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1 Introduction to quasi-periodic and
periodic colloidal photonic crystals

In this introductory chapter, we present the premise for the research presented in this thesis. In
this thesis, we study the formation, stability and photonic properties of various quasi-periodic
and periodic colloidal crystals. This includes quasicrystals in two-dimensional systems and
periodic crystals in three-dimensional systems. This is accomplished by using a system of
particles with a core-corona architecture. We begin this chapter by introducing the reader to the
term photonic crystals, following which, a differentiation is made between a photonic crystal
and a photonic band gap material. We then give an overview of the different types of photonic
crystals. Later, we proceed to an explanation of quasicrystals, followed by the relevance of
studying these crystals in a system of colloidal particles. Finally, we provide a short overview
of the chapters of this thesis.
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1.1 Why the interest in photonic crystals?

Before we answer that question, let us first ask what are crystals? According to the present
definition of the International Union of Crystallography (IUCr), a crystal is any solid that pro-
duces an essentially discrete diffraction diagram [1], i.e. has known positions of constituent
entities. Thus, a crystal can be composed of atoms, ions, molecules or other larger particles.
Of special interest here are semiconductor crystals in which positive and negative charges are
positioned alternatively in a lattice, or positive charges are considered to float in a sea of elec-
trons. In either case, the arrangement of charges leads to an electric potential. Also, in such an
arrangement of charges, the energy levels of individual electrons start to overlap forming a con-
tinuous band of allowed energy states. This leads to a situation where the highest completely
occupied energy state and the subsequent first empty energy state are separated by a region
which designates energies that the electrons in the solid cannot possess. This region is termed
as an electronic band gap.

How does this relate to a photonic crystal? Photonic crystals are the optical analogue of
such crystals; they consist of alternating materials with different dielectric constants. The re-
lative dielectric constant between the constituent materials is the analogue for the electric po-
tential in a semiconductor crystal. In general, photonic crystals can be classified as direct or
inverse structures. The former consists of a high-dielectric constant material in a surrounding
low-dielectric constant medium, and the latter represents the inverse situation. Additionally,
analogous to the formation of energy gaps in the electronic band structures of semiconductors,
one finds the formation of photonic band gaps in photonic crystals. This means that for a cer-
tain range of frequencies, light cannot propagate through the dielectric structure irrespective
of its polarisation and direction of propagation. Such materials with a photonic band gap are
intuitively termed as photonic band gap (PBG) materials. A one-to-one correlation between
certain underlying properties of semiconductors and PBG materials is given in Table 1.1. It is
important to note that the theoretical calculation of photonic band structures is more complex
than that of electronic band structures. This is because one needs to fully account for the vector
nature of the electromagnetic field in the PBG calculations [2].

Table 1.1: Analogy between semiconductors and photonic band gap materials.

Property Semiconductor Photonic band gap material
Propagating entity electronic wave electro-magnetic wave
Underlying potential electric potential relative dielectric constant
Governing equations Schrödinger’s equation Maxwell’s equations

Examples of PBG materials are abundant in nature [3]. For example, they play an important
role in generating bright colours in the feathers of birds [4–6], in the scales of beetles [7, 8] and
butterflies [9], and in the petals of flowers [10, 11]. Artificial fabrication of photonic crystals
aims to mimic the properties of these naturally occurring ones. This brings us to the question
of why are artificially fabricated photonic crystals and PBG materials interesting?

The field of photonic crystals boomed with the advent and tremendous growth of fibre-optics
in telecommunication systems [12]. These optical devices operate in a range of wavelengths
between 1.3− 1.5µm, i.e. in the microwave regime. Devices operating in this wavelength
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regime offer a variety of applications for photonic crystals in the telecommunication sector
such as lossless wave guides [13], and non-linear optical switches [14]. In addition, they are
also used in areas of (bio-)sensing, bio-medical engineering, energy storage and security [3, 15–
17]. However, the holy grail is to make these devices truly ‘optical’, i.e. operate at wavelengths
close to the visible or infrared regime of the electromagnetic spectrum. This leads us to ask the
question, how far have we actually come with these photonic crystals?

The theoretical possibility of a PBG was proposed in the early nineteen-seventies independ-
ently by Bykov [18] and Ohtaka [19]. However, the interest in these structures did not gain
momentum until the pioneering works by Yablonovitch [20] and John [21], where they both
theoretically showed the realisation of a PBG. Following which, the presence of a PBG has
been theoretically predicted in a wide range of structures, [22] ranging from direct and inverse
forms of diamond cubic [2, 23] and pyrochlore [24, 25] to inverse forms of face-centered cubic
[26, 27] and binary NaCl lattices [28, 29]. However, the experimental realisation of these struc-
tures have not been met with considerable success. This is because of the amount of precision
required to maintain the alignment and stacking in these structures. This results in time consum-
ing and expensive methods of fabrication, which are often borrowed from the semiconductor
industry. One of the earlier fabrication methods that was proposed involved drilling cylindrical
holes along specific directions in a block of a dielectric material resulting in a PBG in the
microwave regime. The first structure fabricated was the Yablonovite, which contained a con-
nected network of holes with a symmetry that resembled a diamond crystal structure [30, 31].
Later, lithography as a means to create photonic crystals was introduced [32]. This involved a
layer-by-layer construction of three-dimensional photonic crystals like the wood-pile structure
[13]. However, the two-dimensional nature of lithographic techniques does not ensure perfect
alignment of these structures in the third dimension. The more recent methods developed for
the fabrication of photonic crystals include anisotropic etching [33] and 3-D nanolithography
[34].

The most promising method for fabrication of three-dimensional photonic crystals till now
has been the self-assembly of colloidal particles. This is because of two reasons: (1) as the
name suggests, this method involves letting nature take its own course, i.e. obtain a close-
packed structure as a result of the self-organisation of colloidal particles, for example, silica
spheres, and (2) the size of colloidal particles, in the several hundred nanometers to micromet-
ers range, is ideal for formation of a PBG in the required optical frequencies [16]. Experimental
fabrication of inverse photonic crystals resulting from the self-assembly of colloids in a face-
centered cubic structure [17, 35–40] and a binary mixture in a NaCl structure [41] have been
successful. The major contenders for a colloidal PBG material are the diamond and the pyro-
chlore structures. Even though the existence of a PBG is theoretically determined [2, 24, 25],
and the possible routes for self-assembly have been computationally simulated [42, 43], their
experimental realisation has not been successful, yet. Primarily, the challenge in these self-
assembly methods is to obtain a pure material with sufficient uniformity and without unwanted
defects [44]. Notwithstanding, we will discuss the suitability of colloidal systems in more detail
in Section 1.4.

Once it was apparent that the fabrication of three-dimensional photonic crystals with a com-
plete band gap is elusive, the direction of research turned to the fabrication of two-dimensional
photonic crystals. Not surprisingly, a great deal of success has been achieved in these two-
dimensional structures. The major advantage of these structures is that they are comparatively
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easy to fabricate using the available lithographic techniques. In addition, the lower dimension-
ality of these structures also accounts for greater ease of manipulation, for example, to include
defects. This leads us to our next question.

1.2 How are two-dimensional photonic crystals different?
A photonic crystal is classified to be one-, two- or three-dimensional depending on the number
of axis of periodicity. A one-dimensional photonic crystal is periodic along a single axis and
homogeneous along the other two. One of the commonly known one-dimensional photonic
crystal is a Bragg stack consisting of alternating layers of materials with different dielectric
constants. However, these structures possess a band gap for only certain incidence angles [12,
45]. Continuing with the definition, a two-dimensional photonic crystal is periodic along two
axes and homogeneous along the third, and a three-dimensional photonic crystal is periodic in
all three directions. A schematic of these three classes of photonic crystals is given in Figure
1.1.

Figure 1.1: Schematic representation of one- (left), two- (middle), and three-dimensional (right) pho-
tonic crystals. The green and yellow colours respectively represent materials with high and low dielectric
constants respectively.

Two-dimensional photonic crystals were first theoretically analysed by Plihal et al [46]. This
structure consisted of a periodic array of circular dielectric rods with a dielectric constant ε =
17. These rods were arranged in a square lattice, which was embedded in a medium with lower
dielectric constant, which in this case was air with ε = 1. Similar to three-dimensional photonic
crystals, existence of PBG in two-dimensional photonic crystals was initially confirmed in the
microwave regime [47, 48]. Commonly studied two-dimensional photonic crystals conform
primarily to either of the following two types, (1) disconnected dielectric rods in air, or (2)
air rods drilled in a dielectric matrix resulting in a connected dielectric structure. Examples of
structures studied in both configurations include cylindrical rods in square [49], triangular [50],
and honeycomb [51] lattices. Alternatively, different rod shapes like square [49], diamond,
hexagonal, and triangular [52] have also been theoretically analysed. However, rods with non-
cylindrical shapes are less popular for fabrication as the nature of the lithographic and etching
techniques used to fabricate these photonic crystals tend to result in rounded features. In stark
contrast to the three-dimensional photonic crystals, fabrication of two-dimensional photonic
crystals has accomplished considerable progress. Two-dimensional photonic crystals have been
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fabricated on micron and sub-micron length scales [53–55]. Also, two-dimensional photonic
crystals designed to operate at visible or near infra-red frequencies have been fabricated [54, 56–
59]. This makes one wonder, what is the current driving force for investigating two-dimensional
photonic crystals? Evidently, two-dimensional photonic crystals have their own set of problems
as we explain below.

Given the planar structure of the two-dimensional photonic crystals, the electro-magnetic
field of light can be decoupled into its two constituent polarisations, i.e. the electric and mag-
netic fields. Conditions where the magnetic field is considered to be in-plane is termed as trans-
verse magnetic (TM) polarisation, and where the electric field is in-plane is termed transverse
electric (TE) polarisation. The interesting feature of this is that the electric field is a vector in TE
polarisation and a scalar in TM polarisation [60]. This results in a scenario where the structures
that promote the formation of a band gap in the TM and TE polarisations are different. It has
been found that a connected dielectric structure favours a band gap in TE polarisation, while a
structure with disconnected dielectric rods favours a band gap in the TM polarisation. A schem-
atic of these structures is given in Figures 1.2(a) and 1.2(b). Thus, depending on its structure, a
two-dimensional photonic crystal can either have a band gap in the TM or TE polarisation, and
not a complete band gap.

Figure 1.2: Examples of two-dimensional photonic crystals that are favourable for photonic band gap
formation in (a) TM polarisation, (b) TE polarisation, and (c) TM+TE polarisations. The green and
yellow colours respectively represent materials with high- and low-dielectric constants.

This led to investigations for designing structures having characteristics of both the above
configurations that would result in the formation of a complete band gap. This could be a
network consisting of dielectric rods connected by dielectric walls such as shown in Figure
1.2(c). Thus, one of the current challenges in the research realm of two-dimensional photonic
crystals is construction of such structures to obtain TM and TE band gaps over a common
frequency range. This can be seen as the formation of a common TM+TE band gap. A common
example of such a photonic structure includes a connected network where dielectric rods are
placed in a lattice with symmetry of a honeycomb [61–63]. There are also reports of formation
of individual [64] as well as complete (TM+TE) band gaps in two-dimensional amorphous
structures, i.e. structures which do not have a periodic arrangement of dielectric structures
[65, 66]. More relevant to this thesis are the reports of PBGs reported in quasicrystals [67, 68].
This leads us to the next question.
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1.3 What are quasicrystals?

Quasicrystals are materials that exhibit long-range orientational order but no translational peri-
odicity. In other words, they are neither periodically ordered like ordinary crystals nor dis-
ordered like amorphous solids. Although they have a well defined, discrete point group sym-
metry like the ordinary (periodic) crystals, this symmetry is explicitly incompatible with peri-
odic order. To explain, they exhibit the presence of spots in a diffraction pattern showing that
they possess long-range order, but this symmetry corresponds to, for example, the presence of
five-, eight- or twelve-fold symmetry axes [69]. So how does one create a non-periodic structure
with long-range order?

An example for this is the simple one-dimensional Fibonacci chain [70]. To construct the
chain, we start with two segments, namely a large segment L and and a short segment S. In order
to build successive chains with increasing length, we apply two rules at each iterative step. All
S segments undergo an inflation, i.e. S→ L and the L segments undergo a replacement, L→ LS.
If we start with only the S segment, this would lead to the construction of the following chain:

S
L

LS
LSL

LSLLS
LSLLSLSL

LSLLSLSLLSLLS
...
...

Of course, there are some rules imposed for creating such a sequence. The most obvious one
being that not all starting sequences or iterative rules would lead to a non-periodic chain. If the
ratio of the number of L and S segments is nL/nS = τ , an irrational number, then the sequence
has no repeating distance, i.e. periodicity. And this results in a sequence with long-range order
and no translational periodicity [71]. This process of obtaining an aperiodic chain is termed
as the method of substitution. This can also be applied to two-dimensional systems where
the segments are replaced by tiles. Now, how does this help us to explain two-dimensional
quasicrystals?

In general, ordinary (or periodic) crystals can be seen as filling of space with identical unit
blocks called the unit cell. In two dimensions, this unit cell is called a tile, and the covering of
the plane obtained by means of copying a limited number of tiles, with no overlaps and gaps
is termed as a tiling. For example, crystals of four- and six-fold symmetry can be created by
periodically repeating square and hexagonal tiles, respectively. However, per definition of a
quasicrystal, such a tiling method using a single tile to describe a quasicrystal is not possible.
This can be thought of as trying to tile a region in space using pentagonal tiles to obtain a
quasicrystal with a five-fold symmetry. This, of course, results in the formation of gaps [72].
Nonetheless, there exists an urge to describe quasicrystals as tilings, as this gives a connection
with the mathematical notion of tilings for which copious amounts of literature exists. Thus,
it has been shown that quasicrystals can be described as a tiling with copies of two or more
types of tiles [71]. Such tilings have been extensively used to describe two-dimensional quasi-
crystals of different symmetries. For example, a decagonal (ten-fold symmetric) quasicrystal



INTRODUCTION TO QUASI-PERIODIC AND PERIODIC COLLOIDAL PHOTONIC CRYSTALS 7

can be described using either a Penrose tiling or a or a Tübingen tiling. The former consists of
either a combination of a skinny and a fat rhombus [73] or a combination of kite and dart tiles,
and the latter consists of a combination of decagon, U-tile, nonagon, hexagon and pentagon
tiles [74]. Other examples include a heptagonal tiling exhibiting tetrakaidecagonal (fourteen-
fold) symmetry consisting of three kinds of rhombus [73], an octagonal (eight-fold symmetric)
tiling consisting of rectangle and triangle tiles [75], or an Ammann-Beenker tiling composed
of squares and rhombi [76], and a dodecagonal (twelve-fold symmetric) tiling consisting of a
combination of square and triangle tiles, or a combination of square, triangle and shield tiles
[77]. As designated here, the nomenclature of these quasicrystals is based on the symmetry of
the diffraction pattern that they exhibit [78].

Construction of tilings according to a fixed set of rules as described above is often desig-
nated as ‘deterministic’ [79]. An alternate approach termed as ‘random-tiling’, was originally
suggested by Elser [80, 81]. Here, a network is generated by a randomly distributed configur-
ation of tiles. The only constraint imposed is the preservation of the bond orientational order.
Thus, such a non-deterministic tiling exhibits the same symmetry as that of the deterministic
tiling because of this orientational order present in the tiles. A comparison between the de-
terministic and random dodecagonal tiling consisting of squares and triangles is given in Figure
1.3. The deterministic quasicrystal shown in Figure 1.3(a) can either be generated by using the
inflation rules with a factor of (2+

√
3) as proposed by Stampfli [82], or by using a projection

method with a fractal shaped acceptance region as proposed by Baake [83]. The random-tiling
quasicrystal shown in Figure 1.3(b) was adapted from a non-Stampfli square-triangle approx-
imant [84]. As can be noted from Figure 1.3, it is easier to construct an approximation to a
random-tiling quasicrystal inside a rectangular/square box, which can then be periodically re-
peated in space. In addition, as shown in Figure 1.3(c), another method to obtain a periodic
structure that is reminiscent of a quasi-periodic lattice is by the construction of an ‘approxim-
ant’. For example, if we again consider the example of the Fibonacci chain described above
and start with a periodic chain of only small segments S, instead of a single S segment as in the
previous case [70], and then respectively apply the inflation S→ L and the replacement L→ LS
rules to each of the S and L segments at each iteration, we get the following chain

SSSSS....
LLLLL....

LSLSLSLSLS....
LSLLSLLSLLSLLSL....

LSLLSLSLLSLSLLSLSLLSLSLLS....
.......
......

Once the chain has both L and S segments, we note that the chain is periodic in nature. After
each iteration, the period increases as LS, LSL, LSLLS, and so on. In other words, the number
of L segments to that of S increases with increase in the period of this chain. If we calculate the
ratio between the number of L segments to that of S segments, nL/nS, we obtain the following
series

1/1,2/1,3/2,5/3,8/5, ...,τ .
This is the series of rational approximants to the value of τ , the golden mean. This, also,

is the origin of the term ‘approximants’. We can intuitively understand that the higher the
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order of the period, the closer the approximant is to its parent quasicrystal. An example of an
approximant is shown in Figure 1.3(c).

Figure 1.3: Examples of (a) a deterministic quasicrystal [83], (b) a random-tiling dodecagonal quasi-
crystal [84], and (c) a periodic approximant [85] composed of a tiling with square and triangle tiles. The
deterministic quasicrystal and the approximant are constructed using dodecagonal substructures, while
the random-tiling quasicrystal is constructed using the squares and triangles that form the dodecagon.
The connections between various dodecagons are shown in (a) and (c) using cyan dashed lines. Square
and triangle tiles are coloured respectively in yellow and blue.

With this theoretical framework, can we offer some insight to the presence of photonic band
gaps (PBGs) in quasicrystals? The origin of the formation of a PBG in a periodic crystal is gen-
erally explained by its property to exhibit Bragg-scattering [86], i.e. the structure results in the
formation of spots in a diffraction pattern. As explained above, a quasicrystal exhibits the same
behaviour as well. Thus, the mechanism of formation of a PBG in a quasicrystal is similar to
that in a periodic crystal. In case of quasicrystals, this involves the construction of a (pseudo-)
Brillouin zone along which the photonic band structure is evaluated. Interestingly, it has been
seen that quasicrystals are, in principle, more favourable for PBG formation than conventional
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photonic crystals. This is because quasicrystal tackles one of the major challenges in creating
photonic crystals, i.e. to design a band gap with the same energy in all directions. This is gen-
erally difficult in a periodic crystal because its periodicity is different in different directions.
On the other hand, quasicrystals possess a higher symmetry, which results in formation of band
gaps at essentially the same energy in all directions of propagations [87]. Correspondingly,
PBGs have been theoretically predicted in two-dimensional quasicrystals with five-fold and
eight-fold symmetries [67, 88–90], and experimentally realised in a dodecagonal quasicrystal
constructed by drilling air holes in a dielectric slab [91, 92]. Additionally, three-dimensional
icosahedral photonic quasicrystals were fabricated with band gaps in the microwave [93], in-
frared [94] and visible ranges [95].

The above reports on fabrications of quasi-periodic photonic crystals leads us to enquire
about the experimental realisations of quasicrystals in general. The first observation of a quasi-
crystal with the forbidden icosahedral symmetry was reported by Shechtman et al. in a rapidly
cooled Al-Mn alloy [96]. This obviously came as a surprise to crystallographers, metallur-
gists and material scientists, who had believed for decades that such symmetries cannot exist
in crystals [97–99]. Thus, initially, it was thought that the quasicrystals were inherently dis-
ordered and unstable [100]. In contrary, thermodynamically stable quasicrystals have been
observed in a wide range of intermetallic alloys [101, 102]. In addition to intermetallic alloys,
quasicrystals have been found in oxide thin films [103], hydrogen-bonded molecules [104], and
metal-organic coordination networks [79]. Surprisingly, in recent times, quasicrystalline order
has also been discovered in several soft-matter systems like spherical dendrite micelles [105],
block copolymers [106–110], binary mixtures of nanoparticles [111–113], magnetic nanopar-
ticles [114] and mesoporous silica [115]. In addition, quasicrystals can also be fabricated in
colloidal systems using external fields such as light or laser beams [116, 117]. To complement
these experimental realisations, quasicrystals have been reported in a number of simulation
studies of soft-matter systems [77, 118–125]. Additionally, soft-matter quasicrystals have also
been identified in systems with non-spherical particles like rhombic platelets [126, 127], patchy
platelets [128], binary spherotruncated octahedral particles [113], triangular bipyramids [129],
and tetrahedra [130]. In fact, the research in soft-matter quasicrystals has advanced to the extent
where an entire series of random-tiling quasicrystals can be described under an unified scheme
[123]. These investigations inspire one to look more closely into the intriguing physics and
chemistry of soft-matter quasicrystals and try to establish the common elements between differ-
ent classes of materials, i.e. investigate if the principles of formation and stability in soft-matter
systems can be applied to that in traditional alloy systems. For doing this, soft-matter systems
have an inherent advantage over the traditional systems of metallic alloys. This paves way the
for our next question, why do soft-matter systems, especially colloidal particles, make an ideal
model system for our studies?

1.4 Why use colloids as a model system?

Colloidal dispersions refer to a range of systems composed of a dispersion of particles in a
continuous medium. These mesoscopic particles, termed as colloids, typically have at least one
dimension in the size range of a few nanometers to micrometers. Colloids and its dispersion
medium can either be found in gas, liquid or solid phases. Depending on their individual phases,
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the colloidal system can be classified as a suspension (solid in liquid), an emulsion (liquid in
liquid), a foam (gas in liquid) or an aerosol (solid or liquid in gas). The term colloid, coined by
Thomas Graham in 1861, has its origins from the Greek word ‘κoλλα’, which means ‘glue’
[131]. This naming convention resulted from the experiments by Graham where he observed
that gluey substances like albumen and caramel did not diffuse through a membrane, while
substances like table salt did. Thus, the term colloid came about by attributing the differences
in the behaviour of these substances to the gluey nature of the former. However, as mentioned
in the beginning of this paragraph, the contemporary definition of colloids is based on its size.
So, why is this size range so important?

The lower limit of the size range is dictated by the requirement of treating the dispersion me-
dium as a homogeneous background. In this way, the effect of the background on the particles
can then be modelled as an effective interaction. Thus, if the particles are of the size range of
the dispersion medium (usually < 1 nm), then the background cannot be treated as a homogen-
eous medium and the colloids will be indistinguishable from it. On the other hand, the upper
size limit is determined by the ability of these colloidal particles to exhibit a jittery motion due
to their collisions with the molecules of the dispersion medium. This phenomenon of random
motion of particles in a medium was first observed by botanist Robert Brown while studying
plant pollen in water in 1827 [132]. This random motion of solid particles in a suspension was
explained by Albert Einstein [133] by the unbalanced momentum that results from the collisions
of the colloids with the molecules of the dispersion medium at any given time. Colloids up to a
size of a few micrometers can still experience Brownian motion, which enables them to interact
with each other as well as the particles of the dispersion medium. This allows the colloidal
particles to physically explore different configurations in phase space. This, in turn, helps the
system to reach thermodynamic equilibrium. The fact that thermodynamic equilibrium can be
attained in colloidal systems has a galore of advantages. What exactly are these?

The biggest advantage is that the colloidal systems can be used as an analogous system to
atoms and molecules, i.e. it can be used as a model system to study physical processes such as
phase transformations. Such phase transformations in colloidal systems resulting in the forma-
tion of the different states like crystals, liquids or glasses, in accordance to the thermodynamic
conditions like pressure and temperature, is termed as colloidal self-assembly. Alternatively,
one can say that the colloids self assemble. Why is that of interest? Due to the small size of the
real atomic and molecular systems, it is not straightforward either to visualise them individually
or to probe their individual trajectories. In contrast, colloidal particles can be visualised in real
space using techniques such as confocal microscopy. In addition, owing to the over-damped
motion of colloids in the solvent, the time-scale of particle movements is experimentally ac-
cessible. Thus, their trajectories can be individually tracked. Secondly, the ability of colloids to
probe the available phase space makes them suitable to be studied under a theoretical framework
described by the principles of statistical mechanics. Finally, the phase behaviour of colloidal
particles can be modified by tuning the interactions between the particles or by using external
fields. In summary, colloidal systems offer an unique opportunity in which they can be de-
scribed theoretically as well as studied experimentally, thereby making them one of the ideal
model systems to study phase transformations. This guides us to the ultimate question of this
chapter.
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1.5 What does this thesis aspire?
In this thesis, we aim to study the phase behaviour and photonic properties of different quasi-
periodic and periodic colloidal crystals using computer simulations. This primarily involves
identifying the thermodynamic conditions in which these phases are formed and assessing their
thermodynamic stability under those conditions. Finally, we evaluate the photonic band dia-
grams of their corresponding photonic crystals. The layout of the thesis is as follows:

In Chapter 2, we give an overview of a system of colloidal particles with a core-corona
architecture, the phase behaviour of which is extensively studied in this thesis. We introduce
the interaction potential and explain the computational methods used to simulate the phase
behaviour, to calculate the free energies of different phases, to map out the equilibrium phase
diagram, and to structurally analyse the phases.

The rest of the thesis is divided into three parts: Parts I and II deal with the phase behaviour
of various two-dimensional core-corona systems, while Part III deals with the calculations of
photonic band diagrams.

Part I is solely devoted to a random-tiling dodecagonal (twelve-fold symmetric) quasicrystal
formed in the two-dimensional core-corona system, as this is the most common symmetry asso-
ciated with quasicrystals in soft matter. In Chapter 3, we assess the thermodynamic stability of
the dodecagonal quasicrystal with emphasis on comparison with various of its periodic approx-
imants. We, then, evaluate the effect of various parameters such as temperature, corona-size
and shape of potential on the formation of this quasicrystal in Chapter 4. Finally, Chapter
5 deals with the formation of this quasicrystal under the influence of a gravitational field, i.e.
using sedimentation studies.

Part II deals with random-tiling quasicrystals of various symmetries and other practically in-
teresting phases formed in two-dimensional core-corona systems. In Chapter 6, we discuss the
formation and stability of an octadecagonal (eighteen-fold symmetric) and a decagonal (ten-fold
symmetric) quasicrystal. Chapter 7 deals with the formation of interesting non-quasicrystalline
phases like a mesophase with a stripe texture and an open structure resembling a honeycomb
lattice. The former is a two-dimensional equivalent of a nematic phase, while the latter is a
known two-dimensional photonic crystal.

Part III addresses the photonic properties of various quasi-periodic and periodic dielectric
structures. In Chapter 8, we compare the photonic properties of the dodecagonal quasicrystal
with some of its periodic approximants. We proceed to study three-dimensional photonic crys-
tals in the last two chapters. Chapter 9 deals with the formation and stability of a photonic
crystal with a pyrochlore lattice in a three-dimensional core-corona system, of which we also
evaluate the photonic properties. Finally in Chapter 10, we probe the effect of structural de-
fects on the photonic behaviour of a binary NaCl photonic crystal, which can be experimentally
fabricated.





2 Description of the core-corona model,
simulation, and analysis methods

Core-corona systems are one of the simplest systems which can self-assemble into non-close
packed structures. In this chapter, we provide an overview of the core-corona system that is
used extensively in this thesis. The interaction potential of this system consists of an impenet-
rable hard core surrounded by a purely repulsive square shoulder representing the corona. We,
then, provide a detailed description of the computational techniques used to simulate the phase
behaviour of the system, and the methods used for calculating the free energy of various phases
and the equilibrium phase diagram of this core-corona system. We also provide an overview of
the various structural analysis routines used in this thesis. We finally provide a description of
the methods used for calculating the photonic properties of various structures obtained in this
thesis.
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2.1 Introduction

Core-corona systems or core-softened systems describe a system of particles consisting of an
impenetrable solid core surrounded by a soft-corona that can be inter-penetrated. Core-corona
systems were first introduced by Hemmer and Stell in 1970 [134]. In the nascent years of these
core-corona systems, the common belief was that their self assembly resulted only in ordered
close-packed structures like the hexagonal lattice in a two-dimensional system, due to the radial
symmetry of the potential. However, the revelations in the past two decades has been quite
contrary. Initial reports of the formation of non-hexagonal lattices in two-dimensional core-
corona systems as pioneered by Jagla [118, 135] paved the way for further research. Since
then, a zoo of interesting phases such as mesophases like stripes [136–140] and labyrinths
[137], Archimedean tiling patterns [106, 141], square lattices [118] and quasicrystals of vari-
ous symmetries [118, 123, 142] in two dimensions and diamond-cubic lattice [143–147] in
three-dimensional systems have been reported. These core-corona systems mimic experimental
systems consisting of spherical particles with a rigid core and a squishy corona, e.g., spherical
dendrite micelles consisting of a rigid aromatic core with a deformable shell of alkyl chains
[105], or block copolymer micelles consisting of a micellar core of hydrophobic polymer sur-
rounded by a large shell of hydrophilic polymer blocks [110].

Theoretically, the soft corona can be modelled by using potentials with a nature that is either
purely attractive, or purely repulsive, or a combination of the two. Examples of systems with
purely attractive interactions include square-well [121] and flat-well [122] pair potentials, that
of purely repulsive interactions are square-shoulder [123, 148, 149] and linear ramp [118] pair
potentials, and mixed interactions include Lennard-Jones-Gauss [77] and three-well oscillating
[124] pair potentials. In this thesis, we use a completely repulsive square-shoulder potential to
describe the corona. A detailed description of the interaction potential, the computational tools
used for studying the phase behaviour, and the methods used for calculating the structure and
free energy of different phases, and for investigating the photonic properties of these structures
are given in the subsequent sections.

2.2 Interaction potential between the core-corona particles

The interaction between the particles of the core-corona system used in this thesis is modelled
using a radially symmetric hard-core square shoulder (HCSS) pair potential consisting of a
hard core of diameter σHD and a purely repulsive square shoulder of diameter δ . This HCSS
potential can be written as a sum of a hard-disk potential VHD(r) and a square-shoulder potential
VSS(r), i.e.

VHCSS(r) =VHD(r)+VSS(r)

where

VHD(r) =
{

∞, r ≤ σHD
0, r > σHD

, (2.1)

and

VSS(r) =
{

ε, r ≤ δ

0, r > δ ,
(2.2)



DESCRIPTION OF THE CORE-CORONA MODEL, SIMULATION, AND ANALYSIS METHODS 15

where r is the interparticle centre-of-mass distance, and ε > 0 is the height of the square
shoulder. Figure 2.1 shows a schematic representation of this pair potential, where the hard
core and square shoulder are represented respectively by the dark and light red circles. Due
to the simple shape of the interaction potential and the ability to explain the arrangements of
particles in solid phases on geometric considerations, the HCSS model is also considered as a
‘quintessential’ test system for solid-solid transitions [150]. The HCSS potential introduces two
characteristic length scales in the system; namely the hard-core diameter σHD and the square
shoulder diameter δ . We define ε and σHD, respectively, as the units of energy and length.
In which case, the square shoulder diameter δ is the only tunable parameter for studying the
system.

r

V
H
C
S
S
(r
)

HD

ε δ

σHD

Figure 2.1: Schematic representation of the hard-core square shoulder (HCSS) potential, VHCSS(r), as
a function of the interparticle distance r. The dark and light red circles, respectively, represent the hard
core and the soft corona.

The phase behaviour of this core-corona system is influenced as much by the square shoulder
diameter as by the density of the system. Both factors influence the relative relevance of the
core and the corona. The size of the corona δ determines the range up to which the potential
is effective. At δ ∼ σHD, the system behaves similar to a system of hard spheres; while at
δ >> σHD and low temperatures, the hard core becomes effectively irrelevant. However, at
intermediate shoulder widths, an interplay between the energetic and entropic considerations
promotes the formation of phases with exotic and non-trivial structures. On the other hand,
the effect of the density of the system on the phase behaviour can be described in terms of
three regimes. The first regime occurs at low densities where the coronas do not overlap. The
second regime is at high densities, where the coronas entirely overlap and the core repulsion
dominates, and finally the third regime is at intermediate densities, where the coronas partially
overlap. In this intermediate regime, both the cores and the coronas are partially effective and
the competition of these core and corona interactions leads to the formation of phases with
unusual symmetries. In other words, the formation of phases with exotic structures in this
core-corona system is driven by the minimisation of overlap of the coronas. In this thesis, we
probe such a regime of intermediate densities and shoulder widths by studying two- and three-
dimensional HCSS systems at different values of δ . Specifically, we study the HCSS system
in two dimensions with δ = 1.40σHD in Chapters 3, 4, and 5, δ = 1.27σHD and 1.60σHD in
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Chapter 6, and δ = 1.95σHD in Chapter 7, and in three dimensions with δ = 2.10σHD in Chapter
9.

2.3 Simulating the phase behaviour of the system
In this section, we explain the computational techniques used to study the phase behaviour of the
system. We analyse the equilibrium phase behaviour by means of Monte Carlo simulations as
explained in Section 2.3.1, and probe the dynamics of the system using Event-Driven Brownian
Dynamics simulations as explained in Section 2.3.2.

2.3.1 Monte Carlo simulations
Using Monte Carlo simulations, we evaluate various equilibrium characteristics associated with
a many-particle system. This is achieved by identifying the relevant states in the phase space
associated with the number of different configurations of the system using an effective sampling
scheme. A comprehensive description of this method is given in Reference [151] and a short
overview is provided here.

Let us first consider a system of N identical particles of mass m interacting with each other
by a potential U(r) in a box with fixed volume V at a constant temperature T . This represents
the canonical ensemble with constant N, V and T . The Hamiltonian for this system can be
written as a function of the positions rN and momenta pN of the particles as

H
(
rN ,pN)= N

∑
i=1

p2
i

2m
+U

(
rN) . (2.3)

The partition function of this system can be derived as

Z(N,V,T ) =
1

N!h3N

∫
drNdpNexp

(
−βH

(
rN ,pN)) , (2.4)

where β = 1/kBT is the inverse temperature with kB the Boltzmann constant, and h is the
Planck’s constant. In order to calculate any observable property that solely depends on the
positions of particles and not on the momenta, we can integrate out the kinetic part of the
Hamiltonian associated with the momenta. Thus, the average of any static observable O can be
calculated as

〈O〉=
∫

drNO
(
rN)(−βH

(
rN ,pN))∫

drN (−βH (rN ,pN))
, (2.5)

where the angular brackets denote the average value. However, performing this integration is
computationally expensive due to the large number of configurations that need to be sampled.
We, thus, utilise the so-called Metropolis algorithm to identify the relevant configurations which
follow a Boltzmann distribution and then evaluate 〈O〉 using these configurations.

In practice, identification of these relevant configurations is accomplished in the following
manner. We first generate a number of random configurations, termed as a Markov chain.
For this, we consider a starting configuration in which the particles are at positions rN

old . We,
then, perform a trial move to obtain a new configuration. This trial move involves displacing a
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randomly selected particle i by a small amount dr, i.e. from a position ri
old to ri

new = ri
old +dr.

This results in a new configuration with particle positions rN
new. This trial move is either accepted

or rejected according to the Metropolis acceptance criteria based on the following probability

acc
(
rN

old → rN
new
)
= min(1,exp(−β∆U)) , (2.6)

where ∆U = U
(
rN

new
)
−U

(
rN

old

)
is the change in the potential energy of the system accom-

panying the trial move. If the trial move is rejected, then the old configuration is restored.
Alternatively, if the trial move is accepted, then this new configuration becomes the starting
configuration for the next trial move. This process is continued for a sufficiently long time in
order to facilitate the system to attain equilibrium.

The nature of the trial move and the corresponding acceptance criteria depends on the en-
semble under study. For the isothermal-isobaric ensemble, where the pressure P and temperat-
ure T for a system of N particles is fixed, in addition to the displacement move, the trial move
also includes changing the volume of the box V in order to attain the equilibrium volume at the
given conditions. The acceptance criteria for this trial move performed to modify the volume of
the system from Vold to Vnew reads as

acc(Vold →Vnew) = min(1,exp(−β (∆U +P∆V − kBT N log(Vnew/Vold)))) , (2.7)

where ∆V =Vnew−Vold is the change in the volume of the system accompanying the trial move.
In this thesis, we largely perform Monte Carlo simulations of core-corona particles in a two-

dimensional system described by a rectangular box of area A. We employ both canonical (NV T )
and isothermal-isobaric (NPT ) ensembles under periodic boundary conditions. We associate the
following dimensionless parameters of the system: reduced temperature T ∗ = kBT/ε , reduced
pressure P∗ = βPσ2

HD, and reduced density ρ∗ = Nσ2
HD/A, where β = 1/kBT is the inverse

temperature with kB the Boltzmann constant.

2.3.2 Event-Driven Brownian Dynamics simulations
Brownian Dynamics (BD) methods that are used to describe the motion of the particles represent
a simplified version of Langevin dynamics [152, 153]. However, BD simulations for systems of
hard particles or particles with interaction potentials composed of discontinuous energy levels,
like square well or square shoulder, is computationally expensive. Thus, in this work, we use
a modified Event-Driven Brownian Dynamics (EDBD) method which resembles the Event-
Driven Molecular Dynamics (EDMD) technique. In the following paragraph, we briefly explain
the Molecular Dynamics (MD) technique, and then the need for using EDBD technique and
finally how our EDBD technique resembles the EDMD method.

In a MD simulation, the movement of particles in a system is calculated by solving New-
ton’s equations of motion. In such situations, the particles exhibit a ballistic motion during
the times between the interactions with other particles. In other words, these particles do not
exhibit Brownian motion at these times. But, different configurations are sampled according
to a Boltzmann distribution. In a time-driven MD simulation, i.e. at conditions of fixed time
intervals, the change in velocity of each particle is calculated based on the forces acting on it at
each time step. This change in velocity, in turn, results in a change in position of the particle.
However, such time-driven simulations are not suitable for systems of particles interacting with
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discontinuous potentials. This is because, in these cases, the forces acting on particles are in-
stantaneous, i.e. the force between the particles changes only at a specific point in time, and
remains constant at other times. For example, in a system of hard spheres, the force between
the particles is zero except at the time when the particles touch each other. Thus, such a change
can only be detected in the simulation after it has already occurred. To avoid this, event-driven
techniques are used. Here, the moment of interaction between particles is explicitly predicted
ahead of time, such that it can be detected at the correct moment in the simulation. This is
mostly applied in systems where the particles exhibit a simple motion between the interaction
times. Fortunately, this holds for particle interacting with a discontinuous potential, where the
motion of the particles in between the interaction times correspond to a linear motion of their
centres of masses. A detailed description of the implementation and working of the EDMD
method is given in Reference [154].

Even though we find that the EDMD method is suitable for simulating a system of particles
interacting with the HCSS potential, the particles here do not exhibit a Brownian motion. Thus,
we explicitly incorporate the Brownian motion by randomly adjusting the velocities of particles
at regular intervals ∆t as

v(t +∆t) = αtv(t)+βtvR(t), (2.8)

where v(t) and v(t + ∆t) are respectively the velocities of the particles before and after the
stochastic velocity adjustment, vR(t) is a 3-D Gaussian variable with mean 0 and variance
kBT/m, with kB the Boltzmann constant and T the temperature. Further, αt has a value 1/

√
2

with a probability ν∆t and 1 otherwise. The temperature is kept constant by setting βt =√
1−α2

t . In accordance to similar EDBD simulations carried out previously [155, 156], we
set ν to 10τ

−1
MD and ∆t to 0.01τMD, where τMD is the unit of time of an EDMD simulation given

as τMD =
√

m/kBT σHS with σHS the diameter of the hard core of the spherical particles. A
detailed description of this method is given in Reference [155].

2.4 Calculating the free energy of phases

To identify the thermodynamically stable phases in the system and to map out its phase diagram,
we first need to calculate the free energy of all the phases involved in the system. For each phase,
we calculate the dimensionless Helmholtz free energy per particle f = βF/N as a function of
density ρ by thermodynamic integration of the equation of state from a reference density ρo.

f (ρ) = f (ρo)+
∫

ρ

ρo

βP(ρ ′)
ρ ′2

dρ
′. (2.9)

The Helmholtz free energy at the reference density ρo is determined using another thermody-
namic integration from a reference system based on the bulk phase of interest as described in
the following sub-sections.

2.4.1 Coupling parameter method
For the fluid phases observed in the HCSS system, we calculate the free energy at the reference
density by constructing a reversible path from the HCSS system to the hard-disk fluid at the
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same density [151, 157]. To do so, we introduce an auxiliary potential energy function

βUSS(γ) =
N

∑
i< j

βVHD(ri j)+ γ

N

∑
i< j

βVSS(ri j) (2.10)

that linearly interpolates between the hard-disk system at γ = 0 and the HCSS system at γ = 1,
where γ denotes the linear coupling parameter. The free energy of the HCSS system is then
determined by

f (ρ) = fHD(ρ)+
1
N

∫
γ=1

γ=0
dγ

〈
∂βUSS(γ)

∂γ

〉
, (2.11)

where the angular brackets refer to the average over different configurations and fHD(ρ) is the
free energy of the hard-disk fluid and is calculated using the following expression by Santos et
al. [158].

fHD(ρ) =
[
ln
(
ρΛ

2)−1
]
−

ln
(

1− η

ηm

)
2(1−ηm)

+
(2ηm−1) ln

(
1− 2ηm−1

ηm
η

)
2(1−ηm)

, (2.12)

where η = πσ2
HDN/4A denotes the packing fraction and ηm =

√
3π/6 = 0.907 corresponds

to the packing fraction of the close-packed crystal phase. The first term in Equation 2.12 rep-
resents the free energy per particle of an ideal gas in two dimensions.

2.4.2 Frenkel-Ladd method
We employ the Frenkel-Ladd method to calculate the free energy of the various periodic crystal
phases, high-density quasicrystals and their approximants reported in this thesis. The reference
state used here is the Einstein crystal, an ideal lattice of non-interacting and harmonically os-
cillating particles [151, 157, 159, 160]. The ideal positions of the particles are taken to be the
equilibrium positions in the crystal structure under consideration. We then construct a reversible
path from the crystal of interest to the Einstein crystal in two steps. In the first step, the square
shoulder potential is switched off. For this, we make use of the auxiliary potential energy func-
tion given in Equation 2.10 and change γ from 1 to 0. In the second step, the harmonic springs
are switched on, while the hard-core interactions remain unaffected. For this, we use another
potential energy function, that reads as

βU(λ ) =
N

∑
i< j

βVHD(ri j)+λ

N

∑
i=1

(ri− ri,o)
2

σ2
HD

, (2.13)

where ri,o and ri are, respectively, the equilibrium and instantaneous positions of particle i.
These harmonic springs are switched on by increasing their dimensionless spring constant λ ,
from 0 to a value λmax. At λmax, the particles are so strongly tied to their ideal lattice positions
that they move independently of each other. Therefore, the free energy of the crystal can be
approximated to that of the Einstein crystal. Consequently, the free energy of the concerned
crystal in a d-dimensional system at the concerned density ρ is calculated as [159]

fHD(ρ) = fEin−∆ fCM +
lnρ

N
− d

2N
lnN− d

2N
ln

λmax

π
, (2.14)
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where the first term is the free energy of a non-interacting Einstein crystal given by

fEin =−
d
2

ln
π

λmax
, (2.15)

and the second term is the free-energy difference between the solid under consideration and the
Einstein crystal

∆ fCM =
∫ ln(λmax+c)

lnc
d[ln(λ + c)](λ + c)

〈
1
N

N

∑
i=1

(ri− ri,o)
2

σ2
HD

〉
λ

, (2.16)

with c = 1/
〈

1
N ∑

N
i=1

(ri−ri,o)
2

σ2
HD

〉
λ→0

. The other terms in Equation 2.14 denote the difference

between solids with constrained and unconstrained centers of mass.
In summary, the free energy of a crystal consisting of particles interacting with a HCSS

potential is determined as

f (ρ) = fHD(ρ)+
1
N

∫
γ=1

γ=0
dγ

〈
∂βUSS(γ)

∂γ

〉
. (2.17)

2.4.3 Schilling-Schmid method
We calculate the free energy of various low-density phases reported in this thesis using the
method proposed by Schilling and Schmid [161, 162]. Calculation of the free energy of the low-
density phases calls for a different method because here the particles are not tied to a certain
lattice. So, the movement of the particles also needs to be accounted for in the calculations.
In this method, we employ a reference state consisting of a system of non-interacting particles
that are pinned by a local attractive linear well potential to their respective reference positions.
The reference positions correspond to the positions of particles in an arbitrary configuration
obtained in the simulations after equilibration. The linear well potential is described by

βULW(ω) = ω

N

∑
i

Φ(|ri− r0
i |/rc), (2.18)

where ω > 0 is the absolute well depth, ri and r0
i are the positions of particle i and its corres-

ponding well, respectively, rc is the radius of the well, and Φ(x) = x−1 for x < 1 or 0 for x≥ 1.
We use a value of the well radius rc = 2σHD.

