, so that their

positions can be tracked.
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2.1. Introduction

The relation between microstructure and flow behaviour of soft condensed mat-
ter systems has been a subject of intense research. Subtle changes in microstruc-
ture resulting from shear may lead to strong shear thinning or shear thickening
behaviour. In many cases, however, shear may even lead to sudden and dramatic
changes in the long range order of a complex fluid. Shear-induced structural trans-
formations occur in colloidal dispersions, block copolymers and micellar solutions.
Recent reviews can be found in Refs. [24–27]. Most information on shear-induced
microstructures has been obtained with scattering measurements. It has become
increasingly clear, however, that real-space observations on the length scale of the
individual particles are necessary to understand these nonequilibrium phase tran-
sitions. Modern advanced microscopy techniques, such as confocal fluorescence mi-
croscopy, make it possible to study the structure and dynamics of colloidal particles
in three dimensions [28–30]. Extension of these methods to colloidal dispersions
under shear is expected to lead to new insights in shear-induced phase transitions
that have been investigated in the past and new phenomena that cannot be so
easily inferred from a k-space analysis. The former include the formation of crys-
talline order under oscillatory shear [31], shear melting of colloidal crystals [32],
shear-banding in dispersions of spherical [33, 34] and rod-like colloids [35].

Apart from the fundamental importance of understanding structural transfor-
mations in external shear flow, further motivation is found in the great importance
of shear during industrial processing of colloidal systems such as foods, paints, and
emulsions. In addition, shear-induced large single crystal formation can be used
to prepare new advanced materials such as photonic crystals [22,36].

In order to apply shear in a controlled way and to study the sheared system
on a microscopic level a microscope needs to be equipped with more advanced
tools than is necessary for the study of the equilibrium structure and dynamics of
colloidal suspensions. With the development of shear cells that can be mounted
on top of microscopes, investigations in real space became possible. Recently,
the effects of shear have been investigated in different types of set up. Palberg
et al. [34] combined a plate-plate shear cell with video microscopy. The cover
slip correction was adjusted such that the focusing depth was several times the
interparticle spacing. This enabled them to study the distribution functions for
the projections of particle positions into the flow-vorticity plane. The tracks of
individual particles could not be determined in this way. Tolpekin et al. [37] used
a rotating plate-plate cell in combination with confocal microscopy to investigate
the formation and break-up of aggregates in colloid-polymer mixtures under shear.
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They used desmearing by image processing to correct for effects of particle motion
by the flow. They had to stop the flow in order to study the structure of aggregates
in 3D. Similarly, Varadan [38] et al. studied colloidal gels under shear by imaging
immediately after stopping the flow. Quantitative data on individual particles
during flow were obtained by Hoekstra et al. for attractive particle systems as
well as for repulsive systems, because they limited their set-up to 2D [39].

For a real space study of a 3D-system under shear the main difficulty is that the
particles move through the field of view of the microscope too rapidly, making it
impossible to track them, except very close to the stationary wall where the flow
velocity is small enough. Although the development of faster confocal scanning
techniques, for example with the use of a spinning Nipkow disc [40], can mean
a big step forward, the real answer to this problem lies in the use of a counter-
rotating shear cell. In this approach the two parts of the cell rotate in opposite
directions, such that a stationary plane is formed in the interior. Objects in
this plane can then be observed for extended periods of time. This concept was
used already by Taylor to study droplet break-up during emulsion formation [41].
Recent implementations of the counter rotation concept to study the behaviour
of noncolloidal particles under shear are given in Refs. [42, 43]. However, these
investigations were limited to low-magnification microscopy and dilute samples.

We have used a new counter-rotating cone-plate shear cell suitable for high-
magnification confocal fluorescence microscopy to study the behaviour of concen-
trated dispersions of micrometer sized hard-sphere like colloids under shear. By
adjusting the ratio of angular velocities of plate and cone the stationary plane can
be placed anywhere in the bulk. This allows us to observe microstructure and
particle dynamics in the bulk of the dispersion for extended periods of time.

This Chapter is organized as follows. First we introduce the counter rotating
shear cell in combination with the confocal microscope and describe the prepara-
tion of the colloidal dispersions in Section 2. Then, in Section 3, we demonstrate
the instrument by measuring microscopic flow profiles in sheared colloidal fluids
and particle dynamics in colloidal crystals.

2.2. Experimental section

2.2.1. Counter rotating shear cell

The measurements were performed with the Wageningen Centre of Food Science
(WCFS) continuous Shear Cell configuration [44,45]. This cone-plate shear cell was
placed on top of an inverted microscope. In Fig 2.1 a side view of this setup is given,
showing the essential parts of the shear cell. A schematic representation is given
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in Fig. 2.2a. The angle β between cone and plate was 4◦ (±0.01◦). 1 The cone and
plate were driven independently by servomotors and rotated in opposite directions.
The height of the stationary plane (zero velocity plane) could be adjusted by tuning
the ratio of the rotational speed of the cone and the plate, while the shear rate γ̇

was kept constant. A key property of a cone-plate configuration is that the shear
rate is the same at all radial positions: γ̇ = ∆ω/ tan β , where ω is the angular
velocity and ∆ω = ωcone − ωplate.

In this set up the radial position of the microscope objective was fixed. At this
position the gap between cone and plate was 1.70 mm (±0.01 mm). The cone was
made of stainless steel. The plate consisted of a circular glass slide of a diameter
of 8 cm and a thickness of 180 µm. The glass plate was clamped between two
Teflon rings and supported in the centre by a metal disk. The inner diameter of
the cell itself was 6.50 cm. The cell was equipped with a double vapour lock. The
inner vapour lock was filled with the solvent, and the outer one with water. Shear
rates in a range of 10−2 to 102 s−1 could be applied.

During a full rotation we measured a variation in the gap of ±10 µm. This was
mainly caused by a slight wobbling of the glass plate. The wobble in the cone was
measured to be only ±1 µm. This means that at typical shear rates the height of
the glass plate, and thus the height of the stationary layer, fluctuates only very
slowly. For example: at a shear rate of 5 s−1 and ωcone/ωplate of 50 the height of
the glass plate fluctuates by about 1.2 µm over a time span of 1 minute. This is
slow enough to allow adjustment of the height of the focal plane if necessary.

2.2.2. Confocal microscopy and image analysis

Particle imaging was performed using an inverted Leica confocal scanning laser
microscope (CSLM), type TCS-SP2. The microscope was operated in fluorescence
mode. We used the 543 nm line of a green He-Ne laser for excitation of the
rhodamine labelled particles (and droplets). 3D imaging was made possible by
the use of a piezo-focusing drive (Physik Instrumente P-721) of the objective lens.
The scanning range of this drive was 100 µm. Measurements were performed with
a 100× oil immersion objective with a numerical aperture of 1.4 and a working
distance of 100 µm (on top of the 180 µm thick microscope slide). The microscope
allows imaging of planes parallel as well as planes perpendicular to the glass plate.
In the following the velocity gradient ~∇ is directed along the z-axis; the flow ~v is

1In a later version of the setup the cone was made replaceable, such that cones with angles β

of 2◦ or 1◦ became possible as well. In this way the sample volume could be reduced from ∼ 4

mL to ∼ 1 mL. In addition, a larger part of the gap from cone to plate could be covered using

an high NA oil immersion objective. The main disadvantage of smaller angles is the increase in

relative errors, mainly caused by a slight misalignment of the glass plate.
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Figure 2.2. (a) Schematic representation of the experimental setup.

A cone-plate shear cell is placed on top of an inverted microscope. The

metal cone and glass plate rotate in opposite directions. The dashed

line indicates the zero-velocity plane. The objective is mounted on a

piezo-drive. In (b) the directions of the velocity gradient ~∇, the flow ~v

and the vorticity ~e are shown.

directed along the x-axis and the y-axis points into the vorticity direction ~e (see
Fig. 2.2b).

The coordinates of the colloidal particles were found in xy-layers using similar
routines to those described by Grier and Crocker. In this way the particle coordi-
nates could be obtained with sub-pixel accuracy. In our experiments the xy-pixel
size is 73 nm. The accuracy of finding particle locations is estimated to be 10 nm.
The particles were tracked in time by comparing the coordinates found in every
two successive frames from a time series of xy-images [46]. We used additional
procedures to find velocity profiles in the shear field. Two routines were developed
for measuring image drift due to the flow in time-series of images taken parallel
to the glass plate (perpendicular to the velocity gradient direction).

The first method uses particle coordinates and tracks as found above [46]. Then
we consider every two successive frames and select all the particles that are present
in both frames. Subsequently, we calculate the difference between the centre of
mass of the selected particles in these two frames. Accumulation of these differ-
ences gives again the position shift as a function of time.

In the second method to measure drift we calculate the cross-correlation func-
tion of every two successive images. This function has a well-defined maximum
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at the value corresponding to the average displacement of all the particles. The
position of this maximum is tracked to obtain the drift averaged over all particles
in the frame as a function of time.

The two methods gave very similar results but were used for slightly different
purposes: the first method for measuring the exact average velocity of the parti-
cles in the plane of zero velocity, and the second method for measuring the flow
profile (from time series of different layers). Note that the second method has the
advantage of being faster since no particle finding is necessary.

2.2.3. Preparation of emulsions and colloidal suspensions

Emulsions were prepared by making solutions of 10 wt % fish gelatine (Multi
Product) and 10 wt % dextran (MW 282,000) (Sigma) in water at 60 ◦C, and
mixing these in a ratio 1/1 at room temperature. This way an emulsion of 10
µm sized gelatine rich droplets in a continuous dextran rich phase was obtained.
Rhodamine-B (0.01 wt %) was added to the mixture which preferentially stains
the gelatine rich phase [45,47].

The colloidal particles used for this work were polymethylmethacrylate (PMMA)-
spheres prepared by dispersion polymerisation [17]. The spheres were sterically sta-
bilized by a graft copolymer of poly(12-hydroxystearic acid) (PHS) onto a PMMA
backbone [17]. The reaction mixture initially consisted of the monomers methyl-
methacrylate (MM; Fluka) and methacrylic acid (MA; Fluka) dissolved in an apo-
lar solvent: 2 : 1 (w/w) hexane (Aldrich) / Exxsol D 100 (Exxon Chemical Europe
Inc.) mixture. The monomer concentration in the initial mixture was typically
40 wt %. The particle size was tuned by adjusting the ratio [monomer]/[PHS-
stabilizer]; a higher ratio resulted in larger particles. In the final locking step the
stabilizer was chemically attached to the particles [17].

The particles were fluorescently labelled by adding a dyed monomer, which co-
polymerised with MM and MA. This fluorescent monomer was made beforehand by
coupling rhodamine-B-isothiocyanate (RITC, Aldrich) to amino-styrene (Aldrich),
as described by Bosma et al. [18]. In the present work several colloidal systems
were used. The system labelled as D34 had a diameter σ of 1.67 µm and relative
polydispersity ξ of 5 % (determined by static light scattering); D35: σ = 1.50 µm
and ξ = 6 %; DX22: σ = 1.32 µm and ξ = 6 %. The last mentioned system
consisted of core-shell cross-linked particles. Details about the synthesis of cross
linked particles with a fluorescent core and a non-fluorescent shell can be found in
a recent paper by Dullens et al. [19].

After the synthesis these systems were dried and redispersed in a 3 : 1 (w/w)
mixture of cyclohexyl bromide (Fluka) and cis-decalin (Aldrich). In this mixture
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Figure 2.3. Confocal images (xy, 75 µm x 75 µm) of a sheared

gelatine-dextran emulsion (applied shear rate = 1 s−1). Snapshots

were taken at time intervals of 10 seconds. Stationary drops are marked

with filled circles; moving drops are marked with arrows pointing in the

direction in which the drop moves.

the mass density of the particles and the solvent were nearly matched, so that the
sedimentation or creaming of the particles was suppressed as much as possible.
In addition, the refractive index of the particles was almost equal to that of the
solvent (as well as to the refractive index of the glass plate of the shear cell and
the immersion oil). The latter is important for imaging particles (in fluorescence
mode) in bulk. In this solvent mixture the PMMA spheres were found to carry
a charge [48, 49]. For these measurements the charges were screened by addition
of an oil-soluble salt, i.e. tetrabutyl ammoniumchloride (Sigma Aldrich) at a
concentration of 260 µM. In this way the particles approximated hard-spheres,
crystallizing at a volume fraction of 0.47.

2.3. Results and discussion

To illustrate the concept of the counter-rotating cell we first show measurements
carried out on a gelatine-dextran emulsion. The droplet size distribution in the
prepared macro-emulsion is very broad. A typical droplet size is about 10 µm,
which means that its Brownian motion can be neglected. Successive confocal
images of a sheared emulsion are shown in Fig. 2.3. These xy-images were taken
parallel to the glass plate and thus are perpendicular to the velocity gradient
direction (= z-direction).

As a result of the applied shear field some droplets were seen to travel upward
while others move downward. Some did not move at all, because their centre of
mass was in the plane of zero velocity. For large objects such as these emulsion
droplets we developed a computer controlled feedback mechanism that enabled
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tracking of an individual particle for a prolonged period of time. As soon as the
selected droplet leaves the zero-velocity-plane due to collisions with other droplets
or due to slight mechanical drift, it starts drifting up or down with respect to the
image plane. The computer then adjusts the ratio of the rotational speed of cone
and plate (ωcone/ωplate) such that the drift is eliminated. The necessary angular
velocities were calculated by determining the displacement of the droplet between
two successive frames using image cross-correlation, under the constraint that the
shear rate (and thus ωcone − ωplate) remained constant. In this way an emulsion
droplet can be tracked indefinitely so that its deformation by the flow and by
interactions with other droplets can be observed.

Unlike in a sheared macro-emulsion, in a sheared colloidal suspension all the
particles in focus travel at nearly the same velocity. The reason is that the centre
of mass of all the imaged particles lies at the same depth to within about 1 µm
(the diameter). Another essential difference with the emulsion droplets is that the
colloidal particles perform Brownian motion. In colloidal dispersions the particles
move in and out of the zero-velocity-plane too rapidly for them to be tracked at
the frame rates that we are using (maximum 4 frames s−1 for 256 x 256 pixels).
Colloidal crystals represent an exception to this, because here the particles are
confined to their lattice positions. We will demonstrate this later. In colloidal
fluids we can gain most information on the flow profiles by imaging parallel to the
velocity gradient (= z-direction) and the flow direction (= x-direction). Scanning
frames in such a way results in images in which the particles seem to be deformed
into slanted ellipses (see Fig. 2.4). The deformation originates from the fact that
scanning an image takes time. The image is scanned line by line from bottom to
top: z(t) = αt, with α the scan rate: thus the top and bottom will be displaced rel-
ative to each other by an amount xtop−xbottom = v(z)∆t = v(z)(ztop−zbottom)/α,
where v(z) is the velocity of a particle of diameter of which the centre of mass is
situated at height z in the shear field. This equation can be rewritten as:

xtop − xbottom

σ
=

v(z)
α

. (2.1)

The latter expression equals dx/dz and describes the inclination of the imaged
particles as a function of the height. This slope can be determined by analysing
the confocal images. In order to do so we first aim to find the apparent shape of
the imaged particles x(z). We wrote a routine that calculated the cross-correlation
function of every two successively scanned lines. In the next step the position of
the maxima of these cross-correlation functions were tracked and accumulated,
resulting in the final shape x(z).
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Figure 2.4. Confocal images (xz, 75 µm × 60 µm, 512 × 512 pix-

els) of a colloidal fluid at various shear conditions. The applied shear

rates are 1.67, 3.36 and 8.39 s−1 (top to bottom); the applied ratios

(ωcone/ωplate) are 84, 129 and 175 (left to right). Images are overlaid

(in white) with the particle shape calculated from initial conditions

following Eq. 2.2. Graphs (a) and (b) show the measured shape x(z)

from the images, resulting from image and data analysis (using the

cross-correlation of lines). The velocity profiles obtained (dx/dz) are

shown in graphs (c) and (d).

The results of this analysis are shown in the two upper graphs in Fig. 2.4.
Graph (a) shows the curves obtained for experiments at three different shear rates
corresponding to the images on the left side. Graph (b) shows the apparent shape
for experiments done at different ratios ωcone/ωplate (and constant ωcone−ωplate )
corresponding to the images displayed at the top. The derivatives dx/dz of these
curves directly yield the flow profile (Eq. 2.1). These flow profiles are plotted in
graph (c) and (d). It can be seen that increasing the shear rate while keeping the
ratio ωcone/ωplate fixed keeps the zero-velocity plane at the same height to within
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Figure 2.5. Reorientation of the hexagonal layer after applying a

shear field. The applied shear rate yields 0.167 s−1. Snapshots are

taken at t = 0, 65, 130, 195 and 390 s; the shear is initiated at t = 5

s. Images are 18.75 µm × 18.75 µm (128 × 128 pixels.) The particles

used here are core-shell particles (DX22) with a diameter of 1.32 µm.

