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Introduction

1.1 Colloids
Colloidal suspensions are systems that consist of microscopic particles dispersed in a
solvent. These particles, or colloids, typically range from tens of nanometers to several
micrometers in size. Both the particles and the solvent can be made out of a variety of
materials. Many common colloidal suspensions consist of solid particles in a liquid solvent,
such as blood or paint. However, it is also possible to create a colloidal suspension out
of two immiscible liquids, with the particles being formed by small droplets of one liquid
suspended in a continuous phase of the other. In this case, the suspension is called
an emulsion. For example, butter, salad dressing and mayonnaise are emulsions where
droplets of oil are suspended in a water-based solvent or vice versa. Alternatively, the
colloidal particles can be small bubbles of gas suspended in a liquid medium, as in whipped
cream or shaving cream. In smoke the solvent is a gas instead, containing either liquid or
solid particles.

1.1.1 Colloidal phases
The main factor that distinguishes colloidal particles from other particles is not their
size, but their dynamics: colloidal particles exhibit Brownian motion. When a particle is
surrounded by either a liquid or gaseous solvent, thermal motion will cause the solvent
particles to collide with it from all directions. If the particle is at rest with respect to the
rest of the solvent, the direction of the net force exerted on it by the solvent is random
at any instant of time, causing the particle to diffuse randomly through the solvent.
This random motion was named after Robert Brown, who observed it in 1827 when he
studied pollen grains suspended in water using a microscope,[1] and was only explained
much later by Albert Einstein and William Sutherland in 1905.[2, 3] In principle, any
object suspended in a gas or liquid will perform Brownian motion. However, typically
Brownian forces are too weak to significantly affect particles larger than a few micrometers
in diameter. Thus, unlike a system of larger particles (grains of sand, a box of marbles)
which will generally remain motionless unless some external force is applied to it, colloidal
systems are continually in motion. Given enough time, this random motion allows the
colloids to explore all configurations available to them. As a result, after a sufficient
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amount of equilibration time, colloidal particles can be expected to obey equilibrium
statistical physics, and can spontaneously form gas, liquid and solid phases, analogous to
those found in molecular systems. Combined with the fact that colloidal particles can
often be observed in real space and real time using modern microscopy techniques, this
makes them an ideal model system for the behavior of atoms and molecules. Additionally,
in many cases the interactions between colloidal particles are relatively weak compared
to the thermal energy. As a result, entropy often plays an important role in the phase
behavior of colloids, stabilizing a range of liquid crystal phases, including nematic, smectic
and cubatic phases, and plastic crystals.[4] By tuning the size of the colloids, it is possible
to ensure that the interparticle distance in colloidal crystals and liquid crystals is on the
order of the wavelength of visible light, opening up the possibility of a variety of electro-
optical applications. [5–9] An example of the diffraction of light in a colloidal crystal can
also be seen in nature as the beautiful colors in opals, which consist of silica spheres of a
few hundred micrometers arranged on a close-packed lattice. [10]

1.1.2 Colloidal interactions
Since colloidal particles have a well-defined thermodynamic equilibrium, a variety of meth-
ods can be applied to predict their behavior either theoretically or with computer simu-
lations, provided the interactions between the colloids are known. In the simplest case,
colloids interact only via hard-core repulsions: in this case, each particle has a solid core
that cannot deform or overlap with other particles, but the colloids do not attract or repel
each other in any other way. For purely hard particles, the potential energy of the system
is not affected at all by the positions of the particles, so any phase transition that occurs
in such a system is purely driven by entropy. The first example of this, the crystallization
of hard spheres, was demonstrated in 1957 by Wood and Jacobson [11] and Alder and
Wainwright. [12] Experimentally, the same phase behavior was shown experimentally by
Pusey and Van Megen using suspensions of poly(methylmethacrylate) particles at dif-
ferent packing fractions. [13] Of course, colloidal particles need not be spherical. More
recent synthesis techniques have allowed for the fabrication and study of colloids in a
variety of shapes, including dumbbells, rods, platelets, polyhedral particles, superballs,
and many more. Both simulations and experiments show that these anisotropic hard-core
particle can self-assemble into a range of liquid crystal phases, such as nematic, smectic
and cubatic phases, as well as a range of crystal and plastic crystal structures.[4] Simi-
larly, binary systems of hard spheres have been predicted to form a wide variety of crystal
structures, [14] and many more are likely to be accessibly in mixtures of particles with
other shapes.

Apart from their hard cores, colloidal particles can interact in a variety of ways.
Examples include charges, electric or magnetic dipole moments, depletion attractions
induced by other particles present in the solvent, and steric interactions resulting from
polymer chains affixed to the particle surface. These interactions open up an additional
range of phases accessible to colloidal particles, as well as the potential forming of finite
clusters as a result of anisotropic attractions in “patchy particles”. [15, 16] In short, as
experimental control over the interaction and shape of synthesized colloids improves, the
variety of structures that can be formed in colloidal systems will only continue to increase.
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Predicting what interactions lead to which structures is useful not only to increase our
understanding of the physics driving these systems, but also to help determine what type
of particle might be the most likely to yield specific desired structures. In this thesis, we
will use computer simulations to study a number of models for colloidal systems that are
currently experimentally realizable and, where possible, compare the predicted behavior
with experimental results.

1.2 Simulation methods
In the majority of the chapters in this thesis, computer simulations are used to study
the behavior of colloidal particles. The two main methods used are Monte Carlo (MC)
simulations and Event-driven molecular dynamics (EDMD) simulations. While writing an
EDMD simulation code is generally more involved than writing an MC code for the same
system, the increase in speed can be significant, particularly for systems containing a large
number of particles. For example, in chapter 5, where we calculate the equation of state
in a system of 8000 cube-shaped particles using both MC and EDMD simulations, the
EDMD simulations were seen to provide sufficiently accurate statistics roughly ten times
faster. On the other hand, MC simulations can be adapted to a much larger variety of
problems much more easily, such as systems with continuous interactions, simulation boxes
with a variable box shape, and many biased sampling schemes.[17] In this thesis, both
methods will be used, depending on the system under consideration and the quantities
the simulations should measure. Below, we will give a brief overview of both methods.

1.2.1 Monte Carlo
Metropolis sampling Monte Carlo (MC) simulations are a commonly employed method to
study the equilibrium behavior of many-body systems. Instead of following the dynamics
of the system in a realistic way, a Monte Carlo simulation simply aims to sample the most
relevant states of a system with sufficient accuracy to perform realistic measurements on
the distribution of resulting configurations.

Consider a system of N particles, each interacting with other nearby particles via a
pair potential Up(r) and confined to a volume V at temperature T . The probability of a
state with a specific set of particle positions rN and momenta pN is simply proportional
to the Boltzmann factor corresponding to the total energy Utot of the system:

P (rN ,pN) ∝ exp
(
−βUtot(rN ,pN)

)
, (1.1)

with β = 1/kBT and kB Boltzmann’s constant. Thus, the expectation value of a mea-
surable quantity A in the system is then by the weighted average of A over all possible
states in the system:

〈A〉 =
∫

drN
∫

dpNA(rN ,pN)P (rN ,pN)∫
drN

∫
dpNP (rN ,pN) . (1.2)

In most cases, the total energy of the system only depends on the momenta of the particles
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via the kinetic energy Ukin(pN). The total energy can then be written as:

Utot(rN ,pN) = Upot(rN) + Ukin(pN) =
N∑
i=0

N∑
j=i+1

Up(rij) +
N∑
i=0

p2
i

2mi

, (1.3)

where mi is the mass of particle i, rij is the distance vector between particles i and j,
and Upot(rN) is the total potential energy of the system. If the quantity of interest A is
independent of the velocities of the particles, the integrals over the positions and momenta
can be separated in both the numerator and denominator of Eq. 1.2, and the momentum
integrals simply cancel:

〈A〉 =
∫

drNA(rN) exp
(
−βUpot(rN

)
)∫

drN exp (−βUpot(rN)) . (1.4)

In practice, evaluating either of the integrals in this equation directly is impossible for
systems with more than a few particles. However, the Metropolis scheme gives a way to
calculate 〈A〉 by only sampling the most important regions of phase space. The strategy of
this scheme is to generate a Markov chain of random configurations of the system in a way
that follows the Boltzmann distribution, and then simply average A over the generated
configurations. To do this, the simulation is initialized with one possible configuration
with N particles in a volume V . Subsequently, a trial configuration is generated that is
slightly different, for example by choosing one of the particles at random and displacing
it by a small amount d. To avoid biasing the simulation, we can choose the displacement
vector uniformly from a cubic volume centered around 0. The trial move is accepted as
the next configuration in the chain with a probability:

acc(o→ n) = min(1, exp−β[Upot(rn)− Upot(ro)]), (1.5)

where o and n denote the old and new configurations, respectively. If the trial move is
rejected, the next configuration in the Markov chain is the same as the old configuration.
Given enough time, this scheme will in principle lead to a chain of configurations that
samples all of phase space, following the Boltzmann distribution. The thermodynamic
average of the quantity of interest 〈A〉 can then be measured by averaging its value over
a sufficiently large set of these configurations.

What we have described here is the most basic example of a Monte Carlo simula-
tion in the canonical ensemble (at constant N, V , and T ). There are a wide variety of
ways to adapt this simulation method to a variety of systems and ensembles, and all of
these involve the addition of new types of trial moves. For example, for the simulation
of anisotropic particles moves have to be added that rotate the particle. To perform
simulations at constant pressure, a move has to be included that changes the volume of
the simulation box. Other possible moves include cluster moves, particle insertion and
deletion, and swap moves that switch the positions of two particles. For a more detailed
description of the Monte Carlo method, and the tricks and strategies that can be used in
these simulations, see Ref. [17].
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1.2.2 Event-driven molecular dynamics
In a Molecular Dynamics (MD) simulation, the dynamics of a system are taken explicitly
into account: movement of the particles is based on Newton’s Laws, which define the
equations of motion for all particles in the system. While this does not mimic Brownian
motion, this method provides a different way of sampling configurations according to the
Boltzmann distribution. In normal (time-driven) Molecular Dynamics simulations, the
equations of motion in the system are integrated in fixed time steps. Each time step,
the velocities of the particles are changed based on the calculated forces acting on them,
and their positions change as a result of these velocities. However, for such a scheme,
the forces on the particles cannot be instantaneous, as they are between particles with
discontinuous potentials. For example, the collision between two hard spheres happens
at a specific point in time, and the force between the two particles is zero at every other
instant. Thus, if a finite fixed time step is used for the simulation, such a collision
would only be detected when the particles already overlap. In contrast, Event-driven
molecular dynamics (EDMD) simulations predict the moment of collision explicitly ahead
of time, so that it can be handled at the correct moment in the simulation.[18] In most
cases, this method is applied to systems where the free motion of the particles, i.e. their
movement in the time between collisions, is simple, and can be resolved without the
need for numeric integration of the equations of motion. In practice, this corresponds
to particles with interaction potentials that either are purely hard, or consist of a finite
number of discontinuous energy levels (such as square wells). In these cases, the free
motion of the particles simply corresponds to the linear motion of the center of mass of
the particle, and (if the particles are anisotropic) a constant rotation with fixed angular
momentum. In principle, continuous interactions can be approximated with a set of
interfaces at small intervals, although each extra interface will slow down the simulation
due to the increase in the number of interaction events.

In an EDMD simulation, time does not move forward in fixed intervals. Instead, future
events such as particle collisions are predicted, and the simulation jumps from event to
event, resolving them in chronological order. The simulation program maintains a list of
all predicted future events, and events are added to and removed from this list whenever
a collision occurs. Typically, a cell list (or neighbor list [19]) is used to determine which
particle pairs are likely to collide in the near future: the simulation box is devided into
a number of cells, such that only particles in neighboring cells can interact.[17, 18] As a
result, events where a particle crosses from one cell to another are predicted and stored as
well. Additional event types can correspond to e.g. the sampling of measurable quantities
(such as the pressure) or the effects of a thermostat (often used in order to maintain a
constant temperature in an interacting system).

Hard spheres

In this section, we will describe the implementation of an EDMD simulation of monodis-
perse hard spheres. For the purposes of EDMD, hard spheres are an ideal system: col-
lisions between two particles can be detected analytically, making the simulation both
simpler and faster. The prediction of the collision time for two identical hard spheres is
very straightforward, as the particles perform simple linear motion between collisions. If
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two particles are currently (at time t = 0) at a separation rij = ri−rj, and have a relative
velocity vij = vi − vj, the square of the distance d between them is a simple quadratic
function of time:

d(t)2 = |rij + vijt|2 . (1.6)

For spherical particles, a collision occurs when the center-to-center distance is equal to the
particle diameter σ. Therefore, we are interested in the solution of the quadratic equation
d(t)2 = σ2. If there are two roots to this equation, the particles are in contact between
the first and second solution. The first root is given by:

t =
−b−

√
b2 − v2

ij(r2
ij − σ2)

v2
ij

, (1.7)

with b = rĳ · vĳ. When the particles collide, the velocities of both particles change by an
equal but opposite amount:

δvi = −δvj = −brij/σ2. (1.8)

Here, we have assumed that the particles are perfectly frictionless, and that both energy
and total momentum are conserved during the collision. With these equations, we can
both predict and resolve collisions of two spheres. Similarly, predicting the next time a
specific particle will cross over to the next cell is a matter of solving linear equations.
With the ability to predict collisions and cell crossings, setting up a rough outline of the
simulation is straightforward:

1. Initialize particle positions and velocities.

2. Predict and store next cell crossing for each particle.

3. Predict and store collisions between particles currently in neighboring cells.

4. Find the first predicted event, and move time forward to that moment.

5. In case of a cell crossing, update the cell list, and predict and store collisions of that
particle with those in the new neighboring cells.

6. In case of a collision, update the particle velocities, delete all events related to both
colliding particles, and predict and store new collisions for both.

7. In both cases, delete the old cell crossing event and predict the new cell crossing for
the particle(s) involved in the event.

8. Repeat steps 4 through 7.

Note that to move time forward (step 4), there is no reason to update the positions of any
particles that are not affected by the event that will now be resolved. Instead, we simply
keep track of the last moment each particle was updated, and its position and velocity at
that point, allowing us to calculate its position at any time it will be needed.

Whenever a collision (or other event) occurs, only the velocities of the particles in-
volved change. As a result, any events previously predicted that do not involve those
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particles remain unchanged. On the other hand, a particle has several predicted collisions
associated with it at any time, which all need to be discarded whenever the velocity of the
particle changes. While this may seem redundant, only keeping track of the first collision
for each particle is impractical, because that prediction may never happen if the other
colliding particle is deflected by a third particle before the collision occurs. To efficiently
deal with the addition and deletion of events at every simulation step, we require a fast
way to add and delete events from the event list. In addition, to be able to quickly find
the first scheduled event for every step, the list should be time-ordered. As it turns out,
the binary tree data structure can fulfill these requirements.[18] In this structure, each
event node in the tree is linked to one ’parent’ event and up to two ’children’: one on the
left, and one on the right (see Fig. 1.1). The left child event always takes place before the
parent event, while the right child event happens at a later time than the parent. Thus,
the first event in the tree is always on the far left, and can be found quickly by traversing
the tree from the top, taking the left node down at every step until a node without a left
child is reached. Similarly, when adding an event to the tree, the correct location for it
can be found by starting from the top, and either choosing the left or right child at every
step based on whether the new event will take place after or before the current node. As
soon as an empty spot is found, the new event can be placed there. When deleting an
event from the tree, any child events connected to it have to be relinked into the tree,
taking care to maintain the chronological order of the nodes. Due to the structure of
the event tree, any of these operations only affect a small part of the tree, and the time
required to update the event tree is low, scaling with the logarithm of the total number
of events.

In order to allow for quick removal of all events related to a specific particle, events
are also connected via doubly-linked lists that join all events related to the same particle,
as indicated by the colored arrows in Fig. 1.1. Because each event involves at most two
particles, each event is linked into up to two of these lists. We use the cell crossing event
related to each particle as the head of both linked lists. In other words, the cell crossing
event for particle i is at the start of two linked lists: one for all events where particle i is
the first particle involved (the solid lines in Fig. 1.1), and one for all events where particle
i is the second particle involved (the dashed lines). The cell lists we employ consist of
doubly linked lists as well. Table 1.1 summarizes the data stored for each particle and
each event.

In an MD simulation, the temperature T is given by the average kinetic energy of the
particles:

∑
i

1
2mv2

i = 3
2kBT. (1.9)

In a system of purely hard particles at constant volume, conservation of energy will
ensure that the temperature is fixed. If particle interactions are present or the energy in
the system is otherwise able to change, a thermostat can be used to keep the temperature
constant. The simplest version of this is the Andersen thermostat, where at fixed intervals
one or more particles are chosen at random and given a new random velocity drawn from
a Boltzmann distribution of velocities corresponding to the desired temperature.
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Figure 1.1: Illustration of the event tree structure for a small system. Each block represents
an event: either a collision, cell crossing, or measurement. The root event at the top is empty,
and only serves as a starting point for accessing the event tree. Left and right children of each
event are represented by black arrows starting at the bottom left and right corner of the block,
respectively. The colored arrows denote the linked lists linking events with the same particle as
either the first (solid lines) or second (dashed lines) particle involved in an event, with different
colors indicating different particles.
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Particle Event
Last update time tlast Time of event
Position at tlast First particle involved
Velocity at tlast Second particle involved (if any)
Current cell Parent event
Next particle in cell Left child event
Previous particle in cell Right child event
Cell crossing event Next and previous event related to particle 1

Next and previous event related to particle 2

Table 1.1: Data stored for each particle and event in a hard-sphere EDMD simulation.

If we choose our unit of length, energy and mass to be σ, kBT and m, respectively,
the unit of time τ is given by:

τ =
√
mσ2/kBT , (1.10)

and roughly corresponds to the time an average freely moving particle takes to reach a
distance of σ.