The free energy of this reference state can be analytically calculated as

fre f (ρ) = ln(ρΛ
d)−1− ln

(
1+

Vo

V
g(ω)

)
, (2.19)

where Vo is the volume of a sphere of radius rc, and V is the box volume and

g(ω) =
d

ωd

(
eω −

d

∑
k=0

ωk

k!

)
(2.20)

for a d-dimensional system.
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We use three separate thermodynamic integration steps to obtain the HCSS system from the
reference system composed of non-interacting pinned particles. This consists of (i) switching
on the hard-core interactions of the particles, (ii) switching on the square-shoulder interactions
of the particles, and (iii) switching off the linear well potentials of the particles. The hard-core
interactions are switched on by using the following potential [163]

βUHD(ri j,α) =

 α

[
1−0.9

(
ri j

σHD

)2
]
, ri j < σHD

0 ri j ≥ σHD,
(2.21)

where ri j = |ri− r j| with ri and r j the positions of particles i and j, and α is the coupling
parameter and increasing α from 0 to αmax = 200. The square-shoulder interaction is switched
on by using the auxiliary potential energy function given in Equation 2.10 and changing γ from
0 to 1. The linear well is switched off by decreasing ω from ωmax = 104 to 0. The free energy
of the HCSS system can ultimately be calculated from

f (ρ) = fre f (ρ)+
∫

αmax

0
dα

〈
∂βUHD

∂α

〉
α,γ=0,ωmax

+
∫ 1

0
dγ

〈
∂βUSS

∂γ

〉
γ,αmax,ωmax

−
∫

ωmax

0
dω

〈
∂βULW

∂ω

〉
ω,αmax,γ=1

,

(2.22)

where the angular brackets in each integral denote the average over the number of particles in
the system. The integrations for switching on the hard-core and square-shoulder potentials are
evaluated using a standard 20-points Gauss-Legendre integration scheme. The last integration
where the attractive well is switched off, is more challenging and computationally more ex-
pensive. This is because one needs to accurately sample the sharp decay of the integrand at
moderate values of ω as well as its gradual decay at the higher values. In order to do so, we use
a high value of ωmax (= 104) and perform the integration using the trapezoid rule with varying
step size over different intervals as described in Table 2.1. This results in a total of 437 points
to perform this integration.

Table 2.1: Sampling scheme used for the third integration in the Schilling-Schmid method to switch off
the attractive well by decreasing the well depth ω .

ωstart ωend Step size
0.001 0.001 -
0.01 0.01 -
0.1 0.1 -
0.2 20 0.2
21 300 1
325 1000 25
1250 5000 250
5500 10000 500
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2.5 Constructing the equilibrium phase diagram
We utilise the free energies of the various phases obtained in the previous section to construct
an equilibrium phase diagram. To do so, we employ a three-step process as described below:

In the first step, we measure the equation of state (EOS) of the phases of interest at a constant
temperature T ∗. This isothermal EOS is the variation of the bulk pressure P∗ as a function of
the equilibrium density ρ∗. We perform compression and expansion runs by either increasing or
decreasing the pressure P∗ in a step-wise manner in the NPT ensemble to obtain the isothermal
EOS. The compression runs are started from an isotropic fluid phase, while the expansion runs
are started from the concerned periodic or quasi-periodic crystal phase.

In the second step, we determine the dimensionless Helmholtz free energy per particle f =
βF/N as a function of density at a fixed temperature T ∗ for each of the observed phases. This
is done by thermodynamic integration of the EOS to a reference density. The free energy at this
reference density is calculated as explained in Section 2.4.

In the final step, we determine the thermodynamically stable phases and the corresponding
phase boundaries by employing a common tangent construction to the free-energy curves, i.e.
the Helmholtz free energy per unit area βF/A as a function of the reduced density ρ∗. The
points of coexistence between pairs of phases can also be confirmed by plotting the chemical
potential β µ of the concerned phases as a function of pressure. For a system at constant temper-
ature, two phases are said to be in coexistence with each other if they have the same chemical
potential at the same pressure. The chemical potential at a given density ρ is defined as follows

β µ(ρ) = f (ρ)+ρ
∂ f
∂ρ

. (2.23)

2.6 Analysing the structure of phases
We structurally characterise the different phases formed by calculating the radial distribution
function (RDF) of the system g(r), the static structure factor S(k) and the average bond orient-
ational order (BOO) of the system χm. Each of these are explained below:

The RDF of a system at density ρ∗ gives the probability of finding a pair of particles at a
distance r = |r− r′|, and reads

g(r) =
1

ρ∗2

〈
N

∑
a=1

N

∑
b 6=a

δ (r− ra)δ (r′− rb)

〉
, (2.24)

where ra and rb are the positions of particles a and b, respectively, and the angular brackets
denote the average over the number of particles.

The static structure factor S(k) is obtained by a Fourier transformation of the RDF and is
written as

S(k) =
1
N
〈ρkρ−k〉=

1
N

〈
N

∑
a=1

N

∑
b6=a

exp(−ik.(ra− rb))

〉
, (2.25)

where ρk is the Fourier transform of the microscopic density ρ(r), and the angular brackets
denote the average over the number of particles. The structure factor is represented in a two-
dimensional space as a diffraction pattern.
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The average BOO is defined as [164]

χm =

〈∣∣∣∣∣ 1
NB(a)

NB(a)

∑
b=1

exp(imθrab)

∣∣∣∣∣
2〉

, (2.26)

where m is the integer associated with the symmetry of interest, rab = ra− rb is the vector
connecting the center-of-mass of two neighbours, θrab is the angle between rab and an arbitrary
axis, and NB(a) is the number of neighbours of particle a. The angular brackets denote the
average over the number of particles.

2.7 Evaluating the photonic band diagram
In this section, we describe the fundamental equations which describe the photonic crystals. We
then provide a description of a plane wave method used to calculate the photonic band structure
and the super cell method used to describe the presence of a localised defect in photonic crystals.

2.7.1 Plane wave method
The plane wave method for calculating the photonic band structure is given in detail in Ref-
erences [12, 22, 165] and a short overview is given here. We begin the description of the
electromagnetic waves using the Maxwell equations. For a homogeneous dielectric medium
with no free charges or currents, the Maxwell equations can be written as

∇ ·D = 0
∇ ·B = 0

∇×E+
∂B
∂ t

= 0

∇×H− ∂D
∂ t

= 0,

(2.27)

where E and H are respectively the electric and magnetic fields, D is the displacement field and
B is the magnetic induction field. This set of equations can be solved by writing D and B in
terms of the fields E and H. In vacuum, these quantities are proportional to each other as

D = ε0E
B = µ0H,

(2.28)

where ε0 and µ0 are respectively the permittivity and permeability of free space. To apply
these relations to a dielectric media, the response of the media to these fields also needs to be
considered. This results in the following relations

D = ε0E+P
B = µ0H+M,

(2.29)

where P is the polarization and M is the magnetization. These equations can be further sim-
plified using different assumptions. First, we consider a non-magnetic material, i.e. M = 0.
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This results in a linear relation between the magnetic field and the magnetic induction. Also,
we consider dielectric materials with magnetic permeability close to unity, i.e. µ0µ(r) ∼ µ0.
Then, if we consider small electric field strengths, the relation between D and E can also be
approximated to be linear. Lastly, if the considered dielectric is isotropic, then the dielectric
constant ε(r) is scalar in nature. These considerations result in the following equations

D = ε0ε(r)E
B = µ0H.

(2.30)

Combining these relations with the Maxwell equations, we obtain

∇ · (ε(r)E) = 0
∇ ·H = 0

∇×E+µ0
∂H
∂ t

= 0

∇×H− ε0ε(r)
∂E
∂ t

= 0.

(2.31)

In the next approximation, we assume a harmonic time-dependence of the electric and magnetic
fields of the form

E(r, t) = E(r)e−iωt

H(r, t) = H(r)e−iωt .
(2.32)

Substituting this time dependence into the simplified Maxwell equations, we obtain

∇ · (ε(r)E(r)) = 0
∇ ·H(r) = 0

∇×E(r)− iωµ0H(r) = 0
∇×H(r)+ iωε0ε(r)E(r) = 0.

(2.33)

In the above set of equations, the first two impose the condition that the electromagnetic waves
need to be transverse. The other equations can be coupled to obtain a ‘master equation’

ΘH(r) =
(

ω

c

)2
H(r)

where ΘH(r) = ∇×
(

1
ε(r)

∇×H(r)
)
,

(2.34)

and c= 1/
√

ε0µ0 is the speed of light in vacuum. The operator Θ in the master equation, written
in the current form as a function of H, is Hermitian. In other words, Hermiticity establishes that
the eigenvalues

(
ω

c

)2 are real, and that field distributions with the same eigenfrequency must be
orthogonal.

To solve this eigenvalue problem, a plane-wave basis is used to represent the magnetic
fields in the dielectric media. This is done by expanding the magnetic field H and the dielectric
constant ε(r) in terms of the components of the Fourier series along the reciprocal lattice vector.
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Figure 2.2: Schematic representation of the construction of the irreducible Brillouin zone (IBZ) for (top)
a square and (bottom) a hexagonal lattice. (left) The lattice in real space, where the green and yellow
colours respectively represent the high- and low-dielectric constant materials. The interparticle distance
is a. (middle) The reciprocal lattice, where the construction of the first BZ using the perpendicular
bisectors to the lattice vectors is shown. The interparticle distance is 2π/a. The perpendicular bisectors
are shown as dotted lines and the first BZ is shaded in blue. (right) The construction of the IBZ in the
first BZ. The IBZ is shaded in brown and the outlining path in terms of the k-points is marked.

Ideally, one needs to consider all possible propagation directions inside a crystal. However,
given the symmetry of the crystal, one could restrict the calculations to the wave vectors along
the first Brillouin zone (BZ) identified in the reciprocal space. The first BZ is defined as the
region of reciprocal space consisting of points which are closer to the origin than any other
vertex of the real crystal lattice. For a two-dimensional crystal, the first BZ is constructed
by drawing the perpendicular bisectors of each lattice vector that joins the origin to the nearest
vertices of the reciprocal lattice. Among the first BZ zone, one can identify the smallest possible
set of wave vectors that can still generate the entire reciprocal space of the crystal. This region,
along which the dispersion relations are calculated, is termed as the irreducible Brillouin zone
(IBZ). An example of the construction of the first BZ and IBZ of two-dimensional lattices with
square and hexagonal symmetry is given in Figure 2.2. Finally, the dispersion characteristics
resulting from the plane wave calculations is presented in a photonic band diagram, which is a
plot of the dispersion relation along the edges of the IBZ. For the calculations performed in this
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thesis, we use the freely available ‘MIT Photonic Bands (MPB)’ software package [165]. This
software package computes fully-vectorial eigenmodes of Maxwell’s equations with periodic
boundary conditions by preconditioned conjugate-gradient minimisation of the block Rayleigh
quotient in a plane wave basis.

2.7.2 Super cell method
To evaluate the effect of defects in the photonic crystals in the plane wave basis, a super cell is
constructed [166]. In these studies, defects are artificially introduced in photonic crystals. This
could be done either by changing the size or the dielectric constant of the dielectric particles in
the photonic crystal. Introducing such defects disrupts the periodicity of the lattice. Thus, we
need to artificially reinstate the disrupted periodicity. This is done by considering a large cell
constructed using a number of unit cells and the defect is introduced in the centre of this large
cell. This large cell, termed as a super cell, is then periodically repeated in space. This results
in an artificial structure consisting of periodic defects separated by regions of perfect photonic
crystal. An important consideration while using a super cell for calculations is that the distance
between the periodic defects should be sufficiently large so that they do not interact with each
other, i.e. the dimensions of the super cell play an important role in these calculations. This is
schematically shown using an example of a 5× 5 super cell constructed from an unit cell of a
square lattice of rods with a vacancy in the centre is given in Figure 2.3. The unit cell along with
its periodic images is shown on the left and the super cell and its periodic images are shown
on the right. We can note that the super cell consists of alternate regions of regular crystal and
defects. Thus, if the region of the intermediate regular crystal is not large enough, the defects
can interact with each other.

Figure 2.3: Schematic representation of a simulation cell and its periodic images for a a square lattice
of dielectric rods. (left) An unit cell containing a single particle and (right) a 5×5 super cell containing
a vacancy defect at the centre. In both, green and yellow colours respectively represent the high- and
low-dielectric constant materials.
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Part I

Dodecagonal quasicrystals in a
two-dimensional core-corona system





3 Relative stability of a dodecagonal
quasicrystal and its approximants

Using computer simulations we study the phase behaviour of a system of colloidal hard disks
with a diameter σHD and a soft corona of width 1.40σHD. The particles interact with a hard
core and a repulsive square-shoulder potential. We calculate the free energy of the random-
tiling quasicrystal and its periodic approximants using the Frenkel-Ladd method. We expli-
citly account for the configurational entropy arising from the distinct number of configurations
that the random-tiling quasicrystal can adapt. From the free-energy calculations, we find that
the dodecagonal quasicrystal is stable with respect to the periodic approximants that we con-
sidered. At finite temperatures, the quasicrystal is stabilised by its vibrational entropy. We can
extrapolate this stability region to extend to zero temperature as the energies of the defect-free
quasicrystal and the periodic approximants are equal within our statistical accuracy. Further,
we map out the equilibrium phase diagram and find that the system forms hexagonal phases in
two distinct ranges of density. This is due to the presence of the two characteristic length scales
in the interaction potential.

Based on On the stability of a quasicrystal and its crystalline approximant in a system of hard disks with a soft
corona, J. Chem. Phys., 143, 164905 (2015) and Phase behaviour of quasicrystal forming systems of core-corona
particles, J. Chem. Phys., 146, 1114901 (2017)
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3.1 Introduction

Quasicrystals are materials that exhibit long-range orientational order but no translational peri-
odicity. The first observation of a metastable quasicrystal was reported by Shechtman et al. in a
rapidly cooled Al-Mn alloy [96]. Since then, quasicrystals have been observed in a wide range
of intermetallic alloys. Surprisingly, quasicrystalline order has also been discovered recently in
several soft-matter systems, ranging from spherical dendrite micelles [105], block copolymers
[106–110] to binary mixtures of nanoparticles [111, 112]. In addition, soft-matter quasicrystals
have also been fabricated in colloidal systems using external fields such as holography [116] or
laser beams [117].

Quasicrystalline behaviour arises due to the presence of two competing length scales, either
induced by the different sizes of the two particle species in the case of binary mixtures, or
due to an effective pair interaction that favours two length scales [141]. This leads to a clas-
sification of soft-matter quasicrystals into two categories: 1) binary mixtures of, for example,
nanoparticles interacting with simple isotropic pair potentials, and 2) single-component sys-
tems, like micelles, with effective pair interactions that favour two length scales. Evidence of
spontaneous formation of quasicrystalline order in soft-matter systems belonging to both cat-
egories have been observed in computer simulation studies. Examples of in silico quasicrystals
in binary mixtures include particles interacting with Lennard-Jones [119, 120] and square-well
[125] potentials. Single-component quasicrystals have been observed in particles interacting
with Lennard-Jones-Gauss [77], square-shoulder [123], square-well [121], linear ramp [118],
flat-well [122] and three-well oscillating [124] pair interactions. For completeness, we men-
tion that quasicrystals are also studied in systems of patchy particles and hard non-spherical
particles such as tetrahedra [167] and (truncated) triangular bipyramids [129, 168], where the
interactions or particle shape generate local arrangements or packings that are compatible with
quasicrystals.

From a theoretical point of view, the thermodynamic stability of these soft-matter quasi-
crystals is widely debated in literature [135, 169]. The presence of two length scales in a
single-component system creates a core-corona type structure that is thought to stabilise the
quasicrystal [141, 169–172]. Indeed, many experimentally discovered soft-matter quasicrystals
in single-component systems frequently consist of spherical particles with a rigid core and a
squishy corona, for example, the spherical dendrite micelles consist of a rigid aromatic core
with a deformable shell of alkyl chains [105], and the block copolymer micelles consist of a mi-
cellar core of hydrophobic polymer surrounded by a large shell of hydrophilic polymer blocks
[110]. In addition, it was found by simulations that the mobility of the surface entities and
shape polydispersity in the case of single-component micellar systems play an important role
in the stabilisation of quasicrystals [173]. It is tempting to speculate that the role of the surface
entities with respect to mobility and polydispersity in single-component systems is replaced by
the smaller species in the case of quasicrystals of binary systems.

In order to prove the thermodynamic stability of quasicrystals, one has to show that the
quasicrystal corresponds to the lowest free-energy state of the system. Quasicrystals can be
either energetically or entropically stabilised [174]. An energetically stabilised quasicrystal
results when the quasicrystal is the minimum-energy configuration at zero temperature [135].
On the other hand, when the configurational entropy outweighs the energetic contribution, the
quasicrystal may be entropically stabilised at finite temperatures [169].
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An extension of this debate deals with the relative stability of a random-tiling quasicrystal
and its approximant at finite temperatures. An approximant is a periodic quasicrystalline coun-
terpart which is described by a large unit cell with a structure that resembles that of a quasi-
crystal [129, 175]. While the enthalpic and vibrational contributions to the free energy are
assumed to be very similar for the quasicrystal and its approximant, the free energy of a random-
tiling quasicrystal involves a configurational entropy contribution due to the number of distinct
configurations [176], which is absent for the approximant [177]. From this line of reasoning
one could expect that the quasicrystal is more stable than the approximant due to its configura-
tional entropy. On the other hand, one might expect the approximant to be more stable as it is
assumed to have a lower energy and is considered to pack more efficiently due to the absence of
defects [129, 167, 173]. Hence, we conclude that it is still unresolved whether or not the quasi-
crystal is more stable than its periodic approximant, and how this relative stability depends on
the thermodynamic state of the system.

Determining the stability of these quasicrystals is complex as their free energies cannot
be computed in a straightforward manner. This is because, a reference state with known free
energy from which thermodynamic integration to a quasicrystal can be performed is unknown.
This issue is further complicated by the fact that there is no simple way to sample over the
distinct configurations of the quasicrystal and to account for its configurational entropy [176].
Recently, a method was proposed to determine the free energy of a quasicrystal by simulating
the direct coexistence of a fluid and quasicrystalline phases of patchy particles [177]. Due to
the lack of hysteresis in the fluid to quasicrystal transformation of this system, the free energy
could be directly determined from the free energy of the fluid phase.

In this work, we follow a different methodology to determine the free energy of a two-
dimensional random-tiling quasicrystal in a system of hard disks interacting with a square-
shoulder potential. We determine the free energy of a defect-free random-tiling quasicrystal
and some of its approximants using thermodynamic integration to a non-interacting Einstein
crystal [151]. We find that the free energy of the random-tiling quasicrystal is slightly lower
than that of its periodic approximants. For the random-tiling quasicrystal, we explicitly account
for the configurational entropy using an expression from literature [178]. Here, we approximate
the configurational entropy by assuming that all possible realizations that are equivalent in the
random-tiling model are also equally probable in our system. Finally, we also map out the phase
diagram of the system under study and find that the defect-free random-tiling quasicrystal is
stable with respect to the periodic approximants that we considered, both with and without the
additional configurational entropy term.

3.2 Methods

We first explain the simulation model and computational methods used for this study in Section
3.2.1, and then give describe the free-energy calculations in Section 3.2.2.

3.2.1 Computational methodology
In this chapter, we focus on quasicrystalline order in single-component systems. We consider
a 2-D system of spherical particles enclosed by a soft deformable corona mimicking the floppy
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corona of alkyl chains in the case of micellar particles or the squishy hydrophilic shell of block
copolymer micelles. Analogous to previous work [123], we model this system by 2-D hard
disks with diameter σHD interacting with a repulsive square-shoulder potential. This hard-core
square shoulder (HCSS) system can be represented by the following pair potential

VHCSS(r) =


∞, r ≤ σHD
ε, σHD < r < δ

0, r ≥ δ

(3.1)

where δ and ε are the square shoulder width and height, respectively, and r is the centre-of-
mass distance between two particles The characteristics of this potential are described in detail
in Chapter 2. Despite the simplicity of the pair interaction, an entire family of quasicrystals
with 10−,12−,18− and 24−fold symmetry has been observed in a previous simulation study
depending on the square shoulder diameter and the packing fraction [123]. Here, we focus on
a diameter of the square shoulder δ = 1.40σHD, which gives rise to a dodecagonal (12-fold
symmetric) quasicrystal at sufficiently low temperatures and high enough densities [123]. At
these conditions of shoulder width, temperatures and densities, the system prefers the forma-
tion of square environments with four nearest neighbours to that of six coordinated hexagonal
environments, thereby lowering its potential energy.

To address the phase behaviour of this system and the relative stability of various phases, we
perform Monte Carlo (MC) simulations in a rectangular box of area A with periodic boundary
conditions in the canonical (NV T ) and isothermal-isobaric (NPT ) ensembles. We choose σHD
and ε , respectively, as the units of length and energy, and define a reduced temperature T ∗ =
kBT/ε , a reduced pressure P∗ = βPσ2

HD, and a reduced density ρ∗ = Nσ2
HD/A, where β =

1/kBT is the inverse temperature with kB the Boltzmann constant. In the simulations, we use a
system size between 209 to 256 particles depending on the initial crystal structure, and a system
size of 256 particles in case of an initial isotropic liquid phase.

To qualitatively analyse the structures that the system adopts under various conditions, we
calculate three parameters, namely, the polygonal tilings corresponding to the particle positions,
the local particle environment (LPE) of each particle, and the average bond orientational order
(BOO) parameter of the system. The polygonal tiling is obtained by drawing the bonds between
the centres of the neighbouring particles. Interpretation of dodecagonal quasicrystals as tilings
of squares and triangles is a common practice [178, 179]. The LPE describes the immediate
surrounding of each particle. In dodecagonal quasicrystals, the LPE is composed of various
possible arrangements of squares and triangles. This includes environments of only triangles (Z)
or squares (A15), and a combination of the two. Mixed arrangements of squares and triangles
primarily result in two five-particle coordinated environments, which are termed as H and σ .
All these LPEs are named in analogy to the three-dimensional Frank-Kasper phases [180]. An
overview of these LPEs is given in Figure 3.1. Finally, the average BOO parameter χm is defined
as [164]

χm =

〈∣∣∣∣∣ 1
NB(x)

NB(x)

∑
y=1

exp(imθrxy)

∣∣∣∣∣
2〉

, (3.2)

where m is the symmetry of interest, NB(x) is the number of neighbours of particle x, and θrxy

is the angle between the centre-of-mass distance vector rxy and an arbitrary axis. Any particle y
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is defined to be a neighbour of particle x if rxy = |rx−ry| ≤ δ , where rx and ry are the positions
of particles x and y. The angular brackets denote the averaging over different configurations.

A15Z H σ

Figure 3.1: Overview of the Z, A15, H and σ local particle environments (LPEs) in a dodecagonal
quasicrystal. Particles with LPEs other than these are coloured orange.

3.2.2 Free-energy calculations
The method for mapping out the equilibrium phase diagram for the HCSS system is explained
in detail in Chapter 2. Here, we give an account of the methods to calculate the free energy of
the different phases obtained in this system. We determine the dimensionless Helmholtz free
energy per particle f = βF/N as a function of density at a fixed temperature T ∗ for each of
the observed phases. This is done by thermodynamic integration of the isothermal equation
of state, i.e. the bulk pressure P∗ as a function of the equilibrium density ρ∗ at constant tem-
perature T ∗, to a reference density. The free energy at this reference density is calculated by
constructing a reversible thermodynamic path to a reference system for which the free energy is
either known or can be analytically calculated. We employ the hard-disk fluid phase at the same
density as a reference state for the fluid phase, and the non-interacting Einstein crystal as a ref-
erence for the periodic crystals as described in Chapter 2. However, calculating the free energy
of the quasicrystal is less trivial. This is because integrating from the fluid or ideal gas would
involve crossing an intervening first-order phase transition and on the other hand, using the Ein-
stein crystal as a reference state in the thermodynamic integration would not account for the
configurational entropy of the system associated with the number of distinct random-tiling con-
figurations. Also, in our system of particles, we do not observe a clear two-phase coexistence
of the quasicrystal with another phase, namely a fluid, square or high-density hexagonal, due
to their structural similarities. Thus, we calculate the free energy of the quasicrystal using the
Frenkel-Ladd method as for the periodic crystals, and subsequently add an additional configura-
tional entropy contribution associated with the number of distinct random-tiling configurations.
This method of configurational entropy correction is explained below.

In order to obtain an estimate of the configurational entropy, we consider the random-tiling
model of polygons. Thus, the dodecagonal quasicrystal formed in our system is constructed by
a random tiling of equilateral triangles and squares [123]. The configuration resulting in the
maximum entropy and thus, the formation of quasicrystals, is obtained at equal area fractions
of triangles and squares [83, 123, 178]. For such a configuration of triangles and squares,
two different values are reported in the literature for the entropy per unit area Sconfig/kBA. A
value of Sconfig/kBA = 0.12934 was calculated by Widom [178] by solving the Bethe ansatz
for the square-triangle random-tiling model for infinitely large systems [178, 181, 182], and
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a value of Sconfig/kBA = 0.13137 was estimated by Oxborrow and Henley [84] using Monte
Carlo simulations. In this work, we use the more conservative value obtained by Widom. A
negligible effect of system size on this value was reported for system sizes larger than N = 153
[178], and a system size of 209 particles is used in our simulations. Further, it is good to note
that this analytical description of the configurational entropy considers a perfect random tiling,
where all configurations are equally probable. However, this might not be true for the HCSS
system, where the probability of finding a certain tiling will also depend on its potential energy
and vibrational entropy. The former is determined by the pair interactions and the latter by
the number of configurations that the particles can explore while moving around their lattice
positions. Thus, the value used here is an upper bound for the configurational entropy of the
HCSS system consisting of a square-triangle random tiling.

3.3 Results and discussion

In this section, we first present the construction of the structures of the quasicrystal and the
approximants. We then analyse the relative stability between these structures and finally map
out the equilibrium phase diagram.

3.3.1 Structure of quasicrystal and its approximants

For a system of HCSS particles with a shoulder width δ = 1.40σHD, a dodecagonal quasicrystal
consisting of a random tiling of squares and triangles has been observed in simulations by
Dotera et al. [123]. The dodecagonal quasicrystal (QC12) was reported to form by cooling a
high-density hexagonal (HDH) phase of density ρ∗ = 0.98 to a lower temperature at a constant
density in the NV T ensemble. In addition, we find in our simulations that the dodecagonal
quasicrystal also forms when an isotropic fluid (FL) phase is compressed to a higher density at
a constant temperature in the NPT ensemble. These transformations can be monitored using
the m-fold BOO parameter χm. In Figure 3.2, we show the behaviour of three BOO parameters
χ4, χ6 and χ12, respectively representing square, hexagonal and dodecagonal order. In Figure
3.2(a), we plot the BOO parameter as a function of temperature T ∗ during the cooling of the
HDH phase at a density of ρ∗ = 0.98. We observe that the value of χ6 decreases and the
values of χ4 and χ12 increase upon decreasing the temperature. This signals the formation of
the QC12. This behaviour of χm is due to the formation of A15, H and σ LPEs at the expense
of Z. Similarly, Figure 3.2(b) shows the BOO parameter as a function of pressure P∗ during
compression of the FL phase at a temperature T ∗ = 0.30. We observe a discontinuity in χ12
with pressure, which points to a first-order phase transition from the fluid to the quasicrystal
phase.

In Figure 3.3(a), we show a typical configuration of the random-tiling dodecagonal quasi-
crystal (QC12) on the top, and its accompanying tiling (left) and diffraction pattern (right) at
the bottom as obtained from simulations at ρ∗ = 0.98 and T ∗ = 0.278 in the NV T ensemble.
Only the particle cores are shown in the configurations which are coloured according to their
LPEs as described in Section 3.2.1. The resulting configuration contains defects of primar-
ily pentagonal shape, which are highlighted in the accompanying tiling. In order to verify the
nature of the QC12 tiling, we measure the ratio of number of triangles to squares in the tiling.
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Figure 3.2: Formation of a dodecagonal quasicrystal (QC12) in a simulation of the HCSS system with
δ = 1.40σHD. The m-fold bond orientational order (BOO) parameter χm is plotted as a function of (a)
temperature T ∗ as obtained by cooling a high-density hexagonal (HDH) phase at density ρ∗=Nσ2

HD/A=
0.98 in the NV T ensemble, and (b) pressure P∗ by compressing a fluid (FL) phase at temperature T ∗ =
kBT/ε = 0.30 in the NPT ensemble.
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Figure 3.3: Comparison of the quasicrystal and its periodic approximants. Random tiling dodecagonal
quasicrystal (QC12) (a) as obtained from simulations and (b) its defect-free configuration, (c) H phase
(AC12-H), (d) σ phase (AC12-σ ), and approximants consisting of dodecagons in a (e) triangle (AC12-tr)
tiling and (f) square-triangle (AC12-st) tiling. Each figure displays a typical configuration (top), where
the particles are shown in core-only representation and the colours represent the local particle environ-
ments (LPEs) as described in Figure 3.1, along with its corresponding square-triangle tiling (bottom left)
and diffraction pattern (bottom right). For the AC12-tr and AC12-st approximants in (e, f), the tiling of
dodecagons is highlighted (top right).
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We obtained a value of 2.30± 0.20, which is close to that of a dodecagonal quasicrystalline
tiling 4/

√
3 ≈ 2.309 [83, 178, 181–183], providing confidence that the additional configura-

tional entropy contribution can be approximated by that of the random square-triangle tiling. In
order to eliminate the effect of these defects on the phase diagram calculations, a defect-free
configuration was adapted from a non-Stampfli square-triangle approximant [84]. We used the
structure given in Figure 3 of Reference [84] containing 209 particles. This is shown in Figure
3.3(b) along with its tiling and diffraction pattern and was used as the initial configuration for
the expansion runs of the equation of state.

A significant fraction of local particle environments in dodecagonal quasicrystals have a
coordination number of five. Depending on the local arrangement of squares and triangles
around the central particle, these environments can be categorised as H or σ LPEs as given in
Figure 3.1. Periodic structures consisting entirely of these LPEs can be considered as a periodic
approximants to the dodecagonal quasicrystals. We term these as first-order approximants.
Their structures and corresponding diffraction patterns are shown in Figures 3.3(c) and 3.3(d).
It can be noted from the diffraction patterns that the AC12-H phase shows more linear order than
the required dodecagonal symmetry, while the dodecagonal symmetry obtained in the AC12-σ
phase is somewhat distorted. This is attributed to the low number of particles in the approximant
unit cell, namely 8 and 32 in the AC12-H and AC12-σ phases respectively.

Thus, we construct second-order approximants with a larger number of particles in their
unit cells. These consist of dodecagonal motifs of particles arranged either in a triangle (AC-tr)
[177, 180] or a square-triangle (AC-st) [84] tiling, constituting 52 and 56 particles respectively
in their unit cells. The latter was adapted from a repeated vertex substitution of the (32.4.3.4)
Archimedean tiling consisting of squares and triangles [85]. These structures are shown in Fig-
ures 3.3(e) and 3.3(f). In the top-left panel of these figures, the particles are coloured according
to their LPEs. On the top-right, the individual dodecagons and the tiling formed by connecting
the centres of these dodecagons is shown. From the colouring of the particles in these structures
according to their LPEs, we can identify the structural differences between the QC12 and the
approximants. On basis of the two five-particle coordinated LPEs, H and σ , we observe that
the AC12-tr consists solely of σ environments, while the AC12-st consists of both H and σ en-
vironments. In addition, the ratio of σ to H LPEs is much higher in AC12-st in comparison to
that in QC12. In other words, the AC12-st consists predominantly of σ LPEs, while the QC12
consists of similar fractions of σ and H LPEs. Also, the A15 LPE, resulting from the presence
of neighbouring square tiles, is found only in QC12 and is absent in all approximants.

3.3.2 Relative stability of quasicrystal and its approximants
To study the relative stability of the quasicrystal and the approximants, we first compare their
equations of state (EOS), i.e. the pressure P∗ as a function of the density ρ∗. We measure
the EOS by varying the pressure in a step-wise manner in the NPT ensemble. We perform
expansion runs starting with a defect-free random-tiling quasicrystal (QC12) or either of its
four periodic approximants (AC12-H, AC12- σ , AC12-tr or AC12-st). We also calculate the
EOS of crystal phases with a square (SQ) or a hexagonal (HDH) symmetry, which flank the
quasicrystal and approximant phases on either side in terms of density. We plot the results for
T ∗ = 0.10 in Figure 3.4. Two essential observations can be made from these plots, namely (1)
the first-order approximants are less dense than the QC12 and the second-order approximants;
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Figure 3.4: Equations of state, reduced pressure P∗ = βPσ2
HD versus reduced density ρ∗ = Nσ2

HD/A
calculated at reduced temperature T ∗ = kBT/ε = 0.10 for a HCSS system with δ = 1.40σHD for the
following phases: square (SQ), high-density hexagonal (HDH), quasicrystal (QC12), the first-order ap-
proximants, H phase (AC12-H) and σ phase (AC12-σ ), and the second-order approximants consisting
of dodecagons in a triangle (AC12-tr) and square-triangle (AC12-st) tiling. Inset gives a closer look at
the pressures at which the solid phases melt.

which are all equally dense for all pressures higher than the melting point, and (2) the first-
order approximants melt before the second-order approximants and the quasicrystal. This hints
towards lower thermodynamic stability of the first-order approximants, namely the AC12-H
and AC12-σ phases, in comparison to the others.

In the next step, we construct common tangents between different pairs of phases to evaluate
the relative stability between these phases. The common-tangent construction between SQ and
HDH at a temperature T ∗ = 0.10 is presented in Figure 3.5. Here, we plot the Helmholtz free
energy per unit area βF/A as a function of reduced density ρ∗ for the following phases: SQ,
HDH, AC12-H, AC12- σ , AC12-tr, AC12-st and QC12 without (QC12-woS), and with (QC12-
wS) the configurational entropy contribution Sconfig/kBA = 0.12934 as taken from literature
[178]. For convenience, we subtract a linear fit (ρµc−Pc) from the free-energy curves, where
µc denotes the bulk chemical potential at the (metastable) SQ-HDH phase coexistence and Pc
the corresponding bulk pressure. This ensures that the ‘resultant’ free energy of the two-phases
between which the common-tangent is drawn is zero. In other words, the phases with a negative
‘resultant’ free energy in this plot are more stable with respect to the concerned two-phase co-
existence. From Figure 3.5, we first note that the minima of the free-energy curves of QC12 and
all approximants lie below the zero-level showing that all these phases with dodecagonal sym-
metry are more stable than the SQ-HDH phase coexistence. The magnitude of this difference of
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Figure 3.5: Common tangent construction at the (metastable) square-high-density hexagonal (SQ-
HDH) phase coexistence obtained for the HCSS system with δ = 1.40σHD at reduced temperature
T ∗ = kBT/ε = 0.10. The plot shows the Helmholtz free energy per unit area βF/A as a function of
reduced density ρ∗ = Nσ2

HD/A. A linear fit (ρµc−Pc) is subtracted from the free energy, where µc

and Pc are respectively the bulk chemical potential and bulk pressure at the (metastable) SQ-HDH phase
coexistence. The phases shown are square (SQ), high-density hexagonal (HDH), the first-order approx-
imants, H phase (AC12-H) and σ phase (AC12-σ ), and the second-order approximants consisting of
dodecagons in a triangle (AC12-tr) and square-triangle (AC12-st) tiling, and the dodecagonal quasi-
crystal without the entropy correction (QC12-woS) and the dodecagonal quasicrystal with the entropy
correction (QC12-wS). Inset shows a closer look of the free energy curves of QC12-woS, AC12-tr and
AC12-st phases.

these curves below the zero level gives the bias for the squares and triangles to mix and to form
a square-triangle tiling, rather than phase separate into SQ and HDH regions. Also, as seen in
the equations of state, the first-order approximants, AC12-H and AC12-σ are metastable with
respect to the second-order approximants, AC12-tr and AC12-st, and the quasicrystal.

To identify the relative stability between the QC12-woS, AC12-tr and AC12-st phases, we
take a closer look at their free energy curves in the inset. From the inset, we see that the QC12
is more stable than the other approximants even without the additional configurational entropy
correction. This leads us to infer that the QC12 phase is stabilised by its vibrational entropy,
i.e. the entropy associated with the number of configurations that the QC12 can probe by the
vibrational motion of the particles around their lattice positions. This stems from the fact that
the free energy calculated by the Frenkel-Ladd method has only two contributions, namely the
potential energy of the particles and their vibrational entropy. Given that the QC12, AC12-
tr and AC12-st have the same potential energy (for example, U∗ = U/εN = 2.536± 0.002 at
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ρ∗= 1.07), the difference in the free energy is attributed to the vibrational entropy. This entropy
pertaining to the vibrational motion of the particles is inherently calculated in the Frenkel-Ladd
method by integrating the mean square displacements of the particles around their lattice sites as
a function of the spring constant of the harmonic springs that tie the particles to their respective
lattice positions. The higher vibrational entropy of the QC12 could be due to long-wavelength
phonon contributions. However, we do not systemically study this aspect here.

For all temperatures considered in this study (T ∗ ≥ 0.05), we find that the QC12, even
without the configurational entropy correction, is thermodynamically more stable than its ap-
proximants. Previous studies have reported a quasicrystal-approximant transition for a random-
tiling quasicrystal at lower temperatures [176]. On the other hand, the conjecture by Dotera
et al. [123], suggests the formation of a stable random-tiling dodecagonal quasicrystal at 0 K
with a density ρ∗ ≈ 1.07 and ground state energy U/εN = 2.536. We find that the closed
packed density of the quasicrystal and the second-order approximants is indeed ρ∗ = 1.07 with
a potential energy U∗ =U/εN equal to 2.536±0.002. Extrapolating to lower temperatures, at
0.00 < T ∗ < 0.05, we speculate that the quasicrystal remains more stable than its approxim-
ants. At zero temperature, the quasicrystal and the second-order approximants may be equally
probable, considering their equal potential energy within our error bars.

The subsequent chain of thought leads to a question regarding the formation of the first-order
approximants, AC12-H and AC12-σ , in the HCSS system. This arises because, in comparison
to the triangle-to-square ratio of 4/

√
3 ' 2.309 resulting in the formation of the dodecagonal

quasicrystal, we find that this ratio for the second-order approximants is 2.3, whereas that for
the first-order approximants is 2.0. This means that the first-order approximants can be formed
in between the SQ and QC12 phases. This can be explained by considering the transforma-
tion from the square to the hexagonal phase as an increase in the triangle-to-square ratio upon
increasing the density of the system. In other words, we find that the triangle-to-square ratio
increases with density until it matches with the maximum entropy random tiling consisting of
equal area fractions of squares and triangles. Thus, the first-order approximants with a lower
triangle-to-square ratio can be formed at a density in between that of the square phase and the
random-tiling quasicrystal phase as can be seen in Figure 3.4. However, as seen in Figure 3.5,
they have a higher free energy than the QC12 and thus, are not thermodynamically stable.

3.3.3 General phase behaviour
In order to map out the equilibrium phase diagram, we determine the equations of state (EOS)
at a range of temperatures. The EOS calculated at three temperatures T ∗ = 0.50, 0.30, and
0.15 are shown in Figure 3.6. At the highest temperature of T ∗ = 0.50, the system exhibits
hard-disk-like behaviour with a fluid phase at low densities, a hexagonal phase at sufficiently
high densities and a two-phase coexistence region in between. At the intermediate temperature
of T ∗ = 0.30, various high-density solid phases, namely SQ and QC12, start to appear, whereas
at the lowest temperature, T ∗ = 0.15, the formation of a low-density hexagonal (LDH) phase
bounded by the FL phase is observed. We show sample configurations of the four solid phases
in Figure 3.7. Here, both the particle cores and coronas are shown, which are respectively
coloured in blue and red.

Subsequently, we map out the phase diagram by performing the common tangent construc-
tion at various temperatures. The phase diagram in the reduced pressure-temperature (P∗−T ∗)
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Figure 3.6: Equations of state (P∗ = βPσ2
HD versus ρ∗ = Nσ2

HD/A) obtained for the HCSS system
with δ = 1.40σHD and temperatures T ∗ = kBT/ε = 0.50, 0.30 and 0.15. The phases shown are fluid
(FL), square (SQ), low-density hexagonal (LDH), high-density hexagonal (HDH), and the dodecagonal
quasicrystal (QC12).

Figure 3.7: Sample configurations of the solid phases formed in the system, namely low-density
hexagonal (LDH), square (SQ), dodecagonal quasicrystal (QC12) and high-density hexagonal (HDH).
The particle cores are coloured in blue and the coronas is red.
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Figure 3.8: Phase diagram of a two-dimensional hard-core square-shoulder (HCSS) system with a
shoulder width δ = 1.40σHD in the (a) pressure-temperature and (b) temperature-density planes. All
quantities are represented in reduced units as P∗ = βPσ2

HD, T ∗ = kBT/ε and ρ∗ = Nσ2
HD/A. The phases

represented are fluid (FL), square (SQ), low-density hexagonal (LDH), high-density hexagonal (HDH),
and random-tiling dodecagonal quasicrystal (QC12). The phase boundaries of the QC12 without the
entropy correction, that accounts for the number of distinct configurations, are shown with dashed grey
lines.
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and temperature-density (T ∗−ρ∗) planes are given in Figure 3.8. We make the following four
observations from the phase diagram. Firstly, the stable phases identified in the system are the
fluid (FL), square (SQ), low-density hexagonal (LDH), high-density hexagonal (HDH), and the
dodecagonal quasicrystal (QC12). Further, we note that the quasicrystal is the thermodynamic-
ally stable dodecagonal symmetric phase in the system and is stable over a range of temperatures
(0.10 ≤ T ∗ < 0.45) even without the configurational entropy term associated with the number
of distinct configurations. The phase boundaries of the QC12 calculated without the additional
configurational entropy correction are also shown with dashed grey lines. Secondly, as noted
from the EOS, a re-entrant fluid (FL) phase encompassing the low-density hexagonal (LDH)
phase is found to be stable at low temperatures and densities. The LDH phase is a consequence
of the repulsive square shoulder, which stabilises a hexagonal phase with a lattice spacing on the
order of the square shoulder width. Thirdly, the stable close-packed phase is the high-density
hexagonal (HDH) phase. At higher temperatures, T ∗ ≥ 0.45, the phase behaviour of the system
is similar to that of hard disks, with a fluid phase at low densities and a hexagonal phase at
higher densities and a fluid-solid coexistence region in between. Given the system sizes used
in this study, the presence of the hexatic phase is not considered [184, 185]. Finally, at mod-
erate densities, the square phase is stabilised due to a lower energy, and the quasicrystal with
dodecagonal symmetry is sandwiched between the SQ and HDH phases at low temperatures
and between the FL and HDH phases at high temperatures.

3.4 Conclusions
In conclusion, we investigated the phase behaviour of a model system of colloidal particles
with a core-corona architecture. The particles are modelled by a hard-core square-shoulder pair
potential with a shoulder width δ = 1.40σHD. We investigated the thermodynamic stability of
a random-tiling dodecagonal quasicrystal formed at this shoulder width with respect to a dis-
ordered fluid phase, periodic crystal phases, and periodic approximants. We calculate the free
energy of this random-tiling dodecagonal quasicrystal by explicitly accounting for its configur-
ational entropy. For this system, we find a stable quasicrystal region sandwiched between the
high-density hexagonal phase and a square phase at sufficiently low temperatures, and between
the high-density hexagonal phase and a fluid phase at sufficiently high temperatures. We con-
firm that the quasicrystal is stabilised over the approximants by its vibrational entropy. We also
stress that the phase boundaries are insensitive to whether or not the configurational entropy
term is included in the free-energy calculations. We also study the overall phase behaviour of
the system. At low densities, the fluid exhibits a re-entrant phase behaviour circumscribing a
low-density hexagonal phase due to the presence of two length scales in the interaction poten-
tial. At high and intermediate densities, a high-density hexagonal phase and a square phase are
respectively found to be stable.
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4 The effect of interaction range and
pair potential on the formation of the

dodecagonal quasicrystal

In this chapter, we first examine the formation of the dodecagonal quasicrystal reported in the
hard-core square-shoulder system in Chapter 3 using bond orientational order parameters, cor-
relation functions and tiling distributions. We find that this dodecagonal quasicrystal forms
from a fluid phase. We then study the effect of the shoulder width of the repulsive shoulder and
the effect of the shape of the interaction potential on the formation of this quasicrystal. For the
former, we simulate the system over a range of values of the shoulder width δ . For the range
of densities and temperatures considered, we observe the formation of the dodecagonal quasi-
crystal for 1.30σHD ≤ δ ≤ 1.44σHD. For the latter, we simulate the system using three other
interaction potentials with two length scales, namely hard-core plus a linear ramp, a modified
exponential, and Buckingham (exp-6) potential. We observe the presence of the quasicrystal in
all three systems. However, depending on the shape of the potential, the formation of the quasi-
crystal takes place at lower temperatures (or higher interaction strengths). In addition, using
free-energy calculations, we demonstrate that the quasicrystal is thermodynamically stable in
the square-shoulder and linear-ramp system.