2 µm (c). On the other hand, increasing the ratio lowers the stationary layer while
the shear rate stays constant (d). When we deal with a simple shear flow the flow
profile is given by v(z) = γ̇(z − zzvp), where zzvp = h/(|ωcone/ωplate| + 1). In
our case, the gap h is 1.70 mm. The expression for the deformation now becomes
parabolic:

x(z) =
γ̇

α
z

(
1
2
z − zzvp

)
. (2.2)

Hence, for a linear velocity profile over the whole gap, the apparent shape of
the imaged particles is completely determined by the applied shear rate and the
applied ratio ωcone/ωplate . In Fig. 2.4 these calculated curves are plotted over the
confocal images. The calculated shape agrees very well with the images, which
means that the measured velocity profiles are indeed linear. For the data in Fig. 2.4
the scan rate α is 34 µm s−1. Therefore it takes about 40 ms to scan a particle
from top to bottom. The Brownian motion during this time period is small enough
not to disturb the analysis: the root mean square displacement is about 100 nm
(= σ/15), assuming infinite dilution, and will even be significantly less because of
particle interactions and hydrodynamics.

In addition to fluids, it is also interesting to study colloidal crystals in shear
flow. The first observation when applying a shear field to a crystal consisting of
hexagonal stacked layers is that the layers reorient themselves in the steady shear
field. Regardless of the original crystal orientation, the applied shear orients the
hexagonal planes in such a way that close-packed lines point into the flow direction.
The process of re-orientation is demonstrated in Fig. 2.5.

In a colloidal crystal most of the particles are confined to lattice positions, so
they can be tracked in the plane of zero-velocity for a long period of time. To



26 The Counter Rotating Cone-Plate Shear Cell

stay away from the shear melting transition the applied shear rates here had to be
an order of magnitude lower than the shear rates that we applied to the colloidal
fluid.

The advantage of these low shear rates is that the particles can be not only
imaged in the plane of zero velocity, but also in wider z-range around this plane.
In fact, time series of xy-confocal images were captured in about 10 layers around
the zero velocity plane. For each layer we used cross correlation of successive
images to calculate the motion due to flow (see Experimental Section). A typical
example is shown in Fig. 2.6a. The slopes of the lines correspond to the velocities of
these layers. For experiments done at four different shear rates these velocities are
plotted in Fig. 2.6b as a function of height (expressed in terms of number of layers
from the glass plate). The slopes of the lines in this graph give the actual shear
rates in the four experiments. From Fig. 2.6a it can be seen that every layer moves
with a velocity that is intermediate between the velocities of its two neighbouring
layers. In other words: all layers slide over each other; no two layers ever move
in unison. We found this in all experiments and therefore we conclude that in the
lower 100 µm, where we could image, the flow profile in colloidal crystals is linear
down to the particle level.

On comparing the measured shear rates with the applied ones we found, as
expected from Fig. 2.4, good agreement for the colloidal fluid samples (Fig. 2.7a).
However, in case of the sheared crystal, we observed a remarkable difference. The
measured shear rates are much higher than those applied (Fig. 2.7b). The discrep-
ancy cannot be explained by wall slip because this would lead to measured shear
rates that are too low. We conclude that, although we have no direct evidence
yet, the velocity profile cannot be linear throughout the whole gap. We believe
that this is an indication for shear banding.

The measurements shown here were performed with an objective with a free
working distance of 100 µm. This did not allow us to image particles throughout
the whole gap, which is 1.7 mm. Future work will involve the use of longer working
distance objectives so that information can be gained over a larger distance in the
gap.

In the following we discuss results concerning particle dynamics in the plane of
zero velocity of a sheared crystal. The combination of a counter rotating shear
cell and confocal microscope gives the opportunity to image one stationary layer
exclusively in a 3D bulk system under shear. In this way we are able to analyse
the dynamics of the colloidal particles in real space in great detail.

At moderate shear rates (up to several s−1) the particles in an ordered layer
in the zero velocity plane can stay in focus for a sufficiently long time to measure
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(a) (b)

Figure 2.6. The velocity profile in the sheared crystal is measured

layer by layer. (a) Image analysis of time-series of xy-images results in

the y-position shift as a function of time. (◦) corresponds to the layer

closest to the glass plate; (•) corresponds to the 9th layer (counted from

the glass wall). (b) Slopes from (a) give the layer velocity as a function

of height. Data from (a) correspond to (¤) in (b). The measured

shear rates obtained are expressed in µm s−1/layer. Assuming a layer

spacing d of
√

2/3 times the measured interparticle spacing λ in the

xy-plane (λ = 1.80 µm; d = 1.47 µm), these numbers correspond to

actual shear rates of 0.13 s−1, 0.37 s−1, 1.0 s−1 and 2.3 s−1. For these

experiments we used particles with a diameter of 1.67 µm (D34).

individual particle trajectories. The higher the shear rate the more difficult it is to
keep the particles in focus, for several reasons. Firstly, the glass plate is moving at
higher speed and as a result more variations in height are encountered during the
time of the experiment. Secondly, the height of the crystalline plane is fluctuating
more. Thirdly, rearrangements in the layer, a precursor to shear melting, become
more frequent.

To study the particle dynamics in the zero velocity plane time series (typically
256 frames) were captured over a region of 18.75 µm × 18.75 µm (256 × 256
pixels) with a high scan rate (3.9 frames s−1). Fig. 2.8a shows a representative
image from such a series. Image analysis gave the coordinates of the particles
in the successive frames. Subsequently, these coordinates were ascribed to the
individual particles, producing all the trajectories. Directly plotting these tracks
gives a tangle of curves from which not much can be learned. After subtracting
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(a) (b)

Figure 2.7. Measured shear rate vs. applied shear rate for the

sheared fluid (a) and crystal (b). Solid lines represent: measured shear

rate = applied shear rate. Plotting the measured shear rate as func-

tion of the applied shear rate demonstrates an interesting discrepancy

from the applied shear rate in case of the crystal, while the fluid shows

normal behavior. For the crystal the shear rate in this region is much

higher than expected.

the collective motion obtained by averaging over all the particles we end up with
spatially separate tracks, from which we observe particles moving around their
average lattice position (Fig. 2.8b).

The average collective motion of the frames is obtained by calculating the shift
in the position of the center of mass between two successive frames, weighting
all the particles that appear in both frames. This collective motion does give us
information on how the layer as a whole moves in the applied shear flow. As we
learned from the measurements of flow profiles in a crystal, all the layers do slide
over each other. So, if we want to learn how the particles behave when the layers
slide over each other, we should also study the collective motion in more detail
(see Chapter 3).

Of course it would be most informative if the positions of particles in several
layers could be measured simultaneously, and correlated. This was approximated
by taking time series as before, but alternately scanning one layer (zlayer1) and the
layer above (zlayer2). Note that there are some differences with the 2D time-series
described above. One difference is that strictly speaking only one layer can be in
the zero-velocity-plane, while in the other layer the particles will move a bit more.
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Figure 2.8. Image analysis and particle tracking in the zero-velocity-

plane reveals the dynamics of the sheared crystal. Moreover dynamical

information from two layers at the same time is gained. The zigzag

motion of the particles from one layer over the adjacent layer is clear

for the image at the right. Image size is 18.75 µm x 18.75 µm (256 x

256 pixels). The colloids used have diameter of 1.50 µm (D35).

Another difference is that the time interval between two images of the same layer
is longer than for a 2D time series. Both effects reduce the maximal shear rate
that still can be applied in order to obtain analysable data.

In Fig. 2.8c we plot the tracks of both layers. Here the small residual drift of
the stationary layer was subtracted from the particles in both layers, producing
their relative motions only. In this way we see the particles in the adjacent layer
slide over (and move through the holes in between) the particles in the stationary
layer. From this plot it can qualitatively be seen that the particles perform a
zigzag motion when the layers are sliding over each other, as was already inferred
by Ackerson et al. from light scattering data [11].

2.4. Conclusions

A counter rotating shear cell combined with confocal microscopy opens many
possibilities for studying colloidal systems, as well as larger non-Brownian objects,
in a shear flow in real space quantitatively on a single particle basis. Flow profiles
can be measured on a microscopic level in colloidal fluids and crystals. Indications
for shear banding in sheared hard-sphere like crystals were found. Particles in the
zero velocity plane of a sheared colloidal crystal can be tracked. Finally, we have
shown the possibility of capturing and tracking two layers (almost) simultaneously:
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as an example we demonstrated the zigzag motion with which close packed planes
of hard-spheres slide over each other.
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3
Dynamics in Sheared Colloidal Crystals

Abstract

We investigate particle dynamics in nearly hard sphere colloidal crystals when these

are submitted to a steady shear flow. The displacements of both the single colloids and of

the crystalline layers as a whole are studied by using a home built counter rotating shear

cell in combination with confocal microscopy. Our real space observations confirm the

global structure and orientation as well as the collective zigzag motion as found by early

scattering experiments. Moreover, we find that random particle displacements increase

with shear rate. Shear induced melting takes place when their mean square displacement

has reached about 13 % of the particle separation. Furthermore, we show that local

rearrangements become more and more pronounced with increasing shear rate. From

images of the flow-gradient plane parts of the system are seen to alternate between a

more and less ordered state, eventually leading to shear melting.

31
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3.1. Introduction

When does a crystal melt into a fluid? And how does shear flow affect this
condition? In 1910 Lindemann addressed the first question: He proposed that
as soon as the molecular fluctuations exceed ∼10 percent of the intermolecular
spacing the order will be destroyed [50]. This Lindemann criterion was shown to
hold also in colloidal crystals as has been demonstrated using computer simulation
[51,52] and experiments [52–54]. In soft matter systems we have the possibility to
easily modify the melting transition by applying external fields. In this Chapter,
we show that these fluctuations leading to melting do not necessarily have to
arise from an increase of thermal agitation on approaching the melting line, but
are also increased by subjecting the crystal to shear flow. This eventually leads
to complete shear induced melting of the 3D-crystal. The Lindemann melting
criterium was already used in the context of shear flow by Lindsay and Chaikin [55]
who observed the shear melting transition through a sudden viscosity increase,
and Ackerson and Clark who observed a reduction of long ranged order with light
scattering [32]. However, the increased fluctuations were be hypothesized rather
than observed. More recently, Lindemann-like arguments were used to describe the
phase behaviour of 2D-systems of magnetic particles [56]. In the latter experiments
the interparticle interaction can directly be tuned by the applied magnetic field
strength, whereas the effect of shear flow is indirect and occurs via the interplay
with the suspending fluid.

Shear-induced transitions are by no means unique to colloidal dispersions, but
have been discovered in many other forms of soft condensed matter [24]. For
example the microstructure of wormlike micellar systems appears to be highly
sensitive to shear flow. In these surfactant systems a shear-induced isotropic-to-
nematic transition [57] was observed as well as a shear banding transition where
bands of high and low viscosity phases coexist under shear [58]. Interestingly,
indications for shear banding were also found in colloidal systems [33,59,60]. Here,
the system splits into bands of crystalline and shear-melted structure, with the
latter growing at the expense of the former as the shear rate is increased. Other
transitions observed in colloidal systems include shear-induced ordering [11,61,62],
changes of crystal symmetry [63], and shear thickening [64]. The processes leading
to the formation of shear-induced structures are still a subject of intense research.
For this colloidal suspensions have the advantage, above most other soft matter
systems, that individual particles can be visualized in situ while undergoing shear
with (confocal) microscopy. This opens up the possibility to study the essential
microstructural response of the dispersion during shear flow directly.
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In the 1980s the effect of shear flow on colloidal crystals was investigated ex-
tensively by means of light scattering techniques. In this way the global structure
and orientation of the sheared systems was obtained [11, 32]. In the last decade
the use of microscopy techniques became more established [33], though real space
investigations to study the effect of shear flow on the particle level in dense col-
loidal suspensions suspensions are not very numerous yet. Cohen et al. showed
that strongly confined systems in shear flow gave rise to unexpected new crystal
structures [65]. Also there was reported on the effect of a very low strain on the
dislocation dynamics in colloidal crystals [66]. The difficulty with the study of a
3D system in a steady shear flow is that particles simply flow out of the field of
view of the microscope, drastically limiting the time a particle can be followed (or
be recognized to be the same particle). This problem we circumvent here by using
a counter rotating shear cell in which the stationary layer can be positioned away
from the glass wall (see Chapter 2).

Shear melting has been found to occur in two stages: first there is the transition
from a crystal in which the particle positions are bound to the 3D lattice sites to a
situation in which (hexagonally ordered) layers slide more or less freely over each
other [11], [Chapter 2]. The in-plane order is preserved till considerably higher
shear rates, but will eventually vanish at higher shear rates as well. In this paper we
will first investigate this sliding layer motion and look at the collective displacement
of particles in a layer. Second, we focus on how shear affects the random particle
displacements and on the rearrangements of the individual particles within such a
layer. Finally, we relate this increase in fluctuations to the loss of crystalline order
upon approaching the shear melting transition.

3.2. Experimental methods

We used rhodamine labeled poly(methylmethacrylate) (PMMA)-spheres with
a diameter of 1.67 µm made by dispersion polymerization and sterically stabilized
by a layer of poly(12-hydroxystearic acid) (PHS) [17, 18]. The particles were dis-
persed in a 3 : 1 w/w mixture of cyclohexylbromide and cis-decalin, saturated
with tetrabutylammoniumbromide (TBAB) yielding a nearly density and refrac-
tive index matched system in which the colloids behave nearly hard-sphere like
(φcrystal = 0.47) [48]. The volume fraction of colloids was chosen to be well within
the crystalline region of the phase diagram at a volume fraction 0.57.

In order to create a well-defined shear flow a home-built counter rotating cone
plate shear cell was used. This setup was mounted on top of an inverted confocal
microscope (Leica TCS SP2), and consists of a (replaceable) metal cone that makes
an angle of either 1 or 4 degrees with a glass plate that has a diameter of 6.5 cm.
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The counter rotating principe allows us to locate the stationary layer (zero velocity
plane) in the bulk of the system. More details of the set up can be found in Chapter
2. The z-position of the 100× 1.4 NA oil immersion objective was controlled by
a piezo-focusing drive (Physik Instrumente P-721) allowing imaging of the sample
up to 100 µm from the glass wall.

The sample was filled into the cell and a pre-shear of 0.5 s−1 was applied for
30 minutes. After stopping the pre-shear, the crystal was left to equilibrate for an
additional hour, before starting the shear experiments described here. Time series
were taken in the flow-vorticity (xy-) plane as well as the flow-gradient (xz-) plane.
The minimum capturing time of one frame is 0.26 s. Particle coordinates were
determined using routines similar to those of Crocker and Grier [46]. Local shear
rates were determined from flow profiles by measuring the velocity of a number of
layers around the zero velocity plane as explained in Chapter 2.

3.3. Results and discussion

3.3.1. Collective motion of layers

When the cell was filled with the dense suspension a polycrystalline arrangement
of random stacked hexagonally close packed (rhcp) crystals was formed with the
hexagonal layers parallel to the (horizontal) glass wall. The pre-shear treatment
further aligned the crystal such that in each xy-plane the closest packed line points
(with a deviation of ±3◦) into the direction of flow. This was shown in Chapter 2
(Fig. 2.5). A typical resulting structure can be seen in the two confocal images in
Fig. 3.1 for two different shear rates. These are snapshots from movies taken at
approximately the eighth layer counted from the glass plate. In our experiment
we applied a constant shear rate γ̇ which implies that we force the layers to slide
over each other. (This is in contrast to constant stress experiments in which at
sufficiently low stress the 3D-crystal structure can be maintained, because it has a
yield stress.) Time series of the hexagonal plane show that particles in the layers
oscillate collectively in the vorticity direction. This is visualized in the graphs in
the right part of Fig. 3.1. On the vertical axis we plotted in greyscale a histogram
of the y-positions of all particles in a horizontal cross section through the image.
This done for each frame in the time series. The peaks in the histogram are given a
dark color and correspond to a high probability of finding a particle at that vertical
position. It is seen that these peak positions oscillate in time, which implies that
rows of particles oscillate in phase. The frequency of the oscillations increases with
increasing shear rate. To clarify the origin of this collective movement additional
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Figure 3.1. Visualization of the collective motion of the layer. Images

on the left show a snapshot at time t = 0 with the corresponding

coordinates on top. On the right the projection of the particle position

along the x-axis is shown as function of time. Top panels correspond

to a shear rate of 0.13 s−1, bottom panels correspond to 0.37 s−1.

data were taken by capturing time series of an xyz-stack consisting of three xy-
frames through the centers of particles in three adjacent layers. In Fig. 3.2 the
particle coordinates of these three layers are plotted in one figure. From these
figures it can be seen that the observed zigzag motion clearly is an effect that
arises via interaction with particles in the neighboring layers. At this high volume
fraction there is simply no space for layers to slide over each other in a straight line.
As a result a particle follows a zigzag path through the saddles in the landscape
formed by the adjacent layers. In each period of the oscillation the particles move
over the distance of one interparticle spacing with respect to the adjacent layer.
The oscillation frequency should then be proportional to the shear rate. This is
confirmed in Fig. 3.3. The trajectory of the center of mass ~rCM is determined by
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Figure 3.2. Particle positions in three adjacent layers in shear flow

(γ̇ = 0.08 s−1) at six different times. A Voronoi construction of the

middle layer (diamonds) is shown. Particles in the lower layer (stars)

and upper layer (squares) are seen to neatly follow the path formed by

the edges of the Voronoi cells. One particle in the middle layer (filled

diamond) and its neighbors (larger stars and filled squares) at t = t0

in the adjacent layers are highlighted, so that they can be followed in

time.
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γ& tγ& t

Figure 3.3. Collective zigzag motion in sheared colloidal crystals. Au-

tocorrelation function of the y-coordinate of the center of mass, showing

the oscillations of particles in the vorticity direction. Time is normal-

ized with the experimentally independently obtained (local) shear rate.

comparing the average position of those particles in an image appearing in both
of two subsequent frames:

~rCM(t) =
t∑

t′=∆t

1
Nt′

Nt′∑

i=1

(~ri(t′)− ~ri(t′ −∆t)) . (3.1)

Here, i runs over all particles showing up in two subsequent frames, and ∆t is
the time interval between those two frames. From this we then calculate the
autocorrelation function of its component in the vorticity direction (yCM):

gy(t) =
1
T

∫ T

0

yCM(t′) yCM(t′ + t) dt′, (3.2)

where T is the duration of the time series. Plotting this function against time nor-
malized with the shear rate results in a nice overlap of the experiments at different
shear rates. The shear rates used in this figure were measured independently by
determining the velocity in xy-time series of ∼10 layers around the studied layer,
as was discussed in detail in Chapter 2 (Fig. 2.6). In these experiments we directly
measured the velocity difference (in µm s−1) between the layers. To find the shear
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Figure 3.4. Hopping at low shear rates. The grey line corresponds to

a shear rate of 0.01 s−1, and the black line to a shear rate of 0.03 s−1.