The pressure P in an EDMD simulation can be calculated from the total momentum
transfer between particles, using the virial expression for the pressure, by averaging the
sum of interparticle forces over all particle pairs over a time interval [ta, tb]:

P = ρkBT + 1
3V

∫ tb
ta

∑
i<j fij · rij
tb − ta

, (1.11)

where ρ = N/V is the number density in the system, fij is the force between particles i
and j and rij = ri− rj is the distance vector between them. In our case, the interparticle
forces are given by delta peaks at the moments of collision, and for a single collision:

fij(t) = δ(t− tcol)δpi, (1.12)

with tcol the time of collision, δ(t) the Dirac delta function, and δpi the change in mo-
mentum for particle i. The pressure can then be written as:

P = ρkBT + 1
3V

∑
δpi · rij
tb − ta

, (1.13)

where the sum is taken over all collisions between particle pairs in the measured time
interval, and i and j denote the two particles involved in each collision.

Anisotropic particles

Broadly, the same scheme that was described above can be followed for simulations of
anisotropic particles as well. However, in addition to linear motion, particles now also
rotate at a constant angular momentum while performing free motion. This extra move-
ment makes predicting collisions analytically impossible in most cases. However, even
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if collisions have to be predicted numerically, EDMD can still be an efficient simulation
method.[20, 21]

To find the time of collision for two anisotropic particles, we define an overlap poten-
tial which can distinguish between overlapping and non-overlapping states. This overlap
potential is a continuous function f(r1,Ω1, r2,Ω2) of two particle positions ri and their
orientations Ωi, which is smaller than 0 if the two particles overlap, and larger than 0 if
they are non-overlapping. Predicting a collision is then equivalent to solving the equation

f(r1(t),Ω1(t), r2(t),Ω2(t)) = 0, (1.14)

where the dependencies of the particle positions and orientations on time are given by
their free motion. Calculating the overlap potential for two particles is only required in
the time intervals where their circumscribed spheres overlap (or in other words, when
the center-to-center distance between them is smaller than their maximum interaction
range). Collisions between circumscribed spheres of two particles can be predicted exactly
as described above, and when such an event occurs the overlap potential f between the
two particles and its time derivative are calculated on an evenly spaced grid of points in
time. If an overlap is detected, numerical root-finding algorithms are used to determine
the time of collision. If the derivative df

dt changes sign from negative to positive, a grazing
collision may have been missed, and the minimum of f is determined numerically and
checked for a possible collision.

The only other major change required to simulate anisotropic particles is the resolution
of predicted collisions. In the case of rigid non-spherical particles, the instantaneous force
between the particles follows not only from conservation of energy and momentum, but
also angular momentum. By again assuming that the particles are perfectly frictionless
the forces can be chosen perpendicular to the colliding surfaces (or, in the case of a
collision between two edges of sharp particles, perpendicular to both colliding edges). For
a detailed description of the approach used for the prediction and resolution of collisions
in the EDMD simulations employed in this thesis, see Ref. [20].

1.3 Dipolar interactions induced by external fields
One type of interaction that will be studied in several chapters in this thesis is a dipolar
interaction induced by an external homogeneous electric field. In these systems, colloidal
particles are suspended in a solvent with a different dielectric constant, and an electric field
is applied to the sample using two electrodes. Due to the contrast in dielectric constant
between the particles and the solvent, this induces a dipole moment in each particle in the
direction of the field, leading to dipolar interactions between the particles. As a result, the
particles tend to self-assemble into string-like clusters parallel to the electric field at low
densities, and the crystal structures formed at higher packing fractions can be changed
by the presence of dipolar interactions as well. These dipolar interactions can be induced
with a magnetic field as well, if there is a difference between the magnetic susceptibility
of the particles and that of the solvent.

To model the interactions between particles with induced dipole moments, we use the
so-called point-dipole approximation: the dipole moment for each particle is assumed to
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Figure 1.2: Illustration of the dipolar interaction in Eq. 1.15. The second and third picture
show the configurations with the lowest and highest energy for two particles, respectively.

be concentrated in the center of the particle as a point dipole. This approximation ignores
the fact that in reality, all of the material in each particle will be polarized to some degree,
leading to higher-order multipole interactions at close range.[22] Additionally, the dipole
moment of each particles is considered to be dominated by the external field. In reality,
the field generated by the dipole moment in one particle can influence the polarization
in another particle and vice versa, changing the strength and direction of the dipolar
interactions. However, iteratively solving for the resulting polarizations of the colloids is
too time-consuming to be practical in most simulations.

The interaction potential udip between two aligned point dipoles is given by:

βudip(r, θ) = γ

2

(
σ

r

)3
(1− 3 cos2 θ), (1.15)

where r is the distance between the two point dipoles, θ is the angle between the vector
connecting the two particles and the direction of the dipole moments (and the external
field), and σ is the unit of length in the system, usually chosen as the hard-core diameter
of the particles. The prefactor γ determines the strength of the dipolar interactions, and
in an experimental setup can be controlled by the strength of the external field. In the
case of spherical particles with diameter σ in a local electric field Eloc:

γ = (εp − εs)2εs
(εp + 2εs)2

πσ3|Eloc|2

8kBT
, (1.16)

where εp and εs denote the dielectric constant of the particle and the solvent, respectively.
As seen in Eq. 1.15, the dipolar interaction potential is proportional to r−3. This

slow decay can cause problems when simulating, as the potential energy of a particle in
the system is strongly affected by the presence of particles far away. In order to deal
with these long-range interactions, we make use of Ewald summations.[17, 23] In this
technique, the calculation of the potential energy is split into a long-ranged part which is
calculated in Fourier space, and a short-ranged part calculated in real space.

The phase behavior of monodisperse hard and soft spheres with aligned dipolar in-
teractions has been shown to contain a string fluid, as well as hexagonally close-packed
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(HCP), body-centered-tetragonal (BCT) and body-centered-orthogonal (BCO) crystal
structures.[24–26] In this thesis, we will investigate the effects of external fields on several
other systems including bidisperse spheres, asymmetric dumbbells, and cubes. In addi-
tion, we will study the phase behavior of spheres in a rapidly rotating (biaxial) electric
field.

1.4 Outline of this thesis
In the rest of this thesis, we will study the self-assembly of a variety of systems. First,
we investigate colloidal particles in external electric or magnetic field, where the induced
dipole interactions are the main driving force behind the behavior of the system. In
chapter 2 we look at the string-like clusters formed in these fields, and compare the
results with both theory and experiments. In chapter 3 we study spherical particles in
a biaxial field, leading to the formation of sheet-like structures. Chapter 4 describes the
phase behavior of cube-shaped particles in an external field. In the next three chapters,
we investigate bulk systems without external fields, starting with a more detailed study
of the phase behavior of hard cubes in chapter 5. In chapter 6, we use a theoretical
approach to predict the phase behavior of colloidal particles with a constant surface
potential, and chapter 7 investigates the nucleation of a binary hard-sphere crystal phase.
In the last three chapters we return to finite-sized clusters. Chapters 8 and 9 both
study the structures formed by colloids compressed within an evaporating droplet, and in
chapter 10 we examine colloidal micelles formed by asymmetric dumbbells with depletion
interactions.



2

Self-assembly of colloidal strings in
a homogeneous external electric or

magnetic field

Colloidal particles with a dielectric constant (magnetic susceptibility) mismatch with the
surrounding solvent acquire a dipole moment in a homogeneous external electric (mag-
netic) field. The resulting dipolar interactions lead to aggregation of the particles into
string-like clusters. We use Monte Carlo simulations to investigate the structure of the
self-assembled string-like aggregates in systems of both monodisperse and bidisperse dipo-
lar hard spheres, as well as dipolar hard asymmetric dumbbells. For monodisperse sys-
tems, we show that the string length distributions in the dilute regime are in quantitative
agreement with the predictions by the first-order thermodynamic perturbation theory
of Wertheim. In bidisperse system, the particles aggregate in different types of clusters
depending on the size ratio of the spheres. For highly asymmetric systems, the small
spheres form ring-like and flame-like clusters around strings of large spheres, while for
size ratios closer to 1, alternating strings of both large and small spheres are observed.
For asymmetric dumbbells, we investigate both the effect of size ratio and dipole moment
ratio, leading to a large variety of cluster shapes, including chiral clusters.
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2.1 Introduction
The interactions of colloidal particles in a suspension can be tuned by the application
of an oscillating external electric or magnetic field. Due to the contrast of the dielectric
constant or magnetic susceptibility of the particles with that of the fluid, the particles
obtain a dipole moment parallel to the field lines. At low field strengths, the resulting
dipolar interactions between the colloids cause the particles to self-assemble into string-
like structures along the field direction. These suspensions are called electro- (ER) or
magneto (MR) rheological fluids, as their rheological properties can be tuned by external
fields. [27, 28] These fluids can be used in a wide range of applications, e.g, hydraulic
valves, brakes, clutches [27], displays [29], and bullet-proof army vests. For systems of
monodisperse hard spheres with induced dipolar interactions, the phase diagram is well
known from both experiments and simulations.[24–26, 30, 31] A stable string fluid exists
at low field strengths and at low packing fractions, while at higher field strengths, a
body-centered-tetragonal (bct) crystal structure is formed.

The string fluid can be compared to the formation of chain-like aggregates in ferro-
magnetic fluids, where the direction of the dipole moment of the particles is not fixed
by an external field. The structure of these chains has been studied extensively, both
for monodisperse and polydisperse systems.[32–36] In bidisperse or polydisperse systems,
where the dipole moment scales with the particle volume, the larger particles dominate the
formation of chains. Subsequently, the smaller particles can aggregate around these large-
sphere structures, thereby hindering the formation of longer chains.[37] Previous stud-
ies showed that the size polydispersity greatly influences the electrorheological response,
which can even be enhanced in an equimolar mixtures of large and small spheres.[38]

In highly asymmetric bidisperse systems of spheres with induced dipolar interactions,
clustering leads to ring-like and flame-like clusters of small spheres around strings of large
spheres. Mixtures of more similarly sized particles can form strings containing both types
of spheres, sometimes regularly ordered. As the interactions causing these structures
are induced by an external field, this provides a way of obtaining a variety of structures
from spherical colloidal particles. A wider range of cluster shapes opens up if dipolar
hard dumbbells are considered, with two spheres fused at a fixed distance. By tuning
the size ratio and the ratio of dipole moments between the two parts of the dumbbell,
a wide variety of structures can be formed. In earlier studies, various chiral structures
were observed in similar systems, both experimentally [39] and in simulations.[40] More
importantly, in a recent paper a new methodology has been presented to produce strings
of various colloidal particles by applying electric fields, followed by thermal heating or
seeded growth to make the strings permanent.[41] The authors also show that the length
and even the flexibility of the beadchains can be controlled, and that the resulting systems
can serve as colloidal analogues of charged and uncharged polymer chains with tunable
flexibility. In this chapter, we use simulations to study the formation of strings in systems
of aligned dipolar hard and charged spheres. In particular, we study the string length
distributions for monodisperse systems, the formation of ringed and alternating strings in
binary systems, and the structures formed in systems consisting of asymmetric dumbbells.
In the case of binary systems, the field strengths needed to form binary strings are often
so high that the string fluid phase is metastable with respect to a broad phase coexistence
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between a dilute gas phase and a crystalline phase. However, due to the lower mobility of
the larger strings compared to the single particles, the system can get kinetically trapped
into a metastable fluid for long time scales at low packing fractions. As a result, one can
study the resulting strings out of equilibrium in both experiments and simulations. We
compare our results with preliminary experimental observations.

2.2 Model and simulation methods
We examine both hard and charged colloids in an electric field. For homogeneous particles
of the same material, the dipole moment in an external field is proportional to its volume,
leading to stronger dipole moments for larger particles. The dipole-dipole interaction for
two particles with diameters σi and σj is given by:

βudip(rij, θij) = γij
2

(
σ

rij

)3

(1− 3 cos2 θij) (2.1)

where rij = ri− rj is the center-of-mass distance vector between particles i and j, θij the
angle of rij with the dipole moment (oriented along the z-axis), and β = 1/kBT with kB
Boltzmann’s constant and T the temperature. We use the particle diameter σ as unit of
length, which is chosen to be the diameter of the largest particle in the case of a binary
mixture.

The factor γij is determined by the strength of the electric field, which is chosen to be
uniform along the z-axis:

γij =
πσ3

i σ
3
jα

2εs|Eloc|2

8kBTσ3 . (2.2)

Here, α = (εp−εs)/(εp+2εs) is the polarizability of the particles, εs the dielectric constant
of the solvent, εp the dielectric constant of the particle, and Eloc the local electric field.
We define γ as the value of γij for two particles of the largest size present in the system.

The hard-sphere interaction is given by:

βuhs(rij) =
{

0, rij ≥ σij
∞, rij < σij

, (2.3)

with σij = (σi + σj)/2. In the case of charged spheres, a Yukawa potential is used to
model the charge repulsions. For the interaction between particles of different sizes, we
assume that the pair potential is given by the linear superposition approximation of the
DLVO theory.[42, 43]

βuY (rij) =

 εij
exp(−κ(rij − σij))

rij/σ
, rij ≥ σij

∞, rij < σij

(2.4)

εij = ZiZj
(1 + κσi/2)(1 + κσj/2)

λB
σ
. (2.5)

where Zi is the charge of particle i, κ−1 is the Debye screening length, and λB =
e2/4πε0εskBT is the Bjerrum length with e the elementary charge and ε0 the vacuum
permittivity.
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We performed Monte Carlo (MC) simulations in the NV T ensemble, i.e. we fixed
the number of particles N , the volume V and temperature T of the system. To handle
the long-range dipolar interactions, we use Ewald summations with conducting boundary
conditions.[17, 23] To improve equilibration and sampling speed in systems with strings,
cluster moves were introduced to move particles residing in a cylindrical volume collec-
tively. To maintain detailed balance, cluster moves that would change the number of
particles present in this cylindrical volume were rejected.

Additionally, we perform simulations of hard dumbbells, which we model as two fused
hard spheres interacting with the pair potential (2.1). Rotation moves were implemented
to change the orientation of the dumbbells.

2.3 Monodisperse systems
We first investigate the string fluid regime for monodisperse dipolar hard spheres using
NV T MC simulations of N = 1200 particles with diameter σ in a simulation box elon-
gated along the field direction in order to accommodate long strings. We measured the
probability distribution function P (n) of string length n in the system for varying field
strength γ. In Fig. 2.1 we plot P (n) as a function of the number of particles n in a string
for γ = 5, 8, 9, 10 and 11, at a constant packing fraction η = πσ3N/6V = 7.1 · 10−4. Our
simulation results are denoted by the symbols. We clearly observe that the lengths of the
strings increase with both dipole strength γ and packing fraction η, leading to percolating
strings at field strengths larger than γ ' 10. While two short strings repel each other
when they are parallel to one another, sufficiently long strings attract, and the attraction
increases as the strings become longer.[44] As a result, for high field strengths single strings
are no longer stable, and thicker strings are formed. At even higher interaction strengths,
the system forms crystalline domains with a bct structure. In experiments, strings were
shown to self-assemble into metastable sheet-like structures before crystallizing.[45]

We compare our results with the first-order thermodynamic perturbation theory of
Wertheim, which yields free energy predictions for associating fluids.[46–48] These free
energy expressions can be used to predict the distribution of cluster sizes in equilibrium
systems.[49] While the theory is more suitable for particles with short-ranged interactions,
it can also be used to describe the formation of strings in a dipolar system.

To this end, we consider colloidal spheres with two binding sites in diametrically
opposite positions. The first-order thermodynamic perturbation theory of Wertheim is
based on the assumption that each binding site can only form one bond with another
particle and that pairs of particles can only be single-bonded. These assumptions are
satisfied in the string fluid regime for monodisperse dipolar spheres, assuming the packing
fraction and field strength are low enough to ensure that all strings are well-separated.
In this case, each particle can form a bond with at most two other particles. According
to Wertheim theory the probability pb that an arbitrary binding site is bonded can be
determined from the chemical equilibrium between two non-bonded particles and a dimer
cluster:

pb
(1− pb)2 = ρ∆, (2.6)

where ∆ is calculated by integrating the Mayer function f(r) = exp(−βudip(r))− 1 over
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Figure 2.1: String length distribution P (n) with n the number of spheres in a string for a
fluid of dipolar hard spheres at packing fraction η = 7.1 · 10−4 and for various field strength
γ as labeled. The symbols are obtained from simulations, the lines show the predictions from
Wertheim theory.

the volume of a binding site:[46–48]

∆ =
∫
site

dr g(r)f(r) (2.7)

' 2π
∫ θmax

θ=0
dθ
∫ rmax

r=σ
drf(r, θ)r2 sin θ, (2.8)

with g(r) the pair correlation function of a reference system at the same packing fraction.
As the packing fractions for the studied string fluid systems are low, we use the ideal gas
approximation g(r) ' 1.

As the integral in Eq. 2.8 is over the volume of a single bonding site, θmax is chosen to
be the edge of this bonding site, where udip(r, θ) = 0. The integral diverges logarithmically
for r → ∞, and therefore we have to choose a reasonable limit rmax for the distance at
which particles can still be considered bonded. We have set rmax = 2σ.