Based on The effect of temperature, interaction range, and pair potential on the formation of dodecagonal
quasicrystals in core-corona systems, J. Phys. Cond. Matt., 29, 094003 (2017)
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4.1 Introduction

Quasicrystals are materials that exhibit long-range orientational order but no translational peri-
odicity. They were first reported by Shechtman et al. in a rapidly cooled Al-Mn alloy [96].
Since then, the world of quasicrystals has been blooming. Although, quasicrystals were initially
found mostly in intermetallic systems, they have now also been reported in several soft-matter
systems ranging from spherical dendrite micelles [105, 110], block copolymers [106–109] to
binary mixtures of nanoparticles [111, 112]. Furthermore, there have been reports of colloidal
quasicrystals obtained using external fields such as holography [116] or laser beams [117].

One of the most fascinating properties of quasicrystals is the formation of photonic band
gaps, which is relevant for applications in optical devices. Photonic quasicrystals were first de-
scribed for a one-dimensional quasicrystal by Kohmoto et al. [186] and have been extensively
studied since then in two- and three-dimensional systems [68, 78, 187]. In general, soft-matter
photonic quasicrystals have potential interesting applications in the telecommunications sector
which require materials with a photonic band gap in the visible region of light [188]. This is
due to the larger size of the constituent particles than their atomic counterparts and the relative
ease of formation by self-assembly [44, 189]. Correspondingly, a complete photonic band gap
was observed in a 12-fold symmetric quasicrystal obtained by etching air holes through a planar
wave guide [91]. However, to the best of our knowledge, a quasicrystal self-assembled from
colloidal particles with a full photonic band gap has not yet been realised experimentally. Thus,
in order to facilitate the synthesis and self-assembly of these two-dimensional soft-matter quasi-
crystals, we investigate here extensively their formation and stability by computer simulations.

It is now widely accepted that the formation of quasicrystals in soft-matter systems is aided
by the presence of two competing length scales [141, 169, 190–193]. This could either be
the particle sizes of the two species in binary systems or an effective pair interaction that fa-
vours two length scales in a single-component system. Evidences have been found for both
these classes using computer simulations. The former has been observed in particles interact-
ing with Lennard-Jones [119, 120] and square-well [125] potentials, and the latter in systems
with Lennard-Jones-Gauss [77], square-shoulder [123], square-well [121], linear ramp [118],
flat-well [122] and three-well oscillating [124] pair interactions.

Computational studies of soft-matter quasicrystals using systems with core-corona archi-
tecture gained attention after the work of Dotera et al., in which they studied the formation
of quasicrystals of various symmetries using Monte Carlo simulations [123]. They reported
six quasicrystals at different sizes of the corona with respect to the hard core. More recently,
Schoberth et al. studied the formation of quasicrystals using a more realistic model for core-
shell micelles [142]. They used a repulsive-shoulder potential to account for the entropic inter-
actions of the overlapping polymer brushes. They provide a comparison with the system used
by Dotera et al. [123]. The focus of these two works has been to identify the regions of quasi-
crystal formation in a density-corona diameter parameter space. One of the more appealing
quasicrystals reported in both these studies is the high-density dodecagonal quasicrystal, which
is more commonly observed in experimental soft-matter systems. Though there have been stud-
ies reported on the formation of a low-density dodecagonal quasicrystal [192, 193], we did not
find any reports regarding the nature of formation of a high-density dodecagonal quasicrystal.
Our present work is a step in this direction.
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In this chapter, we study various aspects of the formation of a dodecagonal quasicrystal
reported by Dotera et al. in a system of particles interacting with a hard core and a square-
shoulder potential with a shoulder range equal to 1.4 times the hard-core diameter [123]. We
divide this study into three parts. In the first part, we qualitatively and quantitatively follow
the formation of a dodecagonal quasicrystal in a core-corona system using bond orientational
order parameters, correlation functions and tiling distributions. In the second and third parts, we
analyse the robustness of the formation of the quasicrystal by respectively studying the effect
of shoulder width and the shape of the interaction potential.

4.2 Methods

We first explain the simulation model and computational methods used for this study in Section
4.2.1, and then give an account of the analysis methods in Section 4.2.2.

4.2.1 Computational methodology

In the first two parts of this study, we use a hard-core square shoulder (HCSS) model to represent
the core-corona architecture. This model consists of a two-dimensional system of particles
interacting with a pair potential consisting of a hard core of diameter σHD and a repulsive square
shoulder of diameter δ , and was earlier used to model interparticle interactions in Cesium and
Cerium [194]. A detailed description of the model is given in Chapter 2. This step potential,
with a shoulder height ε , introduces two characteristic length scales in the system, respectively,
at the hard core diameter σHD and the square shoulder diameter δ . We consider the shoulder
width in units of the hard core diameter. This ultimately results in a single tunable parameter in
the system, i.e. the shoulder width δ .

The basis of this study is a dodecagonal quasicrystal at δ = 1.40σHD initially reported in a
simulation study by Dotera et al. [123] and recently re-established by Schoberth et al. [142].
In both works, bond orientational order parameters and bond orientational correlation functions
were used to identify and characterise the resultant phase. However, the characterisation dur-
ing the formation of this quasicrystal and details on its thermodynamic stability are absent. In
Chapter 3, we studied the thermodynamic stability of this dodecagonal quasicrystal with em-
phasis on its relative stability over approximants with various periodic square-triangle tilings.
We found that the quasicrystal is thermodynamically stable with respect to the considered tilings
over the range of temperatures and densities that were studied. Therefore, we only consider the
formation of this quasicrystal in this chapter. Here, we critically evaluate the formation of this
quasicrystal in terms of a number of order parameters. This also acts as a summary of vari-
ous methods that can be utilised to identify the quasicrystal. Further, we analyse the scope for
formation of this quasicrystal in a three-dimensional parameter space consisting of the shoulder
width, temperature and density.

In the last part of this study, we make use of the following three interaction potentials, which
exhibit two characteristic length scales:
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• Hard-core linear ramp (HCLR) potential, which is written as

VHCLR(r) =


∞, r ≤ σHD

ε
δ−r

δ−σHD
, σHD < r ≤ δ

0, r > δ

. (4.1)

This model has previously been shown to demonstrate a density anomaly during cooling
and also formed a decagonal quasicrystal [118]. In this study, we take the width of the
ramp to be equal to that of the square shoulder in the HCSS model, i.e. δ = 1.40σHD.

• Hard-core modified exponential (HCME) potential represents a modified form of an ex-
ponential potential to fit inside the square shoulder. The pair potential VHCME(r) reads

VHCME(r) =
{

∞, r ≤ σHD
ε exp

[
−
( r−σHD

λ

)m]
, r > σHD

. (4.2)

The values of m = 5 and λ = 0.31σHD are used in this study.

• Hard-core Buckingham or exp-6 (HCE6) potential is a classical potential used to model
the soft-interactions that describe the anomalous behaviour of atomic substances at high
pressures resulting from core-softening [195, 196], and reads

VHCE6(r) =

{
∞, r ≤ σHD
−6ε

α−6

[
exp(−α( r

σHD
−1))−α

(
σHD

r

)6
]
, r > σHD

, (4.3)

where the parameter α controls the steepness of the potential and is taken to be 15 in the
present simulations.

In Figure 4.1, we show a comparison between all four interaction potentials. The HCLR is
a linear ramp along the diagonal between the core and the corona diameters. The HCME is a
short-ranged exponential potential that fits within the square shoulder. It initially follows the
shape of the square shoulder and then decreases exponentially. On the other hand, the HCE6
is a long-ranged exponential potential which initially follows the shape of the linear ramp and
then extends beyond the square shoulder. The parameters of each potential are chosen such that
the shape of the potential largely fits inside the square shoulder at δ = 1.40σHD.

We perform Monte Carlo (MC) simulations in the canonical (NV T ) and isothermal-isobaric
(NPT ) ensembles. We use a rectangular box of area A with periodic boundary conditions.
The hard-core diameter σHD and the shoulder height ε are, respectively, taken to be the units
of length and energy. We define the following dimensionless (reduced) quantities: temperature
T ∗= kBT/ε , pressure P∗= βPσ2

HD, and density ρ∗=Nσ2
HD/A, where β = 1/kBT is the inverse

temperature with kB the Boltzmann constant. A system size N of 4900 particles was used in the
first part of this study and that of 256 was used in the second and third parts.

4.2.2 Structural analysis
We perform an array of analyses to study the local structure of the system and to differentiate
between the phases. This comprises of constructing the polygonal tiling of the structure, cal-
culating the m-fold bond orientational order parameter (BOO) of a particle j, χ

j
m, the average
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Figure 4.1: Comparison of the various two length scale interaction potentials used in this study shown
as a function of the interparticle distance r. The pair potentials are the hard-core square shoulder (HCSS)
potential, the hard-core linear ramp (HCLR) potential, the hard-core modified exponential (HCME) po-
tential and the hard-core Buckingham or exp-6 (HCE6) potential.

BOO of the system, χm, the m-fold bond orientational correlation function, gm(r), the radial
distribution function, g(r), and the static structure factor, S(k). We provide a description re-
garding the calculation of the tiling and bond orientational order parameters and the consequent
correlation functions below.

We obtain the polygonal tiling of a structure by drawing bonds between the neighbouring
particles of each particle j. The neighbouring particles are identified as particles that are at
a centre-of-mass distance smaller than the square shoulder diameter δ from particle j. This
is done to correlate the structures formed in our system with dodecagonal quasicrystals which
are described in terms of tilings consisting of squares and equilateral triangles [83, 178, 181–
183]. Analysis of the tiling allows us to distinguish between the various phases formed in the
system and thus, the phase behaviour of the system. It is good to mention that such tilings have
previously been used to study other phenomena in condensed matter systems like melting and
condensation [197] and entropic demixing [198]. In our analysis of the tilings, we exclusively
identify the triangle and the square tiles. We note that most of the defects in a hexagonal
lattice result in a rhombic tile. Given the resemblance between the rhombus and square tiles,
we also mark the rhombus tiles separately in order to prevent any effect of these tiles on the
relative square-triangle tile calculations. Finally, the remainder of the tiles are grouped together
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and termed as ‘defect’ tiles. In this study, we colour the triangles in green, squares in yellow,
rhombi in orange and defects in grey.

To calculate the BOO of the system, we first define the m-fold BOO of a particle j as

χ
j

m =

∣∣∣∣∣ 1
NB( j)

NB( j)

∑
k=1

exp(imθr jk)

∣∣∣∣∣
2

, (4.4)

where m is the symmetry of interest, r jk is the centre-of-mass distance vector between two
neighbours j and k, θr jk is the angle between r jk and an arbitrary axis, and NB( j) is the number
of neighbours of particle j, which are defined as particles for which |r jk| ≤ δ . For each particle
j, we calculate χ

j
4 representing square symmetry, χ

j
6 representing hexagonal symmetry and χ

j
12

representing dodecagonal symmetry. We use the method described in Table 4.1 to classify the
particles based on their BOO. We consider a particle to be fluid-like if each of the three χ

j
m is

less than 0.5. On the other hand, if each of χ
j

m is greater than 0.5, then a particle is said to have
symmetry m1 if χ

j
m1 is greater than the other two, namely χ

j
m2 and χ

j
m3. Further, we identify and

colour the particles according to the following scheme: particles of square symmetry in purple,
those of hexagonal in green, dodecagonal in red and fluid-like in orange as shown in Figure 4.2.
Analogous to the three dimensional Frank-Kasper phases, the four LPEs shown in this figure
can also be addressed as A15, Z, H and σ , respectively [180].

Table 4.1: Method of classification of particle j according to its bond orientational order (BOO) χ
j

m.

Symmetry BOO conditions Colour scheme
Fluid/Other (OT) χ

j
4 ,χ

j
6 ,χ

j
12 < 0.5 orange

Crystal χ
j

4 ,χ
j

6 ,χ
j

12 > 0.5

- Square (SQ) χ
j

4 > χ
j

6 ,χ
j

12 purple

- Hexagonal (HX) χ
j

6 > χ
j

4 ,χ
j

12 green

- Dodecagonal (QC) χ
j

12 > χ
j

4 ,χ
j

6 red

Figure 4.2: Colour scheme for classes of particles based on the BOO classification as described in Table
4.1.
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After calculating the BOO of each particle, the average BOO of the system is then evaluated
as [164]

χm =
1
N

N

∑
j=1

χ
j

m. (4.5)

Ultimately, the m−fold bond orientational correlation function gm(r) with r = |r− r′| is calcu-
lated as

gm(r) =
〈

χ
j

m(r).χ
k∗
m (r′)

〉
. (4.6)

There are previous accounts of identifying quasicrystals using BOO, BOO correlation func-
tions and radial distribution functions [123, 142]. In this work, we apprehend all these methods
along with tiling calculations to provide a comprehensive overview of the various methods that
can be used. We aim to verify the consistency achieved by using these methods in addition to
studying the nature of quasicrystal formation.

4.3 Results and discussion
As indicated in the previous sections, this section will be presented in three parts. In the first
part (Section 4.3.1), we take a meticulous look at the process of formation of the dodecagonal
quasicrystal in the HCSS system. In the second part (Section 4.3.2), we study the influence
of the shoulder width of the HCSS potential on the quasicrystal formation. And finally in the
third part (Section 4.3.3), we study the response of the system when the shape of the interaction
potential is modified.

4.3.1 Formation of dodecagonal quasicrystal
By now, the presence of a random-tiling high-density dodecagonal quasicrystal in the HCSS
system is well reported [123, 142]. However, the process of its formation is seldom studied. It
is formed either by cooling a hexagonal structure from a high to a low temperature at a constant
density or by compressing an isotropic fluid phase to a higher density at a constant temperature.
In this work, we delve into the former method where we cool a hexagonal lattice of (reduced)
density ρ∗ = 0.98 from (reduced) temperature T ∗ = 1.0 to 0.1. This cooling simulation is
marked using a red dashed line in the phase diagram shown in Figure 4.3(a).

To start, we inspect the change in the potential energy per particle as a function of temper-
ature as presented in Figure 4.3(b). We note six different branches in the plot indicating distinct
phase behaviours. We have marked these individual regions after studying various structural
properties of the obtained configurations, for example, its tiling, BOO and corresponding dif-
fraction patterns. In order to obtain a better understanding of these phase transformations, we
study the energy plot in Figure 4.3(b) in conjunction with typical configurations at a fixed tem-
perature at each of these branches as shown in Figure 4.4. These configurations as presented
in Figure 4.4 are composed of four features: (1) the positions of the hard cores of the particles
are displayed at the top, (2) the polygonal tiling is presented at the bottom, (3) the calculated
diffraction pattern is shown in the inset at the centre, and (4) the labels indicate the different
phases. The colouring schemes used for the hard core of the particles in the top region and the
tiles in the bottom region are explained in Section 4.2.2.
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Figure 4.3: (a) Phase diagram in the (reduced) temperature-density plane in which the path followed
during the cooling of the system at a constant (reduced) density ρ∗= 0.98 is marked using the dashed line
in red. (b) Potential energy per particle U∗ as a function of temperature T ∗ during this cooling simulation.
The calculations were performed for the HCSS system with shoulder width δ = 1.40σHD. The reduced
quantities are defined as T ∗ = kBT/ε , ρ∗ = Nσ2

HD/A and U∗ =U/εN. The phases marked are fluid (FL),
high-density hexagonal (HX), dodecagonal quasicrystal (QC), square (SQ) and low-density hexagonal
(LDH).
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Let us first take a qualitative look at the phase behaviour shown in Figure 4.3(b) and Figure
4.4 starting from high temperatures. At high temperatures (T ∗ > 0.80), the potential energy
(U∗ = U/εN) decreases very slowly with decreasing temperature and is close to 3.0. The po-
tential energy per particle of an ideal hexagonal lattice in the HCSS system with δ = 1.40σHD
is 3.0. Thus, the structure at these temperatures should be hexagonal in nature. However, the
potential energy at these temperatures is not exactly equal to that of the perfect hexagonal lat-

Figure 4.4: Phases formed at various temperatures (T ∗ = kBT/ε) during cooling of a hexagonal phase
at a (reduced) density ρ∗ = Nσ2

HD/A = 0.98 interacting with a HCSS pair potential with a shoulder
width δ = 1.40σHD. The phases marked are hexagonal (HX), fluid (FL) and dodecagonal quasicrystal
(QC). Each panel consists of (top) positions of the hard cores of the particles, (bottom) polygonal tiling,
(inset) calculated diffraction pattern of the structure. The particles and the tiles are, respectively, coloured
according to the schemes explained in Section 4.2.2. The arrows denote the path followed in temperature
during the cooling simulation.
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tice. This indicates the presence of defects, which are seen as the orange rhombi and other
grey shapes in Figure 4.4(a). Upon decreasing the temperature further, these individual defects
accumulate and form a nucleus of the fluid phase as noticed in Figure 4.4(b). A further decrease
in temperature from T ∗ = 0.72 to 0.43 is characterised by a continuous decrease in potential
energy. This refers to the growth of the fluid nucleus (Figure 4.4(c)). Towards the end of this
growth regime, we observe a hexagonal-fluid phase coexistence (Figure 4.4(d)). At T ∗ = 0.45
shown in Figure 4.4(d), each of these phases occupy almost half of the simulation box and this
allows us to calculate the diffraction pattern of the fluid and the hexagonal phase, separately.
This is displayed in the inset of Figure 4.4(d). When the temperature is decreased even fur-
ther, we notice a sudden drop in the potential energy at T ∗ ∼ 0.41. This drop coincides with
the formation of a dodecagonal quasicrystal from the fluid, which results in the formation of
a two-phase coexistence region between hexagonal and quasicrystal phases (Figure 4.4(e)). It
is affirmative to note that the diffraction pattern calculated at T ∗ = 0.39, shown in the inset of
Figure 4.4(e), clearly displays characteristics of both the quasicrystal and hexagonal structures.
Comparing this transformation with the previous formation of the fluid phase from hexagonal,
we note the absence of a single nucleus of the quasicrystal. However, the sudden change in
the potential energy hints towards a first-order phase transition. With further lowering the tem-
perature (and further decrease in energy), we observe a concurrent growth of the quasicrystal
region and decline of the hexagonal region; the outcome of which is a dodecagonal quasicrystal
spanning the entire simulation box (Figure 4.4(f)). We remark that the energy in the quasicrystal
regime is not constant, but decreases with decreasing temperature. This implies the formation
of more squares at lower temperatures. Thus, the following energy drop is associated with the
formation of a two-phase coexistence region between the square and quasicrystal phase.

Let us now quantitatively analyse the phase transformation with the help of order parameters
as explained in Section 4.2.2. In Figure 4.5(a) and Figure 4.5(b), we investigate the behaviour
of the bond orientational order parameters. In Figure 4.5(a), we plot the fraction of different
types of particles ( f p

X ) as obtained from the BOO classification in Table 4.1 as a function of
temperature. The particle types X that we distinguish are square (SQ), hexagonal (HX), do-
decagonal quasicrystal (QC), and others (OT). We notice that the fraction of hexagonal ( f p

HX)
particles decrease and that of the quasicrystal ( f p

QC) particles increase with decreasing tem-
perature indicating the formation of the quasicrystal from the hexagonal phase. However, the
fraction of square particles ( f p

SQ) remains almost constant throughout the entire temperature
range except at very low temperatures. This indicates that no square phase is formed during the
initial quasicrystal formation, but there is a small indication of its formation at very low tem-
peratures. Another interesting feature is the fraction of ‘fluid-like’ particles ( f p

OT ). We observe
a very low, but non-zero, value at high temperatures indicating defects in the hexagonal lattice.
With decreasing temperature, we observe a significant increase in f p

OT through the two-phase
coexistence region of the hexagonal and fluid phase. This complies with the formation of larger
amounts of fluid phase. This increase, however, ceases with the formation of the quasicrystal
and the f p

OT remains at a constant value. We further confirm the first-order nature of the fluid to
the quasicrystal transformation from the sudden drop in f p

HX and the simultaneous increase in
f p
QC.

We then focus our attention on Figure 4.5(b), where we plot the average m-fold bond ori-
entational order as a function of temperature. On the one hand, we notice that the behaviour
of χ6 and χ12, respectively, follow that of the fraction of hexagonal ( f p

HX) and quasicrystal
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Figure 4.5: Various order parameters as a function of temperature (T ∗ = kBT/ε) describing the quasi-
crystal formation for the HCSS system with shoulder width δ = 1.40σHD at a constant (reduced) density
ρ∗ = Nσ2

HD/A = 0.98: (a) Fraction of different types of particles based on its BOO classification, f p
X .

The particle types X that we distinguish are square (SQ), hexagonal (HX), dodecagonal quasicrystal
(QC), and others (OT). (b) m-fold bond orientational order (BOO) of the system, χm, with m = 4,6, and
12. For convenience, the curves are coloured according to the same schemes as in Figure 4.4.
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Figure 4.6: Various order parameters as a function of temperature (T ∗ = kBT/ε) describing the quasi-
crystal formation for the HCSS system with shoulder width δ = 1.40σHD at a constant (reduced) density
ρ∗ = Nσ2

HD/A = 0.98: (a) Fraction of different tile types, f t
X . The tile types X that are considered are

triangle (TR), square (SQ), rhombus (RH) and defects (DE). (b) Number and area ratio of square and
triangle tiles. The ideal number and area ratios of squares and triangles are marked with dashed lines.
For convenience, the curves in (a) are coloured according to the same schemes as in Figure 4.4.
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( f p
QC) particles in Figure 4.5(a), i.e. χ6 decreases and χ12 increases with decreasing temperat-

ure. However, on the other hand, unlike the constant behaviour of f p
SQ, we find an increase in

the values of χ4 at temperatures close to the quasicrystal formation. This further reinforces the
fact that the formation of the quasicrystal is aided by the replacement of particles of hexagonal
symmetry by ones with square symmetry. The increase in χ4 values at even lower temperatures
T ∗ ∼ 0.18 indicates the formation of the square phase.

Next, we correlate the behaviour of the particles with that of the tilings obtained from con-
necting the nearest neighbours of particles. To do so, we plot the behaviour of the fraction
of tiles during cooling of the system in Figure 4.6(a) and Figure 4.6(b). Figure 4.6(a) shows
the fraction of triangle tiles f t

T R, square tiles f t
SQ, rhombus tiles f t

RH , and defect tiles f t
DE as a

function of temperature. The fraction of triangle tiles f t
T R is almost constant in the temperat-

ure range where the hexagonal phase and fluid-hexagonal phase coexistence is observed. The
difference between these two regions is brought about by the relative fractions of the rhombus
tiles f t

RH and defect tiles f t
DE . In the temperature range where the hexagonal phase is found, we

observe a larger fraction of rhombus tiles f t
RH representing the defects in the hexagonal lattice.

Upon lowering the temperature, we find an increase in the fraction of defect tiles f t
DE signalling

the formation of the fluid phase. At lower temperatures, closer to the quasicrystal formation,
we observe a simultaneous decrease in the fraction of rhombus tiles f t

RH and defect tiles f t
DE

and an increase in the fraction of square tiles f t
SQ. We note the almost constant values of f t

T R
and f t

SQ in the quasicrystal region. In the low temperature regime of the quasicrystal region, we
note a further increase in f t

SQ denoting the formation of the square phase. These observations
are concurrent with those of the particle fractions in Figure 4.5(a).

Now, we turn our attention to Figure 4.6(b), where we study the composition of the tiling
in terms of the constituent square and triangle tiles. This is done because the dodecagonal
quasicrystals described by a square-triangle tiling have a triangle-to-square number ratio of
4/
√

3 ' 2.309 [183]. At this ratio, both the squares and triangles occupy equal areas, thereby
giving a square-to-triangle area ratio of 1. Thus, in Figure 4.6(b), we show the behaviour of
two ratios, i.e. (1) the ratio of the areas of square and triangle tiles, and (2) the ratio of the
number of triangles and squares as a function of temperature. We have also marked the ideal
triangle-to-square area and number ratios using dashed lines. The prominent observation that
results from this plot is that both the area and the number ratios are close to their ideal values in
the range of temperatures pertaining to the quasicrystal region. Furthermore, the increase in the
area ratio towards the end of the temperature spectrum coincides with the formation of the SQ
phase.

Finally, we examine the long-range order of the system by means of the radial distribution
function g(r) and the 6- and 12-fold bond orientational correlation functions g6(r) and g12(r).
These quantities are shown in Figure 4.7 and Figure 4.8 as a function of temperature. The curves
corresponding to different phases are separately marked. In Figure 4.7, we see the evolution of
the g(r) from the hexagonal (HX) to the quasicrystal (QC) phase upon decreasing the temperat-
ure. The initial peaks of the g(r) of the HX phase lies at 1.0σHD and

√
3∼ 1.732σHD denoting

the hard-core diameter and a sequence of consecutive equilateral triangles, respectively. The
formation of quasicrystals is indicated by the appearance of a peak at 1.40σHD (marked by an
arrow in Figure 4.7) corresponding to a sequence of squares. In Figure 4.8(a) and Figure 4.8(b),
we present the 6-fold and 12-fold bond orientational correlation functions g6(r) and g12(r),
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respectively. Both the g6(r) and g12(r) reach a constant value for both the hexagonal and quasi-
crystal phases and do not decline to zero at larger r. This confirms the presence of long-range
orientational order in the system. As can be expected, the g6(r) of the HX phase is higher than
that of the QC phase; while the inverse holds for g12(r). This confirms the dominant orienta-
tional order in these phases. Also, the decaying nature of both the g6(r) and g12(r) curves at
temperatures T ∗ = 0.40 and 0.50 indicates the absence of long-range orientational order in the
system, i.e. the presence of a fluid (FL) phase. The value of g12(r) decreases from T ∗ = 0.30
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Figure 4.7: Radial distribution function g(r) as a function of temperature during quasicrystal formation.
The phases indicated are hexagonal (HX), fluid (FL), and dodecagonal quasicrystal (QC). For clarity,
we shifted the g(r) at each temperature in the vertical direction by an additional ∆y = 2. The peak at
1.40σHD denoting the formation of quasicrystals is marked with an arrow.
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Figure 4.8: Structural properties at various temperatures during quasicrystal formation: (a) 6-fold bond
orientational correlation function g6(r), and (b) 12-fold bond orientational correlation function g12(r).
The phases indicated are hexagonal (HX), fluid (FL), and dodecagonal quasicrystal (QC).
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to 0.10 indicating the ‘loss’ of fraction of QC phase, i.e the formation of another phase in the
system. From our previous discussions, we know this to be the square (SQ) phase.

To summarise this section, we have investigated the formation of the QC phase by cooling a
hexagonal phase at a constant density. Upon lowering the temperature, we first find the forma-
tion of a fluid phase via a nucleation and growth mechanism, resulting into a phase coexistence
of the fluid and hexagonal phase. By further cooling the system, we find that a QC phase forms
within the fluid phase, and continues to grow until the whole system is quasicrystalline. Further,
these phase transformations encountered during the cooling process is consistent with the phase
diagram as presented in Figure 4.3(a).

4.3.2 Effect of shoulder width
The calculations discussed in Section 4.3.1 were performed at a single value of the width of
the square shoulder. Here, we assess the effect of the shoulder width on the formation of the
dodecagonal quasicrystal by performing simulations in the NV T ensemble at shoulder widths δ

from 1.26σHD to 1.50σHD, densities ρ∗ between 0.96 and 0.99, and temperatures T ∗ between

Figure 4.9: Three-dimensional phase space of (reduced) density ρ∗, temperature T ∗ and shoulder width
δ where the dodecagonal quasicrystal (QC) is observed as denoted by the coloured volume for the HCSS
system. The reduced quantities are defined as T ∗ = kBT/ε and ρ∗ = Nσ2

HD/A. The box represents the
range of data points that were considered. The shoulder width is plotted in units of σHD. The contours
in the ρ∗−T ∗ plane for a few shoulder widths, namely 1.30, 1.34, 1.38, and 1.44, are also given.
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0.10 and 0.30. We analyse the resulting configurations with the help of their polygonal tiling,
diffraction pattern and average bond orientational order (BOO) of the system, χm.

We observe the formation of the dodecagonal quasicrystal (QC) in a range of densities,
temperatures and shoulder widths. This three-dimensional phase space is given in Figure 4.9.
The coloured volume shown represents the limits of the quasicrystal formation and the box
displays the range of data points simulated. We also plot the contours in the density-temperature
plane for a few shoulder widths. It is evident from these plots that the quasicrystal forms over
a range of all three parameters. For clarity, we perform further analysis at constant temperature
T ∗ = 0.28.

We plot the state diagram in the shoulder width-density (δ − ρ∗) plane at T ∗ = 0.28 in
Figure 4.10. At shoulder widths δ > 1.45σHD, we find that the system behaves similar to the
hard-disk model. Even though we only observe a FL+HX phase coexistence at the densities
shown here, it is apparent that this region will be bordered by FL at lower densities and HX at
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Figure 4.10: State diagram in the shoulder width δ -(reduced) density ρ∗ plane for the two-dimensional
HCSS system at (reduced) temperature T ∗ = 0.28. All quantities are represented in reduced units as
T ∗ = kBT/ε and ρ∗ = Nσ2

HD/A. The phases represented are fluid (FL), hexagon (HX), square (SQ),
dodecagonal quasicrystal (QC) and octadecagonal quasicrystal (QC18). The symbols denote the state
points that were considered in the simulations.
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higher densities. Further, we recognise the formation of the dodecagonal quasicrystal QC over a
range of shoulder widths 1.30σHD ≤ δ < 1.45σHD. Lastly, we note that at even lower shoulder
widths δ ≤ 1.30σHD, we find a 18-fold symmetric quasicrystal (QC18), which was previously
reported by Dotera et al. at δ = 1.27σHD [123].

This state diagram is substantiated by the calculation of 4-, 6-, 12-, and 18-fold BOO at
each density and shoulder width. This is plotted as four separate surface plots in Figure 4.11.
In the χ4 plot given in Figure 4.11(a), we notice higher values of the order parameter at lower
densities and moderate shoulder widths indicating the presence of the SQ phase. Looking at
Figure 4.11(b), we confirm higher χ6 values at higher densities and shoulder widths showing
the presence of the HX phase. It is interesting to note that at these conditions of densities and

Figure 4.11: Average bond orientational order parameters representing (a) square χ4, (b) hexagonal χ6,
(c) dodecagonal χ12 and (d) octadecagonal χ18 symmetries as a function of density ρ∗ = Nσ2

HD/A and
shoulder width δ at (reduced) temperature T ∗ = kBT/ε = 0.28.
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shoulder widths where the HX phase is found, the values of χ6, along with χ12 and χ18 shown
respectively in Figure 4.11(c) and Figure 4.11(d) are in the order χ6 > χ12 > χ18. This is because
the χ12 and χ18 are respectively the 2nd and 3rd order terms of χ6. Thus, when χ6 is non-zero,
the χ12 and χ18 parameters will also have a non-zero value which decreases with increasing
order of symmetry. Lastly, the dominant phase in the lower right quadrant is recognised to be
the QC18; while the dodecagonal quasicrystal QC is formed at all densities in the middle range
of the shoulder widths considered. In summary, we recognise that the calculations shown here
validates the state diagram in Figure 4.10 and shows that the QC is formed over a range of
shoulder widths, temperatures and densities.

4.3.3 Effect of the shape of interaction potential
The HCSS system is a minimalistic approach to model the core-corona architecture of colloidal
particles. However, the assumption of a constant repulsion through the entire width of the
shoulder is not experimentally realisable owing to the non-uniformity of the shape and size of
the polymer brushes that surround the solid core. Thus, to account for this non-uniformity,
we examine the effect of the shape of the interaction potential without effectively altering the
characteristic length scales in this work. In other words, we modify the shape of the interaction
potential while keeping the core size, the corona size, and the repulsive strength at the core
intact.

We wish to point out here that a similar study was recently reported by Schoberth et al.
[142] wherein they accounted for an increasing repulsive force in the corona mimicking the
entropic interactions of spherical polymer brushes in core-shell micelles. Their assumption, in
turn, results in (1) smoothening of both characteristic length scales, viz. the core and corona
diameter, and (2) increased repulsive forces near the core. In our present study, we maintain the
bounds of the two length scales and the maximum interaction strength near the core at the same
values as the HCSS system; i.e. we only modify the shape of the curve in the corona region.

For this study, we make use of three other potentials in addition to the hard-core square-
shoulder (HCSS) potential; namely the hard-core linear-ramp (HCLR) potential, the hard-core
modified-exponential (HCME) potential, and the hard-core Buckingham or exp-6 (HCE6) po-
tential. The details regarding these potentials are given in Section 4.2. We compare the phases
formed in systems with each of these potentials at a range of densities and temperatures. For
the HCSS and HCLR potentials, we calculate the respective equilibrium phase diagrams using
free-energy calculations; while for the other two potentials namely HCME and HCE6, we plot
the state diagrams resulting from simulations in the NV T ensemble at a range of densities and
temperatures. The process of mapping out the phase diagram for the HCSS system is explained
in Chapter 2 and we follow a similar procedure for the HCLR system.

The calculated phase diagrams and state diagrams are given in Figure 4.12. The potential
corresponding to each of these plots along with the outlining square shoulder is shown in the
respective insets. In general, we report that the same phases are formed in all these systems. The
phases comprise of fluid (FL), square (SQ), low- and high-density hexagonal (LDH, HDH) and
dodecagonal quasicrystal (QC). The formation of the hexagonal phase in two density ranges is
driven by the presence of two length scales in the interaction potentials such that the interparticle
distances in LDH and HDH are at the core and corona diameters, respectively. We make the
following observations regarding the QC phase. First, we find that the QC phase is found in all
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four cases; and second, the temperature of the formation of the QC depends on the interaction
potential. The first observation regarding the QC phase in all these systems shows that the shape
of the interaction potential inside the corona does not matter for the QC formation as long as
the two length scales are uniquely defined. The second observation is related to the temperature
range where the QC is formed. We find that the temperature range shifts to lower temperatures
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Figure 4.12: Effect of the interaction potential on quasicrystal formation: phase diagram (a, b) and
state diagram (c, d) in the (reduced) temperature-density plane obtained for systems interacting with (a)
hard-core square shoulder potential (HCSS), (b) hard-core linear ramp potential (HCLR), (c) hard-core
modified exponential potential (HCME), and (d) hard-core exp-6 potential (HCE6). Please note that the
temperature axis in the figures are different. The reduced units are T ∗ = kBT/ε and ρ∗ = Nσ2

HD/A. The
phases shown are fluid (FL), low-density hexagonal (LDH), square (SQ), dodecagonal quasicrystal (QC)
and high-density hexagonal (HDH). The dotted lines act as guides to the eye, and the open symbols in
(c) and (d) denote the state points that were considered in the simulations.
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when the interparticle potential becomes less repulsive going from the HCSS to the HCME and
the HCLR potential, i.e. the energy penalty for the particles to be in the middle of the corona
decreases. Thus, a higher interaction strength (or lower temperature) is required to compensate
for this penalty loss. This interaction strength can be tuned by varying the density of polymer
brushes in experimental core-corona systems. Supplementary to this energy penalty loss, one
also needs to account for the much larger corona size (∼ 2.50σHD) in the HCE6 system. This
large corona size is a result of the long exponential tail in the potential. This results in a much
lower temperature for the formation of the QC in the HCE6 system in comparison to the other
three interaction potentials.

In summary, we find that the dodecagonal quasicrystal is formed irrespective of the shape
of the interaction potential, as long as the two length scales are maintained. The shape of the
potential does affect the temperature range in which the dodecagonal quasicrystal is stable.

4.4 Conclusions

We investigated the formation of a colloidal dodecagonal quasicrystal in a simple model of
particles interacting with a potential consisting of a hard core of diameter σHD and a repulsive
square shoulder of diameter δ = 1.40σHD. We scrutinised the formation process using bond
order parameters, correlation functions and tiling fractions in the first part of this work. Upon
cooling the hexagonal phase at a constant density, we find the nucleation and growth of a fluid
phase, resulting in a two-phase coexistence of the fluid and hexagonal phase. Lowering the
temperature further, we find that the quasicrystal forms from the fluid phase. Finally, it is worth
noting that the different phase transformations encountered during the cooling process, shown
in Figures 4.4 - 4.8 , is consistent with the phase diagram presented in Figure 4.3(a).

In the second part of this work, we studied the formation of the dodecagonal quasicrystal for
a range of shoulder widths, temperatures and densities. We found that the quasicrystal formation
is robust with respect to all three parameters. For example, at a temperature T ∗ = 0.28, we find
that the quasicrystal is formed at densities ρ∗ between 0.96 and 1.00 and shoulder widths δ

between 1.30σHD and 1.44σHD.

In the last part we studied the effect of the shape of the interaction potential on the formation
of the quasicrystal. We used four interaction potentials, each of which have two inherent length
scales, namely a hard-core potential supplemented with a square shoulder, a linear ramp, a
modified exponential, and a Buckingham (exp-6) potential. We observed the formation of a
dodecagonal quasicrystal in all these systems. However, the shape of the potential influences
the temperature range of the stability regime of the quasicrystal formation.

Our studies provide a comprehensive summary of parameters that can be used to identify
quasicrystals in soft-matter systems including bond order parameters, bond correlation func-
tions and tiling calculations. Furthermore, our investigations provide insight into the robustness
of the formation of the quasicrystal, which is of considerable importance for performing exper-
imental studies on these systems. This could enable tailoring of experiments to synthesise more
quasicrystal-forming systems.
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5 The curious case of periodic layers of
dodecagonal quasicrystal and floating

crystals

We investigate the behaviour of a system of particles interacting with a hard-core and a re-
pulsive square shoulder potential under the influence of a gravitational field using Event-Driven
Brownian Dynamics simulations. We use a fixed square shoulder diameter equal to 1.4 times the
hard-core diameter. The parameters in the simulations are chosen such that the pressure at the
bottom of the sediment facilitates the formation of phases in accordance with the phase diagram
presented in Chapter 3. We indeed observe the formation of layers with dodecagonal, square
and hexagonal symmetries at the relevant pressures. In addition, we also observe a re-entrant be-
haviour exhibited by the fluid phase, engulfing a hexagonal phase, in the sedimentation column.
In other words, a floating crystal is formed between the fluid regions.
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5.1 Introduction

In case of colloidal suspensions consisting of particles of sizes in the order of micro-meters,
the effect of the gravitational force is not negligible. Under these conditions, the gravitational
energy and the thermal energy of the colloids are comparable. This leads to the formation of a
spatially inhomogeneous suspension in which the density of the particles varies along the height
of the suspension. The inhomogeneous distribution of the colloidal particles along the height
under the influence of gravity is termed as sedimentation.

As a result of this inhomogeneous density distribution in colloidal suspensions, the particles
at the bottom of the sediment can crystallise when they reach a certain critical density. In
other words, sedimentation is one of the common manifestations of self-assembly of colloidal
particles. Thus, experimentally, sedimentation is regarded as a prevalent tool to extract inform-
ation regarding the equilibrium phase behaviour of the system. For example, the measured
concentration profiles can be inverted to obtain the osmotic equation of state. But, sediment-
ation processes can also be used the other way around, i.e. they can be used to validate the
theoretically calculated equilibrium phase behaviour of a system and thereby, its bulk phase
behaviour. For example, a system of hard spheres has been a model system for sedimentation
studies. This system exhibits a phase behaviour characterised by a fluid phase at lower dens-
ities and a face-centered cubic phase at higher densities. This behaviour, which was earlier
theoretically predicted [199], has later been corroborated by sedimentation studies [200].

Sedimentation behaviour of various charged particles [201], mixtures of hard particles [202]
and particles of different shapes [203] which result in the formation of periodic crystals has been
extensively studied. However, similar studies involving the formation of quasicrystals has not
been that extensive. Quasicrystals are solids with long-range orientational order and no period-
icity. Their experimental realisations are important in order to extract the advantages of its ex-
ceptional properties including the formation of photonic band gaps, as will be shown in Chapter
8. As mentioned above, simulation studies of the sedimentation behaviour of quasicrystals can
be a guiding star to their experimental self-assembly. In fact, experimental [204–207] and si-
mulation [208, 209] studies have been carried out to study the ordering of atoms on metallic
quasicrystalline surfaces. However, the soft-matter counterpart of metallic quasicrystals have
not come far. Although, recently, a simulation study involving the growth of colloidal particles
interacting with a screened potential has been shown to form multiple quasicrystalline layers
[210]. However, no such experimental realisations have been reported till now.

We wish to combine the above two propositions, i.e. sedimentation as a tool to study the
phase behaviour and the formation of layers of quasicrystal by sedimentation. In the previ-
ous chapters, i.e. Chapters 3 and 4, we have theoretically calculated the phase diagram of a
two-dimensional system of particles interacting with a hard-core and repulsive square shoulder
potential. At a shoulder width of 1.4 times the hard core diameter, we find a stable random-
tiling dodecagonal quasicrystal. We intend to explore the formation of this quasicrystal by
sedimentation, which could pave the way for its experimental realisation.

This chapter is organised as follows. In Section 5.2, we present the simulation and analysis
methods used. In Section 5.3, we individually discuss the formation of layers with various
symmetries and finally we present the conclusions and the direction of future studies in Section
5.4.
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5.2 Methods
We first explain the simulation model and computational methods used for this study in Section
5.2.1, and then give an account of the analysis methods in Section 5.2.2.

5.2.1 Computational methodology
We perform Event-Driven Brownian Dynamics (EDBD) simulations of N spherical particles of
diameter σHS and buoyant mass m interacting with the HCSS potential in the NV T ensemble.
The HCSS potential can be written as a sum of a hard-sphere potential VHS(r) and a square-
shoulder potential VSS(r), i.e.

VHCSS(r) =VHS(r)+VSS(r), (5.1)

where

VHS(r) =
{

∞, r ≤ σHS
0, r > σHS

, (5.2)

and

VSS(r) =
{

ε, r ≤ δ

0, r > δ
, (5.3)

where r is the interparticle centre-of-mass distance, and ε > 0 is the height of the square
shoulder.

In the EDBD method, a sequence of collision events involving only two particles at any
given instant is computed. During the simulation, the velocities of the particles are randomly
adjusted at regular intervals ∆t as

v(t +∆t) = αtv(t)+βtvR(t), (5.4)

where v(t) and v(t + ∆t) are respectively the velocities of the particles before and after the
stochastic velocity adjustment, vR(t) is a 3-D Gaussian variable with mean of 0 and variance
of kBT/m, with kB the Boltzmann constant and T the temperature. Further, αt has a value
1/
√

2 with a probability ν∆t and 1 otherwise. The temperature is kept constant by setting
βt =

√
1−α2

t . In accordance to previous EDBD simulations [155, 156], we set ν to 10τ
−1
MD and

∆t to 0.01τMD, where τMD is the unit of time of an event-driven Molecular Dynamics simulation
given as τMD =

√
m/kBT σHS.

The simulation box of volume V has a square cross-section of area A and is elongated in
the z-direction. Periodic boundary conditions are applied along the cross section; while in the
elongated direction, the particles are confined between two smooth walls at z = 0 and z = H,
where H is the height of the sedimentation column. The height H is chosen such that the
density at z = (H−σHS/2) is sufficiently small, which allows us to consider the system to
be infinitely long in the z-direction. We perform simulations starting with a non-overlapping
isotropic fluid state filling the entire sedimentation column with packing fraction η = 0.01. To
mimic sedimentation experiments, these particles are further subjected to a gravitational field,
which is expressed as an external potential φ(z) written as

φ(z) =
{

mgz, σHS/2≤ z≤ H−σHS/2
∞, otherwise , (5.5)
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where g is the acceleration due to gravity and z is the vertical coordinate of the particle. The
effect of the gravitational field on the particles is quantified in terms of the gravitational Peclet
number defined as g∗ = mgσHS/kBT .