We plot the x-position of center of mass relative to the middle layer,

showing the displacement in the flow direction. Particles in adjacent

layers reside at an ‘A’ or ‘C’ position (see sketch) for prolonged periods

of time, and spend less time at intermediate positions. Each step the

layer moves over a distance of half the interparticle spacing λ (0.9 µm).

rate (in s−1) we assume that the layers are separated by a distance of
√

6/3 times
the in-plane interparticle spacing λ. Therefore one period τ is expected to take
λ/∆v = λ/(γ̇∆z) = 3/γ̇

√
6 ≈ 1.22/γ̇. However, the period of an oscillation is seen

to be only τ = 1.14/γ̇. This is close to the expected value, but the difference is
statistically significant. A possible explanation is that, to facilitate the sliding of
layers, the spacing in between the layers is slightly increased, while in-plane the
particles are slightly compressed. To reconcile the expected and measured values
halfway (i.e. at γ̇τ = 1.18) an expansion of the layer spacing of 3.4 % must be
assumed. Such a small expansion is very hard to detect in observations of only
up to three layers. Later on we will see, by studying a larger number of layers
(Fig. 3.11), that in shear flow the layer spacing is indeed about 3 % increased.
The zigzag motion is still observed at a shear rate of 2.3 s−1. At a shear rate of
3 s−1 all order was lost and the system was said to have shear melted.

The importance of shear flow, which tends to distort the structure, in compar-
ison to the thermal motion, which tends to restore the equilibrium structure, is
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usually expressed as the Péclet number Pe = ηγ̇σ3/kBT [67]. Here η is the viscos-
ity of the solvent and σ the particle diameter. For these experiments Pe ≈ 2.3 γ̇.
At very low Pe number (¿ 0.2) the zigzag motion becomes very difficult to detect.
Particles spend most of the time at a lattice site formed by the adjacent layers.
They avoid the interstitial positions as much as possible, and hop to the next site
only rarely. Still, when averaging over long enough times the hexagonal layers are
seen to move relative to each other, and the velocity profile is on average linear. In
Fig. 3.4 we have visualized this ‘stick-slip’ motion by plotting the x-position of the
center of mass relative to the middle layer as a function of time for three adjacent
layers. It is seen that a particle moves over half an interparticle spacing at each
jump. This corresponds to a move from an ‘A’ to a ‘C’ position. The jumps of the
first and third layers are not necessarily in step. At higher shear rates the steps
progressively smoothen out (compare also Fig. 2.6).

3.3.2. Fluctuations of individual particles

The collective motion of the particles in a layer is to a large extent dictated by
the three dimensional character of our suspension. To study the fluctuations of
individual particles we have to properly subtract this collective motion. The most
straightforward method seems to be by subtracting the center of mass of the layer.
Closer inspection of the data shows a disadvantage of this approach: it regularly
occurs that a part of the crystalline layer slips with respect to another part (see
Fig. 3.5). Then all particles seem to be displaced with regard to the center of
mass, while actually only the particles at the boundary move in a different way
than their neighbors. This is undesirable especially since we observe that this type
of cooperative rearrangements [68] become more abundant with increasing shear
rate. Obviously, the distinction between the random and collective motion of the
particles in a flow field is not that sharp. Interestingly, similar difficulties were
encountered in studies of melting of two dimensional systems both in experiments
[56] and simulations [69]. Moreover, a truly 2D-crystal does not have long range
positional order, and the mean square displacement diverges. We choose for a
similar solution: Instead of considering the absolute particle displacements, we
calculate the relative displacement of pairs of neighboring particles. The vector
between the positions of two neighboring particles is given by ~rij = ~ri − ~rj , where
i > j are the indices of the neighboring particles. Each unique pair is given an
identification number, so that the pair can be tracked in time. In this way a pair
is followed for as long as the particles remain nearest neighbors (as calculated
by a Delaunay triangulation). The displacements in time t are then calculated
for each pair according to ∆~rij(t) = ~rij(t′ + t) − ~rij(t′). Histograms of these
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Figure 3.5. Particle tracks in the xy-plane of the crystal at shear rate

1.0 s−1 after subtracting the center of mass. In this case different parts

of the layer slipped relative to each other. All tracks (extending over

two or more frames) over a period of 66 s are shown. The time interval

between two frames was 0.26 s.

relative displacements in both flow (x-) and vorticity (y-) direction are shown in
Fig. 3.6 after different time intervals. The non-sheared system shows a narrow
Gaussian distribution, which only slightly widens with time. In shear flow the
distribution becomes broader. Also the shape of the distribution is changed: larger
displacements occur more frequently than in a pure Gaussian distribution. This is
in agreement with the observation that the increased fluctuations are concentrated
on a selection of the particles (those at the “boundaries”), while the others -which
remain part of a crystalline patch- are much less affected (Fig. 3.5). In Fig. 3.7
the mean square relative displacement

〈∆r2〉 (t) = 〈(~rij (t + t′)− ~rij (t′))2〉 (3.3)

is plotted as a function of time. Only the displacements in the flow-vorticity plane
are taken into account; the displacement in the z-direction can not be extracted
from these xy-data. We normalized 〈∆r2〉 by 2σ2. The factor 2 arises because
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Figure 3.6. Histograms of the relative x-displacements after different

time intervals for an experiment at zero shear (a) and an experiment

at shear rate 0.37 s−1 (b). Lines are Gaussian fits to the fluctuation

distribution at the smallest time interval.

we are interested in the mean square displacement per particle.1 It is seen that
at zero shear the particles are strongly confined to their lattice site, so that their
mean square displacement levels off to a finite value. Within the first few seconds
diffusion of the particles in a neighbor cage is observed, while at longer time
the cage formed by the neighbors confines the particles. In the absence of shear

1We have 〈∆r2〉(t) = 〈(∆ri −∆rj)
2〉 = 〈∆r2

i 〉+ 〈∆r2
j 〉 − 2〈∆ri∆rj〉. Displacements average to

zero so that 〈∆ri∆rj〉 = 0 and particles are identical so that 〈∆r2
i 〉 = 〈∆r2

j 〉. Therefore we must

have 〈∆r2〉 = 2〈∆r2
i 〉.
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Figure 3.7. Mean square relative displacements in the flow-vorticity

plane at different shear rates.

the cage is static and particles cannot escape, at least on the time scale of our
experiment. The sheared particles also feel their neighbors after the first (few)
second(s), but apparently experience a more dynamic cage from which they still
have a chance to escape. Interestingly, at long times the mean square displacement
again increases approximately linearly with time.

At long times we see weak oscillations appear. These can be attributed to the
different environments a particle experiences while performing their zigzag motion:
at the ‘A’ or ‘C’ positions a particle has more space to explore, compared to an
intermediate position, where its neighbors are even more near.

The shaded part of Fig. 3.7 marks the region where particles still diffuse around
their lattice site, before breaking out of their cages. At a shear rate of 2.3 s−1

this takes less than a second. On further increasing the shear all crystalline order
was lost at γ̇ = 3 s−1. The shaded region intercepts the y-axis at a (relative)
mean square displacement of 0.02. It is therefore clear from Fig. 3.7 that at the
point of shear melting the mean square displacement of particles in their nearest-
neighbor cages is approximately

√
〈∆r2〉melt/2σ2 ≈ 0.13 ± 0.01. In other words,

shear increases the random displacements of particles around their lattice positions
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Figure 3.8. Short and long time diffusion coefficients in shear flow as

obtained from Fig. 3.7. Total shear melting occurs around a shear rate

of 3 s−1. This is indicated by the dotted line. The lines in (a) are linear

fits to Dshort and Dlong, respectively. The curve in (b) is the ratio of

those fits.

until they exceed a value of about 0.13 times the lattice spacing, at which point the
crystal shear melts. This is strongly reminiscent of a Lindemann criterion which
in this case applies to a nonequilibrium system.2 It would be very interesting to
investigate whether such a criterion also holds in other nonequilibrium systems
such as in an electric field.

Based on the arguments above, we can assign two self diffusion coefficients to
the sheared systems: One that applies at short time scales, and another which
applies at longer times. The best estimate we have for the short time self diffusion
coefficient, is the value obtained from the displacements in the shortest experi-
mentally measured time interval: 〈∆r2〉/2 = 4Dshort∆t, with ∆t = 0.26 s. At
this time scale the colloids display essentially Brownian motion due to the many
impacts of solvent molecules. In addition, at these high concentrations, particles
influence each other by disturbing the flow field through which they move. Both

2In the Lindemann criterion also the displacements in z should be included. This increases

〈∆r2〉melt by an estimated factor 3/2. Furthermore, in the original Lindemann parameter the

displacement relative to the ideal lattice position is taken. This is exactly 1/2 as large as the

measured mean square displacement (taken relative to the particle’s initial position). Thus, our

Lindemann parameter should be modified by a factor
√

3/4, which nearly equals unity.
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the Brownian character of motion and the effect of hydrodynamic interactions are
reflected in the short time self diffusion coefficient. The data obtained are shown in
Fig. 3.8a. It is interesting to note that this short time diffusion coefficient already
increases with the shear rate, and that it does so approximately linearly. Such be-
havior is exactly that seen in shear induced self diffusion of non-Brownian spheres,
which is a purely hydrodynamic effect resulting from the hydrodynamic interac-
tions between the ever-changing configurations of particles under shear [43,70,71].

At long time scales particles are further slowed down by direct particle-particle
interactions. The long time self diffusion coefficient Dlong is thus obtained from the
linear slope of the long time mean square displacements. In Fig. 3.8a we plot these
diffusion coefficients as a function of shear rate. Also Dlong increases linearly with
shear rate. In part this will again be due to hydrodynamic effects. However, here
direct interactions between particles, which grow more frequent with increasing
shear rate, will contribute to to the increase in Dlong as well. In Fig. 3.8b, it is
seen that, relatively, Dlong increases faster than Dshort. Near (or at) shear melting
the long time diffusion coefficient is only a factor 10 times smaller than the short
time diffusion coefficient.

Interestingly, this ratio Dlong/Dshort = 0.1 was put forward by Löwen et al. [52]
as a dynamic criterion for melting (again in equilibrium systems). This statement
was based on the results of Brownian dynamics simulations, and was confirmed
by experiments on low density colloidal systems consisting of highly charged soft
particles [52, 72] and for slightly soft systems in [73]. Though in these cases the
hydrodynamic interactions are less important, the dynamic melting criterion was
claimed to apply for concentrated systems where particles do interact through such
interactions as well. By taking into account the short time diffusion coefficient
which includes hydrodynamic interactions instead of the bare Stokes-Einstein dif-
fusion coefficient, the experimental results for hard sphere crystallization described
in Ref. [74] could be explained.

Although obtaining an appropriate value for the short time self-diffusion co-
efficient remains a challenge, our shear experiments indicate that this dynamic
criterion for melting may well be applicable to non-equilibrium systems as well.

3.3.3. Order-disorder on approaching shear melting

Apart from the increased random fluctuations, the shear melting transition is
evidently associated with a loss of order. It is seen from time series in the flow-
vorticity plane that, locally, the order is sometimes lost to be recovered again later
on. This can be quantified by calculating the in-plane (six fold) bond orientational
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Figure 3.9. The in-plane order expressed as the averaged six fold bond

order parameter as a function of time for different shear rates.

order parameter for each particle i :

ψ6(~ri) =
1

Nn

Nn∑

j=1

ei6θ(~rij), (3.4)

where the summation runs over all nearest neighbors j of that particle, and θ(~rij)
is the angle between the vector connecting particle i and j and an arbitrary fixed
reference axis. We are interested in the global order, and thus take the average
of the absolute value of ψ6 of all particles in a layer at time t. This calculation
makes sense only for as long as the particles stay in plane, and is expected to
break down close to the melting transition. Still, Fig. 3.9 clearly shows the trend
that the average order in the layer decreases with increasing shear rate. Further,
it is seen that the order undergoes larger fluctuations. Note that although at the
highest shear rate shown we are close to the melting transition, the in-plane order
is still considerably high.

To obtain a better insight of the processes going on in the gradient direction, we
took time series of the flow gradient plane (snapshots are shown in Fig. 3.10). At
zero shear the vertical cross section shows a very regular stacking of layers. When
a low shear rate is applied most of the time the layers smoothly slide over each
other. Occasionally, it is again observed that a small patch locally melts. Such a
disordered region extends over several layers. After a short time crystalline order
is restored. These ‘cycles’ were also observed in simulations in which only two lay-
ers of particles were sheared (without hydrodynamic interactions) [75]. At higher
shear rates the disordered regions become larger and appear more frequently. Fi-
nally almost all structure disappears with the exception of a few layers close to the
wall. Apparently, the wall promotes the layering [76]. The order-disorder cycles
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Figure 3.10. (Left) Snapshots (75 x 40 µm2) of the flow-gradient plane

at different shear rates. The time series consisted of 64, 256 and 256

frames respectively with a capturing time per frame of 6.4 s. The

apparent elongation of particles in the z-direction is due to the lower z-

resolution compared to the xy-resolution. The additional deformation

in the lower image results from the fact that the image is scanned line

by line and the particles move with the flow during the (slow) scan (see

Chapter 2). (Right) The vertical axis is a histogram of the density of

particles as a function of height at a given time.
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Figure 3.11. Analysis of the degree of layering of the sheared crystals.

In (a) we show the height distribution functions (Eq. 3.5) corresponding

to the three experiments shown in Fig. 3.10. In (b) an order parameter

〈|ρ̂2
k=2π/d|〉(γ̇)/〈|ρ̂2

k=2π/d|〉γ̇=0 with d the inter layer spacing, is given as

function of shear rate.

can be seen from the right part of Fig. 3.10, where the particle density is given as
a function of height z and time. The histograms of the z-positions are obtained in
the same way as in Fig. 3.1. The higher the shear rate the more the layers wander
in the z-direction. The fluctuations in z are more pronounced further from the
wall.
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To quantify these observations we introduce a layer spacing distribution function
g(∆z). This is done by calculating the histogram of distances between the z-
coordinates of every pair of particles in our experiment, and comparing that to a
random distribution:

g(∆z) =
1
ρ2

〈∑

i

∑

j>i

δ(zi)δ(zj −∆z)

〉
, (3.5)

where ρ is the average number density. We consider all particle pairs in a frame,
and then average over all frames. The results are shown in Fig. 3.11a. Layering is
clearly visible. At finite shear rates it is seen that the correlation between layers is
gradually lost. The correlation length becomes smaller with increasing shear rate.
A closer look at the (summed) layer spacing of these 25 layers further learns that
the layer spacing in the sheared system is slightly higher, i.e. 3 %, compared to
the non sheared crystal. This now fully explains the period of oscillation measured
from Fig. 3.3 as was discussed before.

To quantify the degree of layering we define the following order parameter. We
take the power spectrum of the histogram of z-positions of each frame (vertical
line in Fig. 3.10), and focus on the peak at the k-value that corresponds to the
interlayer spacing d. The height of this peak relative to the peak at zero shear
is the order parameter displayed in Fig. 3.11b. The bars represent the standard
deviation in the average over frames. They therefore reflect the order-disorder
cycles discussed before. At highest measured shear rate the order parameter had
not reached zero yet, because still some layering, mostly induced by the wall,
remained.