In addition, the number density of monomers is ρ1 = ρ(1− pb)2, since for a monomer
both sides are unbonded. Here we define ρ = N/V as the particle number density.
Similarly, the number density ρn of strings of length n is

ρn = ρ(1− pb)2pn−1
b , (2.9)

as the first and last particle in the chain have one unbonded site each. From Eq. 2.6, we
can easily determine pb once ∆ is known. Using the bond probability pb, we can determine
the cluster size distribution P (n):

P (n) = ρn∑∞
i=1 ρi

= (1− pb)pn−1
b , (2.10)

where P (n) is the probability that a randomly selected string has a length of n, and∑∞
i=1 ρi = ρ(1− pb), obtained by summing the geometric series over all chain lengths.
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However, in our system there are correlations between nearby bonds, since the attrac-
tive potential of the dipoles extends beyond the distance of a single particle. As a result,
a particle is more likely to be attached to longer strings. If we assume that neighboring
particles in the string are at contact along the z-axis then the potential near the top of a
string of length n is given by:

u(r, n) =
n−1∑
i=0

udip(r− iẑ). (2.11)

This potential can then be used to calculate ∆(n) using Eq. 2.8 with the Mayer
function corresponding to un(r, n). Subsequently, we can write a recursive relation for ρn:

ρn
ρn−1ρ1

= ∆(n). (2.12)

To calculate ρ1, we normalize this distribution using
∞∑
n=1

nρn = ρ. (2.13)

We plot the theoretical results (solid lines) along with the simulation results in Fig.
2.1. The theoretical predictions fit the simulation data for low packing fractions and
field strengths very well, as shown in Figure 2.1. We obtain agreement between theory
and simulations as long as the simulated strings do not cluster together or span the
simulation box. As no fit parameters are required in the theory to match the simulation
data, Wertheim theory allows a direct quantitative prediction of the distribution of string
lengths in the dilute string fluid regime of hard dipolar spheres. In principle, it should also
be straightforward to extend this theory to charged dipolar spheres, by adding a Yukawa
repulsion in Eq. 2.8.

2.4 Bidisperse systems
2.4.1 Flame-like and ring-like clusters of small spheres
We now turn our attention to binary systems of large and small colloidal spheres with
diameters σL and σS, respectively, with a large size asymmetry. The dipolar interactions
as given by Eq. 2.1 and 2.2 are much stronger between the large particles than between the
small particles. As a result, the formation of strings will be dominated by the clustering
of the large particles. Additionally, the small particles may aggregate with the chains
formed by the large particles. Due to the interactions between small and large particles, a
circular attractive potential well arises for the small particles around the contact point of
two large particles in the chain, and consequently the small particles can get trapped into
this well.[33] Figure 2.2 shows a typical snapshot of the strings formed in a Monte Carlo
simulation, as well as a confocal snapshot and a scanning electron microscopy picture of
similar clusters in an experimental setup, all at size ratio q = σS/σL = 0.25. For details
on the experimental setup, see the Appendix.
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At size ratio q = 0.25, a maximum of 14 small particles can fit geometrically in this
circular well in such a way that each small particle is in contact with both large spheres.
At q = 0.33, only up to 10 particles fit in this well. However, the repulsive interactions
between the small particles reduce the number of small particles per ring in the lowest
energy state. We calculate the potential energy due to the dipolar interactions as a
function of the number of small particles in the circular well around the contact point
between two large spheres in a string of 2 and 15 large spheres. We plot the results for
q = 0.25 (top panel) and 0.33 (bottom panel) in Figure 2.3. We clearly observe that for
both size ratios the number of small particles in the lowest potential energy configuration
increases for longer string lengths due to a stronger attractive potential around the contact
points in a string. We like to mention here that entropic effects favor a lower number
of particles per ring, as this allows for more free volume or entropy both inside and
outside the cluster. In addition, we find from Fig. 2.3 that for a size ratio q = 0.25, the
small particles get trapped in this well for γ ' 50 as the potential energy is ∼ 0.02kBT
per particle for string length 15. For such high fields, the string fluid of large particles
is thermodynamically metastable with respect to a broad gas-solid transition. [26] In
experiments, the large strings are partially stabilized by inhomogeneities in the external
field, causing the strings to stay in local areas of high field strength and preventing them
from clustering together. In standard MC simulations (without any (unphysical) cluster
moves), the clustering of strings is inhibited as the mobility of the self-assembled strings is
extremely low. Since the interactions with the small particles are much weaker, the small
spheres can still sample phase space, and can reach equilibrium within the constraints
given by the configuration of the larger particles.

Due to the dipolar interactions between the small and large spheres, the small spheres
can also aggregate in a large potential well at the end of the chains (see the left side
of Fig. 2.2). The resulting aggregate of small particles is wider near the string of large
particles. In addition, the fluctuations of the cluster are more pronounced far from the
strings, giving a flame-like shape to the cluster. Due to the larger and deeper potential
well, a flame-like cluster will generally contain more small spheres than a ring-like cluster.

In order to study the structure of the binary strings, we performed MC simulations
to study binary strings of dipolar hard spheres with a size ratio q = 0.25 and 0.33,
both starting from a homogeneous random initial configuration, and from a configuration
containing a single string of large spheres in a sea of small spheres. For the simulations
starting from a random configuration, we used 100 large particles, and varied the number
of small particles from 100 to 600. The overall packing fraction was well below 1%
(ηL = 0.002), to keep the strings of large spheres from clustering. We indeed observe that
the large particles self-assemble in linear strings parallel to the field direction and that
small particles form ring-like and flame-like clusters around the strings of larger spheres.
To determine the probability distribution of the number of small spheres in the ring-like
clusters, we perform Monte Carlo simulations of a string of 15 large spheres at varying
densities of small spheres. While the large spheres were allowed to move in the simulation,
field strengths were always sufficiently high to prevent the string from breaking.

At the field strengths where the ring-like clusters are regularly seen, the flame-like
clusters always appear as well. The presence of small particles near the ends of the strings
of large spheres hinders the formation of long strings in the simulation, as it can take a
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Figure 2.2: Left: Part of a snapshot of a typical configuration of a string of 15 large particles
with rings of small particles, at size ratio q = σS/σL = 0.25. The field is along the vertical axis,
and surrounding small particles have been removed. Middle: A confocal image and a scanning
electron microscopy picture of an experimental system of strings with ring-like and flame-like
clusters. The particles in the experiments are poly-(methylmetacrylate) (PMMA) spheres with
diameters σL = 2.4µm and σS = 0.6µm. The scalebar is 2 µm. Right: Typical snapshot
of a bidisperse system of dipolar hard spheres at size ratio σS/σL = 0.8, with NS/NL = 10.
Here, γ = 102, κσS = 1.0, and Z2

SλB/σS = 100. Most of the gaps between two large spheres
contain exactly one small sphere. The field is along the vertical axis. The picture at the bottom
left is a confocal image of a binary system of PMMA spheres with diameters σL = 1.5µm and
σS = 1.05µm.
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Figure 2.3: Potential energy of ring-like clusters of small dipolar hard spheres adsorbed near
the contact point of two large dipolar hard spheres, in a string consisting of 2 large spheres (�)
and 15 large spheres (•) as a function of the number of small spheres in the ring, i.e. nring.
The size ratio between small and large spheres is q = σS/σL = 0.25 (left) and q = 0.33 (right).
Interactions between the large particles are not included in the potential energy.
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long time (& 105 MC cycles) for the small particles to be pushed away from two merging
strings. The ring-like clusters can be seen in a wide range of field strengths, and the
occupancy of the ring rises as γ increases. Figure 2.4 shows the probability distribution
of the ring sizes as determined from simulations at various field strengths, for size ratios
of 0.25 and 0.33. The plots show a continuous increase of the number of small spheres
per ring as a function of γ, as well as a preference over a large range of field strengths
for 8 particles per ring at size ratio 0.25 and 6 at size ratio 0.33. It should be noted
that the total number of small particles in the system is constant, and trapping many
small particles in the ring-like and flame-like clusters decreases the density of free small
particles. However, changing the density of small spheres did not change the probability
distribution functions significantly.

For very high field strengths, we observe the formation of thicker ring-like clusters
of small spheres around the contact point between two large spheres. Due to the weaker
potential wells further away from the string, these thicker rings tend to be more disordered,
and exchange small particles with the surrounding fluid at a faster rate.

2.4.2 Alternating strings
For less asymmetric systems, we observe the formation of binary strings that consist of
alternating large and small particles. We studied the self-assembly of these strings for
both hard and charged dipolar particles, using MC simulations of systems with several
size ratios and a range of stoichiometries. The electrostatic repulsions are described
by screened-Coulomb interactions (see Eq. 2.4), where the charge Z is chosen to be
proportional to the surface area of the spheres. In all cases, the total packing fraction
was below 1%. The simulations were performed in a rectangular box, elongated along
the z-axis to allow for longer strings. All simulations are started from a random initial
configuration. On the right in Fig. 2.2 we show a typical snapshot of the strings formed
in a system of charged particles, together with a confocal image of a short alternating
string taken from experiments.
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The formation of alternating strings can be understood as the bond between a large
and a small particle is significantly stronger than the bond between two small particles.
In systems with many more small dipolar particles than large particles, the large particles
will first bond with a small number of small ones on each side shortly after the field is
turned on. These clusters will then join to form longer strings, with several interstitial
small particles between the large ones. While in equilibrium the large particles are bonded
in a string, the removal of the small particles is a slow process. The free energy barrier that
these small particles have to overcome to escape the string is dependent on the number of
small particles between two large spheres, and is highest for one small particle with two
large neighbors.

For uncharged dipolar spheres, alternating strings were not observed with any regu-
larity, as the potential energy differences are too small between configurations with one,
two, or three small spheres in between two large ones. As a result, in sufficiently long
simulations all interstitial small particles are removed from the strings, resulting in strings
of large particles with small particles only at the ends.

Interestingly, simulations of charged particles show the self-assembly of alternating
strings that remain stable on much longer time scales. Since the charge on each particle
scales with the surface area, the bonds between the large spheres are relatively weaker,
and hence configurations with more than one small particle between two large spheres in
a string become less stable. While defects always appear, for inverse screening lengths on
the order of σS and a size ratio of σS/σL = 0.8, the average number of small particles
between two large spheres in a string can be tuned by the field strength. In order to study
the field-strength dependence of the number of interstitial small spheres nIS in between
a pair of large spheres in a string, we determine the probability distribution P (nIS) for
varying γ.

Figure 2.5 shows the distribution of the number of small colloids between two large
ones in the strings, for two different numbers of charges per colloid. The simulations
consisted of NL = 50 large and NS = 500 small particles, at an overall packing fraction
of 3.5 · 10−3. Increasing the field strength increases the number of small particles per
gap, as the stronger attractions hinder the escape of small particles from the strings.
Interestingly, a large fraction of trimers, with one large particle sandwiched by two small
particles, are also often seen in addition to the longer strings. While forming alternating
strings is much easier with an added Yukawa repulsion, the formed configurations are still
metastable states: if swap moves are introduced into the simulations, allowing a large
and small particle to switch positions, the alternating strings rapidly change into strings
consisting mainly of large spheres. However, without swap moves, these structures are
stable even in long simulations, and the distribution of the number of small particles
between two larger ones is approximately constant after equilibration, as shown in Fig.
2.6.

2.5 Asymmetric dumbbells
Finally, we investigate strings in a system of asymmetric hard dumbbells in an external
electric field. Each dumbbell particle consists of a large and a small sphere, with diameters
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Figure 2.5: Probability distribution function P (nIS) of the number nIS of interstitial small
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and ηS = 2.9 · 10−3, as a function of the field strength γ. The size ratio is σS/σL = 0.8. The
particle charge for the left and right plot are given by Z2

SλB/σS = 50 and 100, respectively. The
black circle indicates the state point where the snapshot in Fig. 2.2 was taken.
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Figure 2.6: Time dependence of the probability distributions P (nIS) shown in Fig. 2.5, showing
how nIS changes as a function of the number of MC cycles, where one MC cycle consists of
NS + NL trial moves of the particles. The same parameters were used as in Fig. 2.5, with by
Z2
SλB/σS = 50 and γ = 58.6.



24 Chapter 2

σL and σS respectively, and a fixed separation distance d ≤ σLS, where σLS = (σL+σS)/2.
Each of the spheres contains a point dipole at its center that interacts with all others with
interaction potential:

βudip(rij, θij) = γpipj
2p2

L

(
σ

rij

)3

(1− 3 cos2 θij). (2.14)

Here, the dipole strength pi for sphere i is determined by the size of the sphere, and is
equal to either pL or pS for small and large spheres, respectively. The relative interaction
strengths for the two types of spheres is therefore controlled by the ratio pS/pL, while the
absolute interaction strength is determined by γ = γLL, as defined in Eq. 2.2.

Due to the interaction between the two spheres in a single dumbbell, a single particle
favors an orientation aligned along the z-axis. Magnetic colloidal particles of this type
have been seen to form chiral structures in experimental systems where the smaller part of
the dumbbell acquires a much stronger dipole moment in the external magnetic field.[39]
Recently, a variety of helical structures has been characterized as global potential minima
for clusters of asymmetric dumbbells consisting of two Lennard-Jones particles and a
point dipole directed across the axis between the spheres.[40]

Similar to systems of dipolar spheres, asymmetric dipolar dumbbells form strings
at low field strengths and packing fractions, which grow in length and thickness as γ
increases. We investigate the zero-temperature structure of these strings, and perform
Monte Carlo simulations to study the behavior at finite temperatures.

We first consider hard dumbbells consisting of two adjacent hard spheres at separation
distance d = σLS. The structure of a single string in the limit of strong fields (or zero
temperature) mainly depends on the size ratio of the dumbbell σS/σL, and the ratio
between the dipole moments of the two spheres pS/pL. By comparing the potential energy
for a number of possible configurations, we can draw a phase diagram of the predicted
structures as shown in Fig. 2.7. The candidate structures considered were head-to-toe
and head-to-head strings, buckled strings, columnar structures, and helical structures. In
the head-to-toe or head-to-head configuration, all spheres are centered on a straight line,
with the dumbbells oriented all in the same direction or alternating between ’up’ and
’down’, respectively. The buckled strings consist of a central string of large spheres, with
the smaller spheres pushed to either the side or the end of the string. When the dipole
moment of the smaller spheres is sufficiently large, the central string consists of smaller
spheres instead. For size ratio σS/σL > 0.5, the larger spheres arrange into two adjacent
columns. For σS/σL < 0.5, the structure formed can either consist of two sets of these
columns, or helical structures, strongly depending on the size ratio.

If the dipole moment of the spheres scales with the volume of the spheres, as would be
the case if both parts are made out of the same material, the large particles will have the
the stronger dipole moment. The dashed line in Fig. 2.7 shows the structures formed in
this case. Depending on the size ratio, the string only takes two shapes: aligned dumbbells
in head-to-head orientations, or a string of large particles with the small particles all on
the same side (except at the ends).

We wish to remark here that it is possible that we missed some structures, which
can change the phase diagram. In particular, for highly asymmetric dumbbells where the
dipole moment of the small sphere is large, the potential energies of helical and columnar
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Figure 2.7: Left: Ground-state phase diagram for strings of 15 asymmetric dumbbells, as
a function of size ratio q and dipole moment ratio pS/pL. The head-to-head configurations
consist of alternating pairs of large and small spheres, while the buckled strings are strings of
large particles with the small ones positioned at the contact points of two large particles. The
columnar or helical structures consist of strings of small spheres with the large spheres arranged
in multiple columns or in a helical structure. The dashed line illustrates dumbbells made out of
one material. Right: Cartoon of three dumbbell particles arranged in a string, with d chosen
such that the large part of the middle dumbbell touches the two small parts of its neighbours.

structures are close together. Since we only calculated the potential energies of a limited
set of candidate cluster configurations, with highly regular orientations of the particles
within the string, the possibility of more irregular structures being favored cannot be
discounted. Therefore, the phase diagram shown in Fig. 2.7 is mainly a qualitative
indication of the expected cluster shapes. However, the structures in the ground-state
phase diagram agree qualitatively with structures seen in simulations using high field
strengths.

The boundaries between the different structures shift slightly based on the length of
the string, but the observed structures seen remain the same for longer strings. While
changing center-of-mass distance d has some influence on the boundaries of these regimes,
it does not seem to qualitatively change most of the self-assembled structures. However,
changing d can strongly influence the columns and helices found at low size ratios with
pL < pS.

To further investigate the possibility of helical strings, we performed simulations of
highly asymmetric dumbbells, where the dipole moment of the small spheres was much
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Figure 2.8: Left: Structures resulting from the energy calculations, at various size ratios.
Here, d = dt + 0.01, the same values as used in the simulations. The numbers indicate the size
ratio. Both a side view and top view are shown for each size ratio. Right: Strings dipolar
asymmetric dumbbells resulting from simulations starting with a string consisting of 50 particles,
quenched to high field strengths, at various size ratios q as labeled and center-of-mass distance
d = dt + 0.01.

larger than that of the large spheres. For sufficiently high field strengths, the small spheres
will form a string, with the large spheres sticking out to the sides. Depending on the size
ratio, these large spheres can form either columns around the central string, or helical
structures. These chiral structures appear due to the frustrations caused by hard-core
interactions between the large spheres, which prevent them from lining up along the field
direction. By constraining the large spheres to a narrow ring-like volume around their
smaller partners, these frustrations cannot be compensated by small deviations parallel
to the string. This restriction can be obtained by choosing the distance d between the
two spheres of a dumbbell close to the minimum value dt where the large particles touches
the small spheres of nearby dumbbells in the string, as shown on the right in Fig. 2.7.
For this case, the ground-state structures we obtained are shown on the left side of Fig.
2.8 for six different size ratios.

From the potential energy minimization, we find that at size ratios just above σL/σs =
0.5 the large form two columns close together and aligned parallel to the string. At slightly
larger size ratios, this configuration would lead to overlaps, and each column becomes
buckled. In this case, the two buckled columns tend to be on opposite sides of the string.
For size ratio q < 0.47, the structure changes from columns to a double helix, decreasing
in pitch length as q decreases. Close to a size ratio of q = 0.33, the structure crosses
over to three vertical columns, turning into a triple helix once q < 1/3. For size ratios
q < 0.28, the large spheres will overlap in any configuration. At this point, the string of
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small particles will always be deformed.
We now perform MC simulations to investigate the formation of these structures.