In this work, we scrutinise the kinetic formation of the thermodynamic stable phases de-
scribed for the two-dimensional HCSS system with δ = 1.40σHD, where σHD is the hard-disk
diameter, given in Chapters 3 and 4. To do so, we perform simulations such that the pressure
measured at the bottom of the sedimentation column, i.e. at z = 0, corresponds to the region of
stability of a particular phase. This pressure is calculated as βP(z = 0)σ3 = g∗.ρ∗A, where ρ∗A is
the mean area defined as the number of particles at the bottom of the sample ρ∗A = Nσ2

HS/A.
The phases considered in this study are a dodecagonal quasicrystal, square, low-density

hexagonal and fluid phases. We especially focus on the possibility of the formation of the
quasicrystal, and thus, consider the cross-section to be squares with sides of length 58σHS,
which can accommodate a random-tiling dodecagonal quasicrystal of density ρ∗ = 1.07. The
list of parameters used to simulate the different phases is given in Table 5.1. The corresponding
values of pressures at the bottom βP(z = 0) are marked in the phase diagram given in Figure
5.1. As a supplementary study, we use two parameter sets having different Peclet numbers to
simulate the quasicrystal. A higher value of Peclet number results in a condition of high settling
rate of the particles, i.e. the particles do not have enough time to rearrange and equilibrate, and
vice versa. Using systems with different Peclet numbers, we can study the effect of the settling
rate on the formation of the quasicrystal.

Table 5.1: System parameters used in the EDBD simulations of a HCSS system with δ = 1.40σHS under
gravity.

N kBT mg g∗ βP(z = 0)σ3 Stable phase
5×104 0.25 0.50 2.00 30.0 Quasicrystal
2×104 0.25 1.26 5.00 30.0 Quasicrystal
2×104 0.25 1.00 4.00 23.8 Square
5×104 0.15 0.10 0.67 10.0 Low-density hexagonal
1×105 0.15 0.10 0.67 20.0 Fluid

5.2.2 Structural analysis

In order to characterise the different phases, we employ an analysis method that is two-dimensional
in nature since this study is based on the phase behaviour of the two-dimensional HCSS sys-
tem, and correspondingly, we find that the phases observed in the sedimentation column have a
layered structure. Specifically, we first identify different layers of the sediment and then carry
out the following analysis procedure in these layers. We construct the polygonal tiling of the
layer and calculate the two-dimensional m-fold bond orientational order parameter (BOO) of
each particle j in layer l, χ l

m( j), and the average BOO of each layer χ l
m.

The polygonal tiling of each layer is constructed by drawing bonds between the neighbour-
ing particles of each particle j, which are at a centre-of-mass distance smaller than the square
shoulder diameter δ from particle j.
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Figure 5.1: Phase diagram in the (reduced) pressure-temperature plane for a two-dimensional HCSS
system with shoulder width δ = 1.40σHD. The reduced quantities are defined as P∗ = βPσ2

HD/A and
T ∗= kBT/ε . The phases marked are fluid (FL), low-density hexagonal (LDH), square (SQ), dodecagonal
quasicrystal (QC) and high-density hexagonal (HDH). The crosses denote the state points corresponding
to the pressures at the bottom of the sediment.

We, then, calculate the m-fold BOO of each particle j in layer l as

χ
l
m( j) =

∣∣∣∣∣ 1
NB( j)

NB( j)

∑
k=1

exp(imθr jk)

∣∣∣∣∣
2

, (5.6)

where m is the symmetry of interest, r jk is the centre-of-mass distance vector between two
neighbours j and k, θr jk is the angle between r jk and an arbitrary axis, and NB( j) is the number
of neighbours of particle j in the same layer. For each particle j, we calculate χ l

4( j), χ l
6( j), and

χ l
12( j) respectively representing square, hexagonal and dodecagonal symmetries.

The particles are classified based on their BOO according to the method given in Table 5.2.
We consider a particle to be fluid-like if each of the three χ l

m( j) is less than 0.5. On the other
hand, if each of χ l

m( j) is greater than 0.5, then a particle is said to have symmetry m1 if χ l
m1( j)

is greater than the other two, namely χ l
m2( j) and χ l

m3( j). Further, we identify and colour the
particles according to the following scheme: particles of square symmetry in purple, those of
hexagonal in green, dodecagonal in red and fluid-like in orange as shown in Figure 5.2.
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Table 5.2: Method of classification of particle j belonging to layer l according to its bond orientational
order (BOO) χ l

m( j).

Symmetry BOO conditions Colour scheme
Fluid/Other (OT) χ l

4( j),χ l
6( j),χ l

12( j)< 0.5 orange

Crystal χ l
4( j),χ l

6( j),χ l
12( j)> 0.5

- Square (SQ) χ l
4( j)> χ l

6( j),χ l
12( j) purple

- Hexagonal (HX) χ l
6( j)> χ l

4( j),χ l
12( j) green

- Dodecagonal (QC) χ l
12( j)> χ l

4( j),χ l
6( j) red

Figure 5.2: Colour scheme for classes of particles based on the BOO classification described in Table
5.2.

After calculating the BOO of each particle, the average BOO of each layer is then evaluated
as [164]

χ
l
m =

1
Nl

Nl

∑
j=1

χ
l
m( j), (5.7)

where Nl is the number of particles in each layer.

5.3 Results and discussion

In this section, we consider individually the different sedimentation simulations carried out to
obtain the various stable phases calculated for the two-dimensional HCSS system. Due to the
computationally expensive nature of these calculations, not all the simulations have attained
equilibrium. Here, we present the results obtained so far.

5.3.1 Formation of layers with dodecagonal symmetry
We start with the formation of layers with dodecagonal symmetry. In this section, we present
the sedimentation simulations using two different Peclet numbers in order to assess the effect
of the settling rate on the formation of the quasicrystal. We first compare the formation of
the quasicrystal formed in these simulations. We then analyse the driving force behind the
formation of these layers. Finally, we review the validity of the phase diagram given in Figure
5.1 by comparing the phases formed in the sedimentation column. Of special interest is the
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dodecagonal quasicrystal (QC) which, as seen in the phase diagram, is sandwiched between
two periodic crystal phases with square and hexagonal symmetries. Thus, it is interesting to
note if and how the interfaces between the quasicrystal and the periodic crystals are formed in
the sedimentation column.

We first present a typical configuration of the sediment forming quasicrystalline layers in
Figure 5.3. The panels on the left correspond to simulations with a Peclet number g∗ = 5.0
and those on the right are obtained for g∗ = 2.0. The particles here are coloured according to
the convention explained in Figure 5.2. We notice the formation of about two quasicrystalline
layers for g∗ = 5.0 and about four for g∗ = 2.0. This difference in the number of layers is due
to a difference in height range that corresponds to the pressure range of the stable quasicrystal
phase. This height range decreases with increasing g∗. Additionally, we observe that most of the
particles seen in these layers are coloured either in purple or red which, respectively, represent
square or dodecagonal symmetries. Therefore, we follow the dynamics of the formation of
these layers by calculating the BOO χ l

4 and χ l
12 of each layer as a function of time. The time

evolution of χ l
4 is given in the middle panel in Figure 5.3 and that of χ l

12 is given at the bottom.
In these time evolution heat maps, the time scale t/τMD is plotted on the horizontal axis and the
layer number is plotted along the vertical axis.

We make the following observations from these plots: (1) In both cases, the value of χ l
12

is higher than that of χ l
4, which confirms the dodecagonal symmetry of these layers. (2) With

increasing time, we find that the fraction of fluid in the sedimentation column decreases, as seen
by the receding blue region in these plots. Alternatively, this means that more crystalline layers
are formed with time. (3) The value of χ l

12 at a given time decreases as we go up in the sediment
indicating that the layers on the top are more fluid-like than the bottom layer. (4) Finally, we
see that the χ l

12 obtained for the sediment at higher Peclet number is larger than that at lower
Peclet number. This is counter-intuitive as this suggests that faster settling of the particles result
in the formation of a better quasicrystal.

We investigate this further by plotting the polygonal tiling constructed for the bottom two
layers as a function of time for both the sediments. The top view of these tilings is given in
Figure 5.4 for g∗ = 5.0 and in Figure 5.5 for g∗ = 2.0. Two striking features are conspicuous
from these polygonal tilings. Firstly, there are large portions of connected square tilings in the
sediment obtained for the lower Peclet number, while the square tilings are more uniformly
distributed in the case of the high Peclet number sediment. Secondly, the position of the tiles in
the first and second layers seem to be on top of each other. Let us now evaluate each of these
observations separately.

Firstly, we analyse the tilings and quantify the square tiles by calculating the ratio of areas
occupied by the square tiles to that of the triangle tiles. This also relates to the square-triangle
tiling description of a dodecagonal quasicrystal, where the maximum entropy of the tiling cor-
responds to equal areas of squares and triangles. In the current sediments, we find that the ratio
of the areas of squares to triangles for g∗ = 2.0 is 1.40±0.05 and for g∗ = 5.0 is 1.15±0.03. In
other words, in both cases, there are more squares formed than in an ideal dodecagonal tiling.
This excess of squares is larger for the low Peclet number sediment. This can be explained as
follows. A lower Peclet number refers to a lower rate of sedimentation, which allows for the
particles to rearrange. The pressure at the bottom of the sample increases slowly since the begin-
ning of the sedimentation simulation, as more and more particles descend through the column.
This means that the pressure at the bottom layer first reaches the value where a square phase



76 CHAPTER 5

is found to be stable. Thus, nuclei consisting of particles with square symmetry start to form.
This can be observed in the snapshot of the second layer at t/τMD = 60 at both Peclet numbers.
However, in case of the sediment with lower Peclet numbers, these nuclei have enough time to
aggregate and thus, start forming larger square structures. On the other hand, the square nuclei
of the fast settling sediment does not have enough time to rearrange and thus, are spread all over
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Figure 5.3: Comparison of the quasicrystal (QC) sediment formed for Peclet numbers g∗ = 5.0 (left)
and 2.0 (right) using side view of a configuration of the sedimentation column obtained at t/τMD =
800 (top). The particles are coloured according to their individual BOO: quasicrystal (red), square
(purple), hexagonal (green), and fluid (orange). The m-fold BOO of each layer with time calculated for
symmetries m = 4 (middle) and 12 (bottom) showing, respectively, the formation of layers with square
and dodecagonal symmetries.
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Figure 5.4: Polygonal tilings as obtained from particle configurations of the first (top) and second
(bottom) layers of the QC sediment for Peclet number g∗= 5.0 showing the formation of the quasicrystal
for varying times t/τMD as labelled. The triangle, square and defect tiles are respectively coloured in blue,
green and grey.
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Figure 5.5: Polygonal tilings as obtained from particle configurations of the first (top) and second
(bottom) layers of the QC sediment for Peclet number g∗= 2.0 showing the formation of the quasicrystal
for varying times t/τMD as labelled. The triangle, square and defect tiles are respectively coloured in blue,
green and grey.
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the area. Also, a larger settling rate means that the pressure corresponding to the formation of
the quasicrystal is reached faster at the bottom of the sediment. This again means that lesser
amount of square tiles are formed in the sediment with higher Peclet number. Because of these
reasons, the sediment with a high Peclet number results in the formation of lesser number of
square tiles and also lower aggregation of these tiles than the slow settling sediment.

g

layer 1 layer 2

Figure 5.6: Top view of the center-of-mass of particle configurations of the first and second layers
obtained for the QC sediment with Peclet number g∗ = 5.0 at t/τMD = 800. The particles in the bottom
layer are plotted as filled circles in blue and the particles in the top layer are represented as open black
circles. The gravitational field points into the plane of the paper as marked in the top-left corner.
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Now, let us examine the observation regarding the position of the tiles of the second layer
directly on top of the first layer. This, in essence, refers to the formation of quasicrystal layers
which are periodic in the third direction. To assess this, we show the top view of the particles
of the first and second layers obtained for the fast settling sediment in Figure 5.6. Here, the
particles in the first layer are represented as filled blue circles, while those of the second layer
are represented as open black circles. In the figure, we observe that a majority of the blue
particles are enclosed in a black circle. In other words, the position of the particles of the
second layer are on top of the first layer, which confirms that these structures are periodic in
the third dimension. This leads us to the question of why do the particles of the second layer
not position themselves in the voids of the particles of the bottom layer, as is expected from
simulations involving gravitational fields?

The answer to this question lies in the fact that the interaction potential between the particles
is purely repulsive. We explain this further by using a schematic description in Figure 5.7. The
colour coding of the particles is the same as described above; the particles in the first layer are
represented as filled blue circles, while those of the second layer are represented as open black
circles. On the top we represent the situation where the particles of the second layer fall in the
voids of the particles of the first layer. The front view of the sediment is shown on the left and
the top view on the right. The present case of the periodic layers is shown at the bottom. First,
let us look at the scenario with alternating layers. In this case, we see that each particle in the
second layer, in addition to its nearest neighbour in the second layer, has three neighbours in

Front view Top viewg g

Figure 5.7: Schematic representation of the energetic driving force behind the formation of layers with
particles on top of each other. The particles in the bottom layer are plotted as filled circles in blue and
the particles in the top layer are represented as open black circles. The direction of the gravitational field
in each case in also marked on the top.
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the first layer. In contrast, in case of the present situation of periodic layers, each particle of the
second layer has only a single neighbouring particle in the bottom layer. The same also applies
for the third layer on top of the second, thereby doubling the number of neighbours of each
particle. This reduction in the number of neighbours is translated as a reduction in the energy
of the particle and thus, of the entire system. This configuration is favoured, if this reduction
in energy is more than the increase in potential energy of the particle for being at a higher
position in the sedimentation column, i.e. at a higher position on top of a particle instead of a
lower position in the void. This happens to be the case in our simulations, which leads to the
formation of these periodic layers.

Finally, we proceed to the validation of the phase diagram in terms of the phases formed
along the height of the sedimentation column, which corresponds to a decrease in pressure. To
analyse this, we plot the pressure and density profiles along the height of the sedimentation
column calculated for both Peclet numbers in Figure 5.8. The pressure and density profiles
corresponding to the high Peclet number is on the left and that of the low Peclet number on
the right. In these plots, we explicitly mark the pressure boundaries denoting the stability of
each phase as obtained from the phase diagram. From the density profiles, we observe that
the formation of two crystalline layers at high Peclet number and five at low Peclet number.
Beyond this pressure, we find the presence of an isotropic fluid, which agrees well with the
phase diagram prediction. However, the puzzling part is the absence of the square phase.

From the density plots, we see that the crystalline layers are formed in the sediment for
pressures corresponding to the stable QC or SQ regime in the phase diagram. However, all
the layers formed in the sediment exhibit dodecagonal symmetry, which leads to the question,
why are layers of square symmetry not formed? This could be because of either one of the
following reasons: (1) The formation of an interface between the quasicrystal and the periodic

0

10

20

30

40

β
P

σ
H

S

3
(z

)

0 5 10 15 20
0

10

20

30

40

ρ
σ

H
S

3
(z

)

z/σ
HS

SQ FLQC

0 2 4 6 8 10
0

10

20

30

40

ρ
σ

H
S

3
(z

)

z/σ
HS

0

10

20

30

40

β
P

σ
H

S

3
(z

)

FLSQQC

g*=5.0 g*=2.0

Figure 5.8: Pressure (top) and density (bottom) profiles calculated for the QC sedimentation column for
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crystal might not be energetically favourable, or (2) during sedimentation, it might be easier for
the particles to settle on top of the particles below because of energetic reasons as explained
previously. In addition, a higher settling rate could also contribute to it, i.e. the particles be-
longing to the top layers do not have sufficient time to rearrange into a square lattice. Also,
for the particles to arrange into a square lattice on top of a quasicrystal would mean that the
particles of the square layer would fall in the voids of the underlying quasicrystal layer. This
again causes an increase in potential energy. Thus, it is possible that these energetic constraints
outweigh those for the formation of a square lattice thereby leading to the formation of only lay-
ers with quasicrystal symmetry in the sedimentation column. Additionally, it is good to mention
here that in the free-energy calculations performed to map out the phase diagram, a defect-free
quasicrystal structure was used. However, it might be possible that the kinetic formation of the
quasicrystal with defects precedes that of the defect-free structure. This could also contribute
to the formation of the quasicrystal at lower pressures.

5.3.2 Formation of layers with square symmetry

At the end of the previous section, we found that it is not feasible for a layer with square sym-
metry to form on top of a layer with dodecagonal symmetry. Does that mean that the formation
of layers with square symmetry is never possible in this system? We address the formation of
layers with square symmetry in this section. For this, we first perform sedimentation simula-
tions using the parameters promoting the formation of a square phase as given in Table 5.1, and
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Figure 5.9: (a) Side view of a configuration of the SQ sedimentation column obtained at t/τMD = 1500.
The particles are coloured according to their individual BOO: quasicrystal (red), square (purple), hexagon
(green), and fluid (orange). (b) The BOO χ l

4 of each layer as a function of time showing the formation
of layers with square symmetry. (c) Pressure and (d) density profiles calculated for the sedimentation
column at t/τMD = 1500. The stability regions of square (SQ) and fluid (FL) phases in terms of reduced
pressure P∗ = βPσ2

HD as taken from Figure 5.1 are marked.
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then employ the same analysis methods as those used for studying the quasicrystal formation in
the sediment.

First, we show a typical configuration of the sedimentation column obtained at t/τMD =
1500 in Figure 5.9(a). The particles are coloured according to the convention in Figure 5.2 with
particles possessing square symmetry in purple. As can be noticed in the figure, two layers at
the bottom of the column have a large concentration of purple coloured particles, denoting the
formation of layers with square symmetry. This is further confirmed by the evolution of the
BOO χ l

4 of the bottom two layers to values close to one, as given in Figure 5.9(b). Further,
we plot the pressure and density profiles along the sedimentation column respectively in Figure
5.9(c) and Figure 5.9(d). From these, we see that the formation of two layers with square
symmetry agrees well with the respective phase diagram.

We then follow the dynamics of the formation of these layers by analysing the snapshots of
the bottom two layers as a function of time. The top views of these layers is given in Figure
5.10. Similar to the behaviour during the nascent time scales in the QC sediment seen previously
in Figures 5.4 and 5.5, the crystal formation in the bottom layer begins by the formation of
small crystalline domains of particles with square symmetry (t/τMD = 100). These crystalline
domains coalesce with time and form larger grains separated by grain boundaries consisting of
fluid-like particles or particles with dodecagonal symmetry (t/τMD = 1000). Finally, these grain
boundaries anneal out with time (t/τMD = 1500). Obviously, the settling rate plays an important
role in the annealing process. In the present scenario, we find that most of the second layer is
formed before the grain boundaries in the bottom layer are annealed out. Thus, these grain

Figure 5.10: Typical configurations showing the top view of the first (top) and second (bottom) layers
of the SQ sediment for varying times t/τMD as labelled. The particles are coloured according to their
individual BOO, namely quasicrystal (red), square (purple), hexagonal (green), and fluid (orange).



THE CURIOUS CASE OF PERIODIC LAYERS OF DODECAGONAL QUASICRYSTAL AND

FLOATING CRYSTALS 83

boundaries remain till the end of our simulation. Additionally, we observe that this structure
also consists of periodic layers, with the particles of the second layer lying on top of each other.

5.3.3 Formation of (suspended) layers with hexagonal symmetry

One of the peculiar features exhibited by the HCSS system is the formation of a low-density
hexagonal phase, where the particles are separated by a distance equal to the square shoulder
diameter δ . The formation of this phase induces a re-entrant behaviour of the fluid phase. Our
objective in this section is two-fold. We attempt to (1) demonstrate the formation of layers
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Figure 5.11: (a) Side view of a configuration of the low-density hexagonal (LDH) sedimentation column
obtained at t/τMD = 500. The particles are coloured according to their individual BOO: quasicrystal
(red), square (purple), hexagon (green), and fluid (orange). (b) The BOO χ l

6 of each layer as a function
of time showing the formation of layers with hexagonal symmetry. (c) Pressure and (d) density profiles
calculated along the height of the sedimentation column. The stability regions of low-density hexagonal
(LDH) and fluid (FL) phases in terms of reduced pressure P∗ = βPσ2

HD as taken from Figure 5.1 are
marked. (e) Identification of layers as FCC or HCP stacking in the sediment. The particles are coloured
as FCC (red) and HCP (blue).
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of the low-density hexagonal phase and analyse if it conforms to either a face-centered cubic
(FCC) or hexagonal close-packed (HCP) stacking and (2) determine if the fluid displays a re-
entrant behaviour along the height of the sedimentation column, i.e. with decreasing pressure.
This would result in a configuration where hexagonal layers are suspended in between two fluid
phases.

Accordingly, we first simulate the sedimentation of particles with parameters that promote
the formation of the low-density hexagonal phase as given in Table 5.1. A typical configuration
of the sedimentation column at t/τMD = 500 is given in Figure 5.11(a). The particles here are
coloured according to the convention given in Figure 5.2. Correspondingly, the layers at the
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Figure 5.12: (a) Side view of a configuration of the FL sedimentation column obtained at t/τMD = 500.
The particles are coloured according to their individual BOO: quasicrystal (red), square (purple), hexagon
(green), and fluid (orange). (b) The BOO χ l

6 of each layer as a function of time showing the formation
of layers with hexagonal symmetry. (c) Pressure and (d) density profiles calculated along the height of
the sedimentation column. The stability regions of low-density hexagonal (LDH) and fluid (FL) phases
in terms of reduced pressure P∗ = βPσ2

HD, as taken from Figure 5.1, are marked.
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bottom composed of particles coloured in green exhibit hexagonal symmetry. The presence of
hexagonal symmetry of these layers is confirmed by the high values of the χ l

6 values calculated
as a function of time for these layers and plotted in Figure 5.11(b). Combining this time evol-
ution of BOO and the pressure (Figure 5.11(c)) and density (Figure 5.11(d)) profiles along the
sedimentation column, we find the formation of about twenty layers of hexagonal symmetry.
This also agrees well with the pressure boundaries obtained from the phase diagram. Further,
we try to analyse the composition of these hexagonal layers to identify the nature of stacking.
It is common to find the formation of randomly stacked hexagonal layers in experimental and
simulation sedimentation studies conducted at low Peclet numbers [155, 156]. This is because
the free-energy difference between the face-centered cubic (FCC) and hexagonal close-packed
(HCP) phases is very small. We calculate the nature of stacking by using the method described
by Marechal et al. [155]. We represent this by colour coding layers stacked as FCC in red and
HCP in blue in Figure 5.11(e). We observe a behaviour analogous to that of a system of hard
spheres, i.e. the formation of randomly stacked hexagonal layers. However, we did not find any
slanted stacking faults as observed in previous EDBD simulations on sedimenting hard spheres
[155, 156].

We then proceed to explore the formation of suspended crystalline layers of hexagonal sym-
metry bordered by a fluid phase in the sediment. For this, we use a set of parameters conforming
to the formation of a fluid phase at the bottom of the sedimentation column as given in Table

Figure 5.13: Top view of the first layer of the sediment showing the melting of the hexagonal phase
to a fluid for varying t/τMD as labelled. The particles are coloured according to their individual BOO,
namely quasicrystal (red), square (purple), hexagon (green), and fluid (orange).
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5.1. The system size used here is larger than the previous simulations to accommodate the
formation of three phases along the height of the sediment. This is computationally expensive.
Thus, the particles have not yet completely sedimented in this simulation. Here, we present the
results obtained till date.

Following the convention, we first show a typical configuration of the sedimentation column
in Figure 5.12(a) and colour the particles according to the BOO explained in Figure 5.2. We
indeed find the formation of crystalline layers with hexagonal symmetry in between two fluid
phases. From the snapshot, we notice that the hexagonal layers have not completely melted to
a fluid phase at the bottom, and the hexagonal layers at the top are not completely formed. As
mentioned before, this simulation is yet to equilibrate and these layers should even out with
time. The non-equilibrated nature of this simulation is also evident in the time evolution of the
χ l

6 BOO given in Figure 5.12(b) and the corresponding pressure (Figure 5.12(d)) and density
(Figure 5.12(c)) profiles. Nevertheless, it is safe to say that the re-entrant behaviour of the fluid
phase is observed.

The interesting feature of this sedimentation process is the formation of alternate regions of
hexagonal symmetry and fluid with time. This is expressed in terms of the time evolution of the
hexagonal BOO χ l

6 in Figure 5.12(b). At the start of the sedimentation process, the sedimenta-
tion column is filled with an isotropic fluid, as seen by the low value of χ l

6 in blue. With time,
the pressure at the bottom increases. Once it reaches the pressure where the hexagonal phase is
found to be stable, structures with hexagonal symmetry start to form at the bottom layers. This
is seen as an increase in the values of χ l

6 represented by pink colour. With time, we observe that
more hexagonal layers start to form. In contrast, we also see that the pink colour at the bottom
gives way to the blue colour again denoting the melting of the hexagonal layers into a fluid. We
also observe more layers melting as time proceeds. This melting process of the first layer of
the sediment can also be seen from the particle configurations taken at different times, which is
shown in Figure 5.13. We observe the formation of larger fractions of fluid with time in these
snapshots.

5.4 Conclusions and outlook

To summarise, we studied the sedimentation behaviour of a system of particles interacting with
a hard-core and a repulsive square shoulder potential with a fixed shoulder width equal to 1.4
times the hard-core diameter. We find that the system forms a two-dimensional layered structure
because of the energetic constraints. This enables us to validate the formation of the thermo-
dynamically stable phases as predicted by the two-dimensional phase diagram. Accordingly,
we confirm that layers with symmetries of a dodecagonal quasicrystal, square and low-density
hexagonal are formed in the pressure range corresponding to the respective stability regions in
the phase diagram. Further ascertaining the validity of the calculated phase diagram, we find
that the fluid phase exhibits a re-entrant phase behaviour along the height of the sedimentation
column. In addition, we evaluated the effect of settling rates on the formation of the quasicrystal
and find that faster settling rates lead to the formation of a quasicrystal with a tiling composition
closer to that of the maximum entropy tiling.
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For future work, it is interesting to study the formation of the dodecagonal quasicrystal
in detail, and to determine the optimal pressure and settling rates for its formation. It is also
interesting to see how the quasicrystal formation is affected in case of colloidal epitaxy.
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Part II

Phase behaviour of other two-dimensional
quasicrystal forming core-corona systems





6 Phase behaviour of systems forming
octadecagonal and decagonal

quasicrystals

Using Monte Carlo simulations and free-energy calculations, we study the phase behaviour of a
two-dimensional system of particles interacting with a hard core of diameter σHD and a repuls-
ive square shoulder potential. The interest in this system lies in the formation of quasicrystals
of different symmetries at specific square-shoulder widths δ as previously reported by Dotera et
al. [123]. However, an insight into other possible periodic phases formed in these systems and
the thermodynamic stability of both the periodic and quasicrystal phases is yet to be addressed.
Here, we study the phase behaviour and map out the phase diagrams for two different shoulder
widths δ = 1.27σHD and 1.60σHD, where octadecagonal and decagonal quasicrystals were, re-
spectively, reported. In addition, we verify the thermodynamic stability of these quasicrystals
with respect to their periodic approximants. In general, we find that the system at these shoulder
widths forms hexagonal phases in two distinct density ranges due to the two characteristic length
scales in the interaction potential. Further, we find that the octadecagonal quasicrystal is stable
in between two periodic crystal phase regimes. In contrast, the decagonal quasicrystal is not
bounded by a low-density periodic crystal phase regime due to the lower density of this quasi-
crystal. From the free-energy calculations, we find indications that the decagonal quasicrystal is
thermodynamically stable with respect to its approximant, and the octadecagonal quasicrystal
is stabilised by a configurational entropy contribution.

Based on Phase behaviour of quasicrystal forming systems of core-corona particles, J. Chem. Phys., 146,
1114901 (2017)
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6.1 Introduction

Despite a huge interest in recent years in the synthesis of novel colloidal building blocks with
different shapes and inter-particle interactions for obtaining new structures, it is intriguing to
note that very simple particle systems can still exhibit surprisingly rich phase behaviour with
unexpected novel phases. For instance, a simple architecture consisting of spherical particles
with a rigid core and a squishy corona has been used as a simple model system to explain
quasicrystals in soft matter [141]. Quasicrystals are materials that exhibit long-range orienta-
tional order without translational periodicity [96]. This architecture emulates either spherical
dendrite micelles consisting of a rigid aromatic core with a deformable shell of alkyl chains
[105], or block copolymer micelles consisting of a micellar core of hydrophobic polymer sur-
rounded by a large shell of hydrophilic polymer blocks [106–110]. Computational studies of
soft-matter quasicrystals essentially involve mimicking this core-corona architecture using a
suitable inter-particle interaction potential. In two-dimensional systems, this includes attractive
potentials like Lennard-Jones-Gauss [77, 211, 212], square-well [121, 125], flat-well [122] and
three-well oscillating [124] interactions, and purely repulsive interactions like the linear ramp
[118], square-shoulder [123, 142], repulsive shoulder [142] and various forms of exponential
[192, 213, 214] interactions.

A comprehensive exploration of quasicrystals in a two-dimensional system with an inter-
particle potential consisting of a hard core and a repulsive square shoulder was performed by
Dotera et al. [123]. They identified six quasicrystals of various symmetries in the density
and shoulder width parameter space. These quasicrystals were identified as low temperature
phases formed by cooling a hexagonal phase from a high temperature. A similar analysis was
more recently carried out by Schoberth et al. [142] wherein they also analysed, in addition to
the above mentioned square-shoulder system, a system where the repulsive interaction within
the corona was not constant. Similar to the procedure adopted by Dotera et al., Schoberth et
al. identified the low temperature phases formed at each point in the density-shoulder width
parameter space. This also included periodic crystals of square and hexagonal symmetries.
These fundamental studies pave the way for a number of questions regarding the overall phase
behaviour of these systems, which includes the presence of other periodic crystals as well as the
thermodynamic stability of all of these phases.

By studying the overall phase behaviour of these systems, we direct our attention to the
formation and stability of various periodic crystals and quasicrystals in core-corona systems.
The formation of soft-matter quasicrystals is aided by the presence of two characteristic length
scales in the system [141, 169–172]. Also, the formation of periodic crystals in core-corona
systems is interesting due to the formation of lattices exclusively in core-corona systems, such
as the A15 lattice in three-dimensional system [150, 215] and the square or rhombus lattices in
two-dimensional systems [77, 118, 148]. We wish to explore the formation of such uniquely
formed periodic crystals in two-dimensional core-corona systems. Further, to determine the
stable phases in the system, we calculate the free energy of all identified phases and map out
the phase diagram. The presence of quasicrystals in the system complicates the free-energy
calculation in a number of ways: Firstly, a suitable reference state with known free energy from
which we can construct a thermodynamic integration path to the quasicrystal in the system
of our interest is not known. Secondly, the configurational entropy of the quasicrystal needs
to be incorporated, but sampling over all of its possible distinct configurations is non-trivial.
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Thirdly, assessing the stability of quasicrystal would involve the inclusion of their approximants
[129, 130, 167, 176]. Approximants are periodic crystals that approximate the structure of a
quasicrystal on a local level, i.e. have identical local tiling structure as the quasicrystal [129,
130, 167, 175]. The higher stability of the quasicrystal is favoured by its configurational entropy
accounting for the number of distinct configurations [176], while the approximant is stabilised
by its lower energy and more efficient packing [129, 167, 173]. And finally, the relative stability
of quasicrystals and their approximants is dependent on the system under study and needs to be
exclusively addressed for each system.

In this work, we address the above points of interest by studying the phase behaviour and
mapping out the phase diagram for a two-dimensional system of hard disks interacting with
a repulsive square-shoulder potential at two shoulder widths δ = 1.27σHD and 1.60σHD for
which octadecagonal and decagonal quasicrystals were, respectively, reported previously [123].
We identify the various phases formed in the system by using Monte Carlo simulations. We
calculate the free energy of the periodic crystal phases using the Frenkel-Ladd method, and we
employ different methods for calculating the free energy of the high-density octadecagonal
quasicrystal and the low-density decagonal quasicrystal. For the high-density quasicrystal,
where the movement of particles is restricted, we perform a thermodynamic integration to a
non-interacting Einstein crystal, i.e. the Frenkel-Ladd method [151, 157], and account for the
configurational entropy by using an expression from literature [178]. For the low-density quasi-
crystal, where particle movements need to be accounted, the reference state is a system of non-
interacting particles pinned to their respective positions by an attractive linear well (Schilling-
Schmid method [161, 162]). Eventually, we map out the phase diagrams in the temperature-
density plane at both shoulder widths.

This chapter is organised as follows. In Section 6.2, we present our simulation model and
the computational methods that we employ to calculate the phase diagram. The results are
presented in Section 6.3, and we end with some conclusions in Section 6.4.

6.2 Methods

We first explain the simulation model and computational methods used for this study in Section
6.2.1, and then give an account of the analysis methods in Section 6.2.2. Following which,
we discuss the procedure to construct the phase diagram in Section 6.2.3 and then pay special
attention to the free-energy calculation of quasicrystals in Section 6.2.4.

6.2.1 Computational methodology

Here, we study a two-dimensional system of hard disks with a soft corona, which is represented
by a repulsive square-shoulder potential. The inter-particle potential of this hard-core square
shoulder (HCSS) system reads

VHCSS(r) =


∞, r ≤ σHD
ε, σHD < r < δ

0, r ≥ δ

, (6.1)
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where r is the centre-of-mass distance between two particles, and δ and ε are the square
shoulder width and height, respectively. The characteristics of this potential are described in
detail in Chapter 2.

We study the phase behaviour of the HCSS system at two different shoulder widths. Phases
with 18- and 10-fold symmetry, namely octadecagonal and decagonal quasicrystals, were repor-
ted previously for shoulder width values of δ =1.27σHD and 1.60σHD, respectively [123, 142].
These shoulder widths are close to the optimal irrational ratios that promote the formation of
quasicrystals, viz. 2cos50◦ ≈ 1.286 and 2cos36◦ ≈ 1.618 as explained in reference [123]. In
order to facilitate comparisons with earlier studies, we use the values as employed by Dotera
et al. instead of employing the optimal ones given above. In addition, we also refer to the
dodecagonal (12-fold symmetric) quasicrystal studied in Chapters 3 and 4 formed at a shoulder
width δ = 1.40σHD.

We perform Monte Carlo (MC) simulations in the canonical (NV T ) and isothermal-isobaric
(NPT ) ensemble, where the number of particles N, the temperature T , and the volume V or
pressure P, respectively, are fixed. The particles are simulated in a rectangular box of area
A under periodic boundary conditions. We introduce the following reduced (dimensionless)
quantities: temperature T ∗ = kBT/ε , pressure P∗ = βPσ2

HD, and density ρ∗ = Nσ2
HD/A, where

β = 1/kBT is the inverse temperature with kB the Boltzmann constant.

6.2.2 Structural analysis
To qualitatively analyse the structures that the system adopts under various conditions, we cal-
culate their corresponding polygonal tilings by drawing the bonds between the neighbouring
particles. Decoding quasicrystals as random tilings of polygons is a common practice. Com-
monly known examples of such tilings include the square-triangle tiling of a dodecagonal quasi-
crystal [178, 179] and the polygon tiling of a decagonal quasicrystal consisting of regular and
nonconvex decagons, nonagons, hexagons, and pentagons [74, 77, 176]. Dotera et al. [123] pro-
posed an alternative overview of these tilings by deconstructing each polygon as combinations
of two of the four possible Robinson triangles that can be constructed by three particles. In this
work, we use the formerly stated more widely used multi-polygonal tiling descriptions. This
helps in correlating the quasicrystals and their approximants to previous literatures as explained
separately for each quasicrystal in Section 6.3. To summarise, the dodecagonal quasicrystal
consists of a square-triangle tiling, the octadecagonal quasicrystal consists of a rhombus-triangle
tiling and the decagonal quasicrystal consists of a tiling composed of regular and nonconvex
polygons.

For further quantitative analysis, we calculate the average bond orientational order para-
meter (BOO) of the system and the local environment of each particle. The average BOO
parameter χm is defined as [164]

χm =

〈∣∣∣∣∣ 1
NB(i)

NB(i)

∑
j=1

exp(imθri j)

∣∣∣∣∣
2〉

, (6.2)

where m is the symmetry of interest, NB(i) is the number of neighbours of particle i, with
particle j defined to be a neighbour if ri j = |ri−r j| ≤ δ , ri and r j are the positions of particles i
and j, and θri j is the angle between the centre-of-mass distance vector ri j and an arbitrary axis.



PHASE BEHAVIOUR OF SYSTEMS FORMING OCTADECAGONAL AND DECAGONAL

QUASICRYSTALS 95

Given the similarity in the tiling between an octadecagonal and dodecagonal quasicrystal,
we identify the same local particle environments (LPE) in both. The LPE in dodecagonal quasi-
crystals is composed of the various possible arrangements of squares and triangles. This in-
cludes environments of only triangles (Z) or squares (A15), and a combination of the two.
Mixed arrangements of squares and triangles primarily result in two five-particle coordinated
environments, which are termed as H and σ . These LPEs are named in analogy to the Frank-
Kasper phases [180]. An overview of these LPEs is given in Figure 6.1.

A15Z H σ

Figure 6.1: Overview of the Z, A15, H and σ local particle environments (LPEs) in dodecagonal and
octadecagonal quasicrystals. Particles with LPEs other than these are coloured orange.

6.2.3 Phase diagram construction
Obtaining the phase diagram is essentially a three step process. Firstly, the equation of state
(EOS), i.e. the bulk pressure P∗ as a function of density ρ∗, is constructed. This is done
by measuring the equilibrium density at a fixed pressure in a NPT -MC simulation, and by
subsequently changing the pressure in a step-wise manner. Compression runs are always started
from a disordered isotropic fluid (FL) phase and expansion runs from a periodic crystal or a
quasicrystal phase with symmetries according to the system under study. We then determine the
free energy as a function of density by integrating the respective EOS from a reference density
where the free energy is known. The free energy at the reference density for the periodic crystals
is calculated using the Frenkel-Ladd method and that for the fluid phase using the coupling
parameter method. Both these are explained in Chapter 2. The free-energy calculation for the
quasicrystals is explained in Section 6.2.4. Finally, a common tangent construction is employed
to the free-energy curves of all phases to determine the thermodynamically stable phases.

6.2.4 Free-energy calculation of quasicrystals
The methods we use to calculate the free energy of the octadecagonal and decagonal quasi-
crystals are different. In case of the octadecagonal quasicrystal that forms at a high density,
the movements of the particles are restricted, and we can therefore use a representative ‘ideal
lattice’ for calculating the free energy as in case of the Frenkel-Ladd method [151]. In contrast,
the particles in the decagonal quasicrystal that forms at lower densities are highly mobile and
can thus not be represented by an ‘ideal lattice’. Therefore, we employ the method proposed
by Schilling and Schmid for arbitrary fluids and disordered solids [161, 162]. The Schilling-
Schmid method can also be used to calculate the free energies of the high-density octadeca-
gonal quasicrystal. We find that the difference between the free energies obtained using the
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Frenkel-Ladd and the Schilling-Schmid methods was in the order of the statistical error of the
free-energy calculations in these methods. We, eventually, employ Frenkel-Ladd method as it
is computationally less intensive than the Schilling-Schmid method.

For both the octadecagonal and decagonal quasicrystals, we need to account for the config-
urational entropy contribution associated with the number of distinct random-tiling configura-
tions. In case of the octadecagonal quasicrystal, the entropy correction is necessary because the
Einstein crystal, which is employed as the reference state, does not account for the configura-
tional entropy of the system. In order to obtain an estimate of the configurational entropy, we
consider the random-tiling model of polygons. There have been reports of calculation of the
configurational entropy for dodecagonal quasicrystals consisting of a random-tiling of squares
and triangles [84, 178, 181, 182]. However, we did not find any similar reports for the octa-
decagonal tiling of rhombus and triangle. We postulate that since the configurational entropy of
a dodecagonal square-triangle [178] and an octagonal rectangle-right-angled triangle [75] ran-
dom tiling is very similar, a similar value will also apply to the octadecagonal rhombus-triangle
tiling. We, thus, employ the same value of configurational entropy for both the dodecagonal and
the octadecagonal quasicrystal, i.e. a value of entropy per unit area of Sconfig/kBA = 0.12934
reported by Widom [178]. We, however, note here that we expect a higher configurational en-
tropy for the octadecagonal rhombus-triangle tiling and an even higher one for the octagonal
rectangle-right-angled triangle tiling than the dodecagonal square-triangle tiling because of the
lower symmetry of the rhombus, rectangle and right-angled triangle. On the other hand, for
the low-density decagonal quasicrystal, the free energy is calculated using the method proposed
by Schilling and Schmid [161, 162]. As this method allows the sampling of distinct configur-
ations, we do not add an additional configurational entropy term. However, it is good to note
that this method does not effectively sample the discrete phason flips in the structure, and thus,
underestimates the configurational entropy.

6.3 Results and discussion

In this section, we discuss the phase behaviour of the HCSS system at each shoulder width
separately.

6.3.1 Shoulder width δ = 1.27σHD

We first describe the HCSS system with shoulder width δ = 1.27σHD, which exhibits the form-
ation of an octadecagonal (18-fold symmetric) random-tiling quasicrystal (QC18) composed of
rhombi and triangles as shown in Reference [123]. The structure is analogous to the dodeca-
gonal quasicrystal (QC12) described in Chapters 3, 4 and 5. Both tilings are constructed from
three- and four-sided polygons. The four-sided polygon is a square in QC12 and a rhombus in
QC18, the three-sided polygon is an equilateral triangle in both types of quasicrystals. All these
polygons have sides of length σHD, whereas the rhombus in the QC18 is constructed such that
the diagonals are equal to the shoulder width δ = 1.27σHD. Figure 6.2(a) shows a configuration
of the QC18 obtained at ρ∗ = 0.98 and T ∗ = 0.20 in the NV T ensemble. The particle con-
figuration in the core-only representation is shown on the top which are coloured according to
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their LPEs described in Section 4.2.2. The bottom contains the rhombic-triangle tiling (left) and
calculated diffraction pattern (right). Defects of predominately pentagonal shapes are observed.

(a) (b)

(c)

Figure 6.2: The random-tiling octadecagonal quasicrystal (QC18) (a) as obtained from simulations,
(b) a defect-free construction of a random-tiling QC18, and (c) a periodic approximant (AC18). Each
figure displays a typical configuration (top), where the particles are shown in core-only representation
and the colours represent the local particle environments (LPEs) as described in Figure 6.1, along with
its corresponding rhombus-triangle tiling (bottom left) and diffraction pattern (bottom right). The
rhombus-triangle tiling formed by the centres of the distorted dodecagons in the approximant in (c)
is highlighted.

Constructing the defect-free configuration and a periodic approximant for this octadeca-
gonal quasicrystal is not straightforward as random rhombus-triangle tilings are not as widely
studied as the square-triangle tilings. However, it has previously been observed that the QC18
can be formed from the QC12 by decreasing the temperature followed by gradually decreas-
ing the shoulder width [123]. Here, we use a similar method to obtain the defect-free quasi-
crystal (QC18) and the approximant (AC18) by exclusively decreasing the shoulder width from
1.40σHD to 1.27σHD at a constant temperature T ∗ = 0.20 starting with a defect-free dodeca-
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gonal quasicrystal (QC12) and an approximant (AC12). The QC12 was adapted from a non-
Stampfli square-triangle approximant and contains 209 particles. The AC12 was adapted from
a repeated vertex substitution of the (32.4.3.4) Archimedean tiling consisting of squares and
triangles [85] and contains 224 particles. This particular approximant was chosen as it was the
most stable among the different approximants studied in Chapter 3.

In Figures 6.2(b) and 6.2(c), we present the resulting configurations of the defect-free QC18
and the AC18. The accompanying diffraction patterns affirm the 18-fold symmetry. In addition,
we plot the 4-, 6-, 12-, and 18-fold BOO parameters as a function of the shoulder width in
Figure 6.3 to monitor the transformation from AC12 to AC18 at temperature T ∗ = 0.20. A
decrease in χ12 accompanied with an increase in χ18 is observed upon decreasing the shoulder
width δ from 1.40σHD to 1.27σHD. Upon decreasing the shoulder width further, we find that
both χ12 and χ18 decrease and χ6 increases. From this behaviour, we establish the presence
of an 18-fold symmetric phase in a range of shoulder widths between 1.23σHD and 1.32σHD,
bordered by a 12- and a 6-fold symmetric phase. We further call attention to the high value of
χ6 at these intermediate shoulder widths. This can also be noticed in the diffraction patterns in
Figures 6.2(b) and 6.2(c). This is due to the small system sizes used in this study.
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Figure 6.3: The m-fold bond orientational order (BOO) parameter χm showing the formation of an
octadecagonal quasicrystal (QC18) from a dodecagonal quasicrystal (QC12) in the HCSS system at
temperature T ∗ = kBT/ε = 0.20 by reducing the shoulder width δ in a Monte Carlo simulation in the
NV T ensemble.