3.4. Conclusions

In conclusion, we have quantitatively studied colloidal crystals in shear flow in
real space by observing both the flow-vorticity plane and flow-gradient plane. We
analyzed the collective zigzag motion that the particles perform when hexagonal
layers are forced to slide over each other. On top of this collective motion the
particles undergo random displacements. Random fluctuations are enhanced by
shear flow above those caused by Brownian motion. It was found that those fluc-
tuations cause melting when they become sufficiently large. Similar to equilibrium
systems, a Lindemann criterion accurately predicts the melting transition in these
non-equilibrium systems. In addition, a dynamic criterion based on the relative
importance of the long time diffusion compared to the short time diffusion seems
to apply. Finally, we demonstrated that the path to shear melting is accompanied
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by local and temporary melting of the crystal, as was suggested by recent com-
puter simulations.
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4
Phase Separating Colloid Polymer Mixtures in

Shear Flow

Abstract

We study the process of phase separation of colloid polymer mixtures in the (spinodal)

two phase region of the phase diagram in shear flow. We use a counter rotating shear

cell and image the system by means of confocal laser scanning microscopy. The system

is quenched from an initially almost homogeneous state at very high (200 s−1) shear

rate to a low shear rate γ̇. A spinodal decomposition pattern is observed. Initially,

the characteristic length scale increases linearly with time. As the structure coarsens,

shear imposes a certain length scale onto the structure and a clear asymmetry occurs.

The domains become highly stretched along the flow direction, and domain width along

the vorticity axis reaches a stationary size, which scales as γ̇−1/3. Furthermore, by

quenching from an intermediate (6.7 s−1) to a low shear rate the elongated structures

become Rayleigh unstable and break up into smaller structures. However, the system

eventually reaches the same steady state as was found from a direct high to low shear-rate

quench through coarsening.
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4.1. Introduction

Fluid-fluid phase separation processes have been the subject of many studies
[77], both experimental [78, 79] and theoretical [80, 81]. In part, this is certainly
because of the fascinating patterns that spontaneously develop in a system on
the way to its most stable state. Understanding this morphology and its kinetics
requires answering questions of both hydrodynamic and thermodynamic nature,
and is therefore interesting from a fundamental point of view. In this work, we
focus on phase separating colloid polymer mixtures in the presence of shear flow.
Phase transitions of fluids in shear flow have been reviewed in Refs. [82] and [83].
Insight in the demixing behavior, especially in flow, is also of importance in for
example the food industry [84], and polymer processing [85].

Mixtures of colloids and polymers display a rich phase behavior including a
colloidal gas phase (poor in colloids, rich in polymers) and a colloidal liquid phase
(rich in colloids, poor in polymers). This phase separation occurs at high enough
colloid and polymer concentrations, and originates from an effective (depletion)
attraction between the colloidal spheres caused by the polymers. The process of
phase separation in such mixtures was studied by both small angle light scattering
(SALS) [79] and microscopy [79,86].

The initial stage of demixing is driven by diffusion of individual particles. Since
a homogeneous system is unstable in the two phase region of the phase diagram
each density fluctuation will have a lower free energy than the initial state and will
thus tend to grow further. However, not all wave length fluctuations grow at the
same rate, but a fastest growing mode exists, which produces the characteristic
length scale of a spinodal structure. With SALS the very initial phase separation
can be accessed [79], while microscopy is very suited to study the interfacial tension
driven coarsening which immediately follows, after the interfaces have formed on
a microscopic scale. As the structures grow larger, gravity is seen to drive the
demixing further, leading to the formation of a macroscopic interface as was shown
in Ref. [86]. In the present work the phase separation process of the system used
for these latter experiments is studied in the presence of a shear flow.

For phase separating polymer-polymer solutions shear experiments were re-
ported by Hashimoto and co-workers [78,87]. Using microscopy techniques a string
phase was observed in these systems, where the diameter of a string was seen to
decrease with increasing shear rate [78]. On further increasing the shear rate the
diameter of those strings approached the interface thickness, at which point the
system became homogeneous [87].
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In this Chapter we focus on the phase separation of colloid-polymer mixtures in
shear flow. First, we describe experiments in which the mixture was brought in a
nearly homogeneous state by application of a high shear rate and we investigate the
demixing upon quenching to a lower shear rate. The development of the structure
was followed in time and compared to experiments in absence of shear. Second,
we consider the processes that occur at quenching to low shear rate, when we start
off from a non-homogeneous state where highly elongated domains were initially
stabilized by an intermediate shear rate.

4.2. Experimental section

We used poly-(methylmethacrylate) (PMMA) spheres with diameter of 50 nm
(polydispersity < 10%). They were fluorescently labeled with 7-nitrobenzo-2-oxa-
1,3,-diazol (NBD). As polymer we used polystyrene with a radius of gyration of
14 nm. The samples were prepared by mixing stock dispersions of colloids and of
polymer, each of which was dispersed in decalin. The resulting colloid and polymer
volume fractions in the mixture were φc = 0.076 and φp = 0.50, respectively. At
these concentrations the mixture is in the two phase region of the phase diagram,
reasonably near to critical point [88]. After phase separation the volumes of the
two phases are roughly equal.

At this state point the system is characterized by an interfacial tension of
2 × 10−7 nN/m and a density difference of 0.053 g/mL as was found by ana-
lyzing the thermally induced capillary waves at a freely fluctuating interface [89].
The viscosity was measured by performing rheology experiments on both phases
separately, and turned out to be 8 mPas for the gas phase and 31 mPas for the
liquid phase [86].

To study the phase separating system under shear a home built counter rotating
shear cell was used (Fig. 2.1). This cone-plate shear cell is placed on top of a con-
focal microscope (Leica TCS SP2) which is used in fluorescence mode (excitation
wavelength 488 nm). The colloidal liquid, which contains a high concentration
of fluorescent colloids will appear bright, while the colloidal gas phase is darker
since the colloid concentration in it is lower. The counter rotating principle of
the shear cell allows to locate the stationary layer in the bulk of the cell. We
refer to Chapter 2 for further details on the shear cell. In this setup the velocity
gradient ∇ is directed along the vertical axis z, parallel to gravity. The flow x

and vorticity y direction lie in the horizontal plane. Unless stated otherwise, the
images shown are taken in this flow-vorticity plane. A long working distance 20×
0.7 NA objective was used in order to have a large field of view (750 × 750 µm2).
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Figure 4.1. Time series showing the process of the demixing after a

sudden drop of the shear rate from 200 s−1 to no shear (a-f), and to

a shear rate of 2.7 s−1 (g-l) at t = 0 s. Image size is 750 × 750 µm2.

Snapshots correspond to t = 6.6 s (a,g), 9.8 s (b,h), 16.4 s (c,i), 21.3 s

(d,j), 27.9 s (e,k), and 37.7 s (f,l). The inset in (d) displays part of the

image after binarization.
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The sample was homogenized (hand shaken) and then brought onto the glass
plate of the shear cell. The cone was fixed onto the set up, and brought into
measuring position. Immediately after that a high shear rate of 200 s−1 was
applied. Care was taken to do this procedure quickly in order prevent the system
from (macroscopically) phase separating.

4.3. Quenches from high to low shear rate

We applied a high shear of 200 s−1 and then followed the process of phase
separation after a sudden decrease of the shear rate. The shear cell achieves this
drop in about 1 s. Here we first discuss a quench from this high shear rate to
no shear at all. A time series was taken immediately after cessation of the shear.
In Fig. 4.1 a-f snapshots are shown taken in the first 40 s after the quench. The
system is seen to undergo a spinodal decomposition, where a continuous structure
coarsens in time. These micrographs do not make it possible to determine whether
the system was completely homogenized before the quench. However, it probably
was not, since just after the quench the structures are already slightly larger in
the flow direction then in the vorticity direction. This indicates that the initial
density fluctuations are anisotropic. In time, the system is seen to become more
and more isotropic.

In Fig. 4.1 g-l snapshots of a similar quench are shown, but now the final shear
rate is 2.7 s−1. The first few seconds the structures resemble the result above, but
soon the shear is seen to drastically deform the structure. By imaging vertical cross
sections (flow-gradient) we observed that the structures are more or less cylinder-
shaped, with two short dimensions (in the vorticity and gradient direction) and
one long dimension, along the flow axis (see Fig. 4.7). Interestingly, after about
30 s the length scales in the image appear to remain unaltered, even though the
details of the domain structure keep changing continuously. This last observation
applies especially to to the vorticity direction. Whether the structures still grow
in the flow direction is difficult to tell, since they span over larger distances than
the image size.

For this reason we focus our analysis on the length scale in the vorticity direc-
tion. We obtain the typical size of a domain directly by binarizing the images:
when the intensity of a point is below the average intensity of that image, it is
said to belong to the gas phase; when it is above than it is deemed to be part of
the liquid phase. The inset in Fig. 4.1d shows an example of such a binarization.
Since the contrast between the phases is sufficiently large, the binarized image
reproduces the domain structure well. Next, we count in each frame the average
number of times an interface is crossed in going from the left to the right. By
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Figure 4.2. (a) Analysis of the growth of the characteristic domain

size along the vorticity axis of the spinodal structure, which develops

after a shear quench from high to zero shear rate (see Fig. 4.1). (b)

Both the method using the power spectrum of a Fourier transform and

a direct binarization method, in which the number of interfaces along

the vorticity direction is counted, lead to a similar curve.

doing this for every horizontal cross-section we obtain the average domain size as
a function of time (Fig. 4.2b).

Alternatively, the coarsening rate of phase separation can be found by perform-
ing a Fourier transformation (FFT) of confocal images, as was done in Ref. [86],
and Chapter 6. This method is analogous to what would be measured in a scat-
tering experiment [79]. The typical size is then obtained from the wave number
kmax at the maximum of the power spectrum as shown in Fig. 4.2a.

Both the FFT and the direct method give a similar result, as is shown in
Fig. 4.2b, where Ly is defined as the length of a whole period of a fluctuation (in-
cluding gas and liquid). We find a linear time dependence of the typical structure
size, confirming that the coarsening is interfacial tension driven. Moreover, we find
that the coarsening rate, obtained from the slope of the graph, is 1.5 - 2 µm/s.
This is in agreement with expectations for a sample with this interfacial tension
and viscosity as was discussed in Ref. [86].

We use the direct method to find the development of the typical length scales
in shear flow. From Fig. 4.3 the difference between the sheared and non-sheared
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Figure 4.3. (a) Evolution of the characteristic length along the vor-

ticity axis Ly of the spinodal structure (determined by the direct bina-

rization method), which develops after a quench from high (200 s−1)

to low shear rate. (b) Final values of Ly after a steady state had been

reached.

case becomes clear. While also in the sheared systems the length initially follows
a (linear) growth with a shear rate independent growth rate, the length eventually
levels off to a constant value. This plateau value is seen to become lower as the
shear rate is increased. The gradual change with shear rate from an isotropic
structure all the way to very thin threads is visualized in Fig. 4.4, by showing
snapshots taken after the plateau value was reached.

The initial phase separation is driven by diffusion processes. In this regime a
typical density fluctuation of size L diffuses in a time t ∝ L2/D. Here D is its
diffusion coefficient, which is given by D ∝ kBT/ηL with kBT the thermal energy
and η the viscosity. Initially, the typical size of a density fluctuation therefore
grows as time to the one-third power [77,80]:

L3 ∝ kBT

η
t. (4.1)

At this stage the system develops a sharper and sharper interface, with an
interfacial tension approaching its equilibrium value σ. It turns out that particles
have to diffuse only over a distance in the order of the final interface thickness
(L ∝

√
kBT/σ ∼ ξ) to develop such an interface. From then on capillary forces will
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(a)

(f)(e)(d)

(c)(b)0 s-1 0.67 s-1 1.3 s-1

2.7 s-1 5.4 s-1 10.7 s-1

Figure 4.4. Snapshots taken 50 s after quenching the system to the

shear rate shown. All these images show a steady state, except for

the quench to zero shear (a), where in the absence of shear flow the

structure continues to coarsen. Image size is 750 ×750 µm2.

coarsen the structure further, and the free energy is lowered further by reducing
the interfacial area. The cross-over occurs already when the structure size is on the
order of micrometers, which is the reason why microscopy observes this interfacial
tension driven regime and not the diffusive regime.

The coarsening rate in this regime is governed by the Navier Stokes equations
[80], and is found by balancing, on one hand, the gradient in pressure over the
curved surfaces (∇p) and, on the other hand, the viscous dissipation (η∇2~u). Both
quantities can be estimated from the size of the structure L:

|∇p| ∝ 1
L

σ

L
and η∇2u ∝ η

1
L2

u. (4.2)

From this we see that, in absence of shear flow, a constant coarsening rate u ∝ σ/η

is expected. In shear flow the structure initially coarsens with about the same rate.
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Figure 4.5. The plateau value to which the typical domain size along

the vorticity direction levels off scales as γ̇−1/3. (Solid circles) quench

from 200 s−1, (open squares) quench from 6.7 s−1.

But, as our experiments show, at a certain point shear begins to strongly affect the
spinodal structure and limits the size to which the structure eventually develops
in the vorticity and gradient direction.

Can we understand at what length scale this occurs? In the context of polymer-
polymer demixing this question was addressed by Onuki [77]. The result he found
for the final width along the vorticity direction was:

L∗y ∼=
2π

qm(0)
(γ̇τξ)

−α
, (4.3)

where qm(0) is the wave number of the fastest growing mode just after cessation
of strong shear, τξ is related to the growth rate of that mode, and α = 1/4 - 1/3.
This was also found experimentally in phase separating polymer-polymer mixtures
by Hashimoto [78].

In Fig. 4.5 we show that our data indeed scale as γ̇−1/3. Here the filled circles
refer to the quench experiments discussed before. We also indicated the shear rate
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of 200 s−1 from which we quenched. By extrapolating our results to this high
shear rate, we can estimate that the typical size connected to the initial structure
was ∼ 5 µm, which is not quite as thin as the interface (which is the criterium for
complete homogenization [87]), but reasonably close.

Qualitatively, we can understand the scaling proposed in Eq. 4.3 by realizing
that 2π/qm(0) is closely related to the interface thickness ξ, and τξ can be identified
with the diffusion time τD ∝ L2/D for L = ξ. If we further take α = 1/3 as found
experimentally, we can rewrite Eq. 4.3 as:

L∗y ∝
(

kBT

ηγ̇

)1/3

. (4.4)

Interestingly, we would have found the same result if we had compared the applied
deformation rate γ̇ to the diffusion time τD, directly. The shear controlled regime
then starts when γ̇τD > 1.

4.4. Breakup of elongated domains

Apart from quenching from an initially almost homogeneous state, we can also
start at an intermediate shear rate in which we have elongated domains. In Fig. 4.6
we show an example of such an experiment, where we start with bands that are
on average 21 µm wide. The process clearly shows different features than before:
Thin bands that were initially stable at a shear rate of 6.7 s−1, are seen to break up
into droplets after the quench. In fact, the thinnest bands break up immediately,
while for wider structures instabilities develop as well, some of which cause break
up later on. These instabilities are also observed when we follow a quench in the
flow-gradient plane, as is shown in Fig. 4.7.

Finally, when the system coarsens further, the droplets are incorporated into a
new continuous structure and the system reaches a steady state again. The domain
width we obtain in this way overlaps precisely with the data representing a quench
from a high shear rate; see Fig. 4.5. Also, when the shear rate is increased again,
as indicated by the arrows, the final size is determined by the scaling we discussed
before. From this we conclude that shear drives the system to a unique steady
state, although the path which is taken to get there can be different.

The instability of a viscous thread was named after Rayleigh, who was the first
to describe this problem correctly. Taylor [41], and Tomokita [90] further analyzed
this by taking into account the viscosity of the surrounding fluid. The idea is that
a liquid thread becomes unstable to fluctuations in the thickness as a result of
differences in Laplace pressure along the length of the thread. The breakup of
the droplet into smaller ones is then driven by the decrease of the total interface
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(a)

(j)(i)

(h)(g)(f)

(c)(b)

(e)(d)

Figure 4.6. Structure evolution after an intermediate-to-low shear

rate quench. At t = 0 s the shear is dropped from 6.7 s−1 to 0.67

s−1. Subsequent images were taken at t = 1.6 s (b), 3.3 s (c), 6.6 s (d),

9.8 s (e), 13.1 s (f), 26.2 s (g), 39.4 s (h), 52.5 s (i) and 78.7 s (j).

between two fluids. The fastest growing mode, which determines the size of the
resulting droplets, is on the order of the circumference of the thread’s cross section.

In colloid-polymer mixtures, the breakup of elongated droplets was studied
systematically in a centrifugal field by De Hoog et al. [91]. Here a drop of the
lower density phase (colloidal gas) was surrounded by the higher density phase
(colloidal liquid). The system was brought into a high centrifugal field, in which
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flow direction
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∇
glass plate

Figure 4.7. Snapshots in the flow gradient plane after a quench from

high (66 s−1) to a shear rate of 1.3 s−1. Images are taken with 63×
oil-immersion objective. Image width is 132 µm; image height is ∼
92 µm.

the droplet was elongated along the spinning axis. The centrifugal rate was then
switched to a lower spinning rate. After such a quench in the spinning rate the
interface of the cylindrical shaped droplet became unstable, and the wavelength
of the fastest growing mode as well as the corresponding growth rate could be
determined.