To this end, we first carried out a normal simulation at low field strength, to allow the
dumbbell particles to form strings of sufficient length. Subsequently, we quenched these
strings to high field strengths, which should then mostly affect the positions of the large
spheres along these strings. These simulations were performed at low packing fractions
η ' 0.01, with N = 200 dumbbell particles in the simulation box. For each size ratio, the
distance d between spheres was chosen just above dt to minimize fluctuations of the large
spheres parallel to the string. Due to the high field strengths, the formation of the strings
is a process far out of equilibrium. The resulting string length distribution is therefore
not an equilibrium quantity that can be reliably measured from these simulations. Since
we are mostly interested in the configurations of individual strings after quenching, these
simulations can also be started from an initial configuration containing one long string.
When quenching the system, the field strength is increased in small steps (∆γ ' 1) during
the simulation, eventually freezing the system into a local energy minimum. At this point,
we observe the resulting structures. Long strings form readily in systems with q > 0.4.
For q < 0.4, the hard cores of the large spheres hamper the formation of strings of more
than four or five dumbbells. More asymmetric size ratios will also hinder reconfigurations
within the string, as the hard-core interactions severely limit the rotational freedom of
the dumbbells. While chiral structures can be found in these simulations, defects and
changes in the handedness are regularly seen, since both directions of chirality have equal
probability.

On the right side of Fig. 2.8, we show snapshots from simulations starting from an
initial configuration consisting of a straight string of 50 randomly oriented dumbbells.
After quenching, we observe that structures are formed similar to the predicted ground-
state structures, although defects in the structures exist in the structures resulting from
simulations, as the system can get trapped in local energy minima during the quench.
In these simulations, the dipole moment of the small spheres is 5 times that of the large
spheres, which is large enough to prevent breaking or bending of the string. While the
simulated strings show good agreement with the ground-state structures shown in Fig. 2.8,
the spontaneous formation of regular chiral structures appears to be difficult. This may be
a severe problem for experimentalists attempting to fabricate helical strings of asymmetric
dumbbells by applying an external electric field. The difficulty can be explained by the fact
that the energy costs involved in defects (which depend largely on next-nearest neighbor
interactions) are small compared to the gain in entropy for additional disorder in the
string. Additionally, the free energy barrier that has to be overcome to change the local
direction of the chirality in a string is large, due to both hard-core interactions and
attractive forces.

2.6 Conclusions
We investigated the self-assembly and structure of strings in systems of colloidal particles
with dipole moments induced by an external field. For dilute fluids of monodisperse
dipolar spheres dipoles, the distribution of string lengths can be effectively described
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by a first order thermodynamic perturbation theory. This allows for a fast prediction of
expected cluster sizes in string fluids, as long as strings do not cluster together. Potentially,
this result could be used to obtain a rough estimate of the effective field strength in
experimental systems if a string length distribution is known.

In binary systems, strings of large particles with both ring-like and flame-like clusters
of small particles can be formed in highly asymmetric systems, where q = σS/σL � 1.
In systems with a size ratio of q = 0.8 alternating strings can be formed instead. While
these structures are not thermodynamically stable, they persist in simulations on very
long timescales, and have been observed in experiments as well.

Asymmetric hard dumbbells can form a variety of structures in an electric field. When
the particles are made out of a single material, the lowest-energy structures are head-to-
head strings for nearly symmetric dumbbells, and buckled strings for more asymmetric
particles. However, in the case where the dipole moment of the small spheres is sufficiently
high, the lowest-energy structure consists of a string of small spheres, with the large
spheres either positioned in multiple columns or in a helical structure around the string. It
should be noted that defects are expected to be common in spontaneously formed clusters
of dumbbells, due to the large free energy barriers involved in changing the chirality of
the helical structure.
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2.8 Appendix: Experimental setup
In the experimental setups shown in Fig. 2.2, the colloidal dispersion consisted of equal
amounts (1.8 wt%) of small and large PMMA spheres in CHB. The polymethylmethacry-
late(PMMA) particles were synthesized by dispersion polymerization, covalently labelled
with the fluorescent dye 7-nitrobenzo-2-oxa-1, 3-diazol (NBD) or rhodamine isothio-
cyanate (RITC) and sterically stabilized with poly(12-hydroxystearicacid) [50]. We used
both suspensions with a size ratio of 0.25 (σL = 2.40µm and σS = 0.60µm) and size ratio
0.7 (σL = 1.50µm and σS = 1.05µm). The particles were dispersed in a 3:1 wt/wt mixture
of cyclohexyl bromide (Fluka) and cis-decalin (Sigma), saturated with tetrabutylammo-
nium bromide (TBAB, Sigma). In this mixture, the particles were nearly density and
refractive-index-matched, and they behaved like hard spheres [24]. All solvents were used
as received without any further purification. The solutions were placed in sample cells
with attached electrodes. After filling the cell with the colloidal suspension, we sealed at
both ends with UV-curing optical adhesive (Norland no.68), and we studied particle dy-
namics by means of confocal laser scanning microscopy (Leica TCS SP2). An oscillating
electric field was applied using a function generator (Agilent, Model 3312 OA) and a wide
band voltage amplifier (Krohn-Hite, Model 7602M). Subsequently, the structures formed
in the cell were permanently fixed using a thermal annealing method. The cell was then
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carefully opened and dried on a scanning electron microscopy grid, and the remaining
clusters were imaged with a scanning electron microscope (FEI, XL30FEG).





3

Phase diagram of colloidal spheres
in a biaxial electric or magnetic

field

Colloidal particles with a dielectric constant mismatch with the surrounding solvent in
an external biaxial magnetic or electric field experience an “inverted” dipolar interaction.
We determine the phase behavior of such a system using Helmholtz free energy calcula-
tions in Monte Carlo simulations for colloidal hard spheres as well as for charged hard
spheres interacting with a repulsive Yukawa potential. The phase diagram of colloidal
hard spheres with “inverted” dipolar interactions shows a gas-liquid transition, a hexago-
nal ABC stacked crystal phase, and a stretched hexagonal-close-packed (hcp) crystal. The
phase diagram for charged spheres is very similar, but displays an additional layered-fluid
phase. We compare our results with recent experimental observations.
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3.1 Introduction
The phase behavior of colloidal particles in a suspension can be influenced by applying an
oscillating external magnetic or electric field. If the magnetic susceptibility or dielectric
constant of the colloidal particles differs from that of the solvent, the particles will acquire
a dipole moment along an external uniaxial field, leading to dipolar interactions between
the particles. In this way, the colloidal interactions can be tuned reversibly without having
to modify the chemistry of the colloidal particles or the solvents involved. Hence, an
external uniaxial electric or magnetic field leads to a greater control over the macroscopic
phase behavior and structure of the colloidal system. The phase behavior of both hard
and charged colloids with aligned dipolar interactions obtained by applying an external
uniaxial field has been studied theoretically[51, 52] and experimentally[24, 25, 30, 31]
extensively. In addition, the phase diagram of charged and uncharged dipolar hard spheres
has been determined by free energy calculations using Monte-Carlo simulations.[26] In this
work, it was shown that three new crystal structures, i.e., hexagonal-close-packed (hcp),
body-centered-tetragonal (bct), and body-centered-orthorhombic (bco) phases, can be
stabilized by applying an external uniaxial field. For completeness, we mention that the
behavior of colloidal particles with permanent dipole moments in external fields [53–55]
and in confinement [56, 57], has been widely investigated as well.

By applying multi-axial fields, more complicated anisotropic interactions can be in-
duced, leading to the formation of more complex particle structures.[58] In this chapter,
we determine the phase diagram of colloidal particles in an external biaxial electric or
magnetic field, which can be obtained by rotating or randomly changing the field direc-
tion. Effectively, the particles have a rotating dipole moment in the plane of the rotating
field. If the frequency of the rotating field is sufficiently high, the particles experience a
rotationally or time averaged dipolar interaction, leading to a net attraction in the plane
of the biaxial field, and a repulsion perpendicular to the field. The time-averaged dipolar
interaction that the particles experience in a uniaxial field rotating in the xy-plane is just
−1/2 times the dipolar interaction in a uniaxial field oriented in the z-direction, and can
be regarded as a negative or “inverted” dipolar interaction. In contrast to the relatively
simple dipolar interaction, the “inverted” dipolar interactions between the colloids give
rise to a gas-liquid coexistence at low field strengths. At higher field strengths, large
hexagonal sheets of particles form, eventually merging into a crystal phase.

Simulations of granular particles in various biaxial and multi-axial fields have been per-
formed by Martin et al.,[58–61] with a focus on kinetics and non-equilibrium structures, as
well as magnetic properties of the structures formed. The magnetic properties have also
been compared to experimental results measured in systems of magnetic field-structured
composites, formed by polymerizing the solvent while the particles are in the external
field. [62] In a study of freely rotating permanent dipoles in a rotating field, Murashov
and Patey showed the formation of sheet-like and layered structures for a range of an-
gular velocities of the external field, using Molecular Dynamics and Brownian Dynamics
simulations.[63] In these systems, the formation of layers highly depends on the moment
of inertia of the dipoles and the frequency of the rotating field. More recently, colloidal
systems in an external biaxial electric field have been investigated using confocal mi-
croscopy, [64] showing the formation of large hexagonal sheet-like structures, which were
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made permanent by thermal annealing. The formation of these sheets in two-dimensional
systems has also been studied experimentally [65] with the particles confined to an inter-
face. In this chapter, we investigate using Monte Carlo simulations the equilibrium phase
behavior of charged and uncharged colloidal hard spheres interacting with an “inverted”
dipolar interaction. Additionally, we map out the phase diagrams for both systems using
free energy calculations.

3.2 Methods

We perform Monte Carlo simulations in the canonical (NV T ) and isothermal-isobaric
(NPT ) ensemble, where we fix the volume V and pressure P , respectively. In addition,
we keep the number of particles N in the system fixed and the temperature T . We perform
simulations of N = 384 − 432 particles. Larger systems were used for the layered-fluid
phase and the low-density crystals to reduce finite-size effects. Finite size effects were
checked by performing the same free energy calculation in a larger system (N = 900)
at one point in each phase diagram. This caused the fluid-solid coexistence packing
fractions to shift by less than 0.005 in both the charged and uncharged system, which
remains within our statistical error bars.

Cluster moves were introduced to move or rotate clusters of particles at once in order
to speed up equilibration of the layered-fluid phase. In the initial step of a cluster move,
a random particle in the system is selected and taken as the center of the cluster. We
construct a cylindrical volume around this particle with its symmetry axis aligned along
the z-axis. The radius rc and height h are selected randomly from a uniform distribution.
For our simulations, we use 0 < rc < min(Lx, Ly) and 0 < h < σ. All particles positioned
with their center of mass in the cylinder are considered to be part of the cluster and
are moved collectively. In the case of a rotation move, the particles are rotated around
the central particle in the plane of the external field. In the case of a translation move,
the particles are given the same random displacement dr. The number of particles in
the cluster volume is counted before and after the cluster move. If any new particles are
present in the cluster volume after the move, moving the same cluster in reverse would
also move these extra particles. As this would break detailed balance, any cluster moves
where the number of particles in the chose cylinder around the central particle changes
are rejected. Eventually, the translation or rotation is accepted or rejected based on the
Boltzmann factor exp(−β(Unew − Uold)).

In our model, we assume an external rotating electric or magnetic field in the xy-plane
of our system. The colloidal particles experience an “inverted” dipolar interaction given
by:

βuinv(rij) = −γ4

(
σ

rij

)3

(1− 3 cos2 θij), (3.1)

where rij is the center-of-mass distance vector between particles i and j, θij denotes the
angle that rij forms with the z-axis, σ is the diameter of the particle, and β = 1/kBT with
kB Boltzmann’s constant. In the case of an external electric field E, the dimensionless
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prefactor γ in Eq. (3.1) is given by

γ = πα2εsσ
3|E|2

8kBT
(3.2)

where α = (εp − εs)/(εp + 2εs) is the dielectric contrast factor with εp,s the dielectric
constants of the particles and the solvent, respectively. Similarly, in the case of an external
magnetic field H, γ is written as

γ = πα2µsσ
3|H|2

8kBT
(3.3)

where α = (µp − µs)/(µp + 2µs) and µp,s is the magnetic susceptibilities of the particles
and the solvent, respectively. We note that for γ = 1, the maximum value of the pair
potential, i.e. 0.5kBT , is reached, when two adjacent particles are aligned along the z-
axis. The minimum value (-0.25kBT ) is obtained when both adjacent particles are in the
xy-plane. In addition, the colloidal hard spheres interact with a hard-sphere potential
given by

βuhs(rij) =
{

0, rij ≥ σ
∞, rij < σ

, (3.4)

while we use a repulsive hard-core Yukawa potential in the case of charged spheres

βuY (rij) =


ε exp[−κ(rij − σ)]

rij/σ
, rij ≥ σ

∞, rij < σ
, (3.5)

where
ε = Z2

(1 + κσ/2)2
λB
σ

(3.6)

is a constant prefactor depending on the colloidal charge number Z, Debye screening
length κ−1 and Bjerrum length λB = e2/εskBT with e the elementary charge. Eq. (3.5)
is the pair potential given by the Derjaguin-Landau-Verwey-Overbeek theory for charged
colloids.[42] We have neglected the Van der Waals attraction in Eq. (3.5) as we are
interested in refractive index matched systems. The repulsion increases the distance
between the layers of the crystal phase, and causes part of the liquid phase to form
fluid-like layers.

The Ewald summation is employed to calculate the long-range dipolar interactions.[17,
23] The calculation of the “inverted” dipolar interactions using the Ewald summation
method is largely identical to the method used for normal dipolar systems, with the
exception of the term related to the boundary conditions. In this case, we assume con-
ducting boundary conditions. We first note that the “inverted” dipolar interaction, which
is formed by a time-averaged rotating dipolar interaction in the xy-plane, is identical
to the averaged interaction induced by two perpendicular external uniaxial fields in the
xy-plane. Hence, the total potential energy of the system is the average of two energy
calculations. The correction factor can be derived by summing the effect of the boundary
conditions on both of these calculations.
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For non-conducting boundary conditions, the total potential energy of a specific con-
figuration {rN} of the “inverted” dipolar system Unc

inv equals the average of the total
potential energy of two dipolar systems with uniaxial fields in the x and y directions:

Unc
inv =

Unc
x + Unc

y

2 = −1
2U

nc
z . (3.7)

For normal dipolar interactions the difference between non-conducting and conducting
boundary conditions is given by:[17]

U cond
x,y,z = Unc

x,y,z −
2π
3V M ·M, (3.8)

where U cond is the interaction with conducting boundary condition and M is the square
of the total dipole moment of the system, with M ·M = γN2/2. Combining the difference
in potential energy between conducting and non-conducting boundary conditions for the
two dipolar systems with perpendicular uniaxial fields, yields:

U cond
inv =

U cond
x + U cond

y

2 (3.9)

=
Unc
x + Unc

y

2 − 2π
3V

γN2

2 (3.10)

= −1
2U

nc
z −

2π
3V

γN2

2 (3.11)

= −1
2U

cond
z − π

V

γN2

2 . (3.12)

As a result, we can calculate the potential energy of a biaxial system with conducting
boundary conditions U cond

inv from the energy of the same configuration in a system with
normal dipolar interactions by multiplying the energy by −1/2 and adding the above
correction term −πγN2/2V .

The Helmholtz free energies of the ABC stacked crystals were calculated using the
Einstein integration method.[17, 66] In addition, we calculate the Helmholtz free energy
as a function of density by integrating the equation of state. We determine the coex-
isting densities with the fluid phase by employing the common tangent construction. At
high densities, a coexistence between face-centered-cubic (fcc) and hexagonal-close-packed
(hcp) crystal phases occurs. The free energy difference between these structures is on the
order of 10−3kBT , and therefore hard to measure with sufficient statistical accuracy us-
ing this method. Instead, we use the hard-sphere crystal as a reference state for both
structures, and calculate the free energy as a function of the interaction strength by using
a thermodynamic integration path consisting of a gradual increase in the field strength.
For these crystals, only the free energy difference between hcp and fcc stacking is needed,
which was linearly interpolated from literature values for this difference at coexistence and
close packing [67]. Due to the narrow coexistence region, and a large estimated error in
the free energy calculations, we only show one coexistence line between these high-density
crystal phases. The estimated error in the coexistence field strength γ is on the order of
0.5. For the fluid phase, the hard-sphere fluid (using the equation of state by Speedy [68])
and ideal gas were used as reference states for the liquid and the gas, respectively.
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For the free energy of the layered-fluid phase in the case of charged spheres, we use a
method similar to the one employed by Bolhuis and Frenkel for the smectic phase of hard
spherocylinders.[69] Via a thermodynamic integration path, we relate the free energy of
the layered fluid in the system of charged spheres with inverted dipolar interactions to the
free energy of a hard sphere fluid. This integration is done in two steps. We first couple
the particles to their layers by applying an external sinusoidal potential while turning off
the interactions. The resulting potential in the system depends on a switching coefficient
λ:

U(λ) = λUsin + (1− λ)Uint, (3.13)

= λα
N∑
i=0

sin(2πnlzi/Lz) + (1− λ)Uint, (3.14)

with Usin and Uint the total energy in the system due to the external potential and the
particle interactions, respectively. The factor α is the strength of the sinusoidal potential
and is chosen such that the particles in the layer remain disordered for all 0 < λ < 1.
The number of layers nl and the height of the box Lz are chosen such that they match
the equilibrium layer spacing measured from independent NPT simulations. The free
energy difference between Finv − Fsin the system with inverted dipolar interactions and
the system with the sinusoidal potential is given by:

β(Finv − Fsin) =
∫ 0

1
dλ 〈Usin − Uint〉λ − ln V. (3.15)

The resulting system consists of hard spheres confined to layers by the external poten-
tial. To allow equilibration of the density within the layers throughout the whole system,
we use shifted boundary conditions, such that the fluid layers are interconnected at the
edges of the simulation box. In our simulation, a particle that leaves the simulation box
in the x-direction, does not only enter the simulation box at the opposite face, but is also
shifted in the z-direction by one fluid layer, i.e., by Lz/nl. The direction of the shift is
determined by the direction in which the particle leaves the simulation box. In this way,
the particles can diffuse throughout the whole system, as there is effectively one single
layer, which allows for the relaxation of the density within each fluid layer. Of course, the
energy calculations should also incorporate this shift. For the Yukawa interaction and the
real space contribution of the Ewald sums, this can be done by simply calculating the en-
ergy from the relevant image particles. For the reciprocal space contribution of the Ewald
summation, we use the fact that the system is still periodic along x, but with a period nl
times larger and with nl times more particles. Since the contributions from these extra
particles are the same as those in the original box, but multiplied by a complex factor,
the energy calculation does not require significant extra computer time.