To characterise the QC18, we first follow the formation of the QC18 by studying the be-
haviour of the BOO parameters as a function of temperature and pressure in Figure 6.4 and
the equations of state (EOS) in Figure 6.5. The QC18 is formed either by cooling of the high-
density hexagonal (HDH) phase to a lower temperature at constant density or by compressing
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Figure 6.4: The m-fold bond orientational order (BOO) parameter χm in a simulation of the HCSS
system with δ = 1.27σHD as a function of (a) temperature T ∗ as obtained by cooling a high-density
hexagonal (HDH) phase at density ρ∗ = Nσ2

HD/A = 0.98 in the NV T ensemble, and (b) as a function of
pressure P∗ by compressing a fluid (FL) phase at temperature T ∗ = kBT/ε = 0.30 in the NPT ensemble.
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the fluid (FL) phase to higher density at constant temperature. The behaviour of the BOO
parameters χ4, χ6 and χ18, respectively representing rhombic, hexagonal and octadecagonal
symmetries, during these transformations are shown in Figure 6.4. An increase in χ18 upon
decreasing the temperature (Figure 6.4(a)) or increasing the pressure (Figure 6.4(b)) establishes
the formation of the QC18 phase. The EOS is the bulk pressure P∗ as a function of the equi-
librium density ρ∗ at constant temperature T ∗. To construct the EOS, we use the rhombus
(RH), the high-density hexagonal (HDH) phase, the approximant (AC18) and the defect-free
octadecagonal quasicrystal (QC18) as starting configurations for the expansion runs. We plot
the EOS obtained at temperatures T ∗ = 0.40 and 0.15 in Figure 6.5. We find that the system
displays hard-disk like phase behaviour at the high temperature and a re-entrant fluid followed
by the formation of a quasicrystal at the low temperature. The re-entrant behaviour of the fluid
is mediated by the formation of a low-density hexagonal phase, where the interparticle distance
is equal to the width of the square shoulder.

We, then, evaluate the relative stability of the QC18 and AC18 phases by constructing a
common tangent between the RH and HDH phases. Figure 6.6 shows this common tangent con-
struction at T ∗= 0.20. Here, we plot the Helmholtz free energy per unit area βF/A as a function
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Figure 6.5: Equations of state (P∗ = βPσ2
HD versus ρ∗ = Nσ2

HD/A) obtained for the HCSS system
with δ = 1.27σHD and temperatures T ∗ = kBT/ε = 0.40 and 0.15. The phases shown are fluid (FL),
rhombus (RH), low-density (LDH) and high-density hexagonal (HDH) phases and the random-tiling
octadecagonal quasicrystal (QC18).
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of reduced density ρ∗ for the following phases: RH, HDH, AC18, and QC18 without (QC18-
woS), and with (QC18-wS) the configurational entropy contribution Sconfig/kBA = 0.12934 as
taken from literature [178]. For convenience, we subtract a linear fit ρµc−Pc from the free-
energy curves, where µc denotes the bulk chemical potential at the (metastable) RH-HDH phase
coexistence and Pc the corresponding bulk pressure. This nullifies the free energy of the two-
phases, between which the common-tangent is drawn, at the coexistence densities. Thus, the
phases with a negative free energy minima in this plot are more stable with respect to the con-
cerned two-phase coexistence. From Figure 6.6, we first note that the minima of the free-energy
curves of both QC18 and AC18 lie below the zero-level showing that all these phases are more
stable than the RH-HDH phase coexistence. Now, to evaluate the relative stability between the
QC18 and AC18, we take a closer look at the minima of these curves, as shown in the inset. We
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Figure 6.6: Common tangent construction at the rhombus-high-density hexagonal (RH-HDH) phase
coexistence obtained for the HCSS system with δ = 1.27σHD at reduced temperature T ∗= kBT/ε = 0.20.
The plot shows the Helmholtz free energy per unit area βF/A as a function of reduced density ρ∗ =
Nσ2

HD/A. A linear fit ρµc− pc is subtracted from the free energy, where µc and Pc are the bulk chemical
potential and bulk pressure at the (metastable) RH-HDH phase coexistence. The phases shown are
rhombus (RH), high-density hexagonal (HDH) phase, periodic approximant (AC18) and octadecagonal
quasicrystal without (QC18-woS) and with the entropy correction (QC18-wS). Inset shows a closer look
of the free energy curves of QC18-woS and AC18 phases.
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find that the difference between them is very small and is of the order of the statistical error of
the free-energy calculation. Thus, the relative stability of one over the other cannot be accur-
ately established. Further, we find that at the close-packed density of ρ∗ = 1.07, both AC18 and
QC18 have a potential energy per particle U/εN equal to 2.536± 0.002. Thus, the QC18 and
the AC18 are approximately equally stable without the entropy correction, whereas any extra
configurational entropy contribution arising from the number of distinct configurations of the
QC18, stabilises the QC18 over the AC18. We thus assume that the QC18 is more stable than
the AC18.

The phase diagram was subsequently mapped out using the free energy of the QC18 phase
with the configurational entropy contribution. We stress here that the shift in the phase boundar-
ies is insignificant whether or not the configurational entropy contribution is taken into account,
as seen in Figure 3.8. Figure 6.7 displays the phase diagram in the (reduced) temperature-
density (T ∗−ρ∗) plane. The low density-low temperature region (T ∗ < 0.25 and ρ∗ < 0.3) of
the phase diagram is represented by a re-entrant fluid (FL) engulfing the low-density hexagonal
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Figure 6.7: Phase diagram in the (reduced) temperature-density representation obtained for the HCSS
system with shoulder width δ = 1.27σHD. The reduced quantities are defined as T ∗ = kBT/ε and
ρ∗ = Nσ2

HD/A. The phases shown are fluid (FL), rhombus (RH), low-density (LDH) and high-density
hexagonal (HDH) phases and the random-tiling octadecagonal quasicrystal (QC18). The grey regions
denote the two-phase coexistence regions.
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(LDH) phase. The LDH phase is formed with the particles separated from each other at a dis-
tance equal to the shoulder width δ = 1.27σHD. The high temperature regime (T ∗ ≥ 0.35) is
characterised by a fluid at low densities and a high-density hexagonal (HDH) phase at high
densities with the FL-HDH two-phase coexistence region in between. At low temperatures, a
stable QC18 region adjoined by a stable rhombus (RH) and the HDH phase is observed. At
intermediate temperatures, the QC18 region is bordered by a FL and the HDH phases. The
narrowness of the density regime of the stable rhombus phase is attributed to the geometric con-
straints enforced by the structure of the phase on the side lengths of the rhombi. This constraint
does not allow the sides of the rhombi to change independently and thus, does not accommodate
large changes in densities.

6.3.2 Shoulder width δ = 1.60σHD

Next, we investigate a system consisting of HCSS particles with shoulder width δ = 1.60σHD,
where a random-tiling decagonal (10-fold symmetric) quasicrystalline (QC10r) phase was pre-
viously reported by Dotera et al. [123]. The decagonal quasicrystal differs from the octadeca-
gonal quasicrystal on the basis of two factors, namely density and tiling. Firstly, the close-
packed density ρ∗ of QC18 was 1.07, whereas the QC10r obtained in simulations had a density
ρ∗ ≈ 0.70 [123]. Secondly, in stark contrast to the two-member polygonal tiling of QC18, the
tiling of QC10r consists of a series of polygons with at least five sides. We show in Figure
6.8(a) a typical configuration of a QC10r at T ∗ = 0.20 as obtained by cooling the HDH phase
to a lower temperature at constant density ρ∗ = 0.70. In the left panel, we show the particle
configuration with both the hard core and soft corona. The inset shows the calculated diffrac-
tion pattern exhibiting decagonal symmetry. The accompanying tiling is drawn on the right.
We see that the tiling is constituted by the following polygonal tiles: Pentagon (Pe), hexagon
(He), heptagon (Hp), octagon (Oc), nonagon (No), decagon (De), collapsed decagon (Ud) and
question-mark (Qm). The polygonal tiles with more sides than the ones listed above are shaded
in grey in Figure 6.8(a). These tiles are identified keeping in mind the constituent tiles of com-
monly studied decagonal quasicrystals and approximants as described below [74, 77, 176, 212].

As in the previous case of QC18, we construct a perfect decagonal quasicrystal (QC10) and
a decagonal approximant (AC10) to study their relative stabilities. The QC10 is adapted from a
Mikulla-Roth binary tiling as a decoration of the Tübingen triangle tiling [74] and is shown in
Figure 6.8(b). It has a close-packed density of 0.7608. It is composed of 330 particles arranged
into five constituent polygons; namely Pe, He, No, De, and Ud tiles. The AC10, on the other
hand, consists of decagons arranged in a rhombic super tiling [77] as shown in Figure 6.8(c).
We use a large system of 2028 particles such that a rectangular super cell can be carved out of
the rhombic super tiling. It has a closed-packed density of 0.7617 and consists of Pe, He and De
tiles. Comparing the tilings of the QC10r, QC10 and the AC10 in Figure 6.8, it is obvious that
the QC10r tiling is described by additional polygonal tiles than those in the QC10 and AC10.
This polygonal tiling of the QC10r has previously been interpreted by constructing the five
constituent polygons using two types of Robinson’s triangles [123]. In that interpretation, these
additional polygonal tiles are considered to be derived from combinations of the constituent
polygonal tiles. Among these derived polygonal tiles, we explicitly mark the Hp, Oc and Qm
tiles, which appear frequently in the simulations. We do not categorise the other derived tiles
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(a)
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Figure 6.8: Difference between (a) the random-tiling decagonal quasicrystal as obtained in simulations
(QC10r) (b) the constructed decagonal quasicrystal (QC10) and (c) the decagonal approximant (AC10).
The particle configurations containing both the hard core and the soft shoulder of the particles are shown
on the left. Their respective tilings are drawn on the right. Inset shows the calculated diffraction pattern.
The legend of the constituent and derived polygonal tiles is given at the bottom.



PHASE BEHAVIOUR OF SYSTEMS FORMING OCTADECAGONAL AND DECAGONAL

QUASICRYSTALS 105

which can be construed as tube-like polygons of various lengths. These are shaded in grey in
Figure 6.8(a).

We study the phase behaviour of this system by first constructing the EOS of the various
phases present at different temperatures. The expansion runs were started with the decagonal
quasicrystal (QC10), the decagonal approximant (AC10) and the high-density hexagonal (HDH)
phase. We do not start the expansion runs with the random-tiling quasicrystal (QC10r). Instead,
we observe the formation of the QC10r phase from both the QC10 and the AC10 phases at lower
pressures. In Figure 6.9, we show the EOS obtained at temperatures T ∗ = 0.30, 0.16 and 0.13.
Firstly, we notice that the fundamental behaviour of the system at this shoulder width is similar
to that at δ = 1.27σHD. Notably, we observe hard-disk-like behaviour at high temperature
(T ∗ = 0.30) and the formation of a low-density hexagonal (LDH) phase at low temperature
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Figure 6.9: Equations of state obtained for the HCSS system with δ = 1.60σHD and temperatures T ∗ =
kBT/ε = 0.30, 0.16 and 0.13. The phases shown are fluid (FL), low-density (LDH) and high-density
hexagonal (HDH), a decagonal approximant (AC10) and a perfect (QC10) and a random-tiling decagonal
quasicrystal (QC10r). Inset shows a zoomed in view of the equations of state of the AC10, QC10
and QC10r phases at T ∗ = 0.13. The red-dash-dot line here indicates the pressure below which the
derived polygonal tiles start to form in these structures, corresponding to the QC10 (or AC10) to QC10r
transition.
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(T ∗ = 0.13). The difference appears at intermediate density ranges, especially in the EOS of
the quasicrystal.

We find that the EOS of the QC10 and AC10 lie very close to each other. To analyse them in
detail, we plot a closer view of their EOS at T ∗ = 0.13 in the inset of Figure 6.9. We find that,
at these conditions, the difference between the two EOS is of the order of the statistical error in
our calculations. During the expansion of both QC10 and AC10, we find that derived polygonal
tiles start to form in order to accommodate the extra space available in the structure due to a
lower density. The pressure at which the derived polygonal tiles start to form from QC10 or
AC10 is marked by the dash-dot line in the inset of Figure 6.9. Given that both these structures,
QC10 and AC10, exhibit similar behaviour, we explain only that of the QC10 here. We find
that the local rearrangements of particles which result in the formation of derived polygonal
tiles are accommodated by phason flips. For example, in Figure 6.10, we present the tilings of
a typical particle configuration at pressures P∗ = 46 and 45 for a temperature T ∗ = 0.13. We
clearly find that a tiling consisting of a Pe, a Ud, and a De tile rearranges into a tiling consisting

(a) (b)

(c)

Figure 6.10: Tilings of particle configurations obtained at pressures P∗ = βPσ2
HD = (a) 46 (b) 45 at

temperature T ∗ = kBT/ε = 0.13 showing the formation of derived polygonal tiles in the constructed
decagonal quasicrystal (QC10) structure. The tiles are coloured according to the convention given in
Figure 6.8. Inset shows the calculated diffraction pattern. (c) A closer look at the tile rearrangement,
marked by the yellow squares in (a) and (b). The particles positions at P∗ = 46 are in grey and that at
P∗ = 45 are in blue. The displacement vectors are in red.



PHASE BEHAVIOUR OF SYSTEMS FORMING OCTADECAGONAL AND DECAGONAL

QUASICRYSTALS 107

of a Ud and a Qm tile. A closer look at this rearrangement is given in Figure 6.10(c). Here
the centre-of-mass of the particles is depicted along with their nearest-neighbour bonds. The
particle positions at P∗ = 46 are in grey and those at P∗ = 45 are in blue. We also draw in red
the vectors denoting the displacement of each particle between these two states. The formation
of the derived polygonal tiles essentially denotes a transition from the QC10 to the QC10r
structure. However, we do not see any clear signature of this transition in the EOS as shown in
Figure 6.9. This indicates that the rearrangements in the tilings are required to accommodate
the change in density, i.e. more open derived polygons form at lower densities.

The free energies of the FL, QC10 and AC10 phases were calculated according to the
Schilling-Schmid method and that of the HDH phase using the Frenkel-Ladd method as ex-
plained in Chapter 2. The stable phases at each temperature were then calculated using com-
mon tangent constructions between each pair of phases. For example, Figure 6.11 displays the
relative stability of the phases at T ∗ = 0.11. Here, the chemical potential β µ of the phases as a
function of pressure P∗ is plotted. Two phases coexist when their respective chemical potentials
are equal at a given pressure. This can be seen as a point of intersection between two curves
in the β µ −P∗ plot in Figure 6.11. The stability region of each phase is marked by arrows at
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Figure 6.11: The chemical potential β µ as a function of reduced pressure P∗ = βPσ2
HD at temperature

T ∗ = kBT/ε = 0.11 for the HCSS system with δ = 1.60σHD. The stable phases are fluid (FL), low-
density (LDH) and high-density hexagonal (HDH), and random-tiling decagonal quasicrystal (QC10r).
The stability region of QC10r is obtained from the curves pertaining to the perfect decagonal quasicrystal
(QC10) and its approximant (AC10). The arrows denote the phase stability regions.
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the bottom of the figure. We individually mark the curves pertaining to the QC10 and AC10
phases, which lie on top of each other. Comparing the pressure range of formation of the QC10
(or AC10) phases with the EOS given in Figure 6.9, we find that it corresponds to the region
where the structure comprises of derived polygonal tiles, i.e. the QC10r structure. Thus, we
conclude that the stable phase with decagonal order in the system is QC10r. Ultimately, the or-
der of stability of the phases at this temperature is found to be FL-LDH-FL-QC10r-HDH upon
increasing the pressure P∗.

In Figure 6.12, we plot the phase diagram in the (reduced) temperature-density (T ∗−ρ∗)
plane. Similar to the behaviour at δ = 1.27σHD, the low-temperature low-density behaviour
is characterised by a re-entrant phase behaviour of the fluid (FL) phase encompassing the
low-density hexagonal (LDH) phase. The stable phase at high densities is the high-density
hexagonal (HDH). The quasicrystal (QC10r) is formed at intermediate densities at low temper-
atures (T ∗ ≤ 0.20). We find that the maximum density of the stable QC10r phase is ≈ 0.73,
whereby the structure always contains derived polygonal tiles. This essentially means that the
QC10 and AC10, which solely consist of the constituent polygons, is not a stable phase in this
system. It is, however, interesting to note that stable QC10 and AC10 phases have previously
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Figure 6.12: Phase diagram in the (reduced) temperature-density representation obtained for the HCSS
system with shoulder width δ = 1.60σHD. The reduced quantities are defined as T ∗ = kBT/ε and
ρ∗ = Nσ2

HD/A. The stable phases shown are fluid (FL), low-density (LDH) and high-density hexagonal
(HDH), and the random-tiling decagonal quasicrystal (QC10r). The grey regions denote the two-phase
coexistence regions.
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been reported in a system of particles interacting with Lennard-Jones-Gauss potential [176].
The absence of QC10 (or AC10) in the HCSS system emphasises the strong dependence of the
formation of a quasicrystal (or approximant) on the interaction potential.

6.4 Conclusions
To summarise, we investigated the bulk phase behaviour of a system of colloidal particles inter-
acting through a hard core and a purely repulsive square-shoulder pair potential for two different
shoulder widths δ = 1.27σHD and 1.60σHD. The system shows similar phase behaviour at low
and high densities for both shoulder widths. At low densities, the fluid exhibits a re-entrant
phase behaviour circumscribing a low-density hexagonal (LDH) phase due to the presence of
two length scales in the interaction potential. At high densities, a high-density hexagonal (HDH)
phase is found to be stable. At intermediate densities, for δ = 1.27σHD, a rhombus phase is ob-
served. No periodic crystal phase is observed at intermediate density for δ = 1.60σHD.

The most distinguished feature of the HCSS system is the formation of quasicrystals as re-
ported by Dotera et al. [123]. They demonstrated the formation of quasicrystals with different
symmetries at different shoulder widths. An octadecagonal (18-fold symmetric) quasicrystal
is formed at δ = 1.27σHD and a decagonal (10-fold symmetric) quasicrystal at δ = 1.60σHD.
Here, we investigated the thermodynamic stability of these quasicrystals with respect to a dis-
ordered fluid phase, periodic crystal phases, and periodic approximants. To this end, we calcu-
late the free energy of the octadecagonal quasicrystal using the Frenkel-Ladd method and add
an extra contribution pertaining to the configurational entropy. For the decagonal quasicrystal,
we employ the Schilling-Schmid method to calculate the free energy. We find that the octadeca-
gonal quasicrystal without the entropy correction and its approximant were equally stable for
a HCSS system at shoulder width δ = 1.27σHD. However, any configurational entropy contri-
bution associated with the number of distinct configurations of the octadecagonal quasicrystal
phase will stabilise it over its approximant. We thus assume that the octadecagonal quasicrystal
phase will be more stable than the approximant. In the case of the decagonal quasicrystal, we
find that the approximant is not stable at the densities where the quasicrystal is formed for a
HCSS system at shoulder width δ = 1.60σHD. In conclusion, we have mapped out the phase
diagrams of HCSS systems for two different shoulder widths. We show that the phase diagrams
display stable regions of the decagonal and octadecagonal quasicrystal phases. We also stress
that the phase boundaries are insensitive to the configurational entropy term corresponding to
the number of distinct QC configurations.

Finally, we mention that we do not consider the other 18-fold (δ = 1.43σHD) and 24-fold
(δ = 1.29σHD) quasicrystalline phases reported at densities just above that of the LDH by
Dotera et al. [123] as their reported temperatures of formation (T ∗ ∼ 0.09) are outside the
temperature range of this study (0.15≤ T ∗ ≤ 0.50).
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7 On the formation of stripe, sigma, and
honeycomb phases in a core-corona

system

Using Monte Carlo simulations and free-energy calculations, we investigate the phase beha-
viour of a two-dimensional core-corona system. We model this system as particles consisting
of an impenetrable hard core of diameter σHD surrounded by a purely repulsive soft corona of
diameter δ = 1.95σHD. At low densities, we observe the spontaneous formation of a phase with
a stripe texture as well as a honeycomb-like phase driven by both energy and entropy consider-
ations. At high densities, we find that a two-dimensional analogue of the periodic sigma phase,
considered as a periodic approximant of dodecagonal quasicrystals, is energetically stabilised
with respect to two distinct dodecagonal quasicrystals, namely, a square-triangle tiling and a
square-triangle-shield tiling. We also find the formation of stable hexagonal phases at three
distinct density ranges, which are energetically driven, i.e. by minimising the overlap of the
coronas. Furthermore, our calculations show that the low-density dodecagonal quasicrystal that
was previously reported by Dotera et al. [123] is kinetically formed in the coexistence region
between the honeycomb and the medium-density hexagonal phases.

Based on On the formation of stripe, sigma, and honeycomb phases in a core-corona system, Soft Matter
(2017)
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7.1 Introduction

Self-assembly, the process of spontaneous organisation of simple components into complex
structures, is often controlled by a competition between different interactions in soft matter
systems. Anisotropic interactions due to external fields [216–224], particle shapes [113, 129,
167, 225], particle sizes [111, 112], or surface modifications [226, 227] induce the forma-
tion of mesophases like stripes [216, 217, 220, 221, 228, 229], open structures like honey-
comb [218, 220, 227, 230] and Kagome lattices [223, 225, 226] and even quasicrystals [105–
112, 231]. These open structures and quasicrystals are interesting for their applications as pho-
tonic crystals [25, 63, 91, 232]. Alternatively, monodisperse colloidal particles interacting with
potentials comprising of two length scales can also self-assemble into such phases with non-
trivial symmetries. Such systems, which are driven by two competing length scales, are termed
as core-softened systems, systems with a core-corona architecture, or simply core-corona sys-
tems. Evidences of formation of mesoscale patterns like stripes [136–140] and labyrinths [137],
Archimedean tiling patterns [106, 141], square lattices [118] and quasicrystals of various sym-
metries [118, 123, 142] have been reported in core-corona systems.

These core-corona systems can be represented in simulations by a variety of models with
different interparticle interactions. In simple terms, three kinds of core-corona interactions can
be identified, namely purely attractive, purely repulsive, or a combination of the two. Examples
of systems with purely attractive interactions include square-well [121] and flat-well [122] pair
potentials, that of purely repulsive interactions are square-shoulder [123, 148, 149] and lin-
ear ramp [118] pair potentials, and mixed interactions include Lennard-Jones-Gauss [77] and
three-well oscillating [124] pair potentials. Experimentally, these systems consist of spherical
particles with a rigid core and a squishy corona, for example, spherical dendrite micelles con-
sisting of a rigid aromatic core with a deformable shell of alkyl chains [105], or block copolymer
micelles consisting of a micellar core of hydrophobic polymer surrounded by a large shell of
hydrophilic polymer blocks [110].

The interactions observed between these experimental core-corona particles are primarily
steric in nature, which results in a strongly repulsive core interaction supplemented with a soft
repulsive corona interaction. This form of interaction can be described in terms of three regimes.
The first regime occurs at low densities where the coronas do not overlap. The second regime
is at high densities, where the coronas entirely overlap and the core repulsion dominates, and
finally the third regime is at intermediate densities, where the coronas partially overlap. In this
intermediate regime, both the cores and coronas are partially effective and the competition of
these core and corona interactions leads to the formation of phases with unusual symmetries.
In other words, the minimisation of overlap of the coronas drives the formation of the phases
described above.

Although the formation of these mesophases and open structures has been investigated in
core-corona systems, the thermodynamic stability of these phases has received less attention.
Given that (1) the presence of two-length scales aids the formation of quasicrystals in soft-
matter systems [141, 169, 190–193] and that (2) such two-length scale systems are capable
of forming mesophases [136–140], a question that naturally arises is how the thermodynamic
stability of these mesophases and quasicrystals is related to each other in a system that forms
both. To the best of our knowledge, we have not come across any such study.
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We address these issues in this chapter by combining Monte Carlo simulations and free-
energy calculations. We evaluate the thermodynamic stability of a mesophase, an open struc-
ture and quasicrystals formed in a core-corona system. We model this system by using two-
dimensional disks with diameter σHD interacting with a hard core and a purely repulsive square-
shoulder potential at a fixed shoulder width of 1.95σHD. We find the formation of a stripe, a
honeycomb and a two-dimensional sigma phase along with hexagonal and fluid phases in this
system. This chapter is organised as follows. In Section 7.2, we introduce the model and de-
scribe the simulation methods that we employ to study the phase behaviour of this system. We
present the results regarding the formation and stability of a striped mesophase, quasi-periodic
and periodic phases in Section 7.3 and we end with an overview of the phase behaviour in our
conclusions in Section 7.4.

7.2 Methods
We first explain the simulation model and computational methods used for this study in Sec-
tion 7.2.1, and then the procedure to construct the phase diagram in Section 7.2.2, and we
subsequently give an account of the analysis methods in Section 7.2.3.

7.2.1 Model and simulations
The core-corona model used in this study consists of a two-dimensional system of spherical
particles interacting with a hard-core square shoulder (HCSS) pair potential VHCSS(r). This
radially symmetric pair potential consists of a hard core of diameter σHD and a purely repulsive
square shoulder of diameter δ and reads

VHCSS(r) =


∞, r ≤ σHD
ε, σHD < r ≤ δ

0, r > δ

, (7.1)

where r is the interparticle centre-of-mass distance, and ε > 0 is the height of the square
shoulder. The general behaviour of this interaction potential is explained in Chapter 2. The
HCSS potential introduces two characteristic length scales in the system; one at the diameter
of the hard core σHD and the other one at the soft shoulder δ . The latter is the only tunable
parameter for studying the system. It has been previously shown by Dotera et al. [123] and
Schoberth et al. [142] that quasicrystals of various symmetries form at specific values of δ .
In this chapter, we use a value of δ = 1.95σHD. This chosen shoulder width is close to (1)
the shoulder width of δ = 2.00σHD [233, 234] and δ = 2.50σHD [136, 138, 140] where stripe
phases have previously been reported in certain computational studies as well as (2) the irra-
tional ratio of 2cos15◦ ≈

√
2+
√

3 ≈ 1.932 where quasicrystals of dodecagonal symmetry at
a high density have been reported to form in various theoretical and/or computational studies
[77, 123, 169, 190, 235]. Thus, this shoulder width is an ideal starting point to locate both the
stripe phase and the dodecagonal quasicrystal. Furthermore, a dodecagonal quasicrystal at a
lower density has also been reported by Dotera et al. at this shoulder width δ = 1.95σHD [123].

To address the phase behaviour of this system and the relative stability of various phases, we
perform Monte Carlo (MC) simulations in a rectangular box of area A with periodic boundary
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conditions in the canonical (NV T ) and isothermal-isobaric (NPT ) ensembles. We choose σHD
and ε , respectively, as the units of length and energy, and define a reduced temperature T ∗ =
kBT/ε , reduced pressure P∗= βPσ2

HD, and a reduced density ρ∗=Nσ2
HD/A, where β = 1/kBT

is the inverse temperature with kB the Boltzmann constant. In the simulations, we use a system
size between 209 to 256 particles depending on the initial crystal structure, while a system size
of 1600 particles was used in case of an isotropic fluid phase as initial configuration.

7.2.2 Phase diagram construction
We determine the phase diagram of the system in a three-step process. In the first step, we
measure the isotherms of the equation of state (EOS) of the phases of interest at a fixed tem-
perature T ∗. These isothermal EOS, i.e. the bulk pressure P∗ as a function of the equilibrium
density ρ∗, are obtained by performing compression and expansion runs by either increasing
or decreasing the pressure P∗ in a step-wise manner in the NPT ensemble. We start the com-
pression runs from a disordered isotropic fluid phase, while the expansion runs are started using
a periodic crystal or a quasicrystal phase. In the second step, we determine the dimensionless
Helmholtz free energy per particle f = βF/N as a function of density at a fixed temperature
T ∗ for each of the observed phases. This is done by thermodynamic integration of the EOS
to a reference density. The free energy at this reference density is calculated by constructing
a reversible thermodynamic path to a reference system for which the free energy can be cal-
culated analytically. We employ the hard-disk fluid phase at the same density as a reference
state for the fluid phase [151, 157], and the non-interacting Einstein crystal [151, 159, 160] as a
reference for the periodic crystals. For all other phases in the system, namely the quasicrystal,
its approximants, and the stripe phase, we use a non-interacting system of particles pinned by
an attractive linear well [161, 162] to their reference positions as a reference system. All these
three methods for calculating the free energy are explained in Chapter 2. In the final step, we
employ a common tangent construction to the free-energy curves, i.e. the Helmholtz free energy
per unit area βF/A as a function of reduced density ρ∗, to determine the thermodynamically
stable phases and the corresponding phase boundaries.

Additionally, we also monitor the nature of phase transitions in the NV T ensemble by cal-
culating the specific heat Cv at constant volume defined by

Cv =

〈
U2〉−〈U〉2

kBT 2 , (7.2)

where U is the potential energy of the system.

7.2.3 Structural analysis
We calculate various order parameters to study the local structure and to differentiate between
the phases. This includes the radial distribution function (RDF) of the system g(r), the static
structure factor S(k), and the average m-fold bond orientational order parameter (BOO) of the
system χm and the bond orientational correlation function gm(r). In addition, we calculate
the polygonal tiling corresponding to each structure. We define the m-fold bond orientational
correlation function gm(r) with r = |r− r′| as

gm(r) =
〈

χ
j

m(r).χ
k∗
m (r′)

〉
. (7.3)
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Further, in the case of the dodecagonal quasicrystal phase and its approximants, we calcu-
late the local particle environment (LPE) to differentiate between the σ and H environments
[180] as shown in Figure 7.1. The H and σ LPEs respectively correspond to the periodic
Archimedean tilings

(
3342) and

(
32434

)
[180]. Each Archimedean tiling is characterised by an

unique vertex obtained by the arrangement of the constituent tiles around it. Thus, the naming
of an Archimedean tiling refers to cyclic order of the number of sides of the polygonal tiles
around the vertex.

Figure 7.1: Schematic overview of the H and σ local particle environments (LPE).

Furthermore, we utilise an anisotropic scaling index method to distinguish between the fluid
and stripe phases [236, 237]. Here, a weighted scaling index α of the system is calculated as

α =

〈
∑

N
i=1 ∑

N
j 6=i δ (r− ri)δ (r′− r j)q(rc/ri j)

qe−(rc/ri j)
q
〉

〈
∑

N
i=1 ∑

N
j 6=i δ (r− ri)δ (r′− r j)e−(rc/ri j)q

〉 , (7.4)

where ri j = |ri− r j| is the distance between particles i and j at positions ri and r j, rc is a cut-
off distance, and q is a control parameter. In this study, the cut-off distance rc is taken to be
2.50σHD and the control parameter q is set to 2. The index α is a local non-linear measure
used to characterise the symmetry of the structure along a certain direction. The change in
symmetry of the system due to the formation of stripes can then be quantified by the probability
distribution functions of α in the directions parallel and perpendicular to the stripes. Hence, a
scalar order parameter to quantify the transition between fluid and stripe phases is defined as
the difference between the average parallel and perpendicular scaling indices [236, 237],

∆α =
∫

αP‖(α)dα−
∫

αP⊥(α)dα. (7.5)

7.3 Results and discussion
In this section, we first present the phase diagram of the HCSS system with a shoulder width
δ = 1.95σHD and then separately examine the formation and stability of the different phases.

The phase behaviour at the chosen shoulder width is particularly interesting due to the com-
parative sizes of the shell of the soft corona (0.95σHD) and the diameter σHD of the hard core.
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Figure 7.2: (a) Phase diagram of the HCSS system with a shoulder width δ = 1.95σHD in the (reduced)
temperature T ∗ - density ρ∗ plane. A zoomed in version of the phase diagram in the low-temperature
regime is given in (b) in the (reduced) temperature T ∗ - density ρ∗ plane and in (c) in the (reduced)
pressure P∗ - temperature T ∗ plane. The reduced quantities are defined as T ∗ = kBT/ε , ρ∗ = Nσ2

HD/A
and P∗ = βPσ2

HD . The stable phases include fluid (FL), stripe (STR), honeycomb (HC), low-density
hexagonal (LDH), medium-density hexagonal (MDH), and high-density hexagonal (HDH) and sigma
(SIG). The grey areas denote the coexistence regions between two phases. Typical configurations of
the phases obtained from Monte Carlo simulations are shown on either side of (a). The hard cores are
coloured in yellow and the soft coronas in red.
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Consequently, the interplay between energy and entropy determines the peculiar phases formed
at low and intermediate densities. We show the calculated phase diagram in the (reduced)
temperature T ∗ - density ρ∗ representation in Figures 7.2(a) and 7.2(b), along with typical con-
figurations of the various phases in the core-shoulder representation. We also take a closer look
at the low-temperature regime of this phase diagram in the (reduced) pressure P∗ - temperat-
ure T ∗ representation in Figure 7.2(c). From these figures, it is clear that the system shows a
rich phase behaviour with a fluid (FL), a stripe (STR), a honeycomb (HC), and a sigma (SIG)
phase, and hexagonal phases at three distinct ranges of density, namely a low-density (LDH),
a medium-density (MDH), and a high-density (HDH) hexagonal phase. The SIG phase is a
periodic approximant of a dodecagonal quasicrystal and is named after its three-dimensional
analogue of the Frank-Kasper phase [180, 238].

At low temperatures and densities, we recognise a re-entrant behaviour of the FL phase
encompassing the LDH phase. At moderate densities, we find the STR and HC phases at low
temperatures T ∗ < 0.2 and a broad two-phase coexistence region between the HC and MDH
phases. On the other hand, at T ∗ > 0.2, the STR and HC phases are unstable and we find a
broad coexistence between the FL and MDH phases. With increasing densities, three periodic
crystal phases are observed in this system, namely the MDH, SIG and HDH phases. At much
higher temperatures, T ∗> 0.6 and T ∗> 0.9, the MDH and STR phases respectively are unstable
and the system displays hard-disk like behaviour described by the FL at low densities and HDH
at high densities with a two-phase coexistence region in between. We individually examine the
formation and stability of each of these phases in the following sections.

7.3.1 Formation of the hexagonal phases
We begin with the formation of the three different hexagonal phases observed in this system.
With the inherent presence of two length scales in the system, the presence of two hexagonal
phases in the system is self-evident. The inter-particle distance in these two hexagonal phases
is expected to correspond to the diameter of the core σHD and the diameter of the corona δ .
However, at this shoulder width δ = 1.95σHD, we observe three distinct hexagonal phases
instead of the expected two! In order to investigate the formation of these three phases, we
calculate their radial distribution function (RDF), g(r) and plot them in Figure 7.3.

Consistent with the above expectation of the two hexagonal phases, we indeed notice that
the first peak of the RDF of the HDH and LDH phases lies at a distance r that, respectively,
equals σHD and δ . This confirms their inter-particle distances at the diameters of the core and
corona, respectively. The puzzling question is the formation of the MDH phase. From the RDF,
we note that the first peak corresponds to an inter-particle distance that lies in between the core
and corona diameters, and the second peak corresponds to a distance that equals the corona
diameter δ . This means that the corona limits the position of the second nearest neighbours and
thus, results in the formation of the MDH. This difference in the inter-particle distance between
the three structures can also be seen in terms of the overlaps of the coronas as observed in the
configurations given in Figure 7.2. For the LDH phase, the corona of a particle is in contact
with the coronas of its neighbouring particles. On the other hand, for the HDH phase the cores
are in contact, i.e. the corona of the particle entirely overlaps with the core of its neighbouring
particles. For the MDH structure, the corona of a particle just touches the corona of its second
nearest neighbours.
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Figure 7.3: Radial distribution functions g(r) calculated for the high-density (HDH), medium-density
(MDH) and low-density (LDH) hexagonal phases. For clarity, we shifted the g(r) of MDH in the vertical
direction by ∆y = 5 and that of LDH by ∆y = 10.

7.3.2 Formation and stability of dodecagonal quasicrystals and its ap-
proximants

As previously mentioned, the chosen shoulder width δ = 1.95σHD is close to the value of
2cos15◦ ≈

√
2+
√

3≈ 1.932 at which random-tiling dodecagonal (12-fold symmetric) quasi-
crystals have been reported either theoretically and/or computationally in various systems [77,
123, 169, 190, 235]. Hence, we also expect the formation of a similar quasicrystal phase in the
system under investigation.

In order to address this possibility, we obtain the equation of state (EOS) by expanding the
system starting from a high-density hexagonal (HDH), a defect-free random tiling dodecagonal
quasicrystal (HQC), or either of the two dodecagonal approximant crystals considered in this
study, namely the sigma (SIG) phase and a square-triangle tiling of dodecagons (HAC). The
high-density quasicrystal (HQC) structure is adapted from a non-Stampfli square-triangle ap-
proximant [84]. The HQC is similar in structure to the dodecagonal quasicrystal previously
reported by Dotera et al. in a HCSS system at δ = 1.40σHD [123], but without the presence
of any tiling defects as previously described in Chapter 3. The SIG structure is a periodic
representation of the σ particle environment with a unit cell consisting of 32 particles. The
high-density approximant crystal (HAC) is an adaptation of a repeated vertex substitution of
the (32.4.3.4) Archimedean tiling consisting of squares and triangles [85]. It has a unit cell of
56 particles and contains both σ and H particle environments. Figure 7.4 shows a comparison
between the quasicrystal (HQC) and the two approximants, i.e. the SIG and HAC phase, where
a representative configuration is given on the left and its accompanying tiling on the right. The
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Figure 7.4: Structural difference between the dodecagonal quasicrystal and its approximants (a) defect-
free random-tiling quasicrystal (HQC), (b) sigma (SIG), (c) square-triangle tiling of dodecagons (HAC).
(left) A typical configuration is shown with the particles coloured according to their local particle envir-
onment (LPE) described in Section 7.2.3: H in red and σ in blue and particles not belonging to either in
orange. (right) The tiling obtained by drawing bonds between the neighbouring particles.

particles in the configurations are coloured according to the LPEs described in Section 7.2.3.
From this colouring, we can see that the HQC has a higher H/σ LPE ratio than the HAC. In
the EOS calculations, we use a system size of 209 particles for the HQC, 288 particles for SIG,
224 particles for the HAC, and 256 particles for the HDH phase.

In Figure 7.5(a), we plot the EOS articulating the various expansion runs, i.e. decreasing
pressure P∗, starting from the HDH, SIG and HQC phases. We exclude the EOS of the HAC
phase for clarity as it is qualitatively similar to that of the HQC phase. From the EOS shown in
Figure 7.5(a), we observe a single phase transition around P∗ = 30 during the expansion of the
SIG phase, i.e. upon decreasing pressure. However, in the case of the expansion of the HDH
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and HQC phases, we find an additional transition at pressures higher than P∗ = 30 resulting
into a structure with a density lower than that of the SIG phase. To investigate the nature of
the resulting structure, we calculate the BOO parameter and determine the different LPEs in the
system as explained in Section 7.2.3.

Let us first consider the behaviour of the BOO parameter of this system. We calculate the χ6
and χ12 order parameters, which quantify the hexagonal and dodecagonal order in the system.
In Figures 7.5(b), 7.5(c), and 7.5(d), we plot χ6 and χ12 during the expansion of the HDH, SIG
and HQC structures, respectively. During the expansion of the HDH phase in Figure 7.5(b),
we find that χ6 has a higher value than χ12 at higher (48≤ P∗ ≤ 70) and lower (15≤ P∗ ≤ 33)
pressures, while χ12 is only slightly higher than χ6 at intermediate (33 < P∗ < 48) pressures.
This implies the presence of three distinct regions of hexagonal, dodecagonal, and hexagonal
order with increasing pressure. The decrease in χ12 during the expansion of the SIG phase
in Figure 7.5(c) at P∗ = 30 denotes a transition from dodecagonal to hexagonal order. The
behaviour of χ12 during the expansion of the HQC phase in Figure 7.5(d) is peculiar. Upon
decreasing the pressure, we find a drop in the value of χ12 at P∗ = 44 coinciding with the
discontinuity in the EOS; while that of χ6 remains unchanged. This indicates the presence of
two different structures of dodecagonal symmetry in between the two with a hexagonal order.

To differentiate between the two structures with dodecagonal symmetry, we calculate the
fraction of H and σ particle environments. The fraction of H ( fH) and σ ( fσ ) particle environ-
ments as a function of pressure obtained by expanding the HDH, SIG and HQC structures are
respectively plotted in Figures 7.5(e), 7.5(f), and 7.5(g). In Figure 7.5(e) we notice a sizeable
fraction of σ environments at intermediate pressures which conforms with the previously ob-
served increase in χ12 at these pressures (33≤ P∗ ≤ 48). The lower fraction of H environments
in comparison to σ is also interesting to note. In Figure 7.5(f), we observe that the fraction of
σ environments drops from one to zero at P∗ = 32 during the expansion of the SIG phase and
we do not observe any significant fraction of H environments. In Figure 7.5(g), the change in
both the fraction of H and σ environments coincides with the decrease in χ12 at P∗ = 44 during
the expansion of HQC phase in Figure 7.5(d). However, we note that the fraction of H environ-
ments drops close to zero whereas the fraction of σ environments remains close to the previous
non-zero value. Thus, considering the presence of a sizeable fraction of H-phase and a lower
density than that of the SIG phase as shown by the EOS, we suggest that the HQC transforms
to a σ -rich phase and not the SIG phase.

We further analyse the σ -rich phase by comparing the configurations obtained just before
(P∗ = 44) and after (P∗ = 43) the transition during the expansion of HQC phase in Figure 7.6.
The particle configuration is shown on the left and its accompanying tiling obtained by drawing
bonds between the neighbouring particles is shown on the right. The inset shows the calculated
diffraction pattern. It can be noted from the inset that both structures possess dodecagonal sym-
metry. Furthermore, we also note the difference between the tilings of the two structures: The
HQC phase shown in Figure 7.6(a) consists of a square-triangle tiling while the σ -rich phase
shown in Figure 7.6(b) consists of a square-triangle-shield tiling. Though the square-triangle
tiling is the most common description of a dodecagonal quasicrystal tiling, tilings involving
shields and/or rhombi are not uncommon [173, 179, 211, 230, 239]. Therefore, we term this
σ -rich phase as a quasicrystal with shields (QCS). It is surmised that upon decreasing the pres-
sure, the simultaneous decrease in density and preservation of the dodecagonal symmetry is
made possible by the formation of shields which have a larger area than the combination of
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Figure 7.5: Formation of a 12-fold symmetric phase at T ∗ = 0.20 as obtained by expanding the high-
density hexagonal (HDH), sigma (SIG) and random-tiling dodecagonal quasicrystal (HQC) phase in a
HCSS system with shoulder width δ = 1.95σHD. (a) Density ρ∗ = Nσ2

HD/A (equation of state), (b, c,
d) bond orientational order (BOO) parameter χ6 and χ12, and (e, f, g) fraction of H and σ environments,
fH and fσ , as a function of the reduced pressure P∗ = βPσ2

HD.
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Figure 7.6: Structural difference between the two random-tiling dodecagonal quasicrystals with (a)
square-triangle tiling (HQC) at P∗ = 44 (b) square-triangle-shield tiling (QCS) at P∗ = 43 for a HCSS
system with shoulder width δ = 1.95σHD at temperature T ∗ = kBT/ε = 0.20. A typical configuration
is shown on the left with the calculated diffraction pattern in the inset. The tiling obtained by drawing
bonds between the neighbouring particles is given on the right.

squares and triangles. In summary, we find four structures with dodecagonal symmetry, i.e.
the two approximant crystals, which are the sigma (SIG) phase and the square-triangle tiling of
dodecagons (HAC), and the high-density random-tiling dodecagonal quasicrystal (HQC) with
a square-triangle tiling and the quasicrystal with shields (QCS).