In the present experiments a similar instability takes place in the shear quenches
starting from intermediate shear rate. It is clear that the shear modifies the
Rayleigh instability. Unfortunately, a theory to describe this phenomenon is not
available yet.

4.5. Conclusion

The process of phase separation in colloid polymer mixtures under shear was
studied in real space by quenching the system from a high shear rate, where the
system is almost homogeneous to a much lower shear rate. Initially, the domains
are seen to grow linearly in time. Like non sheared systems, coarsening is driven
by the interfacial tension that tends to minimize the free energy by reducing the
interfacial area. As the domains grow larger there is a point in time, where the
spinodal structure begins to be affected by the shear. The domains become highly
stretched in the flow direction, while a stationary width is reached in the vortic-
ity direction. The domain width is seen to scale as γ̇−1/3. This scaling, which
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has been predicted theoretically and was also experimentally found in polymer-
polymer mixtures, is also found in the present experiments. Moreover, we showed
that this steady state is unique in the sense that it is eventually reached from any
sheared initial state. Finally, when elongated domains are quenched to lower shear
rates the growth of the domain widths appears similar to a Rayleigh instability.
However, quantitative confirmation of this has to await a theory for the Rayleigh
instability under shear.
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5
The Colloidal Gas - Liquid Interface in Shear Flow

Abstract

We investigated the thermal fluctuations of the colloidal gas-liquid interface subjected

to a shear flow parallel to the interface. Strikingly, we find that the shear strongly

suppresses capillary waves, making the interface smoother. This phenomenon can be

described by introducing an effective interfacial tension σeff that increases with shear

rate. The increase of σeff is a direct consequence of the loss of interfacial entropy caused

by the flow, which affects especially the slow fluctuations. This demonstrates that the

interfacial tension of fluids results from an intrinsic as well as a fluctuation contribution.
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5.1. Introduction

Wind blowing across a lake causes the water surface to ripple. This rippling is
resisted by both interfacial tension and gravity. The same forces act at a micro-
scopic scale on capillary waves that exist as a result of thermal agitation [92–94]. In
this Chapter we provide the first visual evidence that, contrary to what happens
for wind driven waves, flow strongly suppresses thermal interfacial fluctuations.
To explain this, we present a simple model based on the idea that shear mostly
affects the slow modes, since these couple the strongest to the flow. The observed
interface smoothening will have repercussions for the understanding of the flow
in, for example, micro- and nanofluidics [23] and during the process of droplet
coalescence [95]. In addition, our findings are relevant to studies of shear-induced
phase transitions in lamellar systems [96–101].

Thermal capillary waves have been studied extensively in molecular fluids us-
ing light [102] and x-ray scattering [103]. Recently they have also been visualized
directly with a confocal microscope in a phase separated colloid-polymer mix-
ture [89], where excellent agreement with capillary wave theory was found. This
model system has the unique property that the interfacial tension is extremely
low: on the order of 10−9 − 10−6 N/m [89,104–106]. Thus, the amplitudes of the
waves are much larger (micrometers versus nanometers) than those on the inter-
face of molecular liquids, while their in-plane correlation length is much shorter
(micrometers versus millimeters). Here, we use this system to investigate the ef-
fect of a shear flow on a freely fluctuating interface with a recently developed
counter-rotating shear cell (see Chapter 2) in real space.

The effect of shear flow has been considered more extensively in the context of
lamellar systems in order to explain certain shear-induced phase transitions. In
these systems the restoring force is not the surface tension but the bending elastic-
ity of the lamellae or smectic layers. Cates and Milner predicted that, by reducing
the undulations of the lamellae, shear can stabilize a lamellar phase relative to an
isotropic phase, leading to an increase in the transition temperature [96]. Such
an increase was indeed observed in a diblock copolymer melt [100] and a lamellar
surfactant solution [99]. Bruinsma and Rabin predicted a similar suppression of
undulations for smectic liquid crystals [97]. In the case of a lyotropic lamellar
phase this was predicted to cause a reduction of steric repulsions between the
layers, ultimately leading to their destabilization. Indirect experimental evidence
for this model was obtained by Yamamoto and Tanaka, who observed a reduction
of the interlayer spacing with shear and a reduced correlation length perpendic-
ular to the lamellae [98]. Marlow and Olmsted modelled the effect of shear as
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Figure 5.1. Snapshots of the interface of sample A, closest to the

critical point, at three shear rates. Each image is 18 × 106 µm2 and

shows a vertical cross section through the interface. The position of the

interface is indicated with bright pixels. The bottom panel schemati-

cally shows the flow geometry with the plane of zero velocity located

at the interface.

an anisotropic tension in the layers resulting from a stretching of the undulations
by the flow [107]. Zilman and Granek [101] incorporated the shear as an affine
deformation of the thermally excited undulations, and proposed that the ensuing
instability could be a mechanism for the lamellar-to-onion transition. In view of
these studies it is of significant fundamental interest to study the effect of shear
on interface fluctuations, experimentally.

5.2. Methods and materials

We used fluorescently labelled poly(methyl methacrylate) (PMMA) colloidal
spheres with radius 71 nm and size polydispersity less than 10% dispersed in
decalin. The polymer was polystyrene (Fluka, molecular weight 2 × 106 g/mol)
with radius of gyration 43 nm [108, 109]. Samples were prepared by mixing stock
dispersions. The phase diagram of this mixture has been determined before [89].
In the present work we used two compositions in the two-phase region of the phase
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diagram; one was close to the critical point (sample A), the other further removed
(sample B). A sample was loaded into the shear cell, which was placed on a Leica
TCS-SP2 inverted confocal scanning microscope equipped with a 100× 1.4 NA oil
immersion objective, and allowed to fully phase separate for 24 hours. For details
of the setup and its performance we refer to Chapter 2. Briefly, the shear cell is
a counter-rotating cone-plate cell. The bottom plate consisted of a 6 cm diameter
no. 1 cover slip, while the metal cone had an angle of 1 degree. The spacing
between plate and cone at the position of the objective was 430 µm. By rotating
the cone and plate in opposite directions a simple shear flow was created with
a (nearly) horizontal plane of zero velocity (ZVP). Objects in this plane remain
stationary with respect to the lab frame while shearing. The vertical position of
the ZVP was carefully adjusted to the horizontal gas-liquid interface (at a height
of ∼ 50 µm above the glass plate) by varying the relative rotational velocities of
cone and plate. Thus, a fixed section of the interface remains in focus during the
experiment. This is essential for visualizing details of the interface without any
blurring caused by the motion. At each shear rate a time series was recorded of
the flow-gradient plane for typically 20 minutes at a frame rate of 1.5 Hz (0.67
s/frame).

5.3. Experimental observations

Snapshots of the interface in a phase separated colloid polymer mixture are
shown in Fig. 5.1. The lower (‘liquid’) phase is dense in fluorescent colloids and
thus appears bright, while the upper (‘gas’) phase is poor in colloids. The par-
ticles are too small to be resolved individually by the microscope, but the rough
interface separating the phases can be clearly observed. Though the applied shear
is too small to significantly affect the thermal motion of individual particles (Pe
= ηγ̇d3/kBT < 0.1 for all experiments), the interfacial roughness is visibly reduced
as the shear rate γ̇ is increased. This situation is stationary in time. Turning off
the shear immediately restores the equilibrium fluctuations. The vertical location
of the interface h(x) is determined for each column of pixels in a frame by fitting
the pixel value I(z), which is proportional to the local colloid concentration, to a
van der Waals profile

I(z) = a + b tanh ((z − h(x)) /c) . (5.1)

The position thus found is shown in Fig. 5.1 and is seen to describe the interface
well. We obtain the probability distributions of the interface height for different
shear rates (Fig. 5.2 a,b). Under shear, these remain Gaussian but have a reduced
width reflecting the strong suppression of the roughness. This is confirmed in
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Figure 5.2. Analysis of the interfacial roughness of gas-liquid inter-

faces in shear flow. Graphs (a) and (b) show the height distribution for

state point A and B. In (c) and (d) the mean square interfacial height

is plotted against the shear rate.

Fig. 5.2 c,d where the mean square interfacial height 〈h2〉 is plotted against the
shear rate. Sample B, further from the critical point, shows a smaller roughness
than A and requires larger shear rates to reduce the roughness.

Next, we calculate the autocorrelation function of the interface height gh(x) =
〈h(x + x′)h(x′)〉, where the angular brackets denote averaging over the primed
quantities (see Fig. 5.3). For a non-sheared system the theory of independent
capillary wave fluctuations [110] predicts

gh(x) =
kBT

2πσ
K0 (x/ξ) , (5.2)
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Figure 5.3. Static correlation functions of the interfacial height for

state point A (a) and B (b) fitted with Eq. 5.2.

where K0 is the modified Bessel function of the second kind. The interfacial
tension σ determines the mean-square height, or roughness, of the interface and
the in-plane correlation length ξ equals the capillary length Lcap =

√
σ/g∆ρ, with

g the acceleration of gravity and ∆ρ the density difference between the phases.
From a fit we find these equilibrium properties for the two state points under study
(Table 5.1).

Table 5.1. Physical properties of the equilibrium system at state

point A, near the critical point, and state point B, away from the

critical point. The interfacial tension σ, capillary length Lcap and the

capillary time τcap are directly obtained from the correlation functions

of the interface height at zero shear. The density difference ∆ρ and

viscosity η are calculated from these values.

state point A state point B
σ (nN/m) 2.5 36
Lcap (µm) 2.6 8
τcap (s) 13 6
∆ρ (g/mL) 0.038 0.057
η (mPa s) 13 28
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Figure 5.4. The effective interfacial tension σeff (a) and (b), and

the in plane correlation length ξ (c) and (d) as obtained by the fits in

Fig. 5.3, for state point A and B, respectively.

Interestingly, we find that also for the sheared interfaces the shape of the cor-
relation function obeys Eq. 5.2, only with different parameters characterizing its
decay (Fig. 5.3). This leads to the surprising conclusion that, in the experiment,
the interface under shear cannot be distinguished from an equilibrium interface
with a different interfacial tension. Hence, to the sheared systems, we can assign
an effective interfacial tension σeff and a correlation length ξ, which is not neces-
sarily equal to the capillary length. Clearly, both the effective interfacial tension
and the correlation length increase significantly with shear rate (Fig. 5.4).
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Figure 5.5. Dispersion relation of the relaxation times of capillary

waves in the overdamped regime (Eq. 5.3). Below a critical shear rate

γ̇crit = 1/τcap no significant shear effect is expected. At higher shear

rates γ̇ > γ̇crit the effect of shear will be larger as the number of slow

modes (q1 < q < q2) increases.

5.4. The effective interfacial tension

Why shear would increase the measured interfacial tension can be understood
as follows. The interface will start to feel the presence of a shear when the applied
shear rate approaches the relaxation rate of the fluctuating waves (see Fig. 5.5).
We determine the lifetime of the capillary wave fluctuations from the dynamical
height autocorrelation functions gh(t) = 〈h(t+ t′)h(t′)〉 at zero shear, as described
previously [89]. These experimentally measured time correlation functions are
plotted in Fig. 5.6 for both state points in equilibrium. Capillary wave theory
in the overdamped regime predicts [111] that a mode with wave vector q decays
exponentially in a time

τq = τcap
2qLcap

1 + q2L2
cap

. (5.3)

Here the capillary time τcap equals ηLcap/σ and η is the sum of the viscosities
of the two phases. From this dispersion relation an expression for the dynamic
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Figure 5.6. Experimental dynamical correlation functions of the

interfacial height of the interface at equilibrium. From the fits with

theory (lines) [89, 111] we obtain the capillary time τcap.

height correlation function was derived [89] to which our experimental data are
fitted. The obtained capillary times are listed in Table 5.1. We thus expect that
if γ̇τcap > 1 the fluctuations begin to be affected. Solving γ̇τq > 1 leads to two
solutions, q1 and q2, bounding the range of wave numbers affected by shear (see
Fig. 5.5).

How do these shear-affected waves translate into an effectively higher interfa-
cial tension? The usual model of a fluid interface is that of an intrinsic profile,
as calculated for instance in the mean-field theory of van der Waals [112], supple-
mented with fluctuations described by capillary wave theory [93,94]. Buff, Lovett
and Stillinger [113] find that the measurable interfacial tension σ is then a sum
of a “bare” interfacial tension σ0 and a negative contribution to the surface free
energy due to the entropy of the capillary wave fluctuations:

σ = σ0 − 3
16π

kBTq2
max. (5.4)

Here, qmax corresponds to a microscopic cut-off length. This result can be found by
assigning 1

2kBT to each mode using the equipartition theorem and subsequently
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integrating over all modes. When shear is present, we assume that the shear-
affected waves no longer contribute to the entropic lowering of the interfacial ten-
sion. Thus, we perform the integration leading to Eq. 5.4, but exclude the range
q1 < q < q2. This results in a smaller reduction of the interfacial tension. The
effective interfacial tension that follows from this calculation is:

σeff(γ̇) = σ +
3kBT

4π

γ̇τcap

L2
cap

√
(γ̇τcap)2 − 1, (5.5)

with σ the interfacial tension at zero shear.1 All parameters going into Eq. 5.5 are
determined from the experiment at zero shear rate (Table 5.1). This allows for a
direct comparison with the data. Without any adjustable parameters we find good
agreement for both state points (Fig. 5.4 a,b). Note that the second term in Eq. 5.5
is independent of our choice for qmax and depends, approximately, quadratically on
the shear rate. Interestingly, a similar quadratic increase was found in recent sim-
ulations of homogeneous nucleation of colloidal crystals under shear [114]. In our
model a change in the interfacial tension will also result in an increased correlation
length, since ξ(γ̇) =

√
σeff(γ̇)/g∆ρ, where the density difference between the two

phases is assumed to be the same as in equilibrium. Again, this is seen to be the
case for state point A (Fig. 5.4c); for state point B (Fig. 5.4d) the trend is similar
while the departure is possibly due to difficulties of determining a relatively large
Lcap in a limited observation window. Since the mean square interfacial roughness
is inversely proportional to the interfacial tension (〈h2〉γ̇=0 ∝ kBT/σ), the model
predicts that the amplitude of the capillary waves depends on the shear rate as
〈h2〉(γ̇) = (σ/σeff(γ̇))〈h2〉γ̇=0 (Fig. 5.2 c,d). Here we ignore a small logarithmic
correction caused by the change in correlation length. We find that this simple
calculation provides excellent quantitative agreement with the experimental data,
without any adjustable parameters. Remarkable is the huge impact of shear when
approaching the critical point. According to our model a lower interfacial tension,
a longer capillary time, and a shorter capillary length all work to increase σeff/σ.
Experimentally, this is exactly what we find, leading to a reduction of the mean
square roughness of up to a factor 5.

1To obtain Eq. 5.5 we used thermodynamic arguments to exclude slow waves from contributing to

σeff. Alternatively, the effect of shear on interfacial fluctuations can be estimated by calculating

the free energy cost of capillary waves deformed by shear. For this, we refer to the appendix of

this Chapter. Interestingly, such a derivation results into an expression for an effective surface

tension as well. Moreover, it includes the same physical parameters as we found here, and differs

only in the numerical pre-factor.
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5.5. The experimental interface in more detail

5.5.1. Measuring the velocity profile over the gas-liquid interface

In the preceding discussion we presumed each experiment to occur at a certain,
applied, shear rate. Since we focus on the interface dividing two different phases,
it will be informative to actually measure the flow profile over the interface exper-
imentally. In the previous chapters it was required to observe individual particles,
and track their displacements between subsequent frames. This is not possible in
the present system. However, here we have density (intensity) fluctuations which
could be tracked if they are sufficiently pronounced. In addition, these bulk fluctu-
ations should move over less than the bulk correlation length in the time interval
between two frames. Furthermore, this time interval should be (considerably)
shorter than the typical life time of such a bulk density fluctuation. These crite-
ria are met for the data for state point A, as is seen qualitatively by eye: When
playing the time series as a movie, the fluctuations in the upper gas phase flow
leftwards, whereas those in the lower liquid phase are seen to move to the right.
This observation can in a straightforward way be quantified by dividing each image
into horizontal slices with height ∆h, and cross-correlating each such slice in two
successive frames. The location of the maximum of this cross-correlation function

1

applied 0.27 sγ
−

=&

Figure 5.7. Measured velocity profile in sample A while a shear

rate of 0.27 s−1 was applied. A slight kink in the velocity gradient is

observed at the gas-liquid interface.
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Figure 5.8. (Left) Measured shear rate in both the gas and liquid

phase as a function of the applied shear rate. (Right) The correspond-

ing viscosity ratio of liquid and gas phase.

is then directly proportional to horizontal velocity at that height. Repeating this
exercise for slices at different heights results in the velocity profile vx(z), as shown
in Fig. 5.7 for an applied shear rate of 0.27 s−1. Note, that the zero velocity plane
(ZVP) was located close to, but not exactly at, the interface (indicated by the
wavy line). The interface flows with velocity of ∼ 0.5 µm/s, while the ZVP lies
1.5 µm higher, in the gas phase.