The free energy of the system of pure hard spheres in an external sinusoidal potential
can be calculated in two ways. Turning off the potential, the system transforms gradually
into an isotropic hard-sphere fluid, which can be used as a reference state. The free
energy difference between the hard sphere fluid and hard spheres in an external sinusoidal
potential can be calculated similar to Eq. 3.15, but without inverted dipolar interactions.
Combining the two steps, the free energy of the layered fluid can then be calculated as:

βFinv = βFHS +
∫ 1

0
dλ 〈Usin〉HSλ +

∫ 0

1
dλ 〈Usin − Uint〉λ ,
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with FHS the free energy of a hard sphere fluid at the same density as the layered fluid,
and with the first integral evaluated without inverted dipolar interactions. Alternatively,
if the strength of the external sinusoidal potential is sufficiently high, the particles are
strongly constrained to their layer and the system behaves effectively as a two-dimensional
hard-disk fluid with additional harmonic vibrations perpendicular to the plane, for which
one can calculate the free energy analytically. We checked that the free energies using
both methods are equal within our statistical errorbars. However, since integrating to a
hard sphere fluid uses a shorter integration path, the numerical errors in this method are
smaller. Note that two integration paths are needed: in the first path, we switch off the
inverted dipolar interactions, but we have to switch on an external sinusoidal potential to
keep the symmetry of the fluid. In the second path, we turn off the sinusoidal potential
to obtain a homogeneous fluid phase.

3.3 Hard spheres in a biaxial field
We plot the calculated phase diagram for hard spheres in a biaxial field in Fig. 3.1. In Fig.
3.2, we show snapshots of the system in various phases, as denoted by the crosses in the
phase diagram (Fig. 3.1). At γ = 0, the well-known hard-sphere fluid-fcc (hexagonal ABC
stacked) phase behavior is recovered. As opposed to the normal dipolar hard spheres,[26]
we find at γ ' 6 a gas-liquid coexistence for this system. We note that well-inside the gas-
liquid coexistence region, system-size spanning slabs of liquid and gas are formed, which
are aligned in the plane of the rotating field. Moreover, the system can phase separate
and/or change phase very easily. It is tempting to speculate that these observations are
due to a strongly anisotropic gas-liquid interfacial tension, which is much lower for the
plane parallel to the biaxial field than the orthogonal planes.

Additionally, we find two stable crystal structures in the phase diagram. At maximum
packing the fcc crystal is favored for low field strengths due to the small free energy
difference between fcc and hcp, where fcc is the most stable phase in the case of hard
spheres (γ = 0). The orientation of the crystal phase with respect to the field has no effect
on its energy when the crystal is not deformed, however, at non-zero field strengths, the
crystal is compressed in the plane of the field and stretched in the perpendicular direction,
leading to a difference in free energy between the possible orientations for the crystal. As
a result, the stable structure consists of hexagonal sheets parallel to the field plane.

The lowest-energy structure of this system is a close-packed hcp crystal, with the
hexagonal planes perpendicular to the plane of the rotating field. The energy per parti-
cle for this orientation (−1.48138(1)γkT ) is slightly lower than that of hcp with sheets
oriented parallel to the field (−1.48012(1)γkT ) or that of fcc (−1.48096(1)γkT , for any
orientation). Evidently, the free energy difference between fcc and hcp is very small for
the different orientations, and hcp is only stable in a small pocket at very high densities.
At lower densities, the stable structure is fcc. We wish to remark here that the fcc and
the hcp phases are not entirely symmetric, but are slightly stretched in the z-direction.
Hence, the fcc phase is an ABC-stacked crystal of hexagonal sheets, oriented along the
xy-plane, while in the hcp phase the hexagonal planes themselves are stretched. Stacking
defects are likely to occur, since the free energy loss is only on the order of 10−3kTγ per
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Figure 3.1: Phase diagram for hard spheres in an external biaxial electric or magnetic field
in the dipole moment strength γ versus packing fraction η representation. The black circles
denote the points where the phase boundaries were determined, while the gray areas denote the
coexistence regions. The tielines that connect the coexisting phases are vertical. The hexagonal
ABC stacked crystal phase can be regarded as an fcc crystal, which is stretched in the direction
perpendicular to the field and is oriented with the hexagonal planes parallel to the plane of the
biaxial field, as illustrated by the two perpendicular arrows indicating the plane of the field in
the schematic picture. The stretched hcp is oriented with the hexagonal planes perpendicular
to the biaxial field, as illustrated by the ⊗ and arrow in the picture, with ⊗ indicating the axis
perpendicular to the page, and is slightly stretched in the direction perpendicular to the field.
The top axis shows the electric field strength corresponding to the dipole moment strength γ,
using the experimental values α = −0.22, εs = 5.8ε0, σ = 2µm, and T = 300K.[64] The crosses
denote the points where the snapshots in Fig. 3.2 were taken.
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Figure 3.2: Left: Snapshots of typical simulation configurations for hard spheres with inverted
dipolar interactions. The arrows indicate the two field directions, with ⊗ indicating the axis
perpendicular to the page. a) A low-density fluid at γ = 2, η = 0.11. b) A higher density fluid,
with γ = 8 and η = 0.43. c) Crystalline ABC-stacked hexagonal layers of spheres at η = 0.58
and γ = 8. d) The stretched hcp crystal at γ = 9, η = 0.71. Note that the stretched hexagonal
planes are perpendicular to the field plane.
Right: Equations of state for hard spheres with inverted dipolar interactions at field strengths
γ = 6, 8, 18. The lines are fits through the data, using dashed lines for the crystals and solid
lines for the fluids. The green horizontal lines show the coexistences. For γ = 8 and 18 the
coexistences with a gas at near-zero pressure have been omitted.

particle at close packing, and becomes even lower at lower densities.
Solitary sheets or rafts can appear at high field strengths whenever there are insufficient

particles in the simulation box to form a box-spanning sheet. However, if the fields are
strong enough to form these structures, and there are multiple sheets in the box, they
will join into a crystal if their orientation matches, showing that these structures are not
stable on their own. Our phase diagram explains these findings as it displays indeed an
enormous widening of the solid-gas transition for increasing γ. We note that the tielines
that connect the coexisting phases are vertical in Fig. 3.1. Hence, the coexisting gas and
solid phases becomes progressively more dilute and dense, respectively, upon increasing
γ, yielding coexistence of a dense solid phase with a gas phase, which is extremely dilute.

Equations of state for the fluid and fcc phases at field strengths γ = 6, 8, 18 are shown
on the right side of Fig. 3.2. For γ = 6, a gas, liquid and solid branch are shown, with
the coexistences denoted by horizontal lines. For γ = 8, only the liquid and solid branch
are shown, as the liquid coexists with a gas at near zero density. At γ = 18, we show only
the fcc branch, which again coexists with an extremely dilute gas.

3.4 Charged spheres in a biaxial field
The colloidal particles that are used in experimental systems are often charged, due to
ionisable groups on their surfaces, which dissociate when suspended in a solvent. The bare
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Coulombic repulsions between the colloidal particles are then screened by the ions in the
solvent, leading to a Yukawa or screened-Coulombic interaction.[42] In our simulations,
we choose an inverse screening length of κσ = 10, and surface charge Z2λB/σ = 450. The
phase diagram for charged spheres in an external biaxial field is shown in Fig. 3.3. In Fig.
3.4, we show the equations of state for three field strengths. For γ = 10, the fluid and
crystal branch are shown. At γ = 16, the liquid and solid branch are shown, omitting the
coexistence with a gas at near zero pressure. For γ = 24, we again show only the crystal
branch, which also coexists with a gas at extremely low pressures.

At γ = 0, we find a fluid-fcc (hexagonal ABC) coexistence with coexisting packing frac-
tions ηfluid = 0.31 and ηfcc = 0.32. Additionally, we again find a gas-liquid coexistence,
which is shifted to much lower densities compared to that of hard spheres. Moreover,
the coexisting liquid becomes inhomogeneous for field strengths γ > 16, and system-size
spanning fluid-like layers are formed with their orientations aligned in the plane of the
rotating field. Fig. 3.4c shows a typical configuration of a layered-fluid phase. The
inhomogeneous structure of the fluid phase can be explained by the Yukawa repulsion
between the particles, which not only increases the distances between the particles within
each sheet, but also induces a repulsion between neighboring sheets. Particles can diffuse
from one layer to another, but close to the triple point, this process slows down signifi-
cantly. In addition, we also observe large fluctuations in the distances between adjacent
sheets at low pressures, indicating a low free energy cost to create an interface between
the gas and the layered-fluid phase. Consequently, at low densities the system can easily
form small numbers of fluid layers, which are separated by a dilute gas phase. It is likely
that the same would happen in experiments at low packing fractions, especially when the
sheets are too large to move easily. At low field strengths, a stable homogeneous liquid
exists in between the layered-fluid phase and the stable crystal phase, but disappears
when γ > 19. The transition between the layered-fluid phase and the isotropic liquid
appears to be continuous as no hysteresis can be seen in the equation of state, and the
amplitude in the density profile of the layers changes continuously with field strength
and density. Exemplarily, the left side of Fig. 3.5 displays the pair correlation function
that measures the positional order in the direction perpendicular to the field for varying
packing fractions. We indeed observe clearly that the amplitude decreases continuously
with increasing packing fraction.

The lowest energy state of the system now depends on the field strength: at close
packing and γ > 5.9168(2), the dipolar interactions dominate the Yukawa interactions,
and hcp is the ground state. At lower field strengths, the Yukawa interactions cause the
system to favor the fcc phase. Due to the entropy difference for hard spheres between
fcc and hcp (0.0011(1)kT per particle at close packing [67]), the phase transition between
the two structures appears at slightly higher field strength than γ = 5.9168, i.e., γ =
8.4(4). We again note that the hexagonal planes of the fcc and hcp phase are parallel
and perpendicular respectively to the plane of the biaxial field (xy-plane) and that both
structures are stretched in the z-direction. Hence, the fcc phase is a hexagonal ABC
stacked crystal phase, and the hcp is a slightly stretched hcp phase.

We also find that the coexistence region between a dilute gas phase and the ABC
stacked crystal becomes wider upon increasing γ. However, the density of the crystal at
coexistence is much lower than in the hard sphere case, mainly due to a larger distance
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Figure 3.3: Same as Fig. 1, but for a system of charged spheres interacting with a Yukawa
interaction. The inverse screening length κσ = 10, and λBZ2/σ = 450 (ε = 12.5). The layered-
fluid phase consists of system-spanning slabs of fluid aligned in the plane of the biaxial field.
The crosses indicate the positions in the phase diagram where the snapshots in Fig. 3.4 were
taken.

between adjacent sheets (as shown in Fig. 3.4d). As the distance between the sheets
increases, the effect of the relative position and orientation between neighboring sheets
on the potential energy reduces significantly, leading to a large amount of disorder in the
position and orientation of the sheets. We observe that the distance between the sheets
can fluctuate significantly during our simulations at low densities. However, the crystal
is still the stable phase. In the bulk limit, the entropy gain from detaching a sheet from
the crystal would be dominated by the energy cost to detach an infinite sheet of particles.
Consequently, the fcc crystal will be the thermodynamically stable phase in the bulk limit.
In finite systems, however, the sheets will be translationally and rotationally disordered.
The translational disorder can be clearly seen to appear in simulations: when a crystal
phase is used as the initial configuration, the layers of the crystal become disordered
during simulations at low density. Rotational disorder does not emerge in crystals in
a rectangular periodic box, but is expected to appear in experimental systems. At low
pressures, the separations between the hexagonal sheets fluctuate substantially, resulting
in large density fluctuations. It is likely that these fluctuations contribute to the disorder
of the sheets as well.

On the right side of Fig. 3.5 we plot the difference in potential energy per particle
β∆U of various stackings of the hexagonal crystalline sheets in the crystal phase with
ABC stacking, as a function of sheet distance ∆z for γ = 30. In addition, we plot the
contribution of the Yukawa interaction to this potential energy difference, denoted by the
dashed lines, and we observe that the contribution from the dipolar interaction dominates
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Figure 3.4: Left: Snapshots of typical simulation configurations for charged spheres with in-
verted dipolar interactions. The arrows indicate the two field directions, with ⊗ indicating the
axis perpendicular to the page. a) A low-density fluid at γ = 6, η = 0.05. b) A higher density
fluid, just above the line in the phase diagram marking the crossover between the homogeneous
and layered fluids (γ = 16, η = 0.26). c) Layered fluid at γ = 18, η = 0.20. d) Crystalline
ABC-stacked hexagonal layers of charged spheres at η = 0.32 and γ = 28.
Right: Equations of state for charged spheres with inverted dipolar interactions at field
strengths γ = 10, 16, 24. The lines are fits through the data, using dashed lines for the crystals
and solid lines for the fluids. The green horizontal lines show the coexistences. Both the crystal
at γ = 24 and the liquid at γ = 16 also coexist with an extremely dilute gas at near-zero density.

Figure 3.5: Left: Pair correlation function in the z-direction (perpendicular to the biaxial field)
of the layered-fluid phase with dipole moment strength γ = 17 for varying packing fractions.
The amplitude decreases with increasing η, as denoted by the labels.
Right: Difference in potential energy per particle ∆βU between a perfect crystal of ABC
stacked hexagonal sheets and differently stacked sheets, at γ = 30 as a function of the center-
to-center distance between the sheets ∆z. From left to right, the red, blue and black solid lines
denote the comparison with AB hollow-site stacking, AB bridge-site stacking, and AA stacking,
respectively. The dashed lines represent the contributions from the Yukawa interactions to the
total potential energy difference. The inset shows the sheet distance as a function of the packing
fraction at γ = 30.
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that of the Yukawa interaction close to coexistence. We find that the total difference in
potential energy decreases exponentially with sheet distance. The potential differences are
dominated by the dipolar repulsions from nearby particles in the adjacent layer. Hence,
hollow-site stackings have the lowest potential energy, while the AA stacking corresponds
to the highest one. In the inset, we plot typical sheet separations ∆z for equilibrium
ABC stacked crystals close to the coexistence density. In the inset, we plot typical sheet
separations ∆z for equilibrium ABC stacked crystals close to the coexistence density.
We find that at a sheet distance of ∆z = 2.0σ, the difference in potential energy per
particle between ABC and AA stacking is only 0.002 kBT per particle, while the difference
compared with other stackings is even smaller. As a result, we expect large amounts of
stacking disorder in any low-density crystal.

3.5 Comparison with experiments

Recently, colloidal systems in an external biaxial field have been studied experimentally
by Leunissen et al.[64] In these experiments, a biaxial field was applied by using two
perpendicular uniaxial electric fields and randomly changing the field direction. A system
of colloids in suspension with large amounts of salt was used in order to approach the
uncharged case. Field strengths were varied in a range approximately corresponding to
31 < γ < 170, and the packing fraction was η = 0.2. The particles were seen to organize
into large hexagonal sheets, with multiple domains, which generally did not merge into
three-dimensional structures due to orientational disorder. However, close to the edge of
the sample, where the orientation of the hexagonal structure was fixed by the wall, they
observed an AB bridge-site stacking of the sheets, which is in contradiction with our bulk
simulations. Even in the case of charged particles, where we find substantial disorder
between the sheets, there is a clear preference for hollow-site stacking of the particles, as
can be seen in Fig. 3.5 on the right-hand side. As our simulations do not take into account
the effect of the walls, it seems likely that the electrodes in the experiments impose an
orientation on the hexagonal planes. For systems of colloids in a uniaxial field, image
charge effects have been shown to affect the orientation of sheet-like structures, leading
to lines of particles parallel to the electrode. [45] This effect is likely to occur here as
well. If the distance to the electrode is also the same for each sheet, the sheets can only
move relative to their neighbors along the direction parallel to both the wall and one of
the field directions. In this case, an AB bridge-site stacking would indeed be the lowest-
energy state (the right side of Fig. 3.5 illustrates the potential energy difference between
AB bridge-site stacking and AA stacking). Further from the wall, no stacking preference
was clearly visible, which indeed agrees with the disorder seen in the simulations. In
the experimental setup, the sheets are much larger than in the simulations, which slows
down their motion considerably. In addition, the sheets can have multiple domains with
different orientations, and can be attached to the walls or other sheets, further preventing
equilibration.
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3.6 Conclusions
In conclusion, we have calculated the phase diagrams for uncharged and charged hard
spheres in an external biaxial electric or magnetic field. In both systems, the interaction
included a hard-core interaction and an “inverted” dipolar interaction with its strength
determined by the field strength γ. In the charged sphere case, a Yukawa repulsion was
included as well, using κσ = 10.0 and λBZ2/σ = 450. The phase behavior as a function
of the field strength and particle density shows a gas-liquid coexistence for both systems,
as well as a number of crystal structures. All crystal structures found are distortions of
the close-packed structures hcp and fcc, where the distortions are caused by a stretching
of the crystal in the direction perpendicular to the plane of the biaxial field. Especially in
the case of charged spheres, these deformation can be very strong, resulting in separations
between layers of particles on the order of 2σ. While free energy considerations show that
even at low densities the stable crystal structure is that of fcc, we expect a huge number
of planar defects present in the crystal as the potential energy differences are small. In
addition to these structures, the system of charged spheres exhibits a layered-fluid phase
close to the triple point. These layers are internally disordered, but the density profiles
show strong periodicity perpendicular to the plane of the rotating field.
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Colloidal cubes in an external
electric or magnetic field

Electric fields have proven to be a versatile tool for directing colloidal particles into 1D
strings, 2D sheets and 3D crystal structures. When a suspension of colloidal particles
is placed in an oscillating electric field, the contrast in dielectric constant between the
particles and the solvent induces a dipole moment in each of the colloidal particles. The
resulting dipole-dipole interactions can strongly influence the phase behavior of the sys-
tem. In addition, most anisotropic particles can be aligned in electric fields. However,
in the case of cubes the potential energy of a single cube-shaped particle in an electric
field is independent of its orientation. As a result, single cubic particles do not align
in such an external field. Alignment effects can still occur due to hard-core constraints
when multiple particles cluster into a string or crystal phase. We investigate the phase
behavior of cube-shaped colloidal particles in electric fields, using Monte Carlo simula-
tions. In addition to string fluid and orientationally ordered BCT phases, we observe a
columnar phase consisting of hexagonally ordered strings of rotationally disordered cubes.
By simulating the system for a range of pressures and electrical field strengths, we map
out an approximate phase diagram. Additionally, we study the effect of the point-dipole
approximation on the alignment of cubes in string-like clusters.
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4.1 Introduction

In the previous chapter, we studied the string-like clusters formed by spherical particles in
an external electric or magnetic field. As shown there, external fields can strongly affect
the behavior of colloidal particles. Due to the difference in dielectric constant between the
colloids and the solvent, an external field induces a dipole moment in each colloid, leading
to anisotropic dipole-dipole interactions. These interactions can lead to self-assembly into
a variety of string-like clusters. In addition, the bulk phase behavior exhibits a body-
centered tetragonal (BCT) and a hexagonally close-packed (HCP) crystal phase as well
as the face-centered cubic (FCC) crystal that also appears in hard-sphere systems.[26]
While we limited ourselves to spherical and dumbbell particles in the previous chapter,
the same method can be used to induce dipolar interactions in colloidal particles of any
shape. As seen in dumbbells, external electric fields can also be used to align anisotropic
particles along the direction of the field. This technique is commonly used in liquid-crystal
displays by changing the director of the nematic phase using an electric field.