Subsequently, we deduce the stable phases by calculating the free energies and employing
common tangent constructions as explained in Section 7.2.2. In Figure 7.7(a), we show the
common tangent construction between the SIG and the MDH phase at temperature T ∗ = 0.20
and in Figure 7.7(b), between the SIG and HDH phases at T ∗ = 0.70. In both these figures,
we plot the Helmholtz free energy per unit area βF/A as a function of reduced density ρ∗. We
then subtract a linear fit ρµc−Pc from the free energy, where µc is the bulk chemical potential
of the coexisting phases at pressure Pc. This ensures that the ‘resulting’ free energy of the
two-phases between which the common-tangent is drawn is zero at the coexistence densities. In
other words, the phases with a positive free energy in this plot are meta-stable with respect to the
concerned two-phase coexistence. Based on this, it is conspicuous from both Figure 7.7(a) and
Figure 7.7(b) that the SIG is more stable than all other phases exhibiting dodecagonal symmetry,
namely the HAC, HQC and QCS phases. Also, as (not) shown in Figure 7.7(b), we do not find
the formation of the QCS phase at higher temperatures.

It is intriguing to note that the free energy of the phases under the present conditions
(SIG <HAC <HQC) contrasts to that reported at δ = 1.40σHD in Chapter 3, where the free en-
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Figure 7.7: Common tangent construction to determine the stable phases in the HCSS system with
shoulder width δ = 1.95σHD. The common tangent is constructed between (a) MDH and SIG phases
at T ∗ = 0.20, and (b) the SIG and HDH at T ∗ = 0.70. The plot shows the Helmholtz free energy per
unit area βF/A as a function of reduced density ρ∗ = Nσ2

HD/A. A linear fit ρµc−Pc is subtracted from
the free energy, where µc and Pc are the bulk chemical potential and bulk pressure at the (a) MDH-SIG
and (b) HDH-SIG phase coexistence. The involved phases are the medium- (MDH) and high-density
hexagonal (HDH) and the sigma (SIG). Other phases exhibiting 12-fold symmetry that are plotted are
the approximant crystal (HAC) and the random-tiling quasicrystal with a square-triangle (HQC) and a
square-triangle-shield (QCS) tiling. The reduced temperature is expressed as T ∗ = kBT/ε .
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Figure 7.8: Variation of Helmholtz free energy per particle βF/N as a function of inverse of the system
size N for (a) sigma (SIG), (b) approximant (HAC), (c) quasicrystal (HQC) phases, and (d) combined
view of all three phases. (e) Variation of potential energy per particle U/εN as a function of system
size. The values were calculated for the phases with a density ρ∗ = Nσ2

HD/A = 1.03 at a temperature
T ∗ = 0.11 for the HCSS system with shoulder width δ = 1.95σHD. The lines in (a, b, c) are linear fits of
the data points.

ergy increased in the order of HQC < HAC < SIG. To further investigate this, we first eliminate
the effect of finite system size on the free energy. To do so, we evaluate the variation in potential
energy and Helmholtz free energy as a function of system size for these three phases. Figure
7.8 shows the calculations performed at ρ∗ = 1.03 and T ∗ = 0.11 at different system sizes. In
Figures 7.8(a)-(c), we individually show the variation in free energy per particle as a function
of inverse system size for the SIG, HAC and HQC phases. Figure 7.8(d) is a combination of
these three plots. We can extrapolate the free energy to the thermodynamic limit 1/N → 0 by
calculating the intercept of these curves. We obtain the following values of bulk free energies,
βF/N ∼ 43.22 (SIG), 44.73 (HAC) and 45.82 (HQC). This shows that the SIG phase has the
lowest free energy among the three phases. We also find that the difference between the free
energies of the three phases is much larger than the variation in the free energy of individual
phases as a function of system size. The surprising part is the difference in potential energy
per particle in these phases as shown in Figure 7.8(e). As previously studied in Chapter 3, the
potential energy per particle for these phases at δ = 1.40σHD is similar. However, here, we
find the potential energy increases in the order SIG < HAC < HQC. This is, obviously, caused
by the difference in the shoulder width of these two systems. For the system at δ = 1.40σHD,
only the nearest neighbours contribute to the potential energy of the particles. However, in



ON THE FORMATION OF STRIPE, SIGMA, AND HONEYCOMB PHASES IN A CORE-CORONA

SYSTEM 125

the present system with δ = 1.95σHD, the second nearest neighbours of particles at a distance
1.40σHD < r < 1.95σHD also contribute to the potential energy. In other words, not only does
the composition of a structure in terms of its LPE matters, but also the arrangement of neigh-
bouring LPEs affects the potential energy. We find that the SIG phase, with the least random
LPE arrangement, has the lowest potential energy, thereby making it the thermodynamically
stable structure among these three, followed by the HAC and HQC phases.

Even though we have seen than the SIG phase has a lower free energy than the HQC and
QCS phases, it is important to point out here that the presence of phasonic movements in these
tilings contribute to the configurational entropy of these quasicrystals [171, 179, 240]. In case of
the HQC, the configurational entropy that accounts for the distinct number of configurations has
a maximum value of Sconfig/kBA = 0.12934 [178], which is much smaller than the difference
between the free energies of the SIG and HQC phases. Considering this value, we do not expect
the configurational entropy of the square-triangle-shield tiling to exceed the difference between
the free energies of the SIG and QCS phase, i.e. Sconfig/kBA > 0.5. We thus conclude that
the SIG phase is thermodynamically more stable than all the other phases with dodecagonal
symmetry considered in this study, namely HAC, HQC and QCS phases.

7.3.3 Formation of the stripe phase
The most striking feature of the phase diagram presented in Figure 7.2 is the phase behaviour
observed at low densities and temperatures, especially the formation of the stripe (STR) phase.
Such spontaneous pattern formations are observed in core-corona systems when the size of the
corona is similar or much larger than that of the core [136–140].

Stripe formation in purely repulsive systems is driven by the minimisation of the system’s
potential energy. The configuration of the STR phase as given in Figure 7.2 shows that each
particle has overlapping coronas with two other neighbouring particles along the stripe. How-
ever, the stripes are spaced such that the distance between them is larger than the size of the
corona and thus, there is no overlap between the coronas between adjacent stripes. In other
words, the effective repulsive length scales are the diameter of the hard core σHD along the
stripes and the soft-shoulder diameter δ orthogonal to the stripes. As a consequence, each
particle essentially has only two neighbours. This is energetically more favourable than a struc-
ture with equally spaced particles in which the shoulder of each particle partially or completely
overlaps with all of its neighbours.

In order to study the formation of the STR phase in the system, we first obtain the EOS of
the different phases by compressing the system starting from an isotropic fluid phase and by
expanding the system starting with the HC and MDH phases. In Figure 7.9, we plot the EOS
obtained at temperatures T ∗ = 0.18, 0.15 and 0.12. First, we recognise the formation of two
hexagonal phases: (1) The LDH phase sandwiched in between two FL phases by two first-order
phase transitions at temperature T ∗ = 0.12 and (2) the MDH at higher densities, for which at all
three temperatures the EOSs lie on top of each other (and thus are not individually identifiable
in the figure). The EOS of the HC phase at T ∗ = 0.12 and 0.15 lie on top of each other, whereas
the HC is not stable at T ∗ = 0.18. We also notice first-order phase transitions between the HC
and the STR at T ∗ = 0.12, 0.15 and between MDH and FL at T ∗ = 0.18. The confounding
feature of the EOS at all these temperatures is the continuous transition from the FL phase to
the STR phase. This also applies to the further re-entrant transition from the STR phase to
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the FL phase with increasing density at the highest temperature T ∗ = 0.18. The only observed
development in the EOS is the change in slope during these transitions. However, this cannot
be used to determine the transition from the FL to the STR phase and we therefore resort to
order parameters. The parameters used for this include the number of clusters in the system, the
number of neighbours of the particles in the system and the anisotropic scaling index method as
described in Section 7.2.3. The method of calculation and behaviour of these three parameters
during this phase transition are explained below.

The first parameter we use is the normalised cluster size Nc/N as a function of pressure P∗,
where Nc is the average cluster size in number of particles and N is the total number of particles
in the system. In other words, the normalised cluster size Nc/N is the inverse of the number of
clusters in the system and varies from approximately zero in case of the FL phase to unity in
case of the STR phase. The second parameter consists of studying the probability distribution
of the average number of neighbours per particle P(Nn) at different pressures P∗. The basis of
using this as an order parameter emerges from the fact that the particles in the STR phase have
on an average two neighbours, which is not a requisite in the FL phase. Finally, the scalar order
parameter ∆α is the difference between the distributions of P⊥(α) and P‖(α). The distributions
coincide with each other for an isotropic structure like the fluid phase, but not for an anisotropic
structure like the stripe phase. Thus, ∆α is non-zero for anisotropic structures and it vanishes
for isotropic structures. We believe that as each of these three parameters address a different
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property of the system and especially of the STR phase; we obtain complementary insights
about the STR phase by investigating all of them.

Let us begin with addressing the formation of the STR phase from the FL phase. As shown
in the EOS in Figure 7.9, this fluid-to-stripe (FL-STR) phase transition was observed at all three
temperatures studied. Here, we will explore this transition at T ∗ = 0.15. The various aspects of
monitoring this phase transition is shown in Figure 7.10. Let us first take a qualitative look at
this transition by observing the typical configurations obtained using Monte Carlo simulations
at different pressures. This is shown in Figures 7.10(a)-(d). Each cluster is represented in a
different colour. As shown in Figures 7.10(b)-(c), a cluster can also consist of multiple strings.
From Figures 7.10(a)-(d), we see that the number of clusters decreases with increasing pres-
sure and that the stripes essentially form a percolating cluster. We can differentiate between the
FL and the STR phase using the calculated diffraction pattern shown as insets; the ones cor-
responding to the FL phase show the presence of isotropic rings, while that of the STR phase
shows spots which are arranged in layers. We, therefore, can use the number of clusters in the
system as a parameter to determine the FL to STR transition. In Figure 7.10(e), we present the
resulting cluster size distribution as a function of pressure P∗. We notice that the distribution
exhibits a rapid change to unity at P∗ ∼ 6.2 indicating the formation of a single cluster in the
system. However, the formation of a percolating cluster does not entirely refer to the formation
of a STR phase. Thus, in this same plot, we also show the variation of the scalar order para-
meter ∆α as a function of pressure P∗. As previously discussed, a non-zero value of ∆α relates
to an anisotropic layered structure. We indeed do notice that ∆α becomes non-zero close to
the transition pressure of the cluster size distribution confirming the phase formed to be STR
and then vanishes at P∗ ∼ 10.9 with the formation of the MDH phase. Furthermore, we verify
the string nature of these layers by studying the probability distribution of the average num-
ber of neighbours per particle P(Nn) as a function of the number of neighbours Nn at different
pressures P∗. This is shown in Figure 7.10(f), where the pressures correspond to the ones in
Figures 7.10(a)-(d). As expected, the average number of neighbours per particle increases with
increasing pressure. The average number of neighbours per particle Nn goes from zero in the FL
phase at P∗ = 1.0 to unity at P∗ = 3.8 and to a value of two at P∗ = 7.3, where the STR phase is
observed. This verifies the energetic driving force of the formation of the STR by having only
two nearest neighbours per particle.

Now, let us study the inverse transition, i.e. formation of the FL phase from the STR phase
at higher densities. As shown in the EOS in Figure 7.9, of the three temperatures studies,
we observe this stripe-to-fluid (STR-FL) phase transition only at T ∗ = 0.18. Similar to the
previous case, we show the various aspects of this phase transition in Figure 7.11. In Figure
7.11(a), we show the behaviour of Nc/N and ∆α as a function of pressure P∗. As expected,
we notice the discontinuous change of Nc/N to unity with the formation of a single cluster
and the non-zero value of ∆α signalling a stripe phase at pressures 5.9 < P∗ < 8.3. Then,
we analyse the probability distributions of neighbours P(Nn) at different pressures P∗ given
in Figure 7.11(b). For convenience and comparison, typical configurations corresponding to
these pressures are given in Figures 7.11(c)-(f). Here, the particles are coloured according to
the number of neighbours in contrast to Figure 7.10, where the colours denote distinct clusters.
The colour legend is at the bottom of the figure. From the P(Nn) distributions and the particle
configurations, we observe that the STR phase with Nn = 2 is obtained at reduced pressure
P∗ = 7.0 and at the highest pressure of P∗ = 10.1, the system forms a hexagonal structure with
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Figure 7.10: Monitoring the fluid-to-stripe (FL-STR) phase transition in a HCSS system with shoulder
width δ = 1.95σHD at temperature T ∗ = kBT/ε = 0.15. (a-d) Typical configurations as obtained from
Monte Carlo simulations at different reduced pressures P∗ = βPσ2

HD as labelled. Colours represent
different clusters. Insets show the corresponding diffraction patterns. (e) The normalised cluster size
Nc/N and the scalar order parameter ∆α as a function of the reduced pressure P∗. Nc is the average
cluster size and N is the total number of particles in the system. (f) Probability distributions of the
number of nearest neighbours per particle P(Nn) at varying pressures P∗ as labelled.
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Figure 7.11: Monitoring the stripe-to-fluid (STR-FL) phase transition in a HCSS system with shoulder
width δ = 1.95σHD at temperature T ∗ = kBT/ε = 0.18. (a) The normalised cluster size Nc/N and the
scalar order parameter ∆α as a function of the reduced pressure P∗ = βPσ2

HD. Nc is the average cluster
size and N is the total number of particles in the system. (b) Probability distributions of the number of
nearest neighbours per particle P(Nn) at varying pressures P∗ as labelled. (c-f) Typical configurations
as obtained from Monte Carlo simulations corresponding to the pressures P∗ in (b). The particles are
coloured according to the number of neighbours as shown in the legend at the bottom of the panel. Insets
show the corresponding diffraction patterns.
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Nn = 6. As evident from the diffraction pattern given in the insets of Figures 7.11(d) and 7.11(e),
a FL phase is formed at pressures intermediate to these. From the P(Nn) distribution given in
Figure 7.11(b), we note that the FL phase has an average of three neighbours per particle and
starts to form at P∗ = 8.6. The ‘coexisting’ nature of this structure with FL and STR is evident
from Figure 7.11(d), where short stripe segments in green are connected by yellow and blue
particles. This implies that the stripes become shorter as the system becomes more fluid-like
with increasing pressure.

The above observations of discontinuity in the Nc/N and ∆α distributions and the co-
existing nature of the P(Nn) at certain pressures hint at a first-order transition between the FL
and STR phases. However, to ascertain this speculation further, we assess the FL-STR transition
by using the specific heat at constant volume Cv as described in Section 7.2.2 and the fraction of
defects. Defects in the structure are defined as particles which have other than two neighbour-
ing particles. We study the system at constant density ρ∗ = 0.46, where we find that the system
undergoes a sharp transition from a STR phase to a FL phase upon increasing the temperature.
The Cv as a function of temperature T ∗ is plotted in Figure 7.12(a). In Figure 7.12(b), we plot
the variation of the fraction of defects along the same transition. The Cv shows a λ -shaped
cusp around the transition temperature T ∗STR-FL = 0.187, from which one may conclude that
the transition is likely first-order in nature. However, even though we find a substantial differ-
ence between the fractions of defects in the STR and FL phases, the change from STR to FL
is not as abrupt as in case of Cv. This change in the fraction of defects extends over a range
of temperatures between T ∗STR-FL± 0.01. This difference between the two phases in terms of
the defects is shown in Figure 7.12(c) and 7.12(d). Here, we show the configurations obtained
at temperatures T ∗ = 0.18 and 0.19, where the particles are coloured according to the number
of neighbours as given in the legend at the bottom of the figure. At temperatures lower than
T ∗STR-FL, a single percolating network of parallel stripes mostly containing two neighbouring
particles is observed and at temperature T ∗ > T ∗STR-FL, the particles form winding structures
consisting of small segments of stripes. This continuous melting of the STR phase to an iso-
tropic FL fluid phase mediated by defects (dislocations or disclinations) bears resemblances to
the scenario studied in detail by Toner and Nelson [241, 242], also known as the Kosterlitz-
Thouless (K-T) transition. In general, the K-T transition can be described to occur between a
phase with order in the orientation of the bond angles and a phase which is devoid of such an
order.

Thus, we evaluate if the STR phase possess a two-fold bond orientational symmetry and
subsequently analyse the STR to FL phase transition by calculating the positional correlation
function g(r) and bond orientational correlation function g2(r). These correlation functions as
a function of temperature are given in Figures 7.13(a) and 7.13(b). Firstly, we observe that the
positional correlation function shown in Figure 7.13(a) decays exponentially through the entire
range of temperatures. This indicates that both the STR and the FL phases do not possess long-
range positional order. Further, the bond orientational correlation function plotted in Figure
7.13(b) reaches a constant value at lower temperatures indicating that the STR phase formed at
these temperatures possess quasi long-range bond orientational order, i.e. two-fold rotational
symmetry. With increasing temperature, the bond orientational correlation function starts to de-
cay rapidly. This represents the loss of the bond orientational order in the system. Consequently,
the transition from the STR to the FL phase can be described as a elimination of the bond ori-
entational order of the system, i.e. a K-T transition. Additionally, we also verify if the same
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with a shoulder width δ = 1.95σHD and density ρ∗ = Nσ2

HD/A = 0.46: (a) Specific heat Cv at constant
volume and (b) fraction of defects as a function of reduced temperature T ∗. Typical configurations
obtained at temperature T ∗ = kBT/ε = (c) 0.18, and (d) 0.19, where the particles are coloured according
to the number of neighbours as shown in the legend at the bottom of the figure.
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Figure 7.13: (a,c) Positional correlation function |g(r)− 1| and (b,d) bond orientational correlation
function g2(r) describing the phase transition from the stripe (STR) phase to an isotropic fluid (FL)
phase for a HCSS system with a shoulder width δ = 1.95σHD calculated at: (a,b) different temperatures
at constant density ρ∗ =Nσ2

HD/A = 0.46 and (c,d) different densities at temperature T ∗ = kBT/ε = 0.15.
All plots are in log-log scale.

holds for the FL to STR transition described in Figure 7.10. For this, we plot the positional and
bond orientational functions at varying densities for a constant temperature T ∗ = 0.15. This is
given in Figures 7.13(c) and 7.13(d). We, again, observe the presence of quasi-long range bond
orientational order correlations in the STR phase and the absence of long-range positional order
in both the STR and FL phases, thereby providing support for a K-T phase transition. Also, the
density at which the transition from the FL to the STR phase takes place, i.e. ρ∗ ∼ 0.43, agrees
well with the phase diagram given in Figure 7.2.

In conclusion, we find that the STR phase displays quasi-long range bond orientational
order and short-range positional order which melts to an isotropic FL phase with neither bond-
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orientational nor positional order upon increasing the temperature or decreasing the density.
Although we observe a sharp cusp in the specific heat Cv, the continuous change in the de-
fect concentration as well as the loss of bond orientational order provide evidence for a K-T
transition.

7.3.4 Stability of the honeycomb phase

Another interesting feature of this system is the formation of a honeycomb (HC) phase wedged
between the stripe (STR) and medium-density hexagonal (MDH) phases. HC phases have pre-
viously been reported to form in patchy colloids [227], DNA nanostructures [243, 244] and
binary mixtures of particles under external electric [218, 219] and magnetic fields [223]. Thus,
it is fascinating that our mono-disperse core-corona system with no external forces forms a
stable honeycomb lattice. In this core-corona system, formation of the HC phase from the STR
phase with increasing density is a logical step forward. This can be seen as an increase in the
number of neighbours per particle from two in the STR to three in the HC phase. In order to
evaluate the thermodynamic stability of the HC phase, we plot the chemical potential β µ of
the STR, HC and MDH phases, as obtained from the free-energy calculations, as a function of
pressure P∗ = βPσ2

HD. In Figure 7.14, we show this plot at T ∗ = 0.15. As expected, we find
that the HC phase is more stable than the STR-MDH two-phase coexistence.
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Figure 7.14: The chemical potential β µ as a function of reduced pressure P∗ = βPσ2
HD at temperature

T ∗ = kBT/ε = 0.15 for the HCSS system with δ = 1.95σHD. The stable phases are stripe (STR), honey-
comb (HC) and medium-density hexagonal (HDH). The arrows at the bottom denote the phase stability
regions.
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The enigma in the stability of the HC phase is introduced by the previous report of forma-
tion of a low-density dodecagonal quasicrystal (LQC) by Dotera et al. [123]. This quasicrystal
was reported to form when cooling a hexagonal phase with density ρ∗ = 0.55 to a lower tem-
perature T ∗ ≤ 0.154 [123]. However, these conditions of density and temperature correspond
to the stability region of the HC phase calculated above. In order to determine which of these
two phases, LQC and HC, is indeed stable, we perform direct coexistence simulations. We
started the simulations by juxtaposing LQC structure with ρ∗ = 0.55 and MDH structure with
ρ∗= 0.79 in a simulation box which results in a overall density of ρ∗= 0.65. This initial config-
uration is shown in Figure 7.15(a). The particles here are coloured according to the number of
neighbours given in the legend at the bottom. The diffraction pattern given in the inset confirms
the dodecagonal symmetry of the LQC. The final configuration obtained from the simulation is
given in Figure 7.15(b). We observe that the LQC has transformed to the HC phase as corrob-
orated by the particle neighbours and the corresponding diffraction pattern. This confirms that
the HC phase is thermodynamically stable and that the LQC is, in fact, kinetically formed in
the two-phase coexistence region between the HC and MDH phases.

7.4 Conclusions

To summarise, we study the phase behaviour of a system consisting of particles with a core-
corona molecular architecture using Monte Carlo simulations and free-energy calculations. The
model is described by an inter-particle pair potential consisting of a hard core of diameter σHD
and a purely repulsive soft shoulder of diameter δ = 1.95σHD. We observe a rich phase be-
haviour consisting of a fluid phase, a striped mesophase, honeycomb, sigma and three distinct
hexagonal phases. We find the different phases are energetically stabilised.

At higher densities, we find that the sigma phase is energetically stabilised with respect
to the random-tiling dodecagonal quasicrystals with square-triangle and square-triangle-shield
tilings and the square-triangle approximant. This is in contrast to the entropic stabilisation
of the random-tiling dodecagonal quasicrystal consisting of squares and triangles previously
reported at δ = 1.40σHD in Chapter 3. Due to the larger shoulder width, the position of particles
beyond the second nearest neighbours play an important role in the potential energy of the
concerned structure. Thus, in contrast to the system at δ = 1.40σHD, there exists a difference
in potential energies between the sigma phase, the quasicrystal and the approximant resulting
from a variation in the arrangement of their local particle environments.

At lower densities, the formation of these phases is driven by minimising the number of
neighbours per particle. This results in the formation of stripe and honeycomb phases which
respectively have two and three neighbours. It is interesting to point out that the next logical
structure with four neighbours, i.e. square, is not formed in our system [219, 227]. Instead
we find the formation of a six particle-coordinated medium-density hexagonal phase. This
is because the square shoulder of the central particle of a square encompasses also the diag-
onal particles, which results in eight neighbours per particle. Thus, this does not provide any
energetic incentive over the hexagonal structure. Further, we deduce that the low-density do-
decagonal quasicrystal structure that was previously reported for this system [123] is in fact
metastable. It is formed in the two-phase coexistence region of the honeycomb and medium-
density hexagonal phase.



ON THE FORMATION OF STRIPE, SIGMA, AND HONEYCOMB PHASES IN A CORE-CORONA

SYSTEM 135

Figure 7.15: Direct coexistence simulations carried out to evaluate the relative stability between the
low-density quasicrystal (LQC), honeycomb (HC) and medium-density hexagonal (MDH) phases at a
temperature T ∗ = kBT/ε = 0.15 and density ρ∗ = Nσ2

HD/A = 0.65. (a) Initial configuration consisting
of MDH and LQC, and (b) final configuration consisting of MDH and HC phases. The particles are
coloured according to the number of neighbours as shown in the legend at the bottom of the figure. The
insets show the diffraction patterns calculated for the non-MDH region of the simulation box.

In addition to the interesting phase behaviour of these phases, the honeycomb [63] and
sigma [232] phases are interesting for their applications as photonic crystals. We hope that our
results confirming the formation of stripe, honeycomb and sigma phases at different densities
in a single system will stimulate experimental investigations on the phase behaviour and self-
assembly of such systems containing particles with a core-corona architecture.
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Photonic properties of quasi-periodic and
periodic crystals





8 Photonic properties of a
two-dimensional dodecagonal

quasicrystal and its approximants

We investigate the photonic properties of a two-dimensional dodecagonal (12-fold symmetric)
quasicrystal and four of its periodic approximants. We consider configurations consisting of
a material with a high-dielectric constant arranged in the form of rods, walls and connected
networks of walls and rods, in a medium with a low-dielectric constant. Our results show
that all structures possess transverse magnetic (TM) band gaps in the rod configurations and
transverse electric (TE) band gaps in the wall configurations. We find that the local symmetry
of the structures has a greater influence on the formation of band gaps in the TE than in the TM
polarisation. In addition, we also find that the approximants possess a complete (TM+TE) band
gap in the network configuration.
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8.1 Introduction

Photonic band gap (PBG) materials are structures composed of two or more materials with dif-
ferent dielectric constants that are arranged in a way that the propagation of specific wavelengths
of light through such a structure is forbidden [20, 21]. Although conventional periodic photonic
crystals in two- and three-dimensional systems have been studied since long, studies on quasi-
periodic photonic crystals have recently gathered interest. The reason is that photonic quasi-
crystals, which have a long-range orientational order but no translational periodicity, possess
higher rotational symmetry than a periodic photonic crystal like simple square or hexagonal
lattices in two-dimensional systems which exhibit only four- or six-fold symmetry. Upon in-
creasing the rotational symmetry of the structure, the Brillouin zone becomes more isotropic
resulting in the formation of a complete photonic band gap [78]. A photonic band gap in the
visible or near-infrared region was reported by Zoorob et al. [91] in a dodecagonal (12-fold
symmetric) quasicrystal constructed by drilling air holes in a dielectric slab. Even though the
validity of this result is debated [92], it is generally well accepted that quasicrystals do form
photonic band gaps when the dielectric contrast between the two materials is sufficiently high
[86, 92, 245]. Consequently, photonic band gap formation has been investigated in a variety
of quasicrystalline structures by both theoretical and experimental studies [90, 246, 247]. Re-
search on photonic quasicrystals is largely limited to two-dimensional systems, but recently
three-dimensional icosahedral photonic quasicrystals were fabricated with band gaps in the mi-
crowave [93], infrared [94] and visible ranges [95].

Theoretical investigations of PBG materials are often based on periodic dielectric structures,
for which the band structure is calculated using the plane wave expansion technique [22] or
the Korringa-Kohn-Rostocker (KKR) method [248]. These techniques, however, cannot be
employed for quasicrystals, which are by definition aperiodic [245]. Possible ways to solve
this is by either studying the photonic properties of periodic approximants of the quasicrystals
[88, 249–251] and related Archimedean tilings [68, 232, 252, 253] or by constructing a pseudo-
Brillouin zone for the quasicrystals [254]. However, in both cases, the numerical calculations
are computationally challenging as the size of the unit cell becomes quite large. Recently,
an optimisation scheme was discussed to design two-dimensional quasicrystals with complete
photonic bands by a combination of hyperuniformity, uniform local topology and short-range
geometric order [67, 255]. In this procedure, vertical rods are placed at the particle positions of
a quasicrystal and a trivalent network is formed by employing a Delaunay triangulation of this
pattern and by connecting the barycenters of the neighbouring triangles, i.e. the center of mass
of the two neighbouring bodies. Such a construction can be made with a small enough system
size provided the pattern is sufficiently large to be repeated periodically. However, the downside
of this method is that such a structure can only be fabricated by lithography [65, 256]. It is
interesting to investigate whether quasicrystals that are self-assembled in soft-matter systems
[257, 258] display a complete photonic band gap. In this chapter, we calculate the photonic
properties of a random-tiling dodecagonal quasicrystal and its approximants that can be formed
in soft-matter systems, as shown in Chapter 3. We construct the network structure by placing
dielectric rods at the positions of the particles and connecting these with dielectric walls as has
previously been performed for two-dimensional periodic lattices [63]. Although the photonic
crystals that we simulate are two-dimensional rods and walls, as opposed to soft-matter systems
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that consist of a single layer of spherical particles, we believe this study may shed light on the
photonic properties of the self-assembled colloidal quasicrystals.

This chapter is organised as follows. We present the structures and the method used to
calculate the photonic band structures in Section 8.2. We then individually discuss and compare
the photonic behaviour of the quasicrystal and the approximants in Section 8.3. We end with
conclusions in Section 8.4.

8.2 Methods

We calculate the photonic band structure diagrams using the open-source ‘MIT Photonic-Bands’
software package [165]. This software package computes fully-vectorial eigenmodes of Max-
well’s equations with periodic boundary conditions by preconditioned conjugate-gradient min-
imisation of the block Rayleigh quotient in a plane wave basis [165]. We use a super cell
approximation in our calculations; where we consider a large cell consisting of a finite sample
size as the primitive cell, which is then repeated periodically in a two-dimensional space. The
path in the reciprocal space then follows the boundary of the irreducible part of the first Bril-
louin zone of the square super cell as Γ−X−M−Γ. We use four points to linearly interpolate
between each consecutive pair of these k−points in reciprocal space. We define a characteristic
length scale a = (ρ)−1/2, where ρ is the number density of the system defined as ρ = N/A
for a system of N particles in a rectangular box of area A. In this work, we use systems with
ρ = 1.07σ−2, where σ is the particle diameter. The photonic properties are calculated in terms
of two quantities, (1) the dimensionless (reduced) frequency, ω∗ = ωa/2πc where ω is the
frequency of the electro-magnetic field and c is the speed of light in vacuum, and (2) the relat-
ive gap width, ∆ω/ωm where ∆ω is the gap width and ωm is the mid-gap frequency. Finally,
the structures we use are composed of particles of a high dielectric constant material, silicon
(ε = 12), arranged in a background of air (ε = 1). Given the two-dimensional (planar) nature of
the structures studied here, we calculate the photonic properties separately for the case in which
either the magnetic field or the electric field is in the structure plane. The earlier is termed as
transverse-magnetic (TM) polarisation and the latter as transverse-electric (TE) polarisation.

We compare the photonic properties of a two-dimensional random-tiling dodecagonal quasi-
crystal with four of its approximants by calculating the photonic band structure diagrams. Ap-
proximants are periodic crystals that approximate the structure of a quasicrystal on a local level,
i.e. they have an identical local tiling structure as the quasicrystal [175]. For each structure, we
calculate the photonic properties using three different configurations corresponding to the ar-
rangement of the high dielectric constant material. This includes the arrangement of the dielec-
tric material in the form of (1) vertical rods (or cylinders), (2) vertical walls, and (3) a network
of vertical rods connected by vertical walls in a planar dielectric slab, which respectively are
known to promote the formation of band gaps for TM, TE and TM+TE polarisations [60]. This
is caused due to the difference in the nature of the electric field in the 2-D plane; the electric
field in the plane is a vector in the TE polarisation and a scalar in the TM polarisation [86]. An
overview of the different configurations of the quasicrystal and the four approximant structures
is given in Figure 8.1. Each panel in the figure contains the real space positions of the particles
(top-left) and the variation of the dielectric constant in the rod (top-right), wall (bottom-left),
and network (bottom-right) configurations. The inset shows the respective calculated diffraction
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(a) (b)

(c) (d)

(e)

Figure 8.1: Dodecagonal quasicrystal and approximants used in this study (a) dodecagons in a square
tiling (SQ), (b) sigma tiling (SI), (c) dodecagons in a triangle tiling (TR), (d) dodecagons in a square-
triangle tiling (ST), and (e) a random-tiling quasicrystal (QC). Each panel contains (top-left) the posi-
tions of the particles as disks, where the dodecagons are distinctly marked in (a, c, d), and the real space
permittivity (dielectric constant) function in (top-right) the vertical rod configuration, (bottom-left) the
vertical wall configuration, and (bottom-right) the network configuration. Note that the rods and walls
are out of plane of the figure. Inset shows the calculated diffraction pattern.
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patterns. In Figure 8.1(e), we show the dodecagonal quasicrystal (QC), which is adapted from
a non-Stampfli square-triangle approximant [84]. We use a super cell containing 209 particles.
The three approximants used here consist of various tilings of dodecagonal arrangement of
particles. These tilings include square (SQ), triangle (TR) and square-triangle (ST), and are
shown in Figures 8.1(a), 8.1(c), and 8.1(d). The fourth approximant, given in Figure 8.1(b), is
a periodic representation of the

(
32.4.3.4

)
Archimedean tiling, denoted as σ -phase (SI) based

on its analogous three-dimensional Frank-Kasper phase [180, 238]. The unit cell of the SQ, SI,
TR and ST approximants, is respectively, composed of 15, 32, 52 and 56 particles. For each of
these structures, we calculate and compare the photonic band structure in all configurations as
a function of the size of the dielectric, namely the radius of the vertical rod (r∗ = r/a) and the
width of the vertical wall (w∗ = w/a).

8.3 Results and discussion

In this section, we first compare the photonic properties of the quasicrystal and four of its
approximants in the rod and wall configurations. We then present the photonic properties of
only the approximants in the network configuration.

8.3.1 Comparison of rod and wall configurations

We compare the photonic properties of the quasicrystal and approximant structures by plotting
the band gap map. This involves plotting the locations of the extremities of the photonic band
gap in the band structure as a function of a geometrical parameter, i.e. the radius of the rods
(r∗= r/a) in the rod configuration or the width of the walls (w∗=w/a) in the wall configuration.
This helps in visualising and comparing the optimal geometrical parameter that maximises the
width of the band gap. In Figure 8.2, we plot the TM and TE band gap maps separately for each
structure in both the rod and the wall configurations. We make the following observations from
this figure: (1) All these structures possess both TM and TE band gaps in both the rod and wall
configurations. (2) However, there is no complete (TM+TE) band gap due to misalignments
between the TM and TE gaps in each configuration. (3) As expected, the TM band gap is
dominant in the rod structures, while the TE band gap is larger in the wall structures. However,
we notice that the TE band gap widths in the wall configurations is much smaller than the
TM band gap widths in the rod configurations. (4) The position of the band gaps in terms of
their mid-gap frequency for all these structures is similar. The first and the last observations
agree well with earlier studies [88, 249, 251] that suggest that the photonic behaviour of the rod
configurations of the approximants is dominated by their short range environment and thus, the
size of the approximant has little influence on the position of the band gap.

To further investigate if there is an effect of the local structure on the photonic behaviour
of the quasicrystal and the approximants, we provide a quantitative comparison in Figure 8.3.
Figure 8.3(a) shows the comparison for the rod configurations and Figure 8.3(b) for the wall
configurations. In both Figure 8.3(a) and Figure 8.3(b), the top panels show the particle di-
mension (rod radius or wall width) at which the maximum gap width is obtained, the middle
panels the maximum gap width (TM in rod and TE in wall configurations) and the bottom pan-
els the mid-gap frequency at maximum gap width. We only plot the TM band gap of the rod
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Figure 8.2: TM and TE band gap maps as a function of the radius (r∗ = r/a) in a rod configuration and
the width (w∗ = w/a) in a wall configuration for the following structures: (a) dodecagons in a square
tiling (SQ), (b) a sigma tiling (SI), (c) dodecagons in a triangle tiling (TR), (d) dodecagons in a square-
triangle tiling (ST), and (e) a random-tiling quasicrystal (QC). The blue and brown colours, respectively,
denote the TM and TE band gaps. The rod configurations are represented in a lighter shade of the colour
and the wall configurations in a darker shade. The reduced frequency is written as ω∗ = ωa/2πc.
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Figure 8.3: Comparison of the maximum band gap width in (left) a rod and (right) a wall configura-
tion. The top panels show the rod radius or wall width at which the maximum gap width is obtained,
the middle panels show the maximum gap width and the bottom panels the mid-gap frequency at the
maximum gap width for the following structures: dodecagons in a square tiling (SQ), a sigma tiling
(SI), dodecagons in a triangle tiling (TR), dodecagons in a square-triangle tiling (ST), a random-tiling
quasicrystal (QC). The reduced quantities are written as ω∗ = ωa/2πc, r∗ = r/a, and w∗ = w/a.
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configurations and the TE band gap of the wall configurations. Let us first pay attention to the
rod configurations given in Figure 8.3(a). As in the previous studies [88, 249, 251], we do not
find a large variation in the maximum gap width and the mid-gap frequency between the ap-
proximants. It is interesting to note that the behaviour exhibited by the quasicrystal and the SI
approximant, which do not have local dodecagonal structures, is similar to that of the other ap-
proximants constructed using dodecagons. However, such behaviour does not hold in the case
of the wall configurations as shown in Figure 8.3(b). We find a large variation in all the three
calculated parameters. The only correlation we find in the photonic behaviour of the wall con-
figuration is that the three approximants based on different tilings of the dodecagons, namely
SQ, TR and ST, have similar maximum band gap widths. This suggests that the behaviour of
the three approximants is governed by their short range environments leading to similar pho-
tonic behaviour. However, such a correlation is not observed in case of the mid-gap frequency
value, leading to an inconsistency with regard to the previous statement. It is interesting to
note that the SI approximant, having a periodic non-dodecagonal particle arrangement, has the
largest band gap width and the quasicrystal, having a random non-dodecagonal arrangements,
has the smallest band gap width among the structures studied. In addition, we do not find any
direct correlations between the size of the approximant and the photonic behaviour in the wall
configuration.

8.3.2 Comparison of network configurations

The construction of a network structure for obtaining a complete photonic band gap finds its
roots in the different configurations that promote the formation of a TM and a TE band gap.
Intuitively, a network consisting of a combination of both these aspects would result in the
formation of a complete (TM+TE) band gap. However, identifying and constructing such a
structure for a quasicrystal is not straightforward. Recently, there have been optimisation meth-
ods provided to design photonic quasicrystals with complete band gaps [67]. In contrast, we
follow a simple protocol of a straightforward combination of the above mentioned rod and wall
structures to create a network. The advantage of this simplification is that these networks can
be experimentally synthesised by sintering and etching colloidal crystal structures [257, 258].
In this study, we wish to evaluate the effect of the local environment of particles in the network
configuration on the formation of a complete photonic band gap. However, given the compu-
tationally expensive nature of these calculations for the quasicrystal, we have, till now, only
obtained the results for the approximants. We will discuss these here in further detail.

In Figure 8.4, we present the surface map of the complete band gap width for the four
approximants, namely SQ, SI, TR and ST. Here, the largest complete band gap obtained is
plotted as a function of the wall width (w∗ = w/a) and the rod radius (r∗ = r/a). We make the
following three observations from these plots. Firstly, the maximum band gap width obtained in
these structures is about 10 %, which is much smaller than the TM and TE band gaps found in
the individual rod and wall configurations. Secondly, it is interesting to note that the maximum
band gap in all these structures is obtained in a configuration consisting of large rods connected
by thin walls. In other words, it requires only a small connecting material between the rods to
open up a complete band gap. Additionally, this also means that these configurations exhibit a
dominant TM behaviour. Lastly, the point of difference between these four structures occurs in
the regions of thicker walls. Here, the SI has a larger band gap width than the other three. This
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Figure 8.4: Surface map of complete (TM+TE) band gap width as a function of rod radius (r∗= r/a) and
wall width (w∗ = w/a) calculated for network configurations of the following structures: (a) dodecagons
in a square tiling (SQ), (b) a sigma tiling (SI), (c) dodecagons in a triangle tiling (TR), and (d) dodecagons
in a square-triangle tiling (ST). The region where r∗ < w∗/2, i.e. the rods are submerged inside the wall,
is shaded in grey.

correlates with the larger TE band gap exhibited by the SI structure in the wall configuration
(shown in the previous section). The same behaviour is also exhibited here at thicker wall
widths, when the behaviour in the TE polarisation is dominant.

One of the intriguing observations made from the previous figure (Figure 8.4) is regarding
the lower band gap width obtained in the network configurations than in the individual rod
and wall configurations. To investigate this further, we plot the band gap map as a function of
the rod width at a constant wall width (w∗ = 0.03) for all the approximants in Figure 8.5. The
chosen wall width corresponds to the wall width where the maximum band gap is found in these
structures. Here, we observe that the overlap between TM and TE bands to create a complete
band gap does not occur in the bands at lower frequencies, but at higher frequencies. In contrast,
the band gaps reported in the rod and wall configurations pertain to the lowest individual band
gap. This mismatch results in the reduction of the gap width in the network configurations.
Additionally, it is not surprising to note than the behaviour of the TM bands in the band gap
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Figure 8.5: Band gap map as a function of rod radius (r∗ = r/a) at a constant wall width (w∗ = w/a =
0.03) calculated for network configurations of the following structures: (a) dodecagons in a square tiling
(SQ), (b) a sigma tiling (SI), (c) dodecagons in a triangle tiling (TR), and (d) dodecagons in a square-
triangle tiling (ST). The blue and brown colour, respectively, denote the TM and TE band gaps.

map of all approximants is similar. As previously explained, the configuration explored by this
band gap map represents a structure with large rods connected by thin walls, i.e. configurations
with dominant TM behaviour. Thus, this behaviour is consistent with Figure 8.2 and Figure 8.3,
where all approximants were found to display similar behaviour in the rod configurations under
TM polarisation. Also, the difference between the behaviour of the network structure of these
aproximants is in the TE band gaps; which is again consistent with the previous observation of
different behaviour between the approximants under TE polarisation.

8.4 Conclusions
In summary, we compare the photonic behaviour of a two-dimensional random tiling dodeca-
gonal quasicrystal with four of its approximants in three particle configurations corresponding
to the arrangement of the high-dielectric constant material, i.e. a rod configuration, a wall con-
figuration and a network of walls and rods. Firstly, we find that all these structures exhibit
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the formation of photonic band gaps in both TM and TE polarisations. Further, we find that
all these structures exhibit similar photonic behaviour in the rod configuration, but not in the
wall configuration. This difference in photonic behaviour seems not to be related to the size of
the approximant or the local structure. Surprisingly, we find that all the approximants exhibit
similar photonic behaviour in the network configuration that contains a combination of rods and
walls. In these structures, the maximum band gap width is obtained at a configuration consisting
of large rods connected by thin walls. Comparing the photonic behaviour of the approximants
in the network configuration with that in the rod and wall configurations, we extrapolate that
the quasicrystal will also exhibit a similar behaviour in the lower wall width regimes.





9 A simple self-assembly route for a
photonic crystal with a pyrochlore
structure in a three-dimensional

core-corona system

We report the investigation of a three-dimensional core-corona system using Monte Carlo si-
mulations and its phase diagram determination using free-energy calculations. The core-corona
system is modelled as particles with an impenetrable hard core of diameter σHS surrounded
by a purely repulsive soft corona of diameter δ = 2.10σHS. The system exhibits a rich phase
behaviour comprising of a fluid, a body-centered cubic, and a face-centered cubic crystal phase
in three different density regimes. In addition, two intriguing low-density phases are found in
the system, namely a pyrochlore and a hexagonal columnar phase. We find evidences of ener-
getic stabilisation of these structures. The structure of the pyrochlore formed in our simulations
has two inherent length scales and displays complete photonic band gaps in both the direct and
inverted crystal structure. The hexagonal columnar phase consists of strings, separated by a
distance larger than δ , which are arranged on a hexagonal lattice. We also find evidence of slow
dynamics in this phase as a result of restricted particle movements between the neighbouring
strings.
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9.1 Introduction

Photonic band gap (PBG) materials are periodic structures that prevent the propagation of light
with a specific wavelength in all directions. Since their initial proposal in 1987 [20, 21], there
has been a huge interest in fabricating PBG materials with band gaps in the wavelengths per-
taining to the visible and near-infra-red region, because of their wide applicability [42, 188].
For example, three-dimensional PBG materials with the band gap centered around 1.5 µm are
interesting for applications not only in the telecommunication sector as lossless wave guides
[13], and non-linear optical switches [14], but also in (bio-)sensing, bio-medical engineering,
and energy storage and security [3, 15–17]. The current forerunners for these PBG materials
are the dielectric diamond and pyrochlore structures created from precursor colloidal particles.
They not only display a gap formation at a low refractive-index contrast ratio (around two)
and possess a large band gap width-to-frequency ratio, but also exhibit a band gap formation
at low lying bands that are more stable against disorder [259]. However, the major obstacle in
experimentally realising the PBG materials is the lack of an inexpensive and reliable means of
fabrication. Continuous efforts are being made to fabricate the diamond structure. One of the
earlier methods included the laborious process of nanorobotic manipulation of colloids [260].
A less laborious alternative is the directed self-assembly of the colloidal analogue of the MgCu2
Laves phase from a binary colloidal dispersion using appropriate wall patterning [42, 43]. One
of the components of the Laves phase can then be selectively removed to obtain either the dia-
mond or the pyrochlore lattice. However, formation of this binary crystal for sub-micron sized
colloidal particles has not been experimentally realised till now. Other popular methods for fab-
ricating the diamond structure are the use of colloidal particles with selective patches [261–266]
or self-assembly of colloids with complex interaction potentials [267, 268]. However, these re-
quire complicated potentials that are yet to be experimentally realised. Although there has been
a theoretical prediction of a diamond crystal ground state in star polymer solutions in a good
solvent [269], we have not come across any reports of their experimental realisation. On the
other hand, the only method proposed for manufacturing the pyrochlore lattice is by an arduous
layer-by-layer growth procedure [25].