The most interesting observation seen from Fig. 5.7 is that the velocity profile
is nicely linear, but with a kink at the gas-liquid interface. In fact this is in accor-
dance with the Navier-Stokes equations when taking into account the appropriate
boundary conditions. For a homogeneous fluid in our shear cell configuration there
is no gradient in pressure which reduces the Navier-Stokes equations to η∇2~v = 0,
resulting in a constant velocity gradient over the gap of the cell. Since our system
consists of two phases, an extra boundary condition comes into play where those
two phases meet. The boundary condition at a fluid-fluid interface (for incom-
pressible fluids) states that there is no in-plane stress difference present at this
interface [111, 115]. This continuity of the stress in the horizontal direction then
gives: τG

xz = τL
xz, where τij = η(dvi/dj + dvj/di) and G and L refer to the gas

and liquid phase, respectively. Clearly, the velocity in the z-direction averages out
to zero. Thus, the ratio of the velocity gradients of the two phases is inversely
proportional to the ratio in viscosities:

ηGγ̇G = ηLγ̇L. (5.6)
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Figure 5.9. Cross-sections through the interface of sample A in rest

(left) and undergoing shear flow with γ̇ = 0.67 s−1 (right). Image size

is 83 × 83 µm2. Bright regions indicate the liquid phase, dark regions

the gas phase. The insets show the autocorrelation function averaged

over a time series of 100 frames.

In Fig. 5.8 we show that at all applied shear rates a lower shear rate is measured
in the liquid than the gas phase. From these results and Eq. 5.6 we find that
the viscosity of the liquid phase is approximately 1.5 times larger than that in
the gas phase. Such a small viscosity difference in a near-critical sample, is in
accordance with previous rheology measurements on the two phases separately on
similar samples [86].

5.5.2. Flow-vorticity anisotropy

An additional interesting factor (that was not considered in the model described
above) accompanying the application of shear to an interface is the possible break-
ing of the in-plane symmetry. Recalling the observations described in Chapter 4,
it is actually to be expected that fluctuations will be affected differently in the flow
direction than in the direction perpendicular, i.e. the vorticity direction. To obtain
a qualitative idea whether there is such an effect, time series were recorded in this
flow-vorticity plane, by focussing in (the middle of) the interface. Typical images
are presented in Fig. 5.9. Higher and lower intensities correspond to the liquid
(where the focal plane is locally above the interface) and the gas (interface locally
below the focal plane), respectively. It is seen that in shear flow indeed a slight
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anisotropy is observed. This is highlighted by the 2D-autocorrelation functions
in the insets. From the ratio in correlation length l along the flow direction and
the vorticity direction, we estimate a value for the anisotropy of lflow/lvort ≈ 1.5.
Clearly, more work is needed to study the shear rate dependence of this anisotropy.

5.6. Conclusions

In conclusion, we find that a shear flow with its gradient applied perpendic-
ular to a fluctuating interface reduces thermal capillary waves, in clear contrast
with wind driven waves. A similar phenomenon is predicted to play a key role in
flow-induced phase transitions in membrane systems [96–101]. We show that the
suppression of thermal fluctuations at a fluid interface can be understood from
a coupling of the flow with the fluctuations. Interestingly, the experimental cor-
relation functions can be accurately described by the theoretical result for the
equilibrium case, indicating that all fluctuation modes still appear in the same
relative proportions. Assuming that too slow modes, while still present, no longer
contribute to the entropy of the interface allows prediction of an effective interfacial
tension, correlation length and interfacial roughness. This produces quantitative
agreement with our experimental data. The success of equilibrium theory and
the formulation of a more complete hydrodynamic theory of the flow-fluctuation
coupling are now clearly put as theoretical challenges. We hope that elucidating
experimental details of the sheared interface, such as the observed kink in velocity
profile at the interface and an anisotropy of flow and vorticity direction, might
contribute in finding such a description. Perhaps the most important conclusion
is that assuming a partial suppression of the fluctuations leads to an increase in
the effective surface tension. This is to our knowledge the first direct experimental
confirmation of the dual nature of fluid interfaces, with a high surface tension due
to the intrinsic density profile that is lowered by the entropy of the fluctuations.
Further investigation is necessary to see whether our findings allow to completely
reconcile the two models, a central point for our understanding of fluid interfaces.
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Appendix: An alternative description of the sheared interface

Here, we aim to understand what happens to a rough interface subjected to shear at

a microscopic level. Therefore we extend the capillary wave model with a shear term.

This term accounts for the fact that a wave gives a larger contribution to the microscopic

area of a certain amplitude corresponds to a larger microscopic interfacial area when it

is deformed by shear, than it would in equilibrium. Since this corresponds to a larger

free energy the system will try to lower its free energy by reducing the amplitudes of the

capillary waves.

Shear deformation of a wave
A certain (sinusoidal) undulation of the interface will change shape in the presence

of shear flow. In case the original wave is described by h(x), then shear will cause a

horizontal translation of each point, such that:

(x, h(x)) 7→ (x + αh(x), h(x)) . (5.7)

Here α = γ̇t is the strain, and γ̇ is the shear rate and t the time during which the wave

is exposed to shear. x now serves to parameterize the wave.

The strain α changes the arc length of the wave:

dl =
√

(dx + αdh)2 + (dh)2

=

√(
1 + α

dh

dx

)2

+
(

dh

dx

)2

dx. (5.8)

Initially, the length of an ascending slope will be extended, while the descending slope

will be shortened. Due to the parametrization this expression is still valid when the

deformed waves “overhang”.

This has consequences for the interfacial area as well. We include the vorticity direc-

tion y to find the (microscopic) area S of a strained 2D interface. An infinitesimal area

dS is given by the magnitude of the cross product of the vectors (dx + αdh, 0, dh) and

(0, dy, dh):

dS =

√(
1 + α

dh

dx

)2

+
(

dh

dx

)2

+
(
1 + α

dh

dx

)2
(

dh

dy

)2

dxdy. (5.9)

From this equation we see that shear deformation will become significant when α =

(dh/dx)−1. Expanding Eq. 5.9 in a Taylor series up to the 4th order term gives:

dS

dxdy
= 1 + αhx +

1

2
h2

x +
1

2
h2

y − α

2
h3

x +
α

2
hxh2

y − 1

8
h4

x − 1

8
h4

y − 1

4
h2

xh2
y +

α2

2
h4

x. (5.10)
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Capillary wave theory extended with shear
To create a perturbed and strained interface requires work to be performed against

interfacial tension (dFc = σdS) and gravity (dFg = 1
2
g∆ρh2 dxdy). Here σ is the

interfacial tension, and ∆ρ the density difference between the two phases. Integrating

over the total interface area gives:

∆Fc =
1

2
σ

∫ ∫
dxdy

[(
dh

dx

)2

+

(
dh

dy

)2

+ α2
(

dh

dx

)4
]

(5.11)

∆Fg =
1

2
g∆ρ

∫ ∫
dxdy h2. (5.12)

Here we used
∫ ∫

dxdy αhx = 0 and
∫ ∫

dxdy αh3
x = 0, since the interface is horizontal

on average. It might seem that we take into account only one 4th order term and the

others not. However, this term will become of the same size as the leading (dh/dx)2

terms as soon as α2 = (dh/dx)−2 while the others remain negligible.

When the function h(x, y) is developed in a Fourier series h(x, y) =
∑

q
hqe

i(qxx+qyy),

we can write the total work ∆F = ∆Fc+∆Fg necessary to create (strained) perturbations

on an interface as:

∆F =
1

2

∫ ∫
dxdy

σ
∑
q1,q2

~q1 · ~q2 hq1hq2 ei(~q1+~q2)·~r +

+ σ
∑

q1,q2,q3,q4

α2q1xq2xq3xq4xhq1hq2hq3hq4 ei(~q1+~q2+~q3+~q4)·~r +

+ g∆ρ
∑
q1,q2

hq1hq2e
i(~q1+~q2)·~r. (5.13)

By integrating over the area we find that only those terms for which ~q1 = −~q2 give

a contribution. This reduces the double sum in the first and second term in Eq. 5.13

to a single sum. For the last term it still leaves us with 3 summations. Apparently

all modes are coupled. We can proceed by assuming that the coupling is weak, so

that waves are uncorrelated. Thus when: averaged over the interface 〈hq1hq2hq3hq4〉 =

〈hq1〉〈hq2〉〈hq3〉〈hq4〉 = 0. Decoupling will be a good approximation if the shear is small.

The result will be that there are only contributions if ~q1 = −~q2 ∧ ~q3 = −~q4. There are

three such combinations, so that:

∆F =
1

2
σL2

∑
q

q2|hq|2 +
3

2
σL2

∑
q,q′

α2q2
xq′2x |hq|2|hq′ |2 +

1

2
g∆ρL2

∑
q

|hq|2

∆F =
1

2
σL2

∑
q

q2|hq|2
(

1 +
3

4

∑
q′

α2q′2|hq′ |2
)

+
1

2
g∆ρL2

∑
q

|hq|2, (5.14)
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where we use
∑

q2
x|hq|2 = 1

2

∑
q2|hq|2.

In the zero shear situation (α = 0), this gives the familiar expression

∆F =
1

2
L2

∑
q

|hq|2
(
σq2 + g∆ρ

)
, (5.15)

where the spectrum of h is found by applying the equipartition theorem:

〈|hq|2〉 =
kBT

L2

1

σq2 + g∆ρ
. (5.16)

In the case of shear (α 6= 0), it is, in spite of the approximations we already made,

not very probable that the problem with a Hamiltonian as in Eq. 5.14 can be solved.

However, if we consider the factor in between brackets as a perturbation, then the hq can

be approximated by their equilibrium (non-sheared) values. This factor can be included

into an effective surface tension:

∆F =
1

2
L2

∑
q

|hq|2
(
σeffq2 + g∆ρ

)
, (5.17)

with

σeff = σ

(
1 +

3

4

∑
q

α2q2|hq|2
)

. (5.18)

It is clear that σeff > σ, as it is found experimentally. Again we can apply equipartition

to find:

〈|hq|2〉 =
kBT

L2

1

σeffq2 + g∆ρ
. (5.19)

This will also lead to a correlation function of similar form as for the non sheared case, and

the in plane correlation length will follow the change in surface tension as ξ =
√

σeff/g∆ρ.

Strain and relaxation of waves
To calculate σeff we have to find out to what extent the waves are actually stretched,

i.e. what is the strain α? It is clear that it should depend on the life time τ of the modes

in some way.

To find α we consider the work that is performed on the interface by the shear. From

Eq. 5.14 this work is:

∆Fshear =
3

8
σL2α2

(∑
q

q2|hq|2
)2

≡ 1

2
Gα2. (5.20)

We may look at this as an elastic energy, with a rather complicated “spring” constant

G. But it is a “lossy spring”: the added energy is dissipated continuously by the decay
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of wave amplitudes hq. In a steady state the dissipation rate must equal the rate with

which shear supplies the energy:

d∆Fshear

dt
=

1

2
G

dα2

dt
+

1

2
α2 dG

dt
= 0. (5.21)

Here the first term is the energy that is gained in shear flow and the second term the

dissipation. The first term can be calculated in a straightforward way:
(

d∆Fshear

dt

)
supplied

=
1

2
G

dα2

dt
= Gα

dα

dt
= Gαγ̇. (5.22)

To find the dissipation rate we have to differentiate G = 3
4
σL2

(∑
q
q2|hq|2

)2

with respect

to time. This can be done by using hq = hq0e
−t/2τq , thus:

(
d∆Fshear

dt

)
dissipated

=
1

2
α2 dG

dt

=
3

8
σL2α22

(∑
q

q2|hq|2
)

d

dt

(∑
q

q2|hq|2
)

= α2G

d
dt

∑
q
q2|hq|2∑

q
q2|hq|2

= −α2G

∑
q

1
τq

q2|hq|2∑
q
q2|hq|2

= −α2G

〈
1

τq

〉
. (5.23)

The average strain is found by combining those results (Eqs. 5.21, 5.22 and 5.23):

α = γ̇

〈
1

τq

〉−1

. (5.24)

Thus, the strain is simply the ratio of the shear rate and the average decay rate of

capillary waves. Finally, we can work out those sums using Eq. 5.3 for τq:

∑
q

1

τq
q2|hq|2 =

Lcap

2τcap

kBT

σL2

∑
q

q2 + L−2
cap

q
q2 1

q2 + L−2
cap

=
Lcap

2τcap

kBT

σL2

(
L

2π

)2

2π

∫

q

dq q2

=
kBT

12πσ

Lcap

τcap
q3
max, (5.25)
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and∑
q

q2|hq|2 =
kBT

σL2

∑
q

q2 1

q2 + L−2
cap

=
kBT

σL2

(
L

2π

)2

π

∫

q2

dq2 q2

q2 + L−2
cap

=
kBT

4πσ

∫

q2

dq2

(
1− L−2

cap

q2 + L−2
cap

)

=
kBT

4πσ

(
q2
max − L−2

cap ln(1 + q2
maxL

2
cap)

)
. (5.26)

The logarithmic term is for state point A only 5% and for state point B much less. This

means we can safely ignore this term and we end up with:

σeff = σ

(
1 +

9

4

3

4π
γ̇2 kBT

σ

τ2
cap

L2
cap

)
. (5.27)

Note that this expression is identical to Eq. 5.5 (for γ̇ > γ̇crit) apart from the numerical

factor 9/4.
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6
Phase Separating Systems of Shear-aligned

Rod-like Viruses

Abstract

We investigate the kinetics of phase separation for a mixture of rod-like viruses (fd)

and polymer (dextran), which effectively constitutes a system of attractive rods. This

dispersion is quenched from a flow-induced fully nematic state into the region where

the nematic and the isotropic phase coexist. We show experimental evidence that the

kinetic pathway depends on the overall concentration. When the quench is made at high

concentrations, the system is meta-stable and we observe typical nucleation-and-growth.

For quenches at low concentration the system is unstable and the system undergoes a

spinodal decomposition. At intermediate concentrations we see the transition between

both demixing processes, where we locate the spinodal point.
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6.1. Introduction

Systems that are quenched into a state where at least one order parameter is un-
stable undergo spinodal phase separation. Here, the initially homogeneous system
is unstable against fluctuations of arbitrary small amplitude, and phase separa-
tion sets in immediately after a quench. In the initial stage of phase separation an
interconnected “labyrinth structure” of regions with somewhat higher and lower
values of the order parameter is observed. For quenches where the system becomes
meta-stable, phase separation is initiated by fluctuations with a sufficiently large
amplitude. Since such fluctuations have a small probability to occur, phase sepa-
ration sets in after a certain delay time, referred to as the induction time. Here,
nuclei are formed throughout the volume which grow when they are sufficiently
large. The two different mechanisms of phase separation (spinodal decomposition
and nucleation-and-growth) can thus be distinguished during the initial stages of
phase separation from (i) the difference in morphology (interconnected structures
versus growth of isolated nuclei) and (ii) the delay time before phase separation
sets in (no delay time for spinodal decomposition and a finite induction time for
nucleation-and-growth).

As Onsager showed in 1949 [14], when the particles are not spherical in shape,
i.e. disk-like or elongated particles, the system can become unstable or meta-
stable with respect to fluctuations in orientation. These orientational fluctuations
drive concentrations differences, resulting in a phase with high concentration and
orientational order, the nematic phase, and a phase with low concentration and
no orientational order, the isotropic phase. For very long and thin rods with
short-ranged repulsive interactions, the binodal concentrations, i.e. the concen-
trations of the isotropic and nematic phases in equilibrium after phase separation
is completed, have been determined using different approximations in minimizing
Onsager’s functional for the free energy (see Ref. [116] and references therein),
while for shorter rods computer simulations have been performed to obtain bin-
odal concentrations [117,118]. Also the spinodal concentration where the isotropic
phase becomes unstable has been found [14,119].

Binodal points are relatively easy to determine experimentally, since they are
given by the concentrations of the bottom and top phase after phase separation. In
contrast, it is not at all straightforward to obtain spinodal points, since one would
ideally like to perform a concentration quench from low or high concentration into
the two-phase region, where the initial state is isotropic or nematic, respectively. In
a recent paper such a kind of ‘quench’ was performed by inducing polymerization
of short actin chains [120], and tactoids and spinodal structures were observed.
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Signatures of spinodal decomposition have also been obtained for boehmite rods,
by homogenizing a phase separated system and sequential polarization microscopy
and small angle light scattering measurements [121]. Alternatively, external fields
like shear flow [122] and a magnetic field [123, 124] can be applied to prevent a
system from phase separation and to stabilize the nematic phase. After cessation
of such an external field the nematic phase will become unstable or meta-stable,
depending on the constitution of the sample, and phase separation sets in. In
this paper we induce a fully nematic phase with a well defined director by im-
posing shear flow to a dispersion of colloidal rods. We use fd -viruses as system,
since the equilibrium phase behavior concerning the binodal points, has been well
understood on the basis of Onsager theory [125, 126]. Polymer is added to the
dispersion in order to widen the region of isotropic-nematic phase coexistence,
which facilitates the phase separation experiments [127]. We perform quenches
of a flow aligned initial state to zero shear, which renders the system unstable or
meta-stable to fluctuations in the orientation, depending on the concentration of
rods. As a consequence phase separation sets in, which we observe by confocal
scanning laser microscopy (CSLM). We perform this experiment for different con-
centrations, throughout the region of phase coexistence. Our results illustrate the
difference between nucleation-and-growth and spinodal decomposition in the case
of demixing elongated particles, and result in the determination of the nematic-
isotropic spinodal point.