Recently, methods to synthesize cubes on the micrometer [70, 71] and nanometer
scale [72–74] have become available, generating interest in the phase behavior of cube-
shaped particles. Several simulation studies have investigated the phase behavior of cubic
and similar particles, resulting in phase diagrams for tetragonal parallelepipeds [75] and
colloidal superballs [76], as well as for a range of polyhedral shapes with varying degrees
of anisotropy.[77] A simulation study on cubes with fixed dipole moments that rotate
along with the particle, as might be expected for semiconductor nanoparticles, showed
that these can self-assemble into wires, sheets or ring-like structures depending on the
orientations of the dipoles with respect to the cubes.[78]

In this chapter, we use Monte Carlo simulations to study the effect of external fields
on the phase behavior of dielectric colloidal cubes. In contrast with most anisotropic
particles, the orientation of a single cube is not affected by external electric fields: the
symmetry of the particle causes its potential to be independent of its orientation. As
a result, colloidal cubes can rotate freely in the electric field. However, the hard-core
interactions between particles can lead to alignment when two or more particles are in
close proximity, either due to a high packing fraction in the system, or as a result of the
dipolar attractions induced by the external field. By observing the behavior of the system
in Monte Carlo simulations, we find both partial alignment of the particles in the string
fluid and columnar crystal phases, and complete alignment in the BCT and simple cubic
crystal phases.

4.2 Methods and model

We model the colloidal cube-shaped particles as perfect hard cubes with edge length σ
and one or more point dipoles inside each particle. The interactions thus consist of a
dipolar interaction between the cubes and a hard-core repulsion that prevents particles
from overlapping. In the case where each particle contains a single dipole, the dipolar
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interaction potential between two particles i and j is given by:

βudip(rij, θij) = γ

2

(
σ

rij

)3

(1− 3 cos2 θij), (4.1)

where rij denotes the distance between the two particles and θij the angle between the
distance vector between the particles and the direction of the field. As in the previous
chapter, the strength of the dipole interaction is given by the field strength γ: the inter-
action potential between two particles separated by a distance σ along the field direction
is −γkBT . The long-range interactions were handled using Ewald summations.[17, 23]
To detect overlaps between two cubes, we used a triangle tesselation scheme. [79] While
a cube-specific algorithm based on the separating axis theorem would likely be more
efficient, the difference is negligible compared to the computational cost of the Ewald
summations used to calculate the potential energy.

In the simplest approximation, the dipole interactions are modeled by a single point
dipole in the middle of each cube. In this model, rotations do not affect the dipolar pair
interaction between two cubes, and rotational order can only emerge due to the hard-
core interactions. However, it is not clear that the interaction between two cubes can
be approximated with two point dipoles: due to the external field, the full volume of
each colloidal cube will be polarized, resulting in a more complex interaction. While at
large distances the interaction between two particles should behave as a simple dipole-
dipole interaction, there will be short-range deviations from this behavior. To investigate
this, we also studied cubes containing multiple dipoles arranged in a simple cubic lattice
aligned with the orientation of the particle. Thus, if a particle at position r contains n3

point dipoles, the positions of these dipoles are given by:

rijk = r + (2i+ 1− n)a + (2j + 1− n)b + (2k + 1− n)c, (4.2)

where a,b and c denote the three (mutually perpendicular) edge directions of the particle,
and 1 ≤ i, j, k ≤ n. Each point dipole interacts with all others via Eq. 4.1, with the
interaction strength γ lowered by a factor n3 to ensure that the interactions between
particles at large distances are unchanged. Even with multiple point dipoles in each
particle, the potential energy of a single particle is orientation independent. However, the
particle pair interaction is now a function of both the relative position of the two particles
and their individual orientations.

We investigate the phase behavior of this system by performing Monte Carlo simu-
lations in the NPT ensemble, at a fixed number of particles N = 512, pressure P and
temperature T . Simulations are performed in a series where the pressure is either in-
creased or reduced slowly, leading to compression or expansion of the system. During the
compression runs, the simulations start from an initial configuration in the fluid phase,
and the pressure is increased in small steps, up to pressures well past the expected coex-
istence pressure. Expansion runs start from an initial configuration in one of the crystal
phases likely to be stable for the field strength γ used in the simulations. Where needed,
additional compression and decompression runs were performed using a different struc-
ture as the initial configuration. From the phase transitions observed in both runs, we
determined the approximate phase boundaries of the system.
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As the strings in the string fluid at high field strengths span the simulation box, it is
likely that the phase behavior of the system in this regime is affected by finite size effects.
To investigate this, the simulations for high field strengths (γ ≥ 12.5) and low pressures
(Pσ3/kBT < 1 ) were performed in a system of N = 1024 particles as well. No significant
shift in the phase behavior was observed.

To determine the transition from a simple cubic (sc) to a body-centered tetragonal
(BCT) crystal structure, we performed simulations at constant pressure for a range of
field strengths γ, starting from either of the two phases. Since the system can easily
switch between these structures, no clear hysteresis was visible in these simulations, and
determining the approximate phase boundary was straightforward.

4.3 Results
4.3.1 Phase diagram
An approximate phase diagram for colloidal hard cubes in an electric field is shown in
Fig. 4.1 as a function of the field strength γ and the packing fraction η. For this phase
diagram, the dipole interactions are modeled by a single point dipole in the middle of
each particle. The phase behavior bears close resemblance to that of dipolar hard spheres
[26], with the main difference being the added hexagonal string phase. In addition, the
FCC crystal structure that is stable at low field strengths for spheres is replaced by a
simple cubic (SC) crystal in the case of cube-shaped particles. As the simple cubic and
BCT structures pack equally well for cubes (ηmax = 1), the simple cubic structure only
appears for a sufficiently low field strength.

As in the case of hard spheres in an external field, a string fluid appears for low
field strengths and low packing fractions. Neighboring cubes in a string are aligned such
that the touching faces of the two cubes are approximately parallel, as this allows the
point dipoles to approach each other more closely. Because aligning the cubes along this
direction carries an entropic cost, the field strengths required to form strings are slightly
higher than those seen in the case of spheres. However, it should also be noted that
the dipole moment induced by an external field in cube-shaped particles will be stronger
than that of a sphere with diameter σ, due to its larger volume, provided the material
of the particle is the same. Therefore, the same value of γ for spheres and cubes does
not correspond to the same external field strength. Since the cubes only contain a single
point dipole, rotations along the field axis do not influence the potential energy of the
system. As a result, the cubes do not align all faces within a single string: there is only
alignment in one direction. Hard-core interactions with neighboring strings or a wall
could cause the particles to align in all three directions, but this was only observed in the
body-centered-tetragonal crystal phase that appears at high packing fractions.

The maximum packing fraction for sharp cubes is η = 1. At this packing fraction, all
cubes are aligned along the same three axes, but a limited amount of freedom remains
for the positions of the particles. At η = 1, the lowest energy state is a body-centered
tetragonal (BCT) structure. This structure can be seen as a further aggregation of strings
of cubes onto a square lattice, with all the particles aligned. Each string is shifted along
the field direction with respect to its four neighboring strings by a distance equal to
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Figure 4.1: Approximate phase diagram for colloidal hard cubes in an external electric or
magnetic field, as a function of the field strength γ and the packing fraction η. The black
points indicate where phase boundaries were determined based on the phases found in MC
simulations at constant pressure. The labels SC and BCT denote a simple cubic and body-
centered tetragonal phase, respectively, while the hexagonal phase consists of strings of particles
arranged on a hexagonal lattice.
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Figure 4.2: Left: Snapshot of the BCT phase, at γ = 15 and pressure βPσ3 = 4 (η = 0.64).
The external field points along the vertical direction. Right: Snapshot of the hexagonal phase,
at γ = 15 and βPσ3 = 1 (η = 0.43). The field direction is perpendicular to the plane of view.

half of the lattice spacing. A typical snapshot of this structure is shown in Fig. 4.2.
This structure is readily seen to form at high field strengths, regardless of the starting
configuration. However, for lower field strengths, the same starting configuration can also
lead to a hexagonal ordering of strings, without alignment with respect to rotation along
the field axis. In this case, the lowest energy state would likely have three of the six
neighbors of each string shifted up by a third of the interparticle distance in a string, and
the other three shifted down by the same amount, but this order is not clearly visible
in the simulations so far. For an example, see Fig. 4.2. This configuration maximizes
the distance between strings, allowing for larger orientational entropy at the cost of a
lower potential energy. It might be interesting to note that an added Yukawa repulsion
would likely further stabilize this phase, as this would increase the distance between the
strings. In the limit of high field strengths, the hexagonal columnar phase is expected to
vanish eventually: the BCT phase has a lower potential energy, and will coexist with a
dilute gas at sufficiently high interaction strengths. Both the BCT phase and hexagonal
phase were seen in experiments on neighborite cubes in an electric field as well, as shown
in Fig. 4.3.[80] In the experimental snapshots of the hexagonal phase, the range of the
positional order in the strings appears to be limited. In our simulations, the range of the
hexagonal order in the system was always at least equal to the system size, but it can not
be excluded that this may change for larger systems.

When the field strength γ = 0, the stable crystal phase is a simple cubic crystal (SC).
At low but finite fields, this structure remains stable, but becomes slightly distorted: the
lattice is compressed along the field direction, actually leading to a simple tetragonal
lattice. As the distortions are small, this crystal is still labeled SC in Fig. 4.1.
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Figure 4.3: Experimental snapshots of a system of neighborite cubes.[80] In both snapshots, the
field direction is perpendicular to the plane of view. Left: For high field strengths (Erms ' 0.12
V/µm), strings of particles order into domains with a square lattice, likely corresponding to a
BCT structure. The scalebar is 4 µm. Right: At lower field strengths (Erms ' 0.08 V/µm),
hexagonal domains are clearly visible. The scalebar is 3 µm.

4.3.2 Point-dipole approximation

In simulations of the string fluid, cubic particles in strings show orientational disorder:
while the top and bottom faces of neighboring particles are aligned in order to minimize
the distance between them, particles are free to rotate around the field axis. This can be
understood from the way the interactions are modeled: since the potential in Eq. 4.1 only
depends on the positions of the centers of the particles, there is no way for it to align the
particles orientationally. In experiments performed on a dilute string fluid of cube-shaped
particles in an external electric field, particles within the same string were seen to mostly
align orientationally only at high field strengths (see chapter 7 of Ref. [81]). This suggests
that weak aligning forces may exist as a result of the way the cube-shaped particles are
polarized in the external field.

To investigate possible effects of different dipole moment distributions, we approximate
the polarization of the cube with multiple dipoles evenly spread through the particle. To
do this, we divide each cube into n3 smaller cubes, and place a weaker dipole in the middle
of each smaller cube, resulting in a simple cubic lattice. As the total number of dipoles
quickly becomes hard to simulate directly, we only performed simulations for the case
where each cube contains n3 = 23 = 8 point dipoles, but performed energy calculations
for cubes containing up to n3 = 73 point dipoles.

It is interesting to note that even with multiple dipoles, a single particle in an external
electric field still has a potential energy that is independent of the orientation. Thus,
particles will not align in the electric field purely due to their polarization with this
distribution of dipoles. Note that this is not true for all possible dipole distributions in
the cube.

Secondly, if two cubes are placed on top of each other (as if they were in a string),
the potential energy difference between different orientations turns out to be very small.
For 8 dipoles in each cube, the difference between perfect alignment and the maximum
misalignment (45o) is only around 0.04γkBT . While this difference will induce alignment
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Figure 4.4: Energy difference ∆U between the most favorable (aligned) and least favorable
(misaligned) orientations of two particles at distance σ along the z-axis, for different numbers of
point dipoles per particle. A cartoon depicting the aligned and misaligned orientations is also
shown

at very high field strengths, the effect will be small below γ ' 25. Moreover, for particles
containing more than 8 point dipoles, the effect of rotations on the potential energy
decreases with the number of dipoles (see Fig. 4.4). The energy difference appears to
level off around 0.01kBT , which would indicate that field strengths over γ ' 100 would
be needed to align particles with the electric field.

To check this, we performed simulations of cubes containing 8 point dipoles, and
studied alignment of particles in a string as a function of the field strength. Neighboring
particles were seen to align in strings at field strengths higher than γ ' 30, but for
lower field strengths, no clear correlations in the orientations of neighboring particles
were visible. Since the energy calculations show that the alignment effect decreases in
strength on increasing the number of point dipoles per particle, we conclude that for a
field strength lower than γ = 30, using multiple point dipoles per particle is not likely to
significantly influence the aligning of cubes in the string fluid phase or hexagonal columnar
phase.

4.4 Conclusions
In summary, we used Monte Carlo simulations in the NPT ensemble to study the phase
behavior of hard colloidal cubes in an external electric or magnetic field. The resulting
phase diagram contains BCT and SC crystal phases, a hexagonal columnar phase, and
a string fluid phase. The dipolar interactions were modeled as point-dipole interactions.
While the dipolar interactions between colloidal cubes may not be perfectly described
by this approximation, spreading out the dipole moment of the particle over multiple
evenly spaced points was shown to lead to only very small potential energy differences
for the interaction strengths studied here. However, for sufficiently high field strengths,
aligning forces may arise between cubes in close proximity, leading to alignment in all
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three directions for particles that are part of the same string.
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Phase behavior and crystal
vacancies in colloidal hard cubes

In this chapter we explore the phase behavior of colloidal hard cubes, using both Monte
Carlo simulations and Event-Driven Molecular Dynamics simulations. In previous simu-
lation studies, these particles were seen to not only form fluid and simple cubic crystal
phases, but also an intermediate cubatic phase at packing fractions 0.52 < η < 0.57.
However, this cubatic phase still shows sign of significant positional order. We investigate
the ordering in this intermediate phase more closely and map out the phase behavior
of the hard-cube system using free energy calculations. Our simulations confirm that
truly long-range positional order is destroyed in simulations starting from a simple cubic
system with all lattice sites filled. However, spontaneous creation of extra layers in the
crystal suggest that a higher concentration of vacancies in the crystal could stabilize the
structure. We show that incorporating a sufficient number of vacancies in the crystal
structure allows the system to retain its long-range order and to lower its pressure in
comparison to the system without defects. The estimated equilibrium concentration of
vacancies slightly above coexistence is on the order of 6.4%, orders of magnitude higher
than the defect concentration in hard-sphere crystals.
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5.1 Introduction
In recent years a variety of synthesis methods for the production of various polyhedral
colloids and nanoparticles have become available,[70, 72–74, 81, 82] sparking new interest
in the phase behavior of these particle shapes. While in many of these systems both
the interactions and shapes of the particles will play an important role in determining
the equilibrium phase behavior, a good starting point for understanding the behavior of
interacting systems is the study of purely hard-core particles. For example, the hard-
sphere phase behavior can be seen as a limiting zero-interaction (or high-temperature)
case in the phase diagram of any interacting particle with a spherical hard core. Recently,
Escobedo et al. used Monte Carlo (MC) simulations to study the phase behavior of six
space-filling polyhedral shapes: truncated octahedra, rhombic dodecahedra, hexagonal
prisms, triangular prisms, gyrobifastigiums and cubes.[77] They showed that the phase
diagrams of the first three of these particles do not only contain a fluid and a crystal phase,
but also an intermediate plastic crystal or rotator phase, where long-range positional order
is still present, but some or all of the orientational order is lost. Conversely, for hard cubes
they confirmed the presence of an intermediate cubatic phase seen in earlier work, [75]
where long-range positional order is lost, but the particles are still orientationally aligned
in all three directions. However, they did observe layering of the particles in the cubatic
phase, indicating the presence of positional correlations over large distances in at least
one direction.