In this work, we study the formation of photonic crystals in experimentally realisable sys-
tems. One such system emulates particles with a hard core surrounded by a squishy corona like
spherical dendrite micelles consisting of a rigid aromatic core with a deformable shell of alkyl
chains [105], or block copolymer micelles consisting of a micellar core of hydrophobic polymer
surrounded by a large shell of hydrophilic polymer blocks [106–110]. We model these core-
corona systems using an interaction potential with a hard core of diameter σHS and a purely
repulsive square shoulder of diameter δ . The phase behaviour of this core-corona system is
greatly influenced by δ . At δ ∼ σHS, the system behaves similar to a system of hard spheres;
while at δ >> σHS, the hard core becomes effectively irrelevant at low temperatures. How-
ever, an interplay between the energetic and entropic considerations promotes the formation of
phases with various structures at intermediate shoulder widths.

Under these conditions of intermediate shoulder widths, a rich phase behaviour has been re-
ported in two- [123, 136, 138, 140, 233, 234] and three-dimensional core-corona systems [143–
147, 234]. Specifically, a stable diamond cubic phase was reported in a core-corona system
with a smoothened potential at δ = 1.80σHS [144]. Given the similarity between the diamond
and pyrochlore lattices in terms of the basic lattice structure (= face-centered cubic) and the
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coordination number of particles (= 4), we ask ourselves whether a pyrochlore lattice can also
form in a core-corona system with certain values of the shoulder width.

To address this question and to map out the entire equilibrium phase diagram of the system,
we combine Monte Carlo simulations and free-energy calculations. We fix the shoulder width
to be δ = 2.10σHS and the reasons behind this will be explained in the methods section. We
observe a rich phase behaviour which includes the formation of a pyrochlore crystal and a
hexagonal columnar phase. Subsequently, we study the photonic properties of the pyrochlore
phase and the dynamics of the columnar phase. This chapter is organised as follows. We present
our model and the methods that we employ to map out the phase diagram and to calculate the
photonic band structure in Section 9.2. The results are presented in Section 9.3, and we draw
some conclusions in Section 9.4, where we also outline future research directions.

9.2 Methods
We first explain the simulation model and computational methods used for this study in Section
9.2.1, and then outline the procedure to construct the phase diagram in Section 9.2.2. Following
which, we give an account of the analysis methods in Section 9.2.3, and finally, the procedure
for photonic band structure calculation is given in Section 9.2.4.

9.2.1 Computational methodology
In this work, we study the phase behaviour of a three-dimensional system of spherical particles
with a core-corona architecture. The interaction between the particles is modelled using a ra-
dially symmetric hard-core square shoulder (HCSS) pair potential consisting of a hard core of
diameter σHS and a purely repulsive square shoulder of diameter δ . This HCSS potential can be
written as a sum of a hard-sphere potential VHS(r) and a square-shoulder potential VSS(r), i.e.

VHCSS(r) =VHS(r)+VSS(r), (9.1)

where

VHS(r) =
{

∞, r ≤ σHS
0, r > σHS

, (9.2)

and

VSS(r) =
{

ε, r ≤ δ

0, r > δ
, (9.3)

with r the interparticle centre-of-mass distance, and ε > 0 the height of the square shoulder.
The HCSS potential introduces two characteristic length scales in the system; namely the hard-
core diameter σHS and the square shoulder diameter δ . We define ε and σHS, respectively, as
the units of energy and length. Our preliminary study on the phase behaviour of the HCSS
system with shoulder widths 1.90σHS ≤ δ ≤ 2.10σHS exhibited the formation of clusters at
δ ≥ 2.00σHS. This formed the basic motivation for a detailed study on the phase behaviour
of a HCSS system with shoulder width of δ = 2.10σHS, and to look for the formation of a
pyrochlore lattice, which can be considered to be composed of tetrahedral clusters [24, 43].

We perform Monte Carlo (MC) simulations using a system of N particles in a cubic box of
volume V with periodic boundary conditions in the canonical (NV T ) and isothermal-isobaric
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(NPT ) ensembles. We define various reduced (dimensionless) physical quantities to describe
the system, namely temperature T ∗= kBT/ε , pressure P∗= βPσ3

HS, and density ρ∗=Nσ3
HS/V ,

where β = 1/kBT is the inverse temperature with kB the Boltzmann constant. Depending on the
lattice structure, a system size N between 432 and 512 particles is used for the NPT studies.

9.2.2 Phase diagram construction
We employ a three-step process to determine the phase diagram of the system:

(1) We measure the equation of state (EOS) of the phases of interest at a constant temper-
ature T ∗. This isothermal EOS is the variation of the bulk pressure P∗ as a function of the
equilibrium density ρ∗. We perform compression and expansion runs by either increasing or
decreasing the pressure P∗ in a step-wise manner in the NPT ensemble to obtain the isothermal
EOS. The compression runs are started from an isotropic fluid phase, while the expansion runs
are started from the concerned crystal phase.

(2) For each of the observed phases, we determine the dimensionless Helmholtz free energy
per particle f = βF/N as a function of density ρ∗ at a fixed temperature T ∗ by thermody-
namic integration of the EOS to a reference density. The free energy at the reference density
is calculated for the periodic crystal phases using the Frenkel-Ladd method and for the fluid
and columnar phases using the Schilling-Schmid method. Both these methods are explained in
Chapter 2.

(3) The thermodynamically stable phases and the corresponding phase boundaries are de-
termined by employing a common tangent construction to the free-energy curves, i.e. the Helm-
holtz free energy per unit area βF/A as a function of the reduced density ρ∗.

9.2.3 Structural analysis
We characterise the different phases formed in our system by calculating the radial distribution
function (RDF) of the system g(r). The RDF of a system at density ρ∗ gives the probability of
finding a pair of particles at a distance r = |r− r′|, and reads

g(r) =
1

ρ∗2

〈
N

∑
i=1

N

∑
j 6=i

δ (r− ri)δ (r′− r j)

〉
, (9.4)

where ri and r j are the positions of particles i and j, respectively, and the brackets denote the
average over the number of particles.

To assess the dynamic behaviour of the columnar phase, we calculate the self intermediate
scattering function (SISF), Fk(t) and the mean squared displacement (MSD) ∆r2(t). The SISF
at a given wave vector k is the spatial Fourier transform of the van Hove self-correlation function
[270, 271] and can be written as

Fk(t) =
1
N

〈
N

∑
i=1

exp(−ik.(ri(t0 + t)− ri(t0)))

〉
, (9.5)

where the brackets denote the averaging over different configurations. The SISF is measured
for a wave vector k that corresponds to the first peak in the static structure factor S(k). The



A SIMPLE SELF-ASSEMBLY ROUTE FOR A PHOTONIC CRYSTAL WITH A PYROCHLORE

STRUCTURE IN A THREE-DIMENSIONAL CORE-CORONA SYSTEM 155

MSD is calculated as

∆r2(t) =
1
N

〈
N

∑
i=1

(ri(t0 + t)− ri(t0))
2

〉
, (9.6)

where the brackets denote the averaging over different configurations.
We study the dynamic behaviour as a function of Monte Carlo steps (MCS). While MC

simulations are not strictly concerned with time dependent properties, they can be used for this
purpose if the proposed particle moves are physically realisable, i.e. diffusive in nature, and if
the focus is on the intermediate and long time behaviour [272, 273]. Since this is the case in
our simulations, we calculate the SISF and MSD from the MC trajectories.

9.2.4 Photonic band structure calculation
We numerically calculate the photonic properties of the dielectric pyrochlore structure using
the open-source ‘MIT Photonic-Bands’ software package [165]. The software computes fully-
vectorial eigenmodes of Maxwell’s equations with periodic boundary conditions by precondi-
tioned conjugate-gradient minimisation of the block Rayleigh quotient in a plane wave basis
[165]. We consider both the direct structure consisting of silicon spheres in air and the inverse
structure made of air spheres in silicon. The dielectric constant of silicon is taken to be twelve
and that of air is unity. We discretise the unit cell using a grid consisting of 32 grid points in
each direction. We compare the photonic properties of the pyrochlore lattice obtained in our
simulations with that of an ideal pyrochlore lattice. We refer to the works by Garcia-Adeva
[25, 274] for the description of the crystal structure of the ideal pyrochlore lattice in terms of
the basis vectors and the particle positions.

9.3 Results and discussion
In this section, we first present the overall phase behaviour of the system along with the equi-
librium phase diagram, then we turn our attention to the two interesting open structures found
in the system, namely the pyrochlore and the hexagonal columnar phase.

9.3.1 General phase behaviour
The phase behaviour at this shoulder length is interesting because the size of the shell of the
soft corona is comparable to that of the hard core. As a consequence, the behaviour at larger
interparticle distances (r ≥ δ ) is predominantly determined by energy minimisation, while that
at lower distances (r < δ ) is dominated by entropy maximisation. This, in turn, leads to the
formation of clusters that are separated from each other by distances r ≥ δ . We plot the phase
diagram in the pressure-temperature and temperature-density planes in Figure 9.1. The first
observation we make is the rich phase behaviour displayed by the system. We identify and mark
the following phases: Fluid (FL), body-centered cubic (BCC), high- (HFCC), medium- (MFCC)
and low-density (LFCC) face-centered cubic, pyrochlore (PYR) and hexagonal columnar phase
(COL). The driving force for the formation of FCC phases in three different density regimes is
the presence of the two length scales in the system. FCC phases with first nearest neighbours
at distances equal to that of the shoulder and the hard core are, respectively, formed at low- and
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high-densities. In the MFCC phase, the second nearest neighbours are at a distance equal to the
square shoulder diameter δ .

Let us now consider the high- and low-temperature behaviour separately. At high temperat-
ures, the observed crystal phases include a BCC phase sandwiched between two FCC phases.
This behaviour is similar to that reported for the smoother potential system at shoulder widths
1.15σHS ≤ δ ≤ 1.55σHS by Gribova et al. [144]. It is interesting to note that the MFCC phase,
which was reported to form at 1.15σHS ≤ δ ≤ 1.55σHS and was absent at δ = 1.80σHS [144],
is formed again at the larger shoulder width δ = 2.10σHS. At temperatures higher than those
reported here, we expect the system to display a behaviour similar to that of the hard-sphere sys-
tem with FL at low densities and HFCC at high densities, with a two-phase coexistence region
in between (not shown here). The MFCC and BCC phases will not be stable at these tem-
peratures. At the low temperatures reported in the phase diagram, we note a re-entrant phase
behaviour of the fluid which encompasses various open structures like LFCC, PYR, and COL.
It is worth mentioning here that the emergence of interesting crystals at such low densities is
purely driven by repulsive interactions, whereas a gas-liquid condensation is absent due to the
lack of attractive interactions.

We next compare the phase behaviour at this shoulder width (δ = 2.10σHS) with the reported
ones at lower shoulder widths 1.15σHS ≤ δ ≤ 1.80σHS [143, 144]. Firstly, the reported phase
behaviour at lower shoulder widths show a decrease in the stability region of the fluid phase
at intermediate densities with increase in shoulder width [144]. Keeping up with this trend,
we find that the stability region of the re-entrant fluid here is indeed very small. Secondly, a
number of amorphous low-temperature phases have been reported to form in this density region
at smaller shoulder widths, which were explained by considering the one-component system as
a quasi-binary mixture [143]. We do indeed find the formation of such amorphous structures
in our system in this density range, but, all these amorphous phases are metastable with respect
to the fluid phase as seen from our free-energy calculations. Further, the diamond cubic phase
reported to be stable at δ = 1.80σHS [144] is found to be metastable here at δ = 2.10σHS with
respect to the FL-COL phase coexistence.

9.3.2 Pyrochlore - structure and photonic properties
The ideal pyrochlore lattice (iPYR) is composed of tetrahedral clusters stacked in such a way
that the nearest neighbours are connected according to an FCC lattice. In other words, the
centres of the tetrahedra lie on the filled tetrahedral interstitials of a diamond lattice [24]. For
this lattice, at its maximum density (ρ∗ = 0.71), each particle has six equidistant nearest neigh-
bours. In other words, the distance between the neighbouring particles within a tetrahedron and
between those in neighbouring tetrahedra is the same. However, we find that not all the four
neighbours of a particle are equidistant in our pyrochlore structure (PYR), which is formed by
expanding a BCC lattice to a lower pressure at a constant temperature for a range of shoulder
widths 1.95σHS ≤ δ ≤ 2.25σHS. In fact, the distance between the inter- and intra-tetrahedral
neighbours are different, which results in a substantially lower maximum density for this struc-
ture (ρ∗ = 0.39). We present a comparison between the PYR and iPYR structures in Figure 9.2.
In Figures 9.2(a) and 9.2(b), we show different orientations of a sample configuration of our
PYR, where the various clusters are marked by different colours. This clearly shows a layered
arrangement of tetrahedral clusters. The difference between our PYR and the ideal iPYR struc-
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Figure 9.1: Phase diagram in the (reduced) (a) pressure-temperature and (b) temperature-density rep-
resentations obtained for the three-dimensional HCSS system with a shoulder width δ = 2.10σHS. The
reduced quantities are defined as T ∗ = kBT/ε , P∗ = βPσ3

HS and ρ∗ = Nσ3
HS/V . The phases shown are

fluid (FL), body-centered cubic (BCC), high- (HFCC), medium- (MFCC) and low-density (LFCC) face-
centered cubic, pyrochlore (PYR) and hexagonal columnar phase (COL). The grey regions denote the
two-phase coexistence regions.
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tures is analysed by comparing the RDF as shown in Figures 9.2(c) and 9.2(d). In both Figures
9.2(c) and 9.2(d), the RDF of the PYR phase is calculated at the density corresponding to the
close-packing of intra-tetrahedral neighbours, ρ∗ = 0.39. For the iPYR phase, the RDF in Fig-
ure 9.2(c) is calculated at its maximum density ρ∗ = 0.71, while the density for the calculation
in Figure 9.2(d) (ρ∗ = 0.57) is chosen in order to match the positions of the second peak of the
iPYR with the third one of the PYR structure. Though the RDFs in Figure 9.2(c) give an im-
pression that the two structures are different, we can infer from Figure 9.2(d) that this is caused
because of the splitting of the first peak in iPYR to two peaks in PYR. This confirms that the
PYR structure has two inherent length scales: One between the particles in the tetrahedron and
another between the neighbouring tetrahedra. This is done in order to minimise the overlap of
the repulsive corona with the neighbouring particles, thereby hinting towards an energetic sta-
bilisation of this structure aided by the range of the interaction potential. We have not found any
previous reports of an energetically stabilised pyrochlore phase in systems of isotropic particles.
However, there has been one theoretical report of entropic stabilisation of the iPYR structure in
a system of triblock Janus particles [266]. The resulting phase diagram consists of a mixture of
iPYR and hexagonal tetra-stack lattices [266].

Having characterised the PYR structure, we next investigate whether or not it displays a
complete photonic band gap, and how this is affected by the presence of the two length scales.
We also calculate the band structure of the iPYR for comparison. It is well established that the
iPYR structure possesses a complete photonic band gap [24, 25, 42, 274]. The direct dielectric
structure of iPYR consisting of silicon spheres in air has a maximum gap width ∆ω/ωm = 13 %
between bands 2 and 3 for a dielectric density of ρ∗ = 0.88, while the inverse structure of
air spheres in silicon has a maximum gap width of ∆ω/ωm = 26 % at an air density ρ∗ =
2.52. Given that the maximum density of the iPYR is ρ∗ = 0.71, the particles overlap with the
neighbouring particles in both these cases. This represents a sintered structure [188].

A comparison between the photonic properties of the PYR and iPYR in terms of the relative
band gap width and the corresponding band gap map is given in Figure 9.3. The relative gap
width, ∆ω/ωm, is the ratio of the gap width to the mid-gap frequency, and the frequency is
expressed in reduced units as ω∗ = ωa/2πc where ω is the frequency of the electro-magnetic
field and c is the speed of light in vacuum. The band gap map involves plotting the locations
of the extremities of the photonic band gap in the band structure as a function of a geometrical
parameter, i.e. the hard-core diameter σHS. For convenience, we represent this in terms of the
density of the structure ρ∗. In Figures 9.3(a) and 9.3(b), we investigate the direct structures
consisting of silicon spheres in air, while in Figures 9.3(c) and 9.3(d), we investigate the inverse
structure consisting of air spheres in silicon. Please note that the density given in the direct
structures represents that of silicon spheres and that in the inverse structures represents that of
air spheres.

First, let us look at the direct structures. In Figure 9.3(a), we plot the band gap width as a
function of (reduced) density ρ∗, and in Figure 9.3(b), we show the band gap map. In addition,
we draw vertical dashed lines to denote the close-packed density of the iPYR ρ∗iPY R and the
two relevant densities in PYR, i.e. ρ∗PY R−1 where the spheres in a tetrahedron are in contact
and ρ∗PY R−2 where the tetrahedra are in contact and the spheres within the tetrahedra overlap
with each other. From these figures, we see that both structures possess a complete band gap.
However, the band gap width obtained in iPYR is much larger than in our PYR structure. This
implies that the presence of two different length scales in PYR, which can be viewed as a
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Figure 9.2: Pyrochlore structure: (a, b) Different orientations of the sample configuration of the pyro-
chlore (PYR) lattice obtained in our simulations. Only the hard-cores of the particles are drawn here and
the colours represent different clusters. Radial distribution function g(r) for the ideal pyrochlore (iPYR)
and the pyrochlore (PYR) obtained in our simulations at (c) their respective maximum packing densities,
and (d) at densities where the positions of the peaks are matched.

reduction in symmetry when compared to iPYR, results in some distortion of the underlying
air network in the photonic structure. This, in turn, results in a huge reduction of the band gap
width. We also observe that the maximum gap width for iPYR is obtained at a density larger
than the maximum packing density ρ∗iPY R, which refers to a sintered structure with overlapping
particles [188]. Even though the PYR does not possess a band gap at its close-packed density
ρ∗PY R−1, it does at higher densities. This again refers to a structure with sintered particles. It is
interesting to note that the band gap width in case of PYR reaches a local maxima at densities
slightly higher than the relevant densities ρ∗PY R−1 and ρ∗PY R−2. This, further, confirms that the
structure of the PYR indeed consists of two-length scales.
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Figure 9.3: Comparison of the photonic properties of pyrochlore structures namely, the ideal pyrochlore
lattice (iPYR) and the pyrochlore (PYR) obtained in our simulations: (a,c) Relative gap width ∆ω/ωm as
a function of (reduced) density ρ∗=Nσ3

HS/V and (b,d) band gap map calculated for (a,b) direct structure
of silicon spheres in air and (c,d) inverse structure of air spheres in silicon. In (a,b) the densities where the
particles start to overlap in iPYR (ρ∗iPY R), and where the particles in a tetrahedron

(
ρ∗PY R−1

)
and between

neighbouring tetrahedra
(
ρ∗PY R−2

)
start to overlap in a PYR lattice are individually marked. The reduced

frequency is written as ω∗ = ωa/2πc. A representation of the configuration of PYR pertaining to the
density at which the maximum band is obtained is given in (b) for the direct (ρ∗ = 1.18) structure and in
(d) for the inverse (ρ∗ = 2.52) structure. Here, the green and red colours respectively denote silicon and
air.

Now, let us compare the photonic behaviour of the inverse structures of PYR and iPYR as
shown in Figures 9.3(c) and 9.3(d). First, we notice that the range of densities plotted here is
very different from that for the direct structures. The higher range of densities for the inverse
structures refers to structures where the ‘air’ particles need to sufficiently overlap with each
other to create a connected network of air in the dielectric medium. In contrast to the direct
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Figure 9.4: Hexagonal columnar phase (COL): (a,b) Different orientations of the sample configuration
of the COL phase as obtained in our simulations, (c) cut-view showing the plane of strings, and (d)
porous structure obtained by the distribution of voids (in cyan) in the COL phase.

structures, we do not see a huge difference in the photonic behaviour of the inverse structures of
PYR and iPYR. This can be explained as follows. In the inverse structures, a connected network
of a dielectric material is the primary structure, where air is introduced in the form of particles.
As seen in the figure, the photonic band gap starts to form at densities where the particles largely
overlap each other. Thus, the presence of two length scales does not have a huge influence in
modifying the properties of an already connected air network at these densities. We, thus, do
not see a drastic difference between the photonic properties of the inverse structures of PYR
and iPYR.

9.3.3 Hexagonal columnar phase - structure and dynamic properties
Columnar phases refer to cylindrical structures with positional order in two dimensions, and
are most commonly reported for systems consisting of anisotropic particles [275–277]. The
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hexagonal columnar phase in our system is spontaneously formed either (1) by compressing an
isotropic fluid phase to higher densities at a constant temperature in the NPT ensemble, or (2)
by cooling a crystal phase to a lower temperature in the NV T ensemble. An overview of the
configurations of this phase as obtained in our simulations is given in Figure 9.4. Figures 9.4(a)
and 9.4(b) display the configuration in different orientations. We note the ordering of particles
into columns, which are positioned on a hexagonal lattice. In Figure 9.4(c), we present the
planar view of particles, which are arranged in strings. We note the ordering of particles in the
planes perpendicular to the column axis, while the position of particles along the column axis
is irregular. This column axis can be seen as the individual strings in Figure 9.4(c). The incent-
ive for the particles to form these strings is to reduce the number of nearest neighbours, which
results in a reduction of the potential energy of the system. The strings are arranged in such a
way that each particle has only two neighbours along the strings, and the distance between the
neighbouring strings is larger than the shoulder width, thereby resulting in no overlap of coronas
between adjacent strings. Similar columnar structures have also been reported for experimental
systems of gold nanoparticles functionalised with promesogenic (liquid crystal forming) lig-
ands [278, 279]. We wish to point out that this phase, when spontaneously formed as in the
current case, can serve as a template for the fabrication of porous materials, both in its direct
or inverse form, as shown in Figures 9.4(b) and 9.4(d). Such a self-assembly of inexpensive
porous nanomaterials can be an alternative to molecular caged structures such as zeolites and
can be used in applications involving filtration, size-selection, or catalysis [280].

The formation of strings can also be thought of as an energetic caging of particles which
essentially restricts the movement of particles in directions perpendicular to the strings. This
‘caging’ of particles could result in a state of dynamical arrest similar as in gelation [281]. To
verify this, we calculate the mean squared displacement (MSD) and self-intermediate scattering
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Figure 9.5: Dynamic behaviour of the hexagonal columnar phase (COL): (a) Mean squared displace-
ment (MSD) and (b) self-part of the intermediate scattering function (SISF) calculated at (reduced)
temperature T ∗ = kBT/ε = 0.15 and (reduced) densities ρ∗ = Nσ3

HS/V = 0.15 and 0.20, respectively,
representing the fluid (FL) and columnar (COL) phases.
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function (SISF) of the COL phase (ρ∗ = 0.20) and compare it with those of an isotropic FL
phase (ρ∗ = 0.15). These comparisons calculated at a temperature T ∗ = 0.15 are shown in
Figure 9.5. In Figure 9.5(a), we observe an intermediate plateau in the MSD of the COL phase,
slope marked by the dashed line in the figure, indicating sub-diffusive behaviour. This is absent
in the case of the FL phase. Similar behaviour of the SISF of the COL and the FL phase is noted
in Figure 9.5(b); the behaviour of the SISF of the FL phase is exponential in nature, while that
of the COL follows a stretched exponential function. The observance of intermediate plateaus
in the MSD and SISF imply the presence of a time scale where the dynamics is heterogeneous.
This confirms that the formation of strings leads to a heterogeneous dynamics which resembles
the relaxation behaviour of liquid crystal phases, which exhibit positional order [282–287].

9.4 Conclusions
In summary, we studied the bulk phase behaviour of a system of colloidal particles interacting
with a hard core and a repulsive square-shoulder potential at a shoulder width δ = 2.10σHS,
where σHS is the hard-core diameter. We performed Monte Carlo simulations and free-energy
calculations to determine the equilibrium phase diagram. We observe a rich phase behaviour
consisting of a fluid, a BCC, three distinct FCC phases, a pyrochlore and a hexagonal columnar
phase. We find that the pyrochlore structure formed in our simulations has two characteristic
length scales, one corresponding to the distance between particles within a tetrahedron and the
other corresponding to the particle distance between neighbouring tetraheda. We calculated the
photonic properties of this structure and compared it with the ideal pyrochlore lattice. We found
that the presence of two-length scales had a greater influence on the photonic properties of the
direct structure than the inverse structure. Contrarily, the photonic properties of the inverse
structure for both structures were similar. Finally, we analysed the dynamic behaviour of the
hexagonal columnar phase. We infer that the presence of particles in strings leads to slow
dynamics in the system.
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10 The effect of disorder of small spheres
on the photonic properties of the

inverse binary NaCl structure

Inverse opal structures are experimentally realisable photonic band gap materials. They suffer
from the drawback of possessing band gaps that are extremely susceptible to structural dis-
orders. A binary colloidal NaCl lattice, which is also experimentally realisable, is a promising
alternative to these opals. In this work, we systematically analyse the effect of structural dis-
order of the small spheres on the photonic properties of a binary NaCl lattice with a size ratio of
0.30 between the small and large spheres. The types of disorders studied include the position of
the small spheres in the octahedral void of the large spheres, polydispersity in size of the small
spheres, and the fraction of small spheres in the crystal. We find a low susceptibility of the band
gap of the inverse NaCl lattice to the disorder of the small spheres. In other words, none of the
above disorders completely destroy the photonic band gap of the NaCl lattice, which in most
cases result in the reduction of the photonic band gap width.
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10.1 Introduction

Photonic band gap (PBG) materials are structures in which the refractive index varies period-
ically in space on a length scale comparable to the wavelength of light. Similar to the way the
motion of electrons is affected by the atomic lattice of a semiconductor, photons can be scattered
multiple times by the photonic structure thereby resulting in either propagation or blocking of
specific wavelengths of light through this structure. In case that the propagation of bands of
wavelengths of light is disallowed for all directions and polarizations, the photonic crystal ex-
hibits a photonic band gap [20, 21]. Three-dimensional photonic crystals with band gaps in the
wavelengths pertaining to the visible and near-infra-red regions [42, 188] are believed to be the
future of optical devices [13, 14], for which inverse opal structures are promising candidates.

Inverse opal structures consist of spheres made of a low dielectric contrast material em-
bedded at the positions of a face-centered cubic (FCC) lattice inside a material with a high
dielectric contrast. Such a structure of air spheres in silicon has a band gap between bands 8
and 9 with a relative gap width of 5 % [26, 27, 288]. Reports of experimental realisations of
these structures starting from a precursor colloidal FCC crystal are abundant [17, 35–40]. The
inverse crystal can be achieved from the colloidal crystal by infiltrating a high refractive-index
dielectric material and then removing the solid spheres by etching or burning to create the air
pockets [35]. However, the popularity of these FCC structures is damped by the fact that the
photonic band gap formed in such structures is extremely fragile and highly susceptible to the
variations in position and size of the spheres [259, 289]. This imposes a strict restriction on the
uniformity of these structures. Though there have been efforts to increase the band gap either
by connecting the air spheres by cylindrical tunnels [290] or by creating voids by incomplete
infiltration of a high dielectric contrast material [188], such increments does not warranty ef-
fectiveness against the randomness in the photonic structure. A more attractive solution stems
from the reported increase in the photonic band gaps of two-dimensional photonic crystals of
dielectric rods in a square, triangular or honeycomb lattice by the addition of smaller interstitial
rods [291, 292]. This increase in the gap width is due to the increase in the filling fraction of
the dielectric without a disruption in the connectivity of the lattice. Analogously, doping the
octahedral interstices of the FCC lattice leads to a binary NaCl lattice, which in its inverse form
is reported to possess a band gap with a relative gap width of 9 % [28, 29]. A comparison
between the band structures calculated for the close-packed inverse FCC and NaCl structures is
given in Figure 10.1. From the figure, we note (1) the larger band gap in NaCl in comparison to
the FCC structure and (2) the position of the gap in NaCl is a little higher than in FCC. How-
ever, the question regarding susceptibility of this NaCl structure to randomness is, as yet, not
investigated.

To answer this question, we first need to understand the construction of the NaCl lattice
and consider the different kinds of disorder that results in this structure during its experimental
fabrication. The binary NaCl structure consists of spheres of two different sizes, where each
species is ordered on a FCC lattice. This inter-penetration of two FCC lattices results in a scen-
ario where the small spheres are positioned in the octahedral voids of the FCC lattice of the
large spheres. For a close-packed FCC lattice of large spheres with a radius rl , the correspond-
ing radius of the small spheres rs should lie between the radius of the tetrahedral (rte = 0.22rl)
and the octahedral (roc = 0.41rl) voids. This ensures that the small spheres do not fit in the tet-
rahedral voids. Stability of the NaCl structure in binary hard-sphere systems has been predicted
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Figure 10.1: Comparison of photonic band structures of (a) a face-centered cubic (FCC), and (b) a
NaCl lattice of air spheres (ε = 1) in silicon (ε = 12). The large spheres in both the structures have
a close-packed configuration. In the NaCl structure, the spheres have a size ratio of q = rs/rl = 0.3,
where rs and rl are, respectively, the radius of the small and large spheres. The band gap in the FCC
and NaCl structures are, respectively, coloured in yellow and cyan. The reduced frequency is written as
ω∗ = ωa/2πc.
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for size ratios (q = rs/rl) 0.22 < q < 0.41 by theoretical [293, 294], simulation [295, 296] and
experimental [297] studies. Indeed, large binary colloidal crystals with a NaCl structure have
been fabricated using hard-sphere-like silica spheres using various external fields such as elec-
tric, gravitational, dielectrophoretic fields in combination with colloidal epitaxy [41]. The size
ratio of the spheres was q = 0.30 with a size polydispersity of about 2 % for the large and 7 %
for the small spheres. At this size ratio, the small spheres are not in contact with the large
spheres and in principle, can rattle inside the octahedral void. Thus, when the structure is inver-
ted, the position of the small spheres may not be in the centre of the void. Accordingly, the first
two parts of this work is concerned with the study of the effect of positional disorder and size
polydispersity of the small spheres on the photonic properties of a binary colloidal NaCl lattice.

Furthermore, the phase diagram of a binary mixture of small and large hard spheres with
a size ratio q = 0.30 was recently reinvestigated using Monte Carlo simulations [296]. It was
demonstrated that the so-called interstitial solid solution (ISS) is thermodynamically stable in
such a mixture, which consists of a FCC of large spheres but with only a fraction of the octa-
hedral holes filled with small spheres. In addition, it was shown that the fraction of octahedral
holes filled with small spheres can be tuned from zero to one, which respectively corresponds to
the one-component FCC of only large spheres and the binary NaCl crystal structure. Sediment-
ation studies of the binary hard-sphere like particles has shown that the fraction of small spheres
decreases along the height of the sedimentation column, effectively forming ISSs with varying
compositions [29]. Incidentally, ISSs have a huge effect on the photonic properties of the parent
material as demonstrated by the change in the structural colour of FCC photonic crystals upon
interstitially doping with nanospheres [298]. This leads to the interesting question of how the
photonic properties and the photonic band diagrams change for ISSs with varying small sphere
compositions in between those of the FCC and the NaCl structures, both of which possess a
photonic band gap. Thus, in this work, we also study the effect of small sphere composition on
the photonic properties of a binary colloidal ISS with the spheres positioned on an NaCl lattice.

We wish to point out here that although one might expect that the structural disorder of
the large spheres has a larger effect on the band gap, we exclusively focus this work on the
disorder of the small spheres. This is because of the following reasons: Firstly, we expect the
effect of the disorder of the large spheres in the NaCl lattice to be similar to that of the FCC,
but less pronounced due to (1) the larger band gap width of the NaCl lattice, and (2) the fact
that the small spheres in the NaCl lattice will constrain the movement of the large spheres. We
will briefly explain these here. According to (1), for a FCC lattice, a band gap width of about
5 % was nullified with randomness in the position and size of large spheres with a range less
than 2 % of the lattice constant [259, 289]. However, as previously mentioned, the band gap
width of a NaCl lattice is almost twice as large as that of the FCC lattice consisting of the
same dielectric material. Thus, contrary to the situation of increasing the band gap by using a
material with higher dielectric constant [259, 289], this could mean that the NaCl lattice can
withstand disorders of larger magnitude than the FCC. The situation presented in (2) means
that the possible range of positional disorder of the large sphere in a NaCl lattice is limited
because of the presence of the small spheres in between them. This, also reduces the effect of
the positional disorder of the large spheres. Secondly, during the fabrication of these crystals
by sedimentation, the position and composition of the small spheres are more prone to vary
in comparison to that of the large spheres and it is thus important to investigate the effect of
disorder of the small spheres. However, we have not come across such a study. Our present
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work is a step in this direction. This chapter is organised as follows. We present the methods
used to calculate the photonic band structures in Section 10.2. We then individually discuss our
method for studying each of the three types of disorders, and evaluate the effect on the photonic
properties of the binary NaCl structure in Section 10.3. We end with some conclusions in
Section 10.4.

10.2 Methods
We study the effect of positional disorder, size polydispersity and composition of the small
spheres on the photonic properties of a binary colloidal NaCl structure by calculating the pho-
tonic band structure diagrams. We focus here on the inverse structures composed of air spheres
with dielectric constant ε = 1 in silicon with ε = 12.

We calculate the photonic band structure diagrams using the open-source ‘MIT Photonic-
Bands’ software package [165]. This software package computes fully-vectorial eigenmodes of
Maxwell’s equations with periodic boundary conditions by preconditioned conjugate-gradient
minimisation of the block Rayleigh quotient in a plane wave basis [165]. We describe a prim-
itive cubic NaCl unit cell of lattice constant a by a large sphere with radius rl = 0.35350a, and
small sphere with radius rs = 0.10605a. This results in a NaCl structure with a volume fraction(
η = (4

(
Nlπr3

l +Nsπr3
s
)
/3V

)
of 0.76 and a size ratio of q = rs/rl = 0.30. For comparison,

we mention that the volume fraction of a close-packed FCC lattice is 0.74 and that of a close-
packed NaCl lattice with q = 0.41 is 0.79. In this primitive representation of the unit cell, the
large sphere is positioned at the origin and the small sphere at (0.50a,0.50a,0.50a). We nor-
malise each parameter with respect to the lattice constant a. Thus, the band structures can be
tuned to any length scale by scaling with a. In order to study the various defects, we make use
of a super cell approximation, in which a large crystal with a defect is placed in a super cell and
then repeated periodically in a three-dimensional space. We use a super cell containing 3×3×3
unit cells. Because of memory constraints experienced in running these simulations, different
mesh resolutions were used for studying the different aspects of disorder. The resolution cubed
equals the number of plane waves included in the calculation, which is equal to the number of
grid points used to discretise the unit cell or super cell.

10.3 Results and discussion
In this section, we individually present the results pertaining to each of the three types of dis-
order.

10.3.1 Effect of positional disorder of the small spheres
First, let us take a look at the effect of the position of the small sphere in the octahedral void.
To assess this, we consider lattices in which the position of the small sphere varies from the
centre to the periphery of the octahedral void. All three coordinates of the small sphere in a
unit cell are collectively changed from (0.50a,0.50a,0.50a) to (0.45a,0.45a,0.45a) in steps of
0.01a. We do not change the coordinate of the sphere in a single dimension with respect to
the other two. We perform this study using both a unit cell and a super cell. In case of the



170 CHAPTER 10

0.45a 0.46a 0.47a 0.48a 0.49a 0.50a
3

4

5

6

7

8

9

Position of Small Particle

G
a

p
 W

id
th

 (
%

) R = 8

R = 12

R = 16

R = 20

R = 24

R = 28

R = 32

0.45a 0.46a 0.47a 0.48a 0.49a 0.50a
7.95

8.00

8.05

8.10

8.15

Position of Small Particle

G
a

p
 W

id
th

 (
%

)

3x3x3 supercell

(a)

(b)

Figure 10.2: Relative gap width of a NaCl lattice of air spheres (ε = 1) in silicon (ε = 12) with a size
ratio of q = rs/rl = 0.3 as a function of the positional coordinate of a small sphere (in units of the lattice
constant a) for (a) a unit cell calculated at different resolutions R, and (b) a super cell of size 3× 3× 3
and resolution R = 24. The positional extremities are shown in the schematic representations on the top.
We represent a single small sphere (red) in an octahedral void (green) surrounded by the large spheres
(blue).
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unit cell, the positional change denotes a collective change in the entire lattice due to periodic
boundary conditions. On the other hand, in the case of the super cell, we only vary the position
of the central sphere while keeping the position of the others intact. We perform this study at
resolutions from 4 to 32 for the unit cell to obtain an indication regarding the resolution to be
used in the super cell calculations. On the basis of these results, we decide to use a super cell
with a resolution of 24. We compare the various band gaps obtained in each case by calculating
the relative gap width, i.e. the ratio of the gap width and the mid-gap frequency.

We plot the relative gap width as a function of the positional coordinate in Figure 10.2.
On the top of the figure, we show schematic representations of the extreme positions of the
small sphere (red) in the octahedral void (green). The surrounding large spheres (blue) are also
shown. Figure 10.2(a) deals with the calculations performed in a unit cell, while Figure 10.2(b)
shows that of the super cell. We make four observations from this figure. Firstly, in Figure
10.2(a), we see that the gap width starts to converge at a resolution of 16. This is the lowest
resolution that can be used in the super cell calculations. Thus, our resolution value of 24 is
justified. Secondly, we observe that the gap width calculated for the ideal NaCl lattice, i.e. at
(0.50a,0.50a,0.50a), is slightly different in the case of the unit cell (Figure 10.2(a)) and the
super cell (Figure 10.2(b)). We attribute this difference to the different mesh resolutions used
to discretise the unit cell and super cell. Thirdly, we find that the presence of a photonic band
gap is independent of the position of the small sphere, but the relative band gap width decreases
with a larger deviation of the small sphere from its ideal position. This is due to the structural
disorder that is introduced by the eccentric movement of the small sphere. Lastly, we observe
that, at the highest reported resolution for the unit cell, the reduction in the relative gap width is
close to two percentage points (around 22 %) when the sphere is moved from the centre to the
periphery of the octahedral void. In contrast, the corresponding reduction in case of the super
cell is about 0.15 percentage points (about 2 %). This is expected because in the case of the
super cell, we calculate the effect of the movement of only a single small sphere; while in the
case of the unit cell all small spheres in the system are effectively moved.

10.3.2 Effect of size polydispersity of the small spheres

We study the effect of size polydispersity of the small spheres by changing the radius of a single
sphere in a super cell, termed as ‘defect’ particle. We do not, however, change the size of the
large spheres, and all particles are kept fixed on their ideal lattice positions. In general, changing
the size of the defect sphere results in the addition or removal of dielectric material from the
structure and this results in the formation of degenerate states inside the band gap in case of
single-component structures [299]. Reducing the size of the dielectric spheres from the ideal
radius to zero results in moving the defect state from the lower end to the middle of the band
gap. Increasing the size of the dielectric spheres would have an opposite effect, i.e. the defect
state moves from the upper end to the lower end of the band gap [299]. However, the behaviour
obtained by changing the size of one component with respect to the other in a binary system
is not so straightforward. Practically, one would expect polydispersity to be manifested as a
random configuration of small particles of different sizes. Our study, where we consider only
a single defect per super cell, is a starting point towards this. In our case, we obtain a periodic
repetition of the defect.
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Figure 10.3: Effect of the size of a small sphere on the photonic properties of an NaCl lattice of air
spheres (ε = 1) in silicon (ε = 12) with a size ratio of q = rs/rl = 0.3 calculated by changing the radius
r∗d = rd/rl of a single sphere in a super cell of size 3× 3× 3: (a) Variation in gap width, in %, as a
function of radius of the small defect sphere for r∗d < 0.37. (b) Frequency of defect states obtained
for 0.37 ≤ r∗d ≤ 0.42. The shaded regions indicate the edges of the band gap. The reduced frequency is
written as ω∗=ωa/2πc. (c, d, e) Electric-field distribution of the resonant modes of the three degenerate
defect states at r∗d = 0.37. The open circles represent the position of the small spheres and the defect
sphere is at the centre.



THE EFFECT OF DISORDER OF SMALL SPHERES ON THE PHOTONIC PROPERTIES OF THE

INVERSE BINARY NACL STRUCTURE 173

Here, we vary the radius of the defect sphere rd in the calculations from 0.00 to 0.15a in
steps of 0.01a. For the analysis, we normalise the defect radius with the ideal radius of the
large sphere r∗d = rd/rl . The normalised defect radius then varies from 0.00 to 0.42. With this
variation, we span the size spectrum from a vacancy to a sphere slightly larger than the radius
of the octahedral void, rov = 0.41rl . This enables us to calculate both the effect of decreasing
as well as increasing the radius of the air sphere. For these calculations, we use a super cell
of resolution 16. The results are given in Figure 10.3. We find that the resulting behaviour is
different for r∗d < 0.37 and 0.37 ≤ r∗d ≤ 0.42. The formation of defect states inside the band
gap occurs only at larger defect sizes, i.e. 0.37≤ r∗d ≤ 0.42. Let us look at these two situations
separately. In Figure 10.3(a), we plot the variation of the gap width as a function of the defect
size r∗d . We find that the gap width decreases upon increasing the defect size. This results in
an interesting scenario where the presence of a vacancy in the crystal (r∗d = 0.00) has a larger
gap width than the ideal NaCl lattice (r∗d = 0.30). This hints that the presence of an occasional
vacancy in the crystal may in fact be beneficial for its photonic properties. A more detailed
study of these vacancies (composition) will be presented in the next section (Section 10.3.3).
As mentioned, for 0.37≤ r∗d ≤ 0.42, we find the formation of defect states in the photonic band
gap as shown in Figure 10.3(b). We make the following three observations. Firstly, we notice
the presence of three degenerate defect states at each defect size. Such defects can act as a
small-sized optical resonator. Secondly, we note that these defect bands are not flat. One would
expect a flat defect band for a point defect in an infinite structure. The optical coupling between
the different super cells resulting from its finite size results in these non-flat curves. Thirdly,
we observe that the frequency of the defect state increases with increasing defect size. This
behaviour is similar to that in a single-component system as described above [299]. In Figures
10.3(c), 10.3(d), and 10.3(e), we plot the distribution of the electric field across the sample in the
defect states obtained at r∗d = 0.37. The open circles represent the position of the small spheres
and the defect sphere is at the centre. We see that the resonant modes of the electric field are
localised in the vicinity of the defect, thereby resembling a microcavity. Such a microcavity can
be used to enhance the rate of spontaneous emission of a photonic crystal [299]. We note that
each defect state is split into three because of the difference in alignment of the defect field with
respect to the underlying lattice. Following a previously used naming convention [299], we find
that these states are respectively made of two dipole modes (Figures 10.3(c) and 10.3(d)) and a
monopole mode (Figure 10.3(e)).

10.3.3 Effect of composition of the small spheres

Finally we study the effect of composition of the binary mixture on the photonic properties. In
other words, we study the photonic properties of the interstitial solid solutions with composi-
tions of small spheres intermediate to the FCC and NaCl compositions. At compositions closer
to NaCl, this also serves as a study on the effect of vacancies. To this end, we begin with a super
cell of FCC and add small spheres in steps of three to it, i.e. from 0 to 27 small spheres in a
3×3×3 super cell. At each composition, we use three random configurations of small spheres.
These calculations were performed at a resolution of 24.