6.2. On the instability of initial states

A convenient way to analyze the stability of a homogeneous initial state is by in-
troducing an order parameter P2, which measures the degree of alignment [81]. For
the isotropic state P2 = 0, while for a perfectly aligned state P2 = 1. Subsequently,
a stability analysis of stationary solutions of the equation of motion is made on the
basis of a bifurcation diagram [119], where the order parameter P2 for stationary
solutions is plotted against the concentration. A schematic bifurcation diagram
is given in Fig. 6.1. The two solid lines represent stable stationary solutions of
the equation of motion, while the dotted lines represent unstable stationary solu-
tions. The isotropic state ceases to be stable above the concentration indicated
as Cspin

i , while the nematic state becomes unstable at concentrations lower than
Cspin

n . Above Cspin
i , the isotropic state is still a stationary solution , but is now

unstable. Below Cspin
n , on the contrary, there is no unstable nematic state that

is a stationary solution of the equation of motion. The two spinodal concentra-
tions Cspin

i and Cspin
n are connected by a so-called separatrix (indicated by the

dotted line) which separates the basins of attraction for the isotropic and nematic
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Figure 6.1. The bifurcation diagram, where the orientational order

parameter P2 is plotted against concentration. Indicated are the vari-

ous meta- or unstable regions for the two different initial states of the

homogeneous suspension. The points marked by X and O are spinodal

and binodal points, respectively.

state. A homogeneous initial state above this separatrix develops a higher degree
of alignment, while an initial state below the separatrix becomes more isotropic.

Note that the bifurcation diagram relates to homogeneous systems. In an exper-
iment, starting from a homogeneous state, inhomogeneities develop simultaneously
with a change of the order parameter of the otherwise homogeneous system. In
equilibrium, after completion of phase separation, there is an isotropic phase with
concentration Cbin

i in coexistence with a nematic phase with concentration Cbin
n .

One can either start from a stationary state, or from a non-stationary state, like
a nematic state with a concentration lower than Cn.

In this paper we prepare an initial nematic state by shearing a suspension at
large enough shear rate such that the induced nematic phase is stable against phase
separation (see Ref. [128] for a discussion of the bifurcation diagram for sheared
systems), and then quench to zero shear rate. For this initial state it is expected
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Table 6.1. Overview of the used samples.

Code ϕ5
nem ϕ4

nem ϕ3
nem ϕ2

nem ϕ1
nem

fd (mg/mL) 29.5 28.1 25.8 23.6 19.3
ϕnem 0.96 0.85 0.68 0.52 0.18

that spinodal decomposition occurs at lower concentrations, while nucleation and
growth is observed at higher concentrations. For an isotropic initial state this
would be reversed: spinodal decomposition at high concentrations and nucleation
and growth at lower concentrations. The observed phase separation kinetics thus
depends crucially on the preparation of the initial state of the suspension.

6.3. Materials and methods

As model colloidal rods we use fd -virus particles which were grown as described
elsewhere [127]. A homogeneous solution of 22.0 mg/mL fd-virus and 12.1 mg/mL
of Dextran (507 kd, Sigma-Aldrich) in 20 mM tris buffer at pH 8.15 with 100 mM
NaCl is allowed to macroscopically phase separate. This concentration of fd-virus
is exactly in the biphasic region, which is very small when no polymer is added,
namely between 21 and 23 mg/mL. Due to the added polymer, the binodal points
shift to 17 and 30 mg/mL, respectively. New dispersions are prepared by mixing
a known volume of the coexisting isotropic and nematic bulk phases. The relative
volume of nematic phase in this new dispersion is denoted as ϕnem.

For the microscopic observations we used a home-built counter rotating cone-
plate shear cell, placed on top of a Leica TCS-SP2 inverted confocal microscope.
This cell has a plane of zero velocity in which objects remain stationary with
respect to the microscope while shearing. For details of the setup we refer to
Chapter 2. For the measurements described here we used confocal reflection mode
at a wavelength of 488 nm. Quench experiments were done as follows. Samples
were first sheared at a high rate of 10 s−1 for several minutes. The shear was
then suddenly stopped, after which images were recorded at regular time intervals.
These images were parallel to the flow-vorticity plane. The table gives an overview
of the concentrations where quench experiments have been performed.

6.4. Results

In the left column of Fig. 6.2 we show micrographs of the initial stage of phase
separation for five different concentrations taken after a shear rate quench from
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k L
P k L

⊥

Figure 6.3. The cross section of the Fourier transform parallel (a)

and perpendicular (b) to the director for ϕ1
nem (lines to guide the eye).

The length is scaled by the rod length L.

a high shear rate, where the nematic state is stable for each concentration, to
zero shear. These images show the flow (vertical) - vorticity (horizontal) plane
at a given time after the quench. Thus the director of the initial nematic phase
lies in the vertical direction. Fourier transforms of the images are plotted in the
second column of Fig. 6.2. The background is corrected for by subtracting the
Fourier transform of the first frame. The right column plots the development of
the total intensity of the images minus the intensity in the isotropic phase, as
determined from an isolated isotropic region, normalized by the initial nematic
intensity. Qualitatively the difference between the concentrations is obvious. In
the first two images, i.e. the two highest concentrations, isolated dark ellipsoidal
structures can be seen on a bright back ground. These are droplets of the isotropic
phase referred to as tactoids. The number of tactoids increases when the concen-
tration is decreased (b and c) until the structures become interconnected (d and
e). This also follows from the Fourier transform of the pictures where a ring is
detected for the lowest concentration and a constant increasing intensity towards
~k = 0 for the highest concentration. The time scale at which the inhomogeneities
are formed also changes. As can be seen in the third column of Fig. 6.2, the
high concentrations all show an induction time before the phase separation sets
in, while for the low concentrations phase separation sets in immediately. Note
also the times at which the images in Fig. 6.2 were taken. The isolated nuclei and
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transform parallel (a) and perpendicular (b) to the director for the
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the induction time are typical for nucleation-and-growth, while the interconnected
structures and immediate phase separation are typical for spinodal decomposition.

We use the Fourier transform of the images as shown in Fig. 6.2 to quantify the
phase separation processes. The interesting quantity for nucleation-and-growth is
the width of the Fourier transform, ∆k, which is a measure for the anisotropic
form factor of the nuclei. Alternatively one could determine the average size of
the features in real space, but due to the low contrast this is difficult. For spin-
odal decomposition the interesting quantity is the wave vector at which the fourier
transform reaches its maximum, kmax, quantifying the fastest growing concentra-
tion fluctuation. In both cases the fit of the Fourier transform should be performed
in two dimensions, since the initial state is anisotropic. Therefore we took cross
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Figure 6.5. (a) The ratio ∆k⊥L/∆k‖L for the higher concentrations

and (b) the ratio kmax,⊥L/kmax,‖L for the lower concentrations.

sections parallel and perpendicular to the director in the Fourier domain, i.e. the
vertical and horizontal in Fig. 6.2 middle row, to determine kmax. Typical cross
sections are shown in Fig. 6.3, where the wave vector k is scaled by the rod length
L. To determine ∆k, we performed a 2-D gaussian fit around the origin of the
Fourier transforms. Results of a 2-D gaussian fit of the Fourier transform around
the origin are shown for the higher concentrations in Fig. 6.4a and b, plotting the
width in the direction of the director and perpendicular to the director, respec-
tively. kmax as found from fits of the cross sections parallel and perpendicular
to the director are given in Fig. 6.4 c and d, respectively. Both fit procedures
result in an anisotropic morphology as can be seen in Fig. 6.5, where we plotted
∆k⊥L/∆k‖L and kmax,⊥L/kmax,‖L.

The late stages of the different phase separation processes also show some in-
teresting phenomenology, as can be seen in Fig. 6.6 and Fig. 6.7. For spinodal
decomposition (Fig. 6.6) we observe first a growing of the interconnected struc-
tures, which then break down into tactoids. Later on tactoids coalesce, and they
become more spherical with increasing size. Note that these tactoids contain
the nematic phase and not the isotropic phase, as observed for the nucleation-
and-growth process at higher concentrations. In the late stage of nucleation-and-
growth, i.e. at high concentrations, we see that coalescence of tactoids contain-
ing the isotropic phase as shown in Fig. 6.7 is favorable when two tactoids meet
somewhat from the middle. In this case the rod orientation near both features is
similar and the barrier which has to be overcome for coalescence is low.
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Figure 6.6. The late stages for spinodal decomposition (ϕ1
nem, field

of view = 375 µm) involve coarsening, splitting up of the spinodal

structure, and finally tactoid formation and coalescence to spherical
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Figure 6.7. The late stages of nucleation and growth are character-

ized by the coalescence of tactoids (ϕ5
nem, field of view = 73 µm).
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6.5. Discussion

On the basis of these observations we can now locate the metastable region, i.e.
where the system has to overcome a free energy barrier, and the unstable region,
where there is no such barrier. At the high concentrations (ϕ5

nem, ϕ4
nem) the system

is meta-stable, which is reflected by the observed isolated structures formed (top
row in Fig. 6.2) and the induction time (bottom row in Fig. 6.2). With decreasing
concentration the system approaches the unstable region: the number of nuclei
increases while the induction time decreases and finally vanishes. The lowest
concentration ϕ1

nem is clearly unstable after cessation of the flow. It shows all the
features typical for spinodal decomposition: phase separation immediately sets in
throughout the whole sample, with a typical length scale which is characterized
by the scattering ring observed in the Fourier transform. It can be shown, in
fact, that the observed phase separation process for the lowest concentration has
features typical for the spinodal decomposition of rods, as derived recently from
a microscopic theory by one of the authors [81]. This will be the subject of a
following paper [129].

In the intermediate region it is difficult to judge from the morphology if nucleation-
and-growth takes place or spinodal decomposition, since it is difficult to distinguish
between a high number of tactoids and an interconnected structure. However, ϕ3

nem

shows a short induction time after the quench after which clearly separated tactoids
are formed, while for ϕ2

nem phase separation immediately sets in showing ellipsoidal
structures which clearly ’influence’ each other. Moreover, Fig. 6.4 shows that the
size of the structures formed in ϕ3

nem coincides after some time with the clearly
nucleated structures of ϕ4

nem and ϕ5
nem, while the size of the structures formed in

ϕ2
nem coincides with samples which clearly show spinodal decomposition. Thus, we

locate the transition from meta-stable to unstable, i.e. the spinodal point, between
at 23.5 mg/mL and 25.8 mg/mL. This is the first experimental observation of the
spinodal point in a rod-like system. We should mention at this point that in fact
our sample consists of a mixture of rods and polymer. Addition of the polymer
causes a widening of the biphasic region [127], i.e. a shift of the binodal points.
It is now interesting to see that the high concentration binodal shifts as much as
from 23 mg/mL to 30 mg/mL. In contrast, the high concentration binodal point,
Cbin

n , shifts from a concentration between 21 mg/mL and 23 mg/mL to somewhere
between 23.5 mg/mL and 25.8 mg/mL. This leads to the interesting conclusion
that the shift of the high concentration binodal point, Cbin

n , due to the attraction
between the rods, is considerable compared to the shift of the high concentra-
tion spinodal point, Cspin

n . In other words, making the rods attractive causes a
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widening of the meta-stable region, while the unstable region remains unaffected.
Addition of more polymer will result in more complex kinetics as described in
reference [130].

Interestingly, for all concentrations we observe that the morphology of the phase
separating system is anisotropic. This is most clear for the highest concentrations,
where the tactoids all point upwards, i.e. in the direction of the director of the sur-
rounding nematic phase. Also the Fourier transforms for the lower concentrations
show deformed intensity rings in fourier space (most right FFT image in Fig. 6.2).
Moreover, also the kinetics of the phase separation is fastest in the direction of the
nematic director. This follows for instance from the ratio of kmax⊥/kmax‖ as plot-
ted in 6.5b, which increases in time. In other words, for all concentrations phase
separation is anisotropic, due to residual alignment after the quench of the initially
strongly sheared suspension, and not isotropic as is the case for spheres [88].

The length of the first observed tactoids just below Cbin
n is about 12 times

the rod length, while just above Cspin
n it is seven times the rod length. The

thickness is about two third of the length in both cases. Typical length scales
for the initial spinodal morphology are not more than six rod lengths. These
sizes seem to be quite small, considering also the random orientation of the rods
in the isotropic phase, but it is in accordance with a the microscopic theory for
spinodal decomposition of rods [81]. It does suggest that we really image the initial
stage. The breaking up of the spinodal structure into nematic tactoids and the
sequential growth in the late stage of spinodal decomposition seems surprising since
for dispersions of spheres only coalescence and macroscopic phase separation would
be observed. However, a similar order of events has been observed for polymer
mixtures with thermotropic liquid crystals [131]. Simulations on such mixtures
show that the break down is due to the effect of the flow-alignment coupling, and
not primarily due to elastic effects [132]. An explanation in the same line was
given by Fukuda in a numerical treatment of time-dependent Ginzburg-Landau
equations of liquid crystalline polymers [133]. The volume dependence of the
morphology in the final stage can be explained by the competition between the
interfacial tension and nematic elasticity of the tactoids [134].

6.6. Conclusion

We studied the kinetics of the nematic-isotropic phase transition of a dispersion
of fd -virus particles with added polymer after shear quenches into the two-phase
region. By varying the equilibrium rod concentration ϕnem we were able to detect
a nucleation-and-growth mechanism for high ϕnem, spinodal decomposition for low
ϕnem, and the transition between the two processes. In this way we were able to
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trace for the first time the nematic-isotropic spinodal point Cspin
n . Thus, we found

that addition of polymer widens the meta-stable region greatly. Furthermore, we
showed that the phase separation is strongly influenced by the director of the ini-
tial nematic state. The nematic phase also influences the late stages of spinodal
decomposition, causing a splitting up of the interconnected structures.
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[120] J. Viamontes and J. X. Tang. http://arxiv.org/abs/cond-mat/0506813, 2005.

[121] M. P. B. van Bruggen, J. K. G. Dhont, and H. N. W. Lekkerkerker. Macromolecules,

32:2256, 1999.

[122] T. A. J. Lenstra, Z. Dogic, and J. K. G. Dhont. J. Chem. Phys., 114(22), 2001.

[123] J. Tang and S. Fraden. Phys. Rev. Lett., 71(21):3509, 1993.
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Summary

This thesis deals with colloidal suspensions in shear flow. These suspensions consist
of (sub)micron-sized solid particles dispersed in a continuous liquid phase. In this
work, the effect of shear flow on the microstructure of these soft matter systems
is investigated by means of microscopy. For our investigations we use systems
of nearly equal sized particles whose interactions are determined by their size,
shape, charge, and are further tuned by additives like polymers or salt. In the
first Chapter, the three model systems under study are introduced, i.e.: hard-
spheres, attractive spheres, and (attractive) rods. Furthermore, here we discuss
the synthesis method of the extensively used poly(methyl methacrylate) spheres,
and present the working principle of confocal microscopy.

Recently, a new type of shear cell was developed to study flowing suspensions
in real space. The key property of this set up is the counter rotating principle of
the cone and plate, opening up the possibility to create a stationary layer in the
bulk of the cell. In Chapter 2, we elaborate on the details of this setup and its
performance. Fluorescence confocal microscopy is used to visualize the sheared
suspension, and allows imaging individual particles in a stationary plane for a
prolonged time. Moreover, this plane of zero velocity can be moved in the velocity
gradient direction while keeping the shear rate γ̇ constant.

Using this shear cell, the particle positions in a layer of a sheared colloidal crystal
can be tracked. The particle dynamics in such a crystal in shear flow is the subject
of Chapter 3. Here, the particles interact through a (nearly) hard sphere potential.
Our real space observations confirm the alignment of the crystal in the shear field
and the collective zig-zag motion, which were also deduced from early scattering
experiments. On top of this, we find that random particle displacements increase
with shear rate. Those increased fluctuations result in shear induced melting
when their root mean square displacement has reached about 13 % of the particle
separation. This melting transition is accompanied by local rearrangements that
become more and more pronounced with increasing shear rate.