In this chapter, we examine in more detail the phase behavior of colloidal hard cubes.
While the stability of an isotropic fluid at low densities and a simple cubic crystal structure
at high densities have already been firmly established, the existence and nature of an
intermediate phase are not yet clear. We examine which phase coexists with the fluid
phase and we investigate the positional and orientational order in this phase. Additionally,
we perform free energy calculations to determine the coexistence densities. From the
behavior of the system slightly above coexistence, we conclude that the equilibrium phase
at this point is a crystal with both positional and orientational long-range order, but with
a surprisingly large number of vacancies. Free energy calculations on these defect-rich
crystals show that the equilibrium concentration of crystal vacancies near coexistence is
as high as 6.4%.

5.2 Model and simulation methods
5.2.1 Overlap and collision detection
The model we study consists of perfectly sharp hard cubes with edge length σ. Aside from
hard-core interactions, which prevent configurations with overlapping cubes, the particles
do not interact. To investigate the phase behavior of these particles, we use both Monte
Carlo (MC) and event-driven molecular dynamics (EDMD) simulations. In both types
of simulation, overlaps are detected using an algorithm based on the separating axis
theorem.[83] According to this theorem, for any two non-overlapping convex bodies there
exists an axis onto which both shapes can be projected without overlapping. In other
words, if both shapes are projected onto this separating axis, the resulting two intervals
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on the axis are completely disjoint. No such axis exists if the particles overlap. For two
convex polyhedral particles, only a finite number of possible separating axes need to be
checked: in that case, the potential separating axes are either parallel to a normal of one
of the faces of either of the two particles, or perpendicular to the plane spanned by one
of the edges of the first particle and one of the edges of the second particle. If none of
these directions correspond to a separating axis, the particles overlap.

For a cube-shaped particle a, all face normals and edges are parallel to one of three
perpendicular axes ua,i of unit length, with i ∈ {1, 2, 3}. Thus, the fifteen potential
separating axes for two cubes are given by ua,i, ub,i, and ua,i × ub,j. To calculate the
projection of both particles onto a potential separating axis L, it is convenient to take the
center ra of particle a as the origin, placing particle b at position d = rb−ra. Because the
particles are convex, it is sufficient to project the vertices of each particles onto L. For
particle a, the positions of the vertices are given by: (±ua,1±ua,2±ua,3)σ/2. The projections
onto L are thus contained in the interval [−Ra(L), Ra(L)], with

Ra(L) = σ

2

3∑
i=1
|ua,i · L| . (5.1)

Here, we have taken the separating axis L to be of unit length. Similarly, the projections
of the vertices of particle b are in an interval centered around d · L with radius

Rb(L) = σ

2

3∑
i=1
|ub,i · L| . (5.2)

If L is a separating axis, these intervals are non-overlapping. In that case,

d · L > Ra(L) +Rb(L). (5.3)

If this inequality holds for any one of the potential separating axes, the two particles do
not overlap. We can use Eq. 5.3 to design a distance function f for two particles:

f(a, b) = max
L
{d · L− (Ra(L) +Rb(L))} , (5.4)

where the maximum is taken over all potential choices for L. The function f(a, b) is nega-
tive whenever the particles a and b overlap, and positive when they do not. Additionally,
the function is continuous as a function of translations and rotations of both particles. To
predict collisions in the EDMD simulations, we numerically find the roots of f as a func-
tion of time, following the methods used in Ref. [20]. An Andersen thermostat was used
to allow the total energy in the EDMD simulations to fluctuate: at fixed time intervals,
a random selection of particles are given a new velocity and angular velocity drawn from
a Boltzmann distribution.[17]

5.2.2 Free energy calculations
To determine the Helmholtz free energy of the solid and fluid phases as a function of
the density, we use thermodynamic integration.[17] When the free energy of a reference
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density F (ρ0) is known, the free energy as a function of number density F (ρ) can be
determined using the equation of state. In particular, the free energy is given by

βF (ρ)
N

= βF (ρ0)
N

+ β
∫ ρ

ρ0

P (ρ′)
(ρ′)2 dρ

′ (5.5)

where ρ is the density and β = 1/kBT with kB Boltzmann’s constant and T the temper-
ature.

To measure the chemical potential µ at a reference density ρ0 for the fluid, we use
Widom insertion.[17] The free energy of the fluid at density ρ0 is then given by

βFf(ρ0)
N

= βµ(ρ0) + βP (ρ0)
ρ

(5.6)

To determine the free energy of a crystal without vacancies, we use a variation on
the method introduced by Frenkel and Ladd,[66] where particles are tied to their lattice
sites with springs, transforming the crystal into a non-interacting Einstein crystal for a
sufficiently high spring constant. In our case, we add an aligning potential as well to
handle the orientational degrees of freedom of the particles. Following Ref. [84], the
external potential applied to the system during the Einstein integration is given by:

βUext(λ) = λ
N∑
i=1

[ 1
σ2

∣∣∣ri − r0
i

∣∣∣2 + sin2 Ψa + sin2 Ψb

]
(5.7)

where λ is the strength of the external potential, and r0
i is the position of the lattice site

associated with particle i. The lattice sites are on a simple cubic lattice with NL lattice
sites and with the lattice vectors parallel to the x, y, and z-axes. The second term fixes the
orientation of the particles. The angles Ψa and Ψb are defined as follows: let αj = ui,j · x̂
and βk = ui,k · ŷ such that α2

j + β2
k is maximized with j 6= k. Then cos (Ψi,a) = αj and

cos (Ψi,b) = βk.
In the limit of high string constants λ, this potential transforms the crystal of cubes

into an Einstein crystal, where both the particle positions and orientations are bound
so tightly that particles never interact. Note that the center of mass of the crystal is
constrained.

For an Einstein crystal with an unconstrained center of mass, the free energy is given
by:[17]

βFein(λ)
N

= −3
2 log π

λ
(5.8)

while the rotational free energy is [84]

βFrot(λ)
N

= − log
∫

exp(−λ [sin2 Ψa + sin2 Ψb])dΩ∫
dΩ . (5.9)

Here, the integral is taken over all possible orientations of a single particle. The transla-
tional and orientational thermal de Broglie wavelength do not influence the phase behavior
of the system, and are both taken to be equal to our unit length σ. We evaluated this
integral using Monte Carlo integration.
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The full free energy of the crystal of hard cubes without vacancies can be written
as:[85]

βF

N
= βFein(λmax)

N
+ βFrot(λmax)

N
+ βFint

N
+ 3

2N log λmax
π
− 3

2N logN + log ρσ3

N
, (5.10)

where the last three terms are correction terms related to fixing the center of mass of the
Einstein crystal and the interacting crystal. The free energy difference Fint between the
Einstein crystal and the interacting crystal, both with a fixed center of mass, is given by:

βFint

N
= − β

N

∫ λmax

0

〈
N∑
i=1

( 1
σ2

∣∣∣ri − r0
i

∣∣∣2 + sin2 Ψa + sin2 Ψb

)〉
λ

dλ. (5.11)

As in Ref. [17, 85], we calculate the integral in Eq 5.11 using a Gauss-Legendre quadrature
in combination with MC simulations.

To calculate the free energy of the system with vacancies, instead of fixing the particles
to a specific lattice site, we attach the particles to the their nearest lattice site.[86] In this
case, the external potential applied to the system during the Einstein integration is:

Uext(λ) = λ
N∑
i=1

( 1
σ2

∣∣∣ri − r0(ri)
∣∣∣2 + sin2 Ψi,a + sin2 Ψi,b

)
(5.12)

where r0(ri) is the position of the lattice site nearest to ri.
The free energy of the noninteracting system is

βF vac
ein (λ)
N

= βFein(λ)
N

− log NL!
N !(NL −N)! + βFrot(λ)

N
, (5.13)

where the first term is the translational free energy of a normal Einstein crystal, the second
term is the combinatorial entropy associated with placing N particles on NL lattice sites,
and the third term is the rotational free energy of the crystal, given by Eq. 5.9.

The full free energy of the crystal of hard cubes with vacancies is then given by:

βF

N
= βF vac

ein (λmax)
N

+ βF vac
int
N

(5.14)

where F vac
int denotes the free energy difference between the Einstein crystal and the crystal

of hard cubes, and is analogous to Eq. 5.11 where the nearest lattice site is used in place
of a specific lattice site, and the center of mass of the system is unconstrained in the
simulations. To equilibrate the position of the center of mass, we introduce Monte Carlo
moves that collectively translate every particle in the system.[86] Additionally, moves
that translate a particle by exactly one lattice vector are introduced in order to improve
sampling of different distributions of vacancies over the crystal. For a system with full
lattice site occupancy (N = NL), we obtain good agreement between the two methods.

5.3 Order parameters and correlation functions
We investigate three types of ordering in the system: positional order, orientational order,
and bond-orientational order. For each type of order, we define an order parameter
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Gpair(a, b) for a particle pair (a, b), measuring the amount of correlation between two
particles. The global order 〈G〉 in a system is then defined as:

〈G〉2 = 1
N2

N∑
a=1

N∑
b=1

Gpair(a, b). (5.15)

Additionally, we can investigate the decay of the correlation function of this order param-
eter as a function of distance:

G(r) =
〈
Gpair(a, b)

〉
(r) =

〈∣∣∣∑a,bG(a, b)δ(|rab| − r)
∣∣∣∑

a,b δ(|rab| − r)

〉
, (5.16)

where δ(r) denotes the Kronecker delta function. In case of true long-range order, the
correlation function 〈Gpair(a, b)〉 (r) decays to a constant in the limit of large distances.
For a sufficiently large system, this constant is related to the global order 〈G〉 in the
system: [76]

lim
r→∞

G(r) = 〈G〉2 (5.17)

If the order is only quasi-long-range, the correlation function instead decays to 0 as a power
law. In the case of short-range order, the correlation function follows an exponential decay
related to the correlation length in the system.

5.3.1 Positional order
For positional order, the order parameter of interest is

Gpair
pos (a, b) = exp(iK · (ra − rb)), (5.18)

with K denoting one of the reciprocal lattice vectors of the crystal structure. The corre-
lation function Gpos(r) can be calculated using Eq. 5.16, and the global positional order
〈Gpos〉 can be written as:

〈Gpos〉 =
∣∣∣∣∣ 1
N

∑
a

exp(iK · ra)
∣∣∣∣∣ . (5.19)

Long range order is only present in the system if a reciprocal lattice vector K can be
found for which Gpos(r) decays to a constant at large distances. In our simulations, the
simulations start from a simple cubic crystal aligned with the cubic simulation box. The
lattice vectors are of length L/N1/3 = ρ−1/3, with L the length of the simulation box
and ρ = N/V the number density of the system. Thus, unless the orientation of the
crystal changes during the simulation, the first three reciprocal lattice vectors are vectors
of length 2πρ1/3 along the x, y and z axes.

The order parameter used for positional order is closely related to the Fourier transform
of the positions of the particles in the system. We note that this is analogous to the data
obtained in light scattering experiments. In such an experiment, the intensity of the
light scattered along a scattering vector k depends both on the shape of the particles
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and the structure in the system, expressed by the form factor and the structure factor,
respectively. The structure factor S(k) is given by:

S(k) = 1
N

〈
N∑
a=1

N∑
b=1

eik·(ra−rb)
〉
, (5.20)

where k is the scattering vector, which corresponds to the difference between the scattered
wave vector and the incident wave vector. Maxima in S(k) (and therefore in the scattering
pattern) will occur whenever

k = av1 + bv2 + cv3, (5.21)

where the vectors vi correspond to the three independent reciprocal lattice vectors of
the crystal, and a, b and c are integers. In a cubic lattice, the reciprocal lattice vectors
are simply parallel to the basis vectors of the lattice in real space. To plot a scattering
pattern, we choose our scattering vectors in a plane parallel to one of the crystal planes
in the system: each k was taken to be a linear combination of two of the three lattice
vectors of the crystal in the simulation. Since the orientation of the lattice was seen to
change during the simulation, the direction of these lattice vectors was determined from
the orientations of the particles. Because the edge vectors of the particles are aligned
with the lattice vectors on average, a good estimate of direction of the lattice vectors can
be obtained by averaging all edge vectors aligned in approximately the same direction.

5.3.2 Bond-orientational order
The bond-orientational order describes the correlations between the directions of bonds
between neighboring particles in a system. To measure the order, we use a bond-
orientational order parameter based on spherical harmonics, which can also be used to
find clusters of locally ordered particles in partially crystallized systems. [87] To mea-
sure the local bond-order vector ql,m, a list of neighbors is constructed for each particle,
containing all other particles within a radial distance rc. The number of neighbors for a
particle i is denoted as Nb(i). We then calculate ql,m(i) for each particle a as

ql,m(a) = 1
Nb(a)

Nb(a)∑
b=1

Yl,m(θa,b, φa,b), (5.22)

where Yl,m(θ, φ) are the spherical harmonics, with m ∈ [−l, l] and θa,b and φa,b are the
polar and azimuthal angles of the center-of-mass distance vector rab = rb − ra, with ra
the position vector of particle a. The correlation in bond-orientational order between two
particles can then be defined as the inner product between the normalized bond-order
vectors ql,m between two particles:

dl(a, b) =

l∑
m=−l

ql,m(a)q∗l,m(b)
 l∑
m=−l

|ql,m(a)|2
1/2 l∑

m=−l
|ql,m(b)|2

1/2 . (5.23)
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For a simple cubic crystal structure, we expect 4-fold bond-orientational order, and there-
fore choose l = 4. Thus, as the order parameter for bond-orientational order, we use:

Gpair
bond(a, b) = d4(a, b). (5.24)

The correlation function Gbond(r) associated with this order parameter is calculated using
Eq. 5.16.

Additionally, we can use Gpair
bond(a, b) to find clusters with local bond-orientational order.

In order to do this, we calculate the inner product dl of the bond orientational order
parameter ql,m(i) for each particle with that of each of its neighbors. If the dot product
for a pair of particles is larger than a cutoff value dc, the two particles are considered to
be connected. Thus, the number of connections for each particle is given by:

ξ(i) =
Nb(i)∑
j=1

H(dl(i, j)− dc), (5.25)

where H is the Heaviside step function. Solid-like particles are defined as particles with
at least ξc connections. All other particles are considered liquid-like. After determining
the connections in the system, clusters of solid-like particles are identified as groups of
connected solid-like particles.

The clusters resulting from this algorithm depend on several parameters. Firstly,
the symmetry index l for the bond orientational order parameter indicates the degree
of symmetry detected by the order parameter, here chosen to be l = 4. Secondly, the
neighbor cutoff rc should be large enough to include the nearest neighbors of each particle,
but not so large that particles further away are included in the algorithm. An estimate
for a reasonable value can be determined from the radial distribution function g(r) of the
crystal structure under consideration: rc should be chosen between the first and second
peaks of g(r). In the case of hard cubes, we chose rc = 1.55σ. Finally, the dot-product
cutoff dc and the cutoff for the number of neighbors ξc should be chosen such that the
order parameter is able to make a clear distinction between the crystal and fluid phases.
Here, we choose dc = 0.6 and ξc = 3, resulting in only small clusters in the fluid phase
and a large system-spanning cluster in the crystal phase.

5.3.3 Orientational order
For the orientational order in the system, the order parameter used to calculate the
correlation function Gor(r) is

Gpair
or (ua,ub) = 1

3

3∑
j=1

[
35(ua,j · ub,j)4 − 30(ua,j · ub,j)2 + 3

]
(5.26)

where ua,j denotes the jth axis of particle a. [76, 88] This order parameter will on average
be equal to 1 for particles with perfect cubatic order, but may be higher if nematic order
is present. In this case, nematic order would indicate that the cubes are not only aligned,
but also have the same faces pointing in the same directions. As the six sides of a cube
are equivalent, nematic order should not be possible in the system, but since particles



Phase behavior and crystal vacancies in colloidal hard cubes 63

in the crystal phase are initialized with the same orientation, this can lead to artificially
high values of the order parameter. To remedy this, the three axes ua,i for each particle
a are randomly reordered before performing the calculations.

Like the bond-orientational order parameter, we will also use Gpair
or (a, b) for finding

clusters exhibiting local orientational order. For the purpose of finding these clusters, two
particles a and b are considered to be connected if their center-to-center distance rab < rc
and G4(ua,ub) > Gc. We use the same values for rc and ξc as used in the local positional
order parameter, and choose Gc = 0.6. This choice of parameters results in clusters that
approximately match the clusters found by the positional order algorithm in size.

5.4 Results
As mentioned earlier, the phase behavior of hard cubes has been studied previously in Refs.
[75, 77], using expansion and compression runs of MC simulations in the NPT -ensemble.
They reported the observation of a fluid phase at low packing fractions, a coexistence
region between a fluid and a cubatic phase for 0.45 < η < 0.52, and a continuous transition
from the cubatic phase to a simple cubic crystal structure at η = 0.57. Here, we will
examine in more detail the phase behavior of hard cubes, and investigate in particular
the existence of the cubatic phase.

To begin, we determine the equation of state of the system using both EDMD (at con-
stant number of particles N , volume V and temperature T ) and NPT MC simulations (at
constant pressure P ). The equation of state resulting from EDMD simulations is shown
in Fig. 5.1. The results from MC simulations agreed very well with the EDMD simula-
tions, but were more sensitive to statistical errors even for significantly longer simulation
times. For the NPT MC simulations, the system was initialized either with random po-
sitions and orientations at low densities for the fluid branch, or in a simple cubic crystal
structure for the solid branch. All EDMD simulations were started from a simple cubic
lattice. While this requires the crystal to melt before fluid pressures can be measured, the
phase transition between a fluid and a solid shows very little sign of hysteresis, and good
agreement between the fluid branches of the two simulation methods is reached. Due to
the free energy cost of creating a fluid-solid coexistence inside the simulation box, a small
part of the equation of state for the metastable fluid and solid can still be measured. As
the metastable extensions of both the fluid and solid branch are very short, i.e., the spin-
odal points are very close to the binodal ones, the transition is weakly first order, and the
phase transformation proceeds either via nucleation and growth with a small nucleation
barrier or via spinodal decomposition. In addition, one may argue that the surface tension
of the fluid-solid interface of hard cubes should be small. From the equation of state, a
single phase transition is clearly evident around βPσ3 = 6. Furthermore, the equation of
state shows good agreement with the one shown in Ref. [77].