To analyse this, we plot the relative gap width and the gap map as a function of composition
in Figure 10.4. We represent the composition as the number ratio of small spheres to all spheres
in the system, xs = Ns/(Ns +Nl), where Ns and Nl are respectively the number of small and
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Figure 10.4: Photonic properties of the interstitial solid solution (ISS) with compositions between those
of the FCC and NaCl lattices: Variation of (a) band gap width, and (b) position of the edges of the band
gap as a function of composition (xs = Ns/(Ns +Nl)) when going from an inverse FCC to a binary NaCl
lattice of air spheres (ε = 1) in silicon (ε = 12) with a size ratio of q = rs/rl = 0.3 calculated using a
super cell of size 3× 3× 3. Ns and Nl are, respectively, the number of small and large spheres in the
system. In (a), the black dots are the individual values obtained for each of the three configurations used
at each composition and the blue curve connects the average of the three values. Here, we also plot a
binomial distribution of the number of ways the small spheres can be arranged on the sub-lattice of an
NaCl structure in green. In (b), the curve is drawn for the average of the three typical configurations.
The reduced frequency is written as ω∗ = ωa/2πc.
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large spheres in the system. A value of xs = 0 represents a pure FCC lattice, while xs = 0.5
is the NaCl lattice. In Figure 10.4(a), we plot the variation of the gap width as a function of
composition. The black dots are the gap width obtained at each of the three configurations
used at each composition and the blue curve connects the average of these three values. The
behaviour in this plot can be summarised in the following four observations: (1) A continuous
curve from xs = 0.0 to 0.5 indicates that the ISS possesses a photonic band gap throughout the
entire range of compositions. (2) The band gap increases gradually till xs = 0.4 after which
we see a sudden increase in the gap width. This could be due to the filling of most of the
octahedral voids and thus, a reduction in the randomness of the structure. (3) The scatter in
the gap widths calculated for the various configurations at intermediate compositions is higher
than in the extremes. This can be explained by plotting the binomial distribution representing
the number of ways the small spheres can be arranged, shown as the green curve in Figure
10.4(a). We notice a direct correlation between the scatter in the gap width and the binomial
distribution indicating that the sampling size used at the intermediate compositions may be
inadequate. (4) At compositions close to xs = 0.50, we find a small increase in the gap width
as reported in the previous section. This reinforces the advantageous effect of the presence of a
small concentration of vacancies in the crystal. Correspondingly, we plot the gap map with the
position of the band gap as a function of composition in Figure 10.4(b) using the average of the
three values. We observe a similar continuous increase from the FCC to the NaCl gap positions,
that agrees well with the band structure shown in Figure 10.1.

10.4 Conclusions
In conclusion, we have studied the effect of various disorders pertaining to the small spheres on
the photonic properties of a binary NaCl lattice consisting of air spheres in silicon at a size ratio
q = rs/rl = 0.30. Firstly, we confirm that the inverse NaCl structure has a larger band gap than
the inverse FCC structure. We then find that the photonic band gap in the inverse NaCl is not
very susceptible to disorder in terms of randomness in sphere position, size, and composition
of the small particle. We find that the NaCl possess a band gap irrespective of the position of
the small sphere inside the octahedral void. However, the relative gap width decreases with
larger deviation from its ideal position. Additionally, we find interesting effects of the size
polydispersity of the small sphere. We find an increase in the relative band gap width of about
0.15 percentage points (about 19 %) for up to 70 % reduction in the radius of the small particle,
i.e. reducing the defect radius rd from 0.3rl to 0.2rl . Furthermore, for a particle radius larger
than the ideal size of the small particles, we find the formation of microcavities with resonant
states inside the band gap. It is worth pointing out that we find that the presence of up to 10 %
vacancies in small spheres does not greatly influence the band gap of the NaCl lattice. Our
results, thus, show that the NaCl structure has a low susceptibility to structural defects of the
small spheres.
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Summary

Have you ever wondered how various natural entities like the feathers of birds, scales of but-
terflies, petals of flowers, or various gemstones have bright colours? This is a result of ma-
nipulation of light by the photonic crystals present in them. So, what exactly are photonic
crystals? In general, photonic crystals are defined as structures with alternate regions of high
and low dielectric constant materials. They affect the propagation of light in way such that
light of certain wavelengths cannot pass through them. In other words, they possess a pho-
tonic band gap. Consequently, they allow unprecedented control over the behaviour of light.
One way of utilising this property is by trying to replace various components used in the tele-
communication sector by photonic crystals to obtain high-speed transmissions. Accordingly,
one-dimensional photonic crystals, such as a Bragg grating, have been used for coating lenses
or in colour-changing paint. Two-dimensional photonic crystals are the basis for a new class
of optical fibre called photonic-crystal fibre. However, the ultimate application is to use three-
dimensional photonic crystals as components in optical computers. These optical computers
will, then, not be limited by the relatively slow speed of electrons and will be much faster than
the present computers. A necessary condition for such applications is that the periodicity of the
photonic crystal should be around half the wavelength of the electromagnetic waves that needs
to be diffracted. For a photonic crystal to operate in the wavelength between 400 nm (blue) and
700 nm (red), i.e. in the visible spectrum of light, its lattice periodicity should be between 200
nm and 350 nm. This brings us to the realm of colloids.

Colloidal dispersions are composed of colloidal particles dispersed in a continuous medium.
These colloidal particles, or simply colloids, have at least one dimension in the size range of a
few nanometers to micrometers and the particles of the surrounding medium are much smaller.
As we can see, the size range of these colloids perfectly fits the above requirement. So, how
does one fabricate a photonic crystal from a colloidal dispersion? It is done by simply letting
nature take its own course. Colloids experience a kind of random motion, termed as Brownian
motion, because of their collisions with the surrounding smaller particles of the medium. This
motion allows the colloids to move around the medium and explore various configurations and
eventually, settle in a thermodynamically favourable structure. This process is termed as self-
assembly. Accordingly, colloids can self-assemble into gas, liquid, and crystal phases. Their
phase behaviour, i.e. the stability of the various phases and the transition between different
phases, is governed by the properties of the colloids such as its shape and interaction as well as
those of the system such as temperature and pressure. If a crystal with a favourable symmetry
is self-assembled using colloids with a favourable dielectric constant, we can obtain a photonic
crystal operating in the visible region of light. We explore this possibility in this thesis for
two- and three-dimensional systems. Specifically, we focus on two-dimensional quasi-periodic
crystals and three-dimensional periodic crystals.

Why are we focusing specifically on these two categories? Two-dimensional periodic pho-
tonic crystals of hexagonal or square symmetry have been fabricated for a while now. The more
exciting research focusses on two-dimensional quasi-periodic crystals exhibiting a photonic
band gap. Quasi-periodic crystal, or quasicrystals, are materials that exhibit long range order,
but no translational periodicity. What exactly is meant by the lack of periodicity? This means
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that the position of each particle in a quasicrystal is known, just as in a periodic crystal; but in
contrast to a periodic crystal, if one tries to move a particle in a quasi-crystal and place it on top
of its neighbour, it will not re-create the same lattice. This can be further explained using the
following example. The simplest example of a one-dimensional quasicrystal is the Fibonacci
sequence, where each number is the sum of its preceding two numbers and is written as 1, 1, 2,
3, 5, 8, 13, 21, 34, 55, 89, ... . Here, the value of each term is well-defined. However, if the series
is started with the number 2 instead of 1, it will give a different series where, again, the terms
are well-defined. This refers to the lack of periodicity. The recent discovery of quasicrystals in
general and quasi-periodic photonic crystals in particular has opened new avenues of research
with regard to answering questions such as how do they form? Are they stable? Do they possess
a photonic band gap? etc. We attempt to answers some of these questions in this thesis. Also, as
these quasicrystals exhibit complex phase behaviour already in a two-dimensional system, we
restrict ourselves to this, i.e. we do not study three-dimensional quasicrystals in this thesis. But
then, the lookout for an experimentally realisable three-dimensional periodic photonic crystal
is still open and we do address that in this thesis.

In Chapter 2, we introduce the simulation model that is predominantly used in this thesis.
This model emulates particles with a core-corona architecture, i.e. a hard impenetrable core of
diameter σ surrounded by a soft penetrable corona of diameter δ . This corona can be modelled
using potentials with a nature that is either purely attractive, purely repulsive, or a combination
of the two. In this thesis, we use an interaction potential consisting of a purely repulsive square
shoulder to represent the corona. This introduces two length scales in the system, one at the
diameter of the core and the other at the corona. We study the phase behaviour of this core-
corona system simulated as two-dimensional disks and three-dimensional spheres at various
shoulder widths using Monte Carlo simulations. The rest of this thesis is divided into three
parts.

In Part I of this thesis, we study various aspects of the phase behaviour of a two-dimensional
dodecagonal quasicrystal formed in this core-corona system. Dodecagonal or 12-fold symmetry
is the most common symmetry associated with quasicrystals in soft matter systems. To evaluate
its phase behaviour, we simulate a system of colloidal hard disks with a diameter σ surroun-
ded by a soft corona of diameter 1.40σ . We exclusively focus on the thermodynamic stability
of the dodecagonal quasicrystal in Chapter 3. Here, we try to address the question of if this
quasicrystal is energetically or entropically stabilised at finite temperatures. This is in fact a pre-
question to the question if this quasicrystal is stable at zero temperature. This is because, if the
quasicrystal is energetically stabilized at finite temperatures, then it will be the minimum energy
configuration at zero temperature and thus, the thermodynamically stable phase. On the other
hand, if the configurational entropy of this quasicrystal outweighs its energetic contribution at
finite temperatures, then it is said to be entropically stabilized at these temperatures. In this case,
this quasicrystal may not be thermodynamically stable at zero temperature where its entropic
contribution is nullified. In order to answer this question, we study the relative stability of the
dodecagonal quasicrystal and four of its approximants. An approximant is a periodic counter-
part which is described by a large unit cell with a structure that resembles a quasicrystal. We
compare their stability by calculating their free energies. Here, we used a simplified method to
calculate the free energy of the quasicrystal wherein we explicitly account for its configurational
entropy using an analytical expression from literature. The configurational entropy accounts for
the distinct number of configurations that the quasicrystal can adapt. From these calculations,
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we find that the dodecagonal quasicrystal is stabilized by its vibrational entropy with respect to
the considered approximants at finite temperatures. In other words, this quasicrystal is stable
even without its configurational entropy. Further, we find that the potential energies of this
quasicrystal and two of its periodic approximants are equal within our statistical accuracy. This
lets us to extrapolate its stability region to zero temperature. Additionally, we also map out the
equilibrium phase diagram for this system where, in addition to the quasicrystal, we find the
presence of stable periodic crystal phases with square and hexagonal symmetries. We also find
a re-entrant behaviour of the fluid phase resulting from the two-length scales in the potential.

After realising that the dodecagonal quasicrystal formed in this system is thermodynam-
ically stable, we proceed to critically evaluate its formation in Chapter 4. We first examine
the formation process in the hard-core square-shoulder system using bond orientational order
parameters, correlation functions and tiling distributions. This acts as a summary of various
methods that can be utilised to identify the quasicrystal. We then assess the robustness of this
formation. We find that the formation of the dodecagonal quasicrystal is robust across changes
in temperature, density, range and shape of the interaction potential. For the range of densit-
ies and temperatures considered, we observe the formation of the dodecagonal quasicrystal at
shoulder widths 1.30σ ≤ δ ≤ 1.44σ . We then simulate the system using three other interaction
potentials with two length scales, namely hard-core plus a linear ramp, modified exponential,
and Buckingham (exp-6) potential and observe the presence of the dodecagonal quasicrystal in
all three systems. We find that the shape of the interaction potential affects the temperatures at
which the quasicrystal is formed.

We then set to explore the formation of this dodecagonal quasicrystal by sedimentation
in Chapter 5. Sedimentation refers to the inhomogeneous distribution of colloidal particles
along the height of a suspension due to the influence of gravity. This allows for the particles
at the bottom of the sediment to crystallise when they attain a certain critical density. In other
words, sedimentation is one of the most common manifestations of self-assembly of colloidal
particles. Our present study, thus, aims to pave the way for the experimental realisation of
the colloidal dodecagonal quasicrystal. We evaluate the sedimentation behaviour using Event-
Driven Brownian Dynamics simulations. We choose the simulation parameters such that the
pressure at the bottom of the sediment corresponds to the stable region of the concerned phases
in the phase diagram presented in Chapter 3. We indeed do observe the formation of layers with
dodecagonal, square and hexagonal symmetries at the relevant pressures. This two-dimensional
layered structure is formed because of energetic constraints. In addition, we also observe a
re-entrant behaviour exhibited by the fluid phase, engulfing a hexagonal phase, in the sediment-
ation column. In other words, a floating crystal with hexagonal symmetry is formed between
the fluid regions.

We now proceed to an exploration of formation of phases in the two-dimensional core-
corona system at other shoulder widths. We consider systems at shoulder widths δ = 1.27σ and
1.60σ in Chapter 6 and δ = 1.95σ in Chapter 7. We study the phase behaviour and map out
the phase diagram at these shoulder widths. The general phase behaviour of the square-shoulder
system at δ = 1.27σ and 1.60σ is similar to that at δ = 1.40σ , while that at δ = 1.95σ is com-
plicated by the longer interaction range. In the latter case, the square shoulder of a particle
almost engulfs its nearest neighbours. We find the formation of a stable octadecagonal (18-fold
symmetry) quasicrystal at δ = 1.27σ and a stable decagonal (10-fold symmetry) quasicrystal
at δ = 1.60σ . Of particular interest is the fact that in a system of particles interacting with a
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Lennard-Jones-Gauss potential, this decagonal quasicrystal was reported to be stable at high
temperatures which then paves way to an approximant at lower temperatures. We, however,
find that for our core-corona system this quasicrystal is stable through the entire range of tem-
peratures considered. This emphasises the necessity of evaluating the stability of quasicrystal
in each system separately.

In case of the system at δ = 1.95σ , we observe the formation of a plethora of interesting
phases including a striped mesophase, a honeycomb lattice, a two-dimensional equivalent of
a sigma phase and three distinct hexagonal phases. We notice that the the stripe and the hon-
eycomb phases are formed as a result of energy minimisations, i.e. minimising the number of
neighbours of each particle. Each particle in the stripe phase has two neighbours while those in
the honeycomb has three. We devote a large portion of this chapter to decipher the formation
of the stripe phase. We find that this stripe phase displaying a quasi-long range bond orienta-
tional order and a short-range positional order forms from an isotropic FL phase with no bond
orientational or positional order upon decreasing the temperature or increasing the density. We
initially investigate this transition using several order parameters. Finally, by way of a continu-
ous change in the defect concentration as well as the loss of bond orientational order during
these transitions, we conclude this transformation to be a Kosterlitz-Thouless (K-T) transition.
Yet another interesting feature of this system is the energetic stabilisation of the sigma phase,
which is an approximant to the dodecagonal quasicrystal. This is in stark contrast to Chapter
3, where we found the quasicrystal to be entropically stabilised over the sigma phase and other
approximants. This is essentially due to the larger shoulder width in the present case. Here, the
position of particles even beyond the second nearest neighbours play an important role in the
potential energy of the concerned structure. This further reinforces the fact that the question
regarding the stability of a quasicrystal is not unique and needs to be addressed for each system
separately.

After establishing the phase behaviour of quasicrystals and other periodic phases, we pro-
ceed to study their photonic properties in Part III. In Chapter 8, we investigate and compare the
photonic properties of the dodecagonal quasicrystal and its approximants considered in Chapter
3. For each of these structures, we consider three configurations consisting of a material with a
high-dielectric constant arranged in the form of rods, walls, or connected networks of walls and
rods, in a medium with a low-dielectric constant. Given the two-dimensional (planar) nature
of these structures, we evaluate photonic properties separately for the case in which either the
magnetic field or the electric field is in the structure plane. The earlier is termed as transverse-
magnetic (TM) polarisation and the latter as transverse-electric (TE) polarisation. Our results
show that all structures possess transverse magnetic (TM) band gaps in the rod configurations
and transverse electric (TE) band gaps in the wall configurations. Given the computational
restrictions, we have calculated the photonic band structures of only the approximants in the
connected network structures. We find that all approximants possess a complete (TM+TE)
band gap in their network configurations. In all these three configurations, we find that the local
symmetry of the structures has a greater influence on the formation of band gaps in the TE than
in the TM polarisation.

We eventually proceed to investigating a three-dimensional system of spheres with a core-
corona architecture in Chapter 9, where we specifically explore the possibility of formation of
photonic crystals. We evaluate the system with a shoulder width δ = 2.10σ . In general, either
of the following two approaches are followed to self-assemble a three-dimensional photonic
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crystal from colloidal particles. On the one hand, hard sphere mixtures can be theoretically
used to form a binary crystal phase which yields a diamond or pyrochlore lattice by selective
dissolution of either component; but such crystals with a photonic band gap in the visible re-
gion of light are yet to be experimentally fabricated. On the other hand, one could try to reverse
engineer the interparticle potential required to assemble the targeted crystal structures; but this
results in quite complex interaction potentials, such as the exemplar ‘mermaid’ potential, which
are difficult to realise experimentally. Quite contrary to these two approaches, we report here
that a pyrochlore lattice with a photonic band gap is formed in an experimentally realisable sys-
tem consisting of particles interacting with a simple isotropic pair-potential. The structure of
the pyrochlore formed in our simulations has two inherent length scales and displays complete
photonic band gaps in both the direct and inverse dielectric crystal structures. Additionally, we
also find the formation of a low-density hexagonal columnar phase in this system. This phase
consists of strings, separated by a distance larger than shoulder width, which are arranged on a
hexagonal lattice. Such a self-assembly of inexpensive porous nanomaterials can be an altern-
ative to molecular caged structures such as zeolites and can be used in applications involving
filtration, size-selection, or catalysis.

Continuing with three-dimensional photonic crystals, we investigate the effect of disorders
on the photonic properties of an inverse binary NaCl structure in Chapter 10. The binary NaCl
structure consists of spheres of two different sizes, where each species is ordered on a FCC
lattice. This inter-penetration of two FCC lattices results in a scenario where the small spheres
are positioned in the octahedral voids of the FCC lattice of the large spheres. We systematically
analyse the effect of structural disorder of the small spheres on the photonic properties of a
binary NaCl lattice with a size ratio of 0.30 between the small and large spheres. The types of
disorders studied include the position of the small spheres in the octahedral void of the large
spheres, polydispersity in size of the small spheres, and the fraction of small spheres in the
crystal. We find that none of the above disorders completely destroy the photonic band gap of
the NaCl lattice. The last mentioned disorder is especially interesting because the tuning of the
fraction of octahedral holes filled with small spheres from zero to one corresponds respectively
to the one-component FCC of only large spheres and the binary NaCl crystal structure. And
structures with ratios in between these two are termed as interstitial solid solution (ISS). ISSs
with varying compositions are formed along the height of a sedimentation column as the fraction
of small spheres decreases along the height in binary mixtures of hard-sphere like particles.
Incidentally, ISSs have a huge effect on the photonic properties of the parent material. We find
that ISSs of all compositions possess a photonic band gap. Alternatively, it is worth pointing
out that we find that the presence of up to 10 % vacancies in small spheres does not greatly
influence the band gap of the NaCl lattice.

To summarise, this thesis is a step towards the fabrication of quasi-periodic and periodic
photonic crystals by self-assembly of colloidal particles with a simple interaction potential. In
the first part of the thesis, we find that the dodecagonal quasicrystal is thermodynamically stable,
that its formation is robust to changes in the range and shape of the interaction potential and
that it can be formed by sedimentation. In the second part, by studying different quasicrystals,
we emphasis on the fact that the stability of a quasicrystal is not a unique question and needs to
be addressed for each system separately. In the third part of the thesis, using photonic studies,
we infer that the core-corona system is a lucrative system to look for photonic crystals.





Samenvatting

Heb je je ooit afgevraagd hoe de veren van vogels, schubben van vlinders, bloemenblaadjes
en edelstenen hun kleuren krijgen? Dit is een gevolg van de manipulatie van licht door de
fotonische kristallen die in deze dingen aanwezig zijn. Wat zijn eigenlijk fotonische kristal-
len? Fotonische kristallen bestaan uit afwisselend stukjes van materialen met een hoge en lage
diëlektrische constante. Deze kristallen beïnvloeden de voorplanting van licht zodanig dat licht
met specifieke golflengten niet door de kristallen kan. Anders gezegd, ze hebben een foton-
isch verboden zone. Dit maakt ongekende controle over het gedrag van licht mogelijk. Deze
eigenschap kan in telecommunicatie gebruikt worden waarbij verschillende componenten ver-
vangen kunnen worden door fotonische kristallen voor nog snellere communicatie. Eendimen-
sionale fotonische kristallen worden gebruikt als reflectielaag op lenzen en in kleur verander-
endeverf. Tweedimensionale fotonische kristallen worden toegepast in een nieuw soort optische
vezels: fotonisch kristallen-vezels. Echter, de meeste interessante toepassing is het gebruik van
driedimensionale fotonische kristallen als componenten in optische computers. Deze optische
computers zijn dan niet beperkt door de snelheid van elektronen en kunnen daaromveel sneller
dan de huidige computers worden. Een noodzakelijk voorwaarde voor deze toepassing is dat de
periodiciteit van de fotonische kristallen de helft van de golflengte van de afgebogen elektro-
magnetische golven moet zijn. Om de fotonische kristallen in het zichtbaar spectrum te laten
werken, i.e. golflengte tussen 400 en 700 nm, moet de roosterperiodiciteit tussen 200 en 350
nm liggen. Dit brengt ons tot het rijk van colloïdale deeltjes.

Colloïdale dispersies bestaan uit colloïdale deeltjes die in een oplosmiddel gesuspendeerd
zijn. Deze colloïdale deeltjes hebben tenminste een dimensie binnen het groottebereik van
een paar nanometer tot micrometer. De grootte van de colloïdale deeltjes voldoet aan de hier-
boven gestelde voorwaarde. Hoe wordt nu een fotonische kristal vanuit een colloïdale dispersie
fabricerenaangemaakt? Dit kan gedaan worden door de natuur haar gang te laten gaan. Col-
loïdale deeltjes ondervinden Brownse beweging door de botsing met de kleinere deeltjes van
het oplosmiddel. Door deze beweging kunnen de colloïdale deeltjes zich bewegen in het oplos-
middel en verschillende configuraties ontdekken. Uiteindelijk kunnen ze zich verzamelen in
een thermodynamisch gunstige structuur. Dit proces heet zelforganisatie en colloïdale deeltjes
kunnen zich tot een gas, een vloeibare of een kristalfase organiseren. Het fasegedrag van col-
loïdale deeltjes zoals de stabiliteit van de verschillende fasen en de overgang tussen de fasen
wordt bepaald door de eigenschappen van de colloïdale deeltjes, zoals hun vorm en interactie,
en die van het systeem, zoals temperatuur en druk. Als wij een kristal met een gunstige symmet-
rie kunnen opbouwen door zelforganisatie van colloïdale deeltjes met een gunstige diëlektrische
constante kunnen wij een fotonische kristal verkrijgen die in het zichtbaar spectrum kunnen
werken. In dit proefschrift onderzoeken wij deze mogelijkheid voor twee- en driedimensionale
systemen. Specifiek concentreren wij ons op tweedimensionale quasi-periodische kristallen en
driedimensionale periodische kristallen.

Waarom onderzoeken wij alleen deze twee categorieën? Tweedimensionale periodische
fotonische kristallen met een zeshoek- of vierkantsymmetrie kunnen al een tijdje gemaakt
worden. Tweedimensionale quasi-periodische kristallen met een fotonische bandgaping zijn
recent ontwikkeld. Quasi-periodische kristallen, of quasikristallen, zijn materialen die over
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lange afstand orde hebben, maar geen translatie periodiciteit. Net als in een periodisch kristal is
de positie van elke deeltje in een quasikristal bekend. Maar in tegenstelling tot het periodische
kristal, kan men, als men een deeltje in een quasikristal naar zijn buur verplaatst, niet dezelfde
structuur terugkrijgen. Dit kunnen wij aan de hand van een voorbeeld beter begrijpen. Het meest
simpele quasikristal is de Fibonacci reeks. Hier is elke term een som van de voorafgaande twee
termen. Dit is als 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... geschreven. Zoals wij kunnen zien,
is elke term in deze reeks bekend. Maar als de reeks met nummer 2 in plaats van 1 begint
dan heeft de reeks een andere volgorde. Elke term in deze nieuwe reeks is ook bekend maar
is niet hetzelfde als in de oude reeks. Dit verwijst naar het gebrek aan periodiciteit. Door de
recente ontdekking van quasikristallen in het algemeen en quasi-periodische fotonische kristal-
len in het bijzonder is nieuw onderzoek mogelijk. De volgende vragen zijn nu ontstaan. Hoe
vormen deze kristallen? Zijn ze stabiel? Hebben ze een fotonische verboden zone? Wij pogen
sommige van deze vragen in dit proefschrift te beantwoorden. Omdat deze quasikristallen al
een complex fasegedrag vertonen in een tweedimensionaal systeem, beperken wij ons hiertoe
en bestuderen wij geen driedimensionale quasikristallen in dit proefschrift. Maar aangezien de
mogelijkheid op een experimenteel realiseerbaar driedimensionaal periodiek fotonische kristal
in het vooruitzicht ligt, bespreken wij deze in dit proefschrift.

In Hoofdstuk 2 stellen wij het simulatie model voor dat hoofdzakelijk in dit proefschrift is
gebruikt. Dit model bootst deeltjes met een core-corona architectuur na. Dit betekent een harde
ondoordringbare core (of kern) met diameter σ die omringd is door een zachte doordringbare
corona met diameter δ . De corona kan met verschillende potentialen gemodelleerd worden.
Deze potentiaal kan alleen aantrekkend of alleen afstotend, of een combinatie van beide zijn. De
potentiaal die in dit proefschrift is gebruikt is zuiver afstotend met een vorm van een vierkante
schouder. Door deze vorm krijgen wij twee lengteschalen binnen het system, een op de diameter
van de core en de andere op die van de corona. Wij bestuderen het fasegedrag van dit core-
corona systeem van tweedimensionale schijven of driedimensionale bollen met hulp van Monte
Carlo simulaties bij verschillende lengten van de schouder. De rest van dit proefschrift is in drie
delen verdeeld.

In het eerste deel van dit proefschrift onderzoeken wij het fasegedrag van een tweedimen-
sionaal twaalfhoekig quasikristal dat in dit core-corona systeem is gevormd. Twaalfhoekige
symmetrie is de meeste algemene symmetrie van quasikristallen in zachte gecondenseerde ma-
terie. Wij simuleren een system van colloïdale harde schijven met een diameter van σ en een
corona met een diameter van 1.40σ om het fasegedrag te bestuderen. Wij concentreren ons
op de thermodynamische stabiliteit van het quasikristal in Hoofdstuk 3. Hier proberen wij
de vraag te beantwoorden of dit quasikristal door energie of entropie bij eindige temperaturen
wordt gestabiliseerd. Dit is eigenlijk een vraag voorafgaand aan de vraag of dit quasikristal
stabiel is bij het absolute nulpunt van de temperatuur. Dit is omdat als het quasikristal op
hogere temperaturen door energie gestabiliseerd is, dan is het ook de meest stabiele fase bij
het absolute nulpunt. Maar als het quasikristal door zijn configurationele entropie is gestabil-
iseerd, dan het is mogelijk dat dit niet de meest stabiele fase bij het absolute nulpunt is. Dit
komt dan doordat bij het absolute nulpunt zijn entropie te verwaarlozen is. Om deze vraag
te beantwoorden onderzoeken wij de relatieve stabiliteit van het quasikristal en vier van zijn
approximanten. Een approximant is een periodische vorm van een quasikristal met een grote
eenheidscel. Wij vergelijken de stabiliteit van het quasikristal en zijn approximanten door de
berekening van hun vrije-energieën. Wij gebruiken een vereenvoudigde methode om de vrije-
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energie van het quasikristal te berekenen. In deze methode rekenen wij de configurationele
entropie van het quasikristal uit door een analytische uitdrukking uit de literatuur. De config-
urationele entropie staat voor de verschillende configuraties die mogelijk zijn. Uit deze berek-
eningen volgt dat het quasikristal door zijn vibratie-entropie wordt gestabiliseerd. Met andere
woorden, het quasikristal is stabiel zelfs zonder de toevoeging van de configurationele entropie.
Wij vinden ook dat de potentiele energie van het quasikristal en twee van zijn approximanten
gelijk is, binnen onze statistische zekerheid. Hierdoor kunnen wij het stabiliteitsgebied van
het quasikristal extrapoleren tot het absolute nulpunt. Wij hebben ook het fasediagram van
dit systeem in kaart gebracht, waarbij wij ook kristalfasen vinden met een zeshoek- en een
vierkantsymmetrie.

Nadat wij weten dat het quasikristal thermodynamisch stabiel is, proberen wij zijn zelfor-
ganisatie proces goed te analyseren in Hoofdstuk 4. Wij onderzoeken dit proces met behulp
van verbindingsoriëntatie ordeparameters, correlatiefuncties en tegelverdelingen. Dit is ook
gelijk een samenvatting van de verschillende methoden die gebruikt kunnen worden om een
quasikristal te identificeren. Wij beoordelen vervolgens de robuustheid van de formatie. Wij
vinden dat het proces robuust is voor veranderingen in tempratuur, dichtheid, schouderlengte en
vorm van de interactiepotentiaal. Wij vinden dat het quasikristal wordt gevormd op systemen
met schouderlengten 1.30σ ≤ δ ≤ 1.44σ binnen het bereik van de dichtheden en temperaturen
die wij hebben onderzocht. Daarna simuleren wij het system met drie andere potentialen met
twee lengteschalen zoals hard-core met een lineaire helling, gemodificeerde exponentieel en
Buckingham (exp-6) potentiaal. Wij vinden het quasikristal in alle drie systemen. Maar wij
vinden dat de vorm van de potentiaal invloed heeft op de vormingstemperatuur.

Vervolgens onderzoeken wij de vorming van dit twaalfhoekige quasikristal door sediment-
atie in Hoofdstuk 5. Sedimentatie betekent de inhomogene distributie van colloïdale deeltjes
langs de hoogte van de suspensie onder invloed van zwaartekracht. Hierdoor kristalliseren
de deeltjes in de bodem van het sediment bij een bepaalde kritische dichtheid. Met andere
woorden, sedimentatie is een van de meest voorkomende manifestaties van zelforganisatie van
colloïdale deeltjes. Onze huidige studie heeft het uiteindelijke doel om de experimentele real-
isatie van een colloïdal twaalfhoekig quasikristal mogelijk te maken. Wij evalueren het sedi-
mentatiegedrag door middel van Gebeurtenis-Aangedreven Brownse Dynamica simulaties. Wij
hebben de simulatieparameters zo gekozen dat de druk op de bodem van het sediment vergelijk-
baar is met de stabiele regio van betreffende fases in het fasediagram zoals in Hoofdstuk 3. Wij
zien inderdaad de vorming van lagen met twaalfhoekige, vierkant- en zeshoeksymmetrieën bij
relevante drukken. Deze tweedimensionele laagstructuur is gevormd door energetische belem-
meringen. Bovendien zien wij ook herintredend gedrag van de vloeibare fase, die de zeshoekige
fase overneemt in de sedimentatie kolom. Met andere woorden, een drijvend kristal wordt ge-
vormd tussen de twee vloeibare regio’s.

In het tweede deel van dit proefschrift gaan we door met het onderzoeken van de vorming
van fasen in het tweedimensionale core-corona systeem bij andere schouderlengtes. Wij hebben
systemen op schouderlengtes δ = 1.27σ en 1.60σ in Hoofdstuk 6 en δ = 1.95σ in Hoofd-
stuk 7 gesimuleerd. Wij onderzoeken het fasegedrag en genereren het fasediagram bij deze
schouderlengtes. Het algemene fasegedrag van de vierkant-schouder systeem bij δ = 1.27σ

en 1.60σ is vergelijkbaar met die bij δ = 1.40σ , echter die van δ = 1.95σ is gecompliceer-
der door het grotere interactie bereik. Hier slokt de vierkant-schouder van een deeltje bijna
zijn naaste buren op. Wij vinden de vorming van een stabiel achttienhoekig quasikristal op
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δ = 1.27σ en een stabiel tienhoekig quasikristal bij δ = 1.60σ . Het is vooral interessant dat in
een Lennard-Jones-Gauss potentiaal systeem deze tienhoekige quasikristal stabiel bevonden is
bij hogere temperaturen, terwijl bij lagere temperaturen een approximant stabiel werd bevonden.
Wij vinden, echter, dat voor ons core-corona potentiaal systeem het quasikristal stabiel is over
het hele bereik van bestudeerde temperaturen. Dit benadrukt het belang van het evalueren van
de stabiliteit van het quasikristal voor elk systeem afzonderlijk.

In het geval van het systeem met δ = 1.95σ vinden wij de vorming van meerdere interess-
ante fasen, waaronder een gestreepte mesofase, een honingraatrooster, een tweedimensionaal
equivalent van een sigmafase en drie aparte hexagonale fasen. Wij vinden dat de gestreepte
fase en de honingraatfase zijn gevormd door de vermindering van energie, i.e. het minimalis-
eren van het aantal buren van elk deeltje. Elk deeltje in de gestreepte fase heeft twee buren,
terwijl die in de honingraatfase er drie heeft. In dit hoofdstuk is er veel aandacht besteed aan de
vorming van de gestreepte fase. Wij vinden dat de gestreepte fase, die een quasi-lange afstand
verbindingsoriëntatie orde en een korte afstand positionele orde heeft, wordt gevormd vanuit
een isotropische vloeibare fase met geen verbindingsoriëntatie of positionele orde wanneer de
temperatuur verlaagd of de dichtheid verhoogd wordt. Wij onderzoeken deze transitie door
middel van een aantal order parameters. Tenslotte concluderen wij dat deze transformatie een
Kosterlits-Thouless (K-T) transitie is. Een ander interessant kenmerk van dit systeem is de en-
ergetische stabilisatie van de sigmafase, die een approximant van het twaalfhoekige quasikristal
is. Dit is in tegenstelling tot Hoofdstuk 3, waarin het quasikristal stabieler was dan zijn ap-
proximant door zijn entropie. Dit is vanwege de langere schouder lengte in dit specifieke geval.
Hier speelt de positie van de deeltjes ook verder dan de tweede buren een belangrijk rol in de
potentiële energie van de betreffende structuur. Dit benadrukt verder het feit dat de stabiliteit
van het quasikristal niet uniek is en voor elke systeem afzonderlijk bekeken moet worden.

In het derde deel bestuderen wij de fotonische eigenschappen van de deeltjes. In Hoofd-
stuk 8 onderzoeken en vergelijken wij de fotonische eigenschappen van het twaalfhoekige
quasikristal en zijn approximanten van Hoofdstuk 3. Voor elke structuur beschouwen wij drie
configuraties die bestaan uit een materiaal met hoge diëlektrische constante in de vorm van
staven, muren, of aaneengesloten netwerken van muren en staven, in een medium met een
lage diëlektrische constante. Aangezien het gaat om tweedimensionale (planar) structuren, be-
studeren wij de fotonische eigenschappen apart voor het geval waarin het magnetische veld of
het elektrische veld in het vlak van de structuur ligt. Het eerste geval noemen wij transvers-
alemagnetische (TM) polarisatie en de tweede transversaleelektrische (TE) polarisatie. Onze
resultaten laat zien dat alle structuren TM verboden zones in de staf-configuratie en TE ver-
boden zones in de muur-configuratie hebben. In verband met computationele beperkingen,
hebben wij de fotonische bandstructuur van alleen de approximanten in de aaneengesloten-
netwerkstructuur berekend. Wij vinden dat alle approximanten een complete (TM+TE) ver-
boden zone in hun netwerkconfiguratie hebben. In al deze drie configuraties vinden wij dat de
lokale symmetrie van de structuren een grotere invloed heeft op de vorming van de verboden
zones in de TE dan in de TM polarisatie.

In Hoofdstuk 9 onderzoeken wij het driedimensionale systeem van bollen met een core-
corona architectuur, waarin wij specifiek kijken naar de mogelijkheden tot vorming van fotonis-
che kristallen. Wij bestuderen het systeem met een schouderlengte δ = 2.10σ . In het algemeen
wordt één van de volgende twee methodes gevolgd om de driedimensionale fotonische kristal-
len vanuit de colloïdale deeltjes aan zelforgnisatie te laten doen. Aan de ene kant blijkt uit the-
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oretisch onderzoek dat hardebollen-mengsels gebruikt kunnen worden om een binaire kristal-
fase te vormen. Daarna kunnen deze binaire kristallen gebruikt worden om een diamant- of
pyrochloorstructuur te krijgen door selectieve oplossing van een van de twee componenten.
Maar zulke kristallen met een fotonisch verboden zone in het zichtbare spectrum van licht zijn
nog niet gemaakt. Aan de andere kant proberen wij de juiste interactiepotentialen te vinden
door middel van ‘reverse engineering’. Maar dit resulteert in complexe interactiepotentialen
zoals de ‘mermaid’-potentiaal, die experimenteel moeilijk zijn te realiseren. In tegenstelling
tot de eerdere twee aanpakken hebben wij een pyrochloor rooster met een fotonisch verboden
zonegevonden in een system die door experimenten gemaakt kan worden. De structuur van de
pyrochloor die in ons systeem wordt gevormd heeft twee lengteschalen en heeft een volledige
verboden zone in zowel het directe als hetgeïnverteerde diëlektrische kristal. Daarnaast vinden
wij ook een zeshoekige kolomvormige fase met een lage dichtheid in dit system. Deze fase
bestaat uit draden van deeltjes, die een tussenafstand groter dan de schouderlengte hebben, die
een hexagonaal geordend zijn. Zulke zelforganisatie kan een alternatief worden voor geordende
moleculaire structuren zoals zeolieten. Deze kunnen in verschillende toepassingen zoals fil-
tratie, grootteselectie of katalyse gebuikt worden.

In Hoofdstuk 10 gaan wij verder met driedimensionale fotonische kristallen. Wij on-
derzoeken het effect van wanorde op de fotonische eigenschappen van een inverse binaire NaCl
structuur. De binaire NaCl structuur bestaat uit bollen van twee verschillende maten waarin
elke soort in een FCC-structuur zit. Deze vervlechting van de twee FCC structuren resulteert
in een scenario waarin de kleinere bollen in de octahedrale gaten van de FCC structuur van
de grotere bollen zitten. Wij analyseren het effect van wanorde in de structuur van de kleine
bollen op de fotonische eigenschappen van de NaCl structuur met een grootte-ratio van 0.30
tussen de klein en grote bollen. Het type wanorde dat onderzocht wordt zijn de posities van de
kleine bollen binnen de octahedrale gaten, de polydispersiteit van de kleine bollen en het aantal
kleine bollen. Wij vinden dat geen van deze drie wanordes de fotonische verboden zones verni-
etigd. De laatste soort wanorde is erg interessant omdat door de verandering in de verhouding
kleine tot grote bollen een NaCl structuur (kleine en grote bollen) vanuit een FCC-structuur
(alleen grote bollen) kan verkregen worden. Structuren die tussen deze twee structuren in zitten
worden interstitiële vaste oplossingen (IVO) genoemd. IVO’s met verschillende composities
worden gevormd langs de hoogte van de sedimentatie kolom omdat het aantal kleine deeltjes
verminderd met de hoogte in een binair mengste van harde-bollen. Wij vinden dat de IVO’s van
alle composities een fotonische verboden zone hebben. Het is ook interessant om te vermelden
dat tot bijna 10 % lege ruimtes weinig invloed heeft op de verboden zone van de NaCl structuur.

Samenvattend is dit proefschrift een stap in de richting naar de fabricatie van periodische
en quasi-periodische fotonische kristallen door zelforganisatie van colloïdale deeltjes met een
simpele interactie potentiaal. In het eerste deel hebben wij gevonden dat het twaalfhoekige
quasikristal stabiel is, dat het vormingsproces robuust is voor veranderingen in de lengte en
de vorm van de interactiepotentiaal en dat het door sedimentatie gevormd kan worden. In het
tweede deel benadrukken wij, na verschillende quasikristallen te hebben bestudeerd, dat de
stabiliteit van een quasikristal niet is uniek en voor elk systeem afzonderlijk bekeken moet
worden. In het derde deel hebben wij geconcludeerd, door fotonisch onderzoek, dat het core-
corona systeem een lucratief systeem is om naar fotonische kristallen te kijken.

Thanks to Santosh Gurunath, Ernest van der Wee, Dieter Aerts and Kristein Bortels for helping with the Dutch
translation.
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It is finally the time to simultaneously look back at the fine print as well as the helicopter view
of the PhD journey. For me, this journey started the day my brother, Sriram (Annu), started his
Bachelor studies in engineering and then proceeded to a doctorate. I knew then that this is what
I was going to be; just the field was yet to be decided. Annu, with your guidance, I became a
materials engineer and here I am, on my way to completing my PhD. I have wondered countless
times during these past four years about why did you not warn me how hard this journey is going
to be and how do I get out of it. But, on other times, I was happy that you didn’t do that as it
gave me the opportunity to find my own way through this complicated maze. Thank you for
that. Of course, I could not have navigated this maze all on my own. I take this opportunity
to thank the people who were part of my effective and efficient support system and made this
possible.

The first person to thank is my supervisor Marjolein Dijkstra. They say that first impressions
last forever. Mine certainly does. It started on a Friday evening in October 2013. I had received
the results of the previous round of interviews and the project proposals from Shell late in the
evening. And I woke up the Saturday morning to find an email from you, Marjolein, with an
invitation to visit your group and instructions on what you need and how to proceed. This was
even before I had gone through the proposals myself! Then and during our first meeting, I was
impressed by your sincerity, knowledge, and straight-forwardness. That has not changed over
the four years that I have spent in your group. It was encouraging to find that your office doors
were always open for us and that you were always eager for short/long discussions. Through
the years, you have ensured a strict schedule of my work and I am extremely thankful for that.
You have motivated me to work harder during the times when I was not, and that has helped me
strive for better. You maintained a perfect balance of giving me the freedom on what I want to
do and letting me know if and when something is going wrong or not working. In short, I am
glad that we opted for each other during the matching process and I could not have asked for a
better supervisor.

The next goes to the staff of the Soft Condensed Matter group, Alfons van Blaaderen, Arnout
Imhof, René van Roij, Laura Filion, Marijn van Huis, Krassimir Velikov, and Patrick Baesjou
for creating and maintaining a multi-disciplinary environment. In particular, I would like to
thank Alfons for pointing out different simple and obvious yet overlooked points during the
work discussions and in this thesis, and René for the valuable comments that helped me broaden.
Arnout, it was a pleasure working as a teaching assistant in your course. You have organised
it so well that it did not leave a lot for us to do. Patrick, it was enjoyable working with you
during the course as well. It was an enriching experience with all of us trying to figure out
things together. Laura, thank you for the talks about life at various instances and for explaining
the various free-energy calculations. Finally a big thanks to Marion, Thea, Peter, Chris, Judith,
and Relinde for ensuring a smooth flow of the technical and administrative jobs.

Being a part of an Industrial Partnership Program has its own advantage. Especially the
Computational Sciences for Energy Research (CSER) programme provided me an opportunity
to get to learn a lot of new things over a broad range of research topics. I thank Maria Teuwis-
sen, Martijn de Jager, Maria Sovago and Joost Weber from FOM and Kumar Ramachandran,



204 THANK YOU | DANK U | DHANYAWAD | NANDRI

Pratibha Priyadharshini, Xena Thomas, Shubha Jayappa, Sanjay Suri, Nilanjana Bhattacharya,
and Paul Mak from Shell for organising various events and arranging the administrative activit-
ies over the years. I am thankful to my coach Joost Smits for his encouragement and interest in
my work. Thank you for your quick replies to my emails which ensured a smooth functioning.
I also thank the other coaches Sipke Wadman, Sander van Bavel, and Hans Geerling for work-
ing together and organising our yearly meetings. It provided an unique advantage for us to be
guided by more than one coach.

I would then like to thank the people who helped me get through my initial days of settling-
in in the SCM group, Anjan and John. Anjan, thank you for patiently teaching me the basics
and for helping me get through the simulation course material. I enjoyed our walks through the
garden trying to figure out various problems. John, I still remember our first meeting when I
had come for my interview. You were the only simulator around and no one else had come to
work yet. You took it up on you to give me a comprehensive view about everything. And the
same continued even after I joined the group. A special thanks to you for pulling me out of the
abyss at the end of my first year. Thank you also for the numerous times when you hosted us at
your place and cooked delicious food (esp. the amazing rasam and eggplant that doesn’t taste
like eggplant ;)), and for the times when we stayed over because we had to catch an early train.

I am lucky and grateful to have the same set of office mates throughout this journey and I
could not have asked for better ones. Guido, thank you for helping me settle down in the office.
I still do not understand how you smoothly transferred your role of watering the plants to me,
without me realising it. Although I am not sure if I enjoyed all your pranks, I am happy they
happened because they took the seriousness out of any normal day. I applaud your patience
for answering my numerous ‘do you have a minute’ calls through the years, which never ever
lasted just a minute, sometimes going in to days. I enjoyed collaborating with you and learnt
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