Apart from hard spheres, we investigate mixtures of colloids and polymers in
shear flow. The polymers cause an effective attraction between the spheres, which
leads to phase separation into a colloid rich (polymer poor) and a colloid poor
(polymer rich) phase at sufficiently high colloid and polymer concentration. In
Chapter 4, we study the demixing process in the (spinodal) two phase region of
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the phase diagram. The system is quenched from an initially almost homogeneous
state at very high shear rate to a low shear rate. A spinodal decomposition pattern
is observed. Initially, the characteristic length scale increases linearly with time.
As the structure coarsens, shear imposes a certain length scale onto the structure
and a clear asymmetry occurs. The domains become highly stretched along the
flow direction, and the domain width along the vorticity axis reaches a stationary
size, which scales as γ̇−1/3.

In the final stage of phase separation the denser colloidal liquid phase settles on
the bottom of the cell, while the gas phase floats on top. The interface between
these phases is the topic of Chapter 5. We investigated the thermal fluctuations of
the colloidal gas-liquid interface subjected to a shear flow parallel to the interface.
Strikingly, we find that the shear strongly suppresses capillary waves, making
the interface smoother. This phenomenon can be described by introducing an
effective interfacial tension that increases with shear rate. We show that this
can be explained as a loss of interfacial entropy caused by the flow, which affects
especially the slow fluctuations.

Finally, we consider the demixing process in systems of attractive rods (Chapter
6). A mixture of rod-like viruses (fd) and polymer (dextran) is quenched from
a flow-induced fully nematic state into the region where the nematic and the
isotropic phase coexist (at zero shear). Dependent on the concentration of rods we
observe either demixing by nucleation-and-growth (high concentration) or spinodal
decomposition (low concentration). At intermediate concentrations we see the
transition between both types of demixing processes. At this concentration we
locate the spinodal point.



Samenvatting voor iedereen

Het thema van dit proefschrift is, zoals samengevat in de titel, “collöıdale suspen-
sies in afschuifstroming”. Traditionele voorbeelden van collöıdale suspensies zijn
melk of verf, en het doorgronden van hun eigenschappen en het gedrag wanneer
ze stromen is dan ook van belang in bijvoorbeeld de verf- en zuivelindustrie. Meer
tot de verbeelding spreken waarschijnlijk (toekomstige) high-tech toepassingen, die
liggen op het gebied van de fotonica waar men schakelingen voor licht (in plaats
van electronen) probeert te realiseren, en in de wereld van de microflüıdica waar
men op microschaal gebruik maakt van vloeistofstrominkjes, bijvoorbeeld voor ge-
bruik in sensoren. De vragen die we in dit proefschrift beantwoorden leiden niet
direct tot deze toepassingen, maar zijn van meer fundamentele aard. Onze moti-
vatie komt voor een groot deel ook voort uit nieuwsgierigheid, de mogelijkheid om
in deze niet-evenwicht systemen nieuwe structuren of gedrag te kunnen waarnemen
en, tenslotte, de uitdaging om dit te kunnen verklaren.

Collöıdale suspensies bestaan uit deeltjes van ongeveer een micrometer (een-
duizendste millimeter) groot, die rondzweven in een moleculaire vloeistof, bijvoor-
beeld water. In je bloed zijn het bloedcellen die ronddobberen, in melk zijn het
kleine vetdruppeltjes en in ons geval zijn het plexiglazen bolletjes. Anders dan
in melk of bloed zijn de bollen in ons systeem allemaal even groot. Bovendien
kunnen we door het toevoegen van zout of polymeren afstemmen hoe de deeltjes
met elkaar wisselwerken. Hierdoor kunnen de verschillende collöıdale modelsyste-
men gerealiseerd worden, die we in dit proefschrift tegenkomen. In hoofdstuk ??
introduceren we deze modelsystemen. Ook gaan we in dit hoofdstuk in op de che-
mische synthese waarmee we de plexiglazen bollen maken en van een fluorescente
kleurstof voorzien. Dit laatste vergroot de mogelijkheden om deze deeltjes met
een geavanceerde (fluorescentie) microscoop af te beelden en te bestuderen.

Doordat collöıden veel groter en trager zijn dan moleculen is de structuur van
een collöıdaal systeem gemakkelijker van buitenaf te manipuleren. In dit onderzoek
doen we dat door het aanleggen van een afschuifstroming. Een eenvoudige manier
om dit te doen is door de wanden van de container waarin de vloeistof zich bevindt
in beweging te brengen. Door de wrijving met de wand en stroperigheid van de
vloeistof wordt deze als het ware meegesleept en ontstaat er een stroming. Dit
gebeurt bijvoorbeeld als je een vloeistof tussen twee parallelle platen brengt en die
platen vervolgens ten opzichte van elkaar gaat schuiven.

105



106 Samenvatting voor iedereen

Voor ons onderzoek gebruiken we een speciaal ontworpen cel waarin zulke af-
schuifstroming nauwkeurig aangelegd kan worden en waarin we tegelijkertijd met
de microscoop kunnen kijken wat er aan de structuur verandert (zie figuur 2.1 en
2.2). Het tweede hoofdstuk gaat vooral over de werking en de mogelijkheden van
deze opstelling. In feite zijn het in ons geval niet twee platen die schuiven, maar
een (metalen) kegel en (glas)plaat die in tegengestelde richting rond dezelfde as
draaien. Een belangrijke eigenschap van deze opstelling is dat de rotatiesnelheid
van zowel de glasplaat als de kegel ingesteld kan worden, zodat er op de gewenste
hoogte in de cel een laag is die niet uit het beeld van de microscoop verdwijnt. In
deze laag kunnen we de collöıden gedurende een lange tijd volgen. Dit biedt de
mogelijkheid om het effect van de stroming op deeltjesniveau te bestuderen.

In hoofdstuk 3 gaan we in op wat er gebeurt als een geordende stapeling van
collöıden (een collöıdaal kristal) in zo’n afschuifstroming wordt gebracht. We laten
zien hoe de verschillende kristallijne lagen dan over elkaar heen bewegen. Daar-
bij ontwijken ze deeltjes uit de aangrenzende lagen, wat uiteindelijk resulteert in
een zig-zag beweging (figuur 3.2). Ook zijn we gëınteresseerd in hoe en wanneer
een dergelijk collöıdaal kristal overgaat in een wanordelijke fase. Kristallen van
micrometer-grote plexiglas bollen smelten namelijk zodra er een voldoende hoge
afschuifstroming aangelegd wordt. We kunnen dit verklaren doordat de posities
van de afzonderlijke bollen −de bouwstenen van het kristal− zodanig grote fluc-
tuaties vertonen, dat het bouwwerk ineenstort. Het blijkt dat het smeltcriterium
van een uit evenwicht gebracht collöıdaal kristal verrassende gelijkenis vertoont
met dat in moleculaire (evenwichts)systemen.

We vervolgen het onderzoek met het bestuderen van mengsels van collöıden
en polymeren (ijle kluwens van ketens). De aanwezigheid van deze polymeren
veroorzaakt een effectieve aantrekking tussen de collöıden, waardoor het systeem
zich spontaan opsplitst in een fase met veel collöıden en een andere fase met
weinig collöıden. In analogie met bijvoorbeeld water en waterdamp, noemen we
de collöıd-rijke fase de collöıdale vloeistof en de collöıd-arme fase het collöıdale gas.
In hoofdstuk 4 bekijken we de manier waarop het ontmengingsproces plaatsvindt
in de aanwezigheid van stroming. Hiertoe brengen we het mengsel eerst in een
zodanig snelle stroming dat het zo goed als homogeen wordt. Vervolgens verlagen
we de stroomsnelheid aanzienlijk. Het ontmengingsproces blijkt sterk bëınvloed
te worden door de stroming: de gas- en vloeistofdomeinen strekken zich uit in
de richting van de stroming, tot er een stationaire toestand bereikt wordt. De
stroming stabiliseert deze langgerekte structuren. Hoe hoger de stromingssnelheid,
hoe langer en dunner de domeinen (zie figuur 4.4).
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Als het systeem helemaal ontmengd is, bevindt de zwaardere collöıdale vloeistof
zich op de bodem van de cel en daarbovenop drijft het collöıdale gas. Het grensvlak
tussen deze twee fasen, dat door de temperatuur altijd in beweging is, is het onder-
werp van hoofdstuk 5. De opmerkelijke waarneming die we in dit collöıdale gas-
vloeistof systeem doen, is dat stroming deze thermische fluctuaties (zogenaamde
capillaire golven) afvlakt (zie figuur 5.1), in tegenstelling tot wind die over een wa-
teroppervlak waait. Een manier om dit te begrijpen is de volgende: in afwezigheid
van stroming uit het vrij fluctueren van capillaire golven zich in een lage grens-
vlakspanning. In het geval van stroming wordt het traagste deel van de golven
verhinderd om vrij te fluctueren. Dit kan vervolgens uitgedrukt worden in een
effectief grotere grensvlakspanning, wat het gladder vloeistofoppervlak verklaart.

In het voorafgaande waren de collöıden allemaal bolvormige deeltjes. In het
laatste hoofdstuk bekijken we echter een systeem dat bestaat uit kleine staafjes.
In tegenstelling tot de plexiglazen bollen, zijn dit biologische systemen; namelijk
virussen die gekweekt worden door een kolonie van bacteriën te infecteren. Het
grote verschil met suspensies van bolvormige deeltjes is dat in zulke anisometrische
systemen ook de orientatie van de deeltjes van belang is. Suspensies van collöıdale
staafjes kunnen, afhankelijk van de concentratie, ofwel allemaal een willekeurige
orientatie aannemen (isotrope fase), ofwel oplijnen in een bepaalde richting (ne-
matische fase). In een bepaald concentratiegebied komen beide fasen tegelijkertijd
voor. In dit tweefase-gebied doen wij onze experimenten. Door het aanleggen
van een afschuifstroming kunnen we het gehele systeem toch in een opgelijnde
toestand brengen. Vervolgens bekijken het ontmengingsproces als de stroming
gestopt wordt. Er zijn twee verschillende manieren waarop het systeem kan ont-
mengen (zie figuur 6.2). Welk scenario er gevolgd wordt, is afhankelijk van de
concentratie staven en wordt bepaald door de vraag of de opgelijnde fase insta-
biel danwel meta-stabiel is in afwezigheid van stroming. Deze experimenten geven
daarom informatie over het evenwichtsfasegedrag van suspensies van staven, dat
zonder het aanleggen van een stroming veel lastiger toegankelijk zou zijn.
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reis naar Boulder, Colorado. Nu, alweer vier jaar later, wens ik je heel veel succes
met het afronden van je proefschrift. Ik ben bij voorbaat al erg benieuwd naar je
New-York-avonturen. Krassimir Velikov, our time as officemates was short, but
fortunately we always meet at cheerful occasions... Let’s keep that tradition in
honor! Dirk Vossen, dank je wel voor al je wijze raad, die ik jammer genoeg niet
opgevolgd heb... (zodat ik nu in blessuretijd dit dankwoord zit te typen). Finally,
Ahmet Faik Demirôrs, thanks for supporting me the last couple of months. Go on
as you started, I think you’re doing great!

In en om het Ornsteinlab bevonden zich vele mensen van wie op uiteenlopende
gebieden veel te leren viel. Om te beginnen dank ik Carlos van Kats, die me snel
en vakkundig inwijdde in de geheimen (en mysteries) van het brouwen van PMMA.
Carlos, jij bent niet alleen de spil van ons chemisch lab, maar ook van een groot deel
van het sociale gebeuren rond de hele groep. Kortom, je bent een top-collega en
dat is heel wat waard (250 euro namelijk...). Over bollenbakken gesproken, dat is
ook een mooie aanleiding om Roel Dullens te bedanken (cursus voor gevorderen).
Roel, daarnaast ook bedankt voor alle andere (vaak data-analyse gerelateerde)
discussies en hulp. Maar het allermeest dank ik je voor je bemoedigende woorden
en schouderklopjes, altijd precies op het goeie moment. From the simulation and
theory side, I’d like to thank Andrea Fortini, Jos Zwanikken and René van Roij
for all our nice discussions about interfaces in flow. Andrea, I’m curious what your
simulation results will further learn us.

Dan zijn er heel veel labgenoten, en oudlabgenoten, die allemaal hebben bijge-
dragen aan een hele goeie werksfeer. In het bijzonder noem ik Carmen Zoldesi
(lekker belangrijk! zo’n proefschrift...). Echt super om straks samen met jou
een feestje te bouwen. De gezamenlijke voorpret had ik alvast niet willen mis-
sen. Christina Christova, your sweet support meant a lot to me. Paddy Royall,
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many thanks for all the good times we spend together, both when you were still
in Utrecht and during your visits. Yu Ling Wu, my partner in shear: we zijn nog
lang niet uitgepraat over bananen en kamelen... Shear ze!! Astrid van der Horst,
wat een tijd, hè.. Alvast alle geluk toegewenst in Canada! Joan Penninkhof, Es-
ther Vermolen, Peter van Oostrum, Marjolein Dijkstra, Job Thijssen, Dannis ’t
Hart, Antti-Pekka Hynninen, Patrick Johnson, Matthias Schmidt, (and a little
bit of) Teun Vissers, Andy Campbell, Slava Savenko, Alejandro Cuetos, Eduardo
Sanz, Michiel Hermes, Matthieu Marechal, Catherine Quilliet, Jacob Hoogenboom,
Alexander Moroz, Christina Graf, (bijna groepsgenoot) Dave van den Heuvel, en
Maŕıa Delgado Flores, ook jullie wil ik allemaal hartelijk bedanken!

Mijn experimenten zouden niet mogelijk geweest zonder mensen voor de tech-
niek en er zijn er velen die me op verschillende momenten geholpen hebben. Vaak
was het Hans Wisman die met raad en daad veel probleempjes oploste. Klasse,
Hans. Soms was het ook Gerard van Lingen, vooral als het ging om het grove werk
als er weer ’ns iets rigoreus vastgelopen was (m’n fiets incluis). Ik dank ook de
Instrumentele Groep Fysica: met name Joost en Jos, Mari en Gerard. Ik sta elke
keer weer verbaasd van wat jullie allemaal kunnen tekenen en maken. Op deze
plek wil ik ook Yves Nicolas, Marcel Paques en Els de Hoog van het Wageningen
Centre for Food Science, de bakermat van de shear cell, bedanken.

Met mijn ‘roots’ als Utrechts chemicus, heb en hou ik natuurlijk altijd een zwak
voor het Van ’t Hoff lab en zijn bewoners: Bedankt dat jullie me ook een beetje
deel van jullie club lieten voelen... Ook toen Dirk en Roel vertrokken, waren er
altijd nog Volkert, Maurice, Stefano, Mark en Willem. Het zelfde geldt eigenlijk
voor de bovenburen van de Condensed Matter and Interfaces groep: Floris, Peter,
Sander, Arjan, Rianne, Paul, John en natuurlijk Hans. Dankjulliewel allemaal.
Speciaal wil ik nog Rik Wensink en Floris van Driel noemen: het was een eer om
jullie paranimf te zijn.

Ten slotte, dank ik ook (de rest van) mijn dierbare vrienden (onder andere Eve-
line, Salima, Marieke, Felix, Gabby, Maryam, Anke...), met wie ik van harte hoop
de 27e een heel mooi feestje te vieren. Speciale dank gaat uit naar Lisa Janssen
voor onze waardevolle vriendschap. Fijn dat je mijn paranimf wilt zijn!! En dat
geldt ook voor jou, Huub. Lieve broer: je bent een held (...), en ik vind het super
dat je straks achter mij staat. Verder, dank ik mijn (voltallige) surrogaatfamilie
van de Biltstraat. En natuurlijk mijn echte familie: lieve Pap en Mam, Koos en
Huub, dank voor alle vertrouwen en het bieden van zo’n warme thuishaven in het
zuiden des lands. Keifijn, dat jullie zo mee hebben geleefd.

Didi
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Curriculum Vitae

De auteur van dit proefschrift werd geboren op 29 augustus 1978 te Oploo. Vanaf
1990 bezocht zij “Scholengemeenschap Jerusalem” in Venray. In 1996 werd het
gymnasium diploma behaald aan deze school, die inmiddels gefuseerd was tot
Raayland College. In september van dat jaar werd begonnen aan een studie
scheikunde aan de Universiteit Utrecht. In augustus 2001 studeerde zij (cum
laude) af met als hoofdvak vaste stof chemie en bijvak fysische en collöıd chemie.
Tevens werd tijdens haar studie zes maanden onderzoek gedaan aan de Ecole Nor-
male Supérieure in Parijs in het kader van een Erasmus project. Dit project werd
na het afstuderen voortgezet tot februari 2002.

In maart 2002 trad de auteur als onderzoeker in opleiding in dienst van de
Stichting voor Fundamenteel Onderzoek der Materie (FOM). Het promotieonder-
zoek werd uitgevoerd in de Soft Condensed Matter groep van het departement
Natuur- en Sterrenkunde aan de Universiteit Utrecht. De resultaten van dit on-
derzoek, waaraan zij onder begeleiding van dr. Arnout Imhof en prof. dr. Alfons
van Blaaderen werkte, staan beschreven in dit proefschrift. Vanaf oktober 2006
gaat de auteur aan de slag als post-doctoraal onderzoeker aan het Laboratoire de
Physique Statistique van de Ecole Normale Supérieure te Parijs.
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