The equation of state in Fig. 5.1 shows no sign of a first-order phase transition from a
possible cubatic phase to a crystal, suggesting that a possible phase transition would be
continuous. If no first-order phase transition exists, the free energy of the solid branch can
be calculated via thermodynamic integration without taking into account the possibility of
any discontinuous transitions. Performing free energy calculations on the fluid and crystal
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Figure 5.1: Equations of state, βPσ3 versus η as determined using EDMD simulations of
N = 8000 particles. The fluid branch is shown in red while the solid branch is shown in blue.
Almost no hysteresis of the two branches is seen.

phases yielded a fluid-solid coexistence region between packing fractions ηf = 0.450 and
ηs = 0.517, in excellent agreement with the approximate phase boundaries found in Ref.
[77].

In order to investigate the region near the coexistence region more closely, we per-
formed EDMD simulations on systems of N = 64000 particles starting from a simple
cubic lattice. Coexistence between the fluid and solid phase can be observed directly for
packing fractions 0.455 ≤ η ≤ 0.48. Snapshots of the coexistence are shown in Fig. 5.1.
In these snapshots, crystalline clusters were found using the local bond and orientational
order parameters described in the previous section. Particles that were considered not
to be part of a crystalline cluster are displayed much smaller than their actual size, in
order to show what parts of the system are solid-like. We find good agreement between
the located clusters based on orientational and bond order. This suggests that significant
orientational order only occurs when bond order exists, and vice versa. Moreover, we find
configurations with planar fluid-solid interfaces, but also fluid droplets and tubes in the
solid phase and solid tubes in the fluid phase as the system tends to minimize the surface
free energy. Hence, the surface tension is small, but not zero.

In Refs. [75, 77], the phase in coexistence with the fluid was identified as cubatic,
based on the finite diffusion present in the system up to packing fraction η = 0.57. In our
simulations, part of the diffusion in the system appears to be caused by diffusion of entire
rows of particles. In this way all particles in such a a row are shifted to the next lattice
site by using the periodic boundary conditions of the system to shift all particles in that
row to the next lattice site. If this would be the main source of diffusion, larger system
sizes should strongly suppress this behavior, as the free energy barrier involved in row
diffusion scales with the number of particles in the row. We examined the diffusion for
systems of N = 1000, 8000 and 64000 particles, but found no significant finite size effects
in the diffusion constants, as shown in Fig. 5.2. Closer looks at trajectories of particles
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η Gbond Gor η Gbond Gor

0.45 0.47

0.455 0.475

0.46 0.48

0.465 0.485

Table 5.1: Snapshots of EDMD simulations with N = 64000 hard cubes, at a range of packing
fractions in the coexistence region. For each snapshot, clusters were determined based on q4 for
positional order and G4 for orientational order. Particles in the largest solid cluster are shown
at actual size, while all all other particles are displayed much smaller.



66 Chapter 5

òòòòòòòòòòòòò
òò

òòò
òò

ò
ò

ò
ò

ò
ò

ò
ò

ò
ò

òò

àààààààààààààà
àà

àà
àà

à
à

àà
à

àà
àà

àà
àà

àà
àà

ààà
àà

àà

àà

àà

0.40 0.45 0.50 0.55 0.60 0.65 0.70
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Η

D
if

fu
si

on
ò N = 1000
à N = 8000
æ N = 64000

Figure 5.2: Diffusion coefficient D (in arbitrary units) as a function of the packing fraction for
three different system sizes.

in the crystal suggest that the main cause of diffusion is accordeon-like motion of rows
of particles, where lines of particles are compressed and stretched, allowing particles to
move to a different lattice site.

Under close examination, the snapshots in Table 5.1 taken just above coexistence still
exhibit a significant amount of positional order. However, the direction of the crystal is
seen to change during the EDMD simulation: after a short equilibration time, the lattice
vectors are no longer aligned with the simulation box. This spontaneous misalignment
was observed in EDMD simulations of systems of size N = 1000, 8000 and 64000, as well
as in MC simulations of N = 1000, 3375 and 8000 particles. The rotation of the lattice
only occurs at packing fractions lower than η ' 0.57, approximately corresponding to the
region where a cubatic phase was identified in Refs. [75, 77]. However, it is not directly
clear that the structures found at these densities do not exhibit long-range order. Table
5.2 shows scattering patterns for systems of N = 8000 particles at a range of densities near
coexistence. A pattern of peaks indicating cubic crystalline order clearly starts emerging
at the solid coexistence density of ηs = 0.5. In the coexistence region, pockets of fluid
are present in the system, significantly reducing the crystalline order until only a ring-
shaped maximum remains at packing fraction η = 0.45 and lower, where the box no longer
contains crystalline clusters. While the crystalline order increases at higher densities, the
pattern at η = 0.5 is already indicative of a crystalline structure.

We now study the correlation functions related to the orientational, bond-orientational
and positional order in the system at packing fractions slightly above coexistence. In
particular, the existence of long-range positional order would indicate the absence of a
cubatic phase. Figure 5.4 shows the correlation functions for the orientational order
(Gor(r)) and the bond-orientational order (Gbond(r)) at η = 0.52. These functions clearly
reach a constant at large distances, and this behavior was seen to be consistent accross
all packing fractions above coexistence. A plot of the global positional order 〈Gpos〉
as a function of η is shown on the right in Fig. 5.4. It is clear that both the bond-
orientational and orientational order are long-range in nature and increase monotonically
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Η = 0.44

F

Η = 0.45

F

Η = 0.46

C

Η = 0.47

C

Η = 0.48

C

Η = 0.49

C

Η = 0.5

C

Η = 0.51

C

Η = 0.52

S

Η = 0.53

S

Η = 0.54

S

Η = 0.56

S

Table 5.2: Scattering patterns for a range of packing fractions η as labeled, measured in a
system of N = 8000 particles and averaged over 50 snapshots. The letter in the middle denotes
whether the sample is in the fluid phase (“F”), solid phase (“S”) or in the coexistence region
(“C”), according to the phase diagram obtained from free energy calculations. For the two
lowest packing fractions, the color scale has been adjusted to show the structure in the fluid
more clearly.
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Figure 5.3: Positional correlation functions Gpos(r) as a function of r in systems of N = 64000
hard cubes, for various packing fractions η. The thick line corresponds to η = 0.52, while the
other lines correspond to η = 0.54 (bottom), 0.56, 0.58, 0.64, 0.7, and 0.8 (top). Note that the
correlation for η = 0.52 is higher than the one for η = 0.54 at large distances.

with the packing fraction η. In Fig. 5.3, we present plots of the positional correlation
function Gpos(r) at a range of packing fractions above coexistence. At packing fractions
η > 0.56, the correlation functions reach a constant value, indicating long-range positional
order. However, at lower densities, the behavior is much less well defined, and different
simulations at the same density can give differrent results. As seen from the crossing
of the lines for η = 0.52 and η = 0.54, the correlation function does not necessarily
decay faster at lower packing fractions. For these plots, the reciprocal lattice vector K
was chosen to correspond to a maximum in S(K). While changing this vector to other
maxima can change the behavior of the correlation function significantly, we did not find
signs of long-range positional order at packing fractions below η = 0.56. Combined with
a shorter-ranged positional order, this would correspond to a cubatic phase. However, the
region of packing fractions where no long-range positional order is observed is also the
region where the crystal orientation is seen to change during the simulation. It is possible
that the reorientation of the crystal structure in the simulation box introduces defects
that break the long-range order, and since the rotation also slightly distorts the crystal,
it seems unlikely that these rotated crystals correspond to the equilibrium state.

To examine the rotated lattices in detail, we projected the particle positions on a plane,
averaging over a series of snapshots in a simulation of N = 64000 particles, at several
packing fractions around η = 0.54. As before, the simulations were started in a 40x40x40
simple cubic crystal state. Surprisingly, after equilibration we observed a clear lattice of
41x41 peaks in several simulations. Projecting along a different axis confirmed that the
crystal sometimes formed extra layers in all three directions, increasing the total number
of lattice positions. As the number of particles in the system is constant, the number
of vacancies in the crystal is then approximately 7% of the number of lattice sites. In
other simulations, the lattice rotated, and formed extra lattice sites in the process. This
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Figure 5.4: Orientational and bond-orientational order in systems of N = 64000 particles.
Left: Orientational and bond-order correlation functions Gor(r) (light) and Gbond(r) (dark) at
packing fraction η = 0.52. Right: Global order parameters 〈Gor〉 (light) and 〈Gbond〉 (dark), as
calculated from the limiting value of the correlation functions (see Eq. 5.17).

behavior strongly suggests that the equilibrium concentration of vacancies is significantly
higher in hard cubes than in e.g. hard spheres, where it is estimated to be 2.6·10−4.[89, 90]

By performing EDMD simulations on systems with NL = 64000 lattice sites, but
fewer particles, we observe that the rotation of the crystal lattice in the simulation box
can be prevented by a sufficiently high defect concentration. Figure 5.5 shows the global
positional order 〈Gpos〉 as a function of the fraction of defects α = (NL−N)/NL at packing
fractions η = 0.52, 0.54 and 0.56. For η = 0.52, the positional order shows a clear peak
at a defect concentration around 3%, which shift to lower numbers of vacancies as the
density increases. The positional order parameter correlation functions near the peak
in the order parameter clearly reach a constant at high distances, indicating long-range
order. Typical plots are shown on the right in Fig. 5.5. This strongly suggests that the
phase which was previously identified as cubatic is simply a metastable state, in which
the system gets trapped as the number of particles does not accomodate a crystal with
an equilibrium number of vacancies in the simulation box. A lower free energy for a
system with a significant number of vacancies may also explain the observations of lattice
reorientation in the simulation box: rotating the lattice is likely a relatively easy way for
the system to create a small number of defects without adding a full extra layer to the
crystal. Additionally, the number of defects in the system will strongly affect the diffusion
in the crystal. Hence, the sharp decrease in the diffusion constant around η = 0.56 in Fig.
5.2 likely corresponds to the packing fraction above which the system was no longer able
to form vacancies spontaneously in the finite simulation box.

We performed free energy calculations on crystals with a range of vacancy concen-
trations, as described in Section 5.2.2 above. Preliminary results for packing fraction
η = 0.52 are shown in Fig. 5.6. As the number of vacancies increases, the free energy of
the system decreases significantly. From these results, the equilibrium defect concentra-
tion seems to be on the order of 4%. Interestingly, the free energy as a function of the
defect concentration is extremely flat near the equilibrium number of vacancies, indicat-
ing that significant fluctuations in the number of defects are possible without large free
energy costs. To determine the equilibrium concentration of defects for higher densities,
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Figure 5.5: Left: Global positional order 〈Gpos〉 as a function of the fraction of vacancies in
the lattice, at packing fractions η = 0.51 (bottom, gray), 0.52 (red), 0.53 (green), 0.54 (black)
and 0.56 (top, blue). The points indicate measurements of 〈Gpos〉 along the x, y and z axes
separately, while the lines are averaged over all three directions. Each point is averaged over 20
snapshots. Right: Positional order parameter correlation functions Gpos(r) at η = 0.52 with
α = (NL −N)/NL = 0.015 (bottom) and at η = 0.54 with α = 0.007 (top).
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Figure 5.6: Left: Free energy as function of the defect concentration for a simple cubic crystal
of hard cubes at constant packing fraction η = 0.52. The line is a fit through the points, with a
minimum at α = 0.04. Right: Equilibrium concentration of defects as a function of the packing
fraction, as determined by free energy calculations. The line is a fit to guide the eye. The inset
shows the equation of state of the fluid (black), of the solid without vacancies (red), and of the
solid with an equilibrium concentration of vacancies (green). The coexistence as determined by
Ref. [77] is depicted with a red dotted line, while the coexistence as determined in this Letter
is shown with a green dotted line.
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we performed EDMD simulations to calculate the crystal equation of state for the same
range of defect concentrations, and used thermodynamic integration to calculate the free
energy landscape as a function of density and defect concentration. Minimizing the free
energy at densities 0.51 ≤ η ≤ 0.6 showed that the expected defect concentration goes
down monotonously as the density increases, as shown on the right in Fig. 5.6. Using the
minimum in the free energy at each density, we performed a common tangent construction
and calculated the coexistence densities to be ηf = 0.45 and ηm = 0.50 for the fluid and
the solid, respectively. As can be expected, the decrease in free energy caused by the
vacancies shifts the coexistence down compared to the defect-free crystal, as can be seen
in the inset on the right-hand side in Fig. 5.6.

5.5 Conclusions and discussion

In summary, we have studied the phase behavior of colloidal hard cubes using both MC
and EDMD simulations. The resulting phase diagram consists only of a fluid phase and
a simple cubic crystal phase, with a coexistence region between ηf = 0.45 and ηs = 0.50.
Close to the solid coexistence density, the concentration of vacancies in the crystal phase
at a packing fraction just above coexistence is around 5%, which is extremely high when
compared to other systems. This high equilibrium defect concentration drives the system
to distortions and rotations of the crystal structure in order to form extra defects, leading
to a less ordered metastable phase that was identified as a cubatic phase in earlier studies.
[75, 77]

It is possible that the high vacancy concentration is related to the relatively low free
energy cost of placing a particle between two (otherwise empty) lattice positions in the
simple cubic crystal phase. In a hard-sphere crystal, for example, such a position would
be highly unlikely as it requires a significant displacement of neighboring particles. Thus,
a vacancy in hard-sphere and similar crystals will generally be localized to a single lattice
site, and will occasionally hop as it is filled by a nearby particle. In contrast, the space
of a vacancy in a hard-cube crystal can be smeared out over a longer row of particles,
in such a way that each particle gains some extra free volume. While the particles are
still significantly more likely to find themselves in one of the lattice positions, the extra
entropy provided by the defect can then be significantly higher than it would be in a hard-
sphere crystal. Consequently, one might also expect a finite equilibrium concentration of
vacancies in crystal structures of other particles where particle movement between lattice
sites is possible without significantly affecting other nearby particles. While in simulations
of hard cubes the crystal was seen to spontaneously change its lattice to generate these
vacancies, this effect may be less strong in other systems, which makes it harder to find
whether or not the crystal phase exhibits a high equilibrium concentration of vacancies.
However, for crystal structures such as the ones found for hexagonal and triangular prisms
in Ref. [77], or the square lattice of hard squares 2D [91], the possibility of crystal vacancies
should likely be taken into account, as these could affect the region of stability for the
crystal phase.
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Phase diagrams of colloidal spheres
with a constant zeta-potential

We study suspensions of colloidal spheres with a constant zeta-potential within Poisson-
Boltzmann theory, quantifying the discharging of the spheres with increasing colloid den-
sity and decreasing salt concentration. We use the calculated renormalized charge of the
colloids to determine their pairwise effective screened-Coulomb repulsions. We then cal-
culate bulk phase diagrams in the colloid concentration-salt concentration representation,
for various zeta-potentials, by a mapping onto published fits of phase boundaries of point-
Yukawa systems. Although the resulting phase diagrams do feature face-centered cubic
(fcc) and body-centered cubic (bcc) phases, they are dominated by a (re-entrant) fluid
phase due to the colloidal discharging with increasing colloid concentration and decreasing
salt concentration.
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6.1 Introduction
Charged colloidal particles suspended in a liquid electrolyte are interesting soft-matter
systems that have generated fundamental as well as industrial attention for decades. [92]
Understanding the stability and phase behaviour of these systems as a function of colloid
concentration and ionic strength is an important theme in many of these studies. A key
role is played by the electrostatic repulsions between the colloidal spheres, which are not
only capable of stabilising suspensions against irreversible aggregation due to attractive
Van der Waals forces, [93] but are also the driving force for crystallisation, [94] provided
the surface charge on the colloids is high enough and the range of the repulsions long
enough. [92–94] The classic theory that describes the electrostatic repulsions between
charged colloidal particles in suspension goes back to the 1940’s, when Derjaguin, Landau,
Verwey, and Overbeek (DLVO) found, within linear screening theory, that suspended
spheres repel each other by screened-coulomb (Yukawa) interactions. [42, 95] The strength
of these repulsions increases with the square of the colloidal charge, and they decay
exponentially with particle-particle separation on the length scale of the Debye screening
length of the solvent. [96] This pairwise Yukawa form is a corner stone of colloid science,
and can explain a large number of observations. [92–94] For instance, the experimentally
observed crystallisation of charged colloidal spheres into body-centered cubic (bcc) and
face-centered cubic (fcc) phases upon increasing the colloidal packing fraction at low and
high salt concentrations, [97–100] respectively, is in fair agreement with simulations of
Yukawa systems. [101–104] Interestingly, in these simulation studies, as well as in many
other studies, [105–109] the charge of the colloids is assumed to be independent of the
colloid density and the salt concentration.

Experiments on deionized aqueous suspensions of highly charged spherical latex col-
loids with ionizable sulphate groups showed indeed evidence for an effective charge that is
independent of volume fraction using elasticity and conductivity measurements. [110–112]
Differences between the effective charge obtained from conductivity and elasticity mea-
surements were attributed to either charge renormalization [105] or macro-ion shielding
due to many-body effects. [113–115] Similar conclusions were obtained for silica particles
with ionizable carboxylate groups on the surface. [116]

The constant-charge assumption was argued to break down, however, in some recent
studies where the electrostatic repulsions were argued to be reduced with increasing col-
loid concentration. Biesheuvel, [117] for instance, argues that experimental equilibrium
sedimentation-diffusion profiles of charged silica spheres in ethanol at extremely low salt
concentrations [118] are better fitted by a charge-regulation model than by a constant-
charge model. [119] More recent evidence for a concentration-dependent colloidal charge
stems from re-entrant melting and re-entrant freezing observations of PMMA spheres in
a solvent mixture of cis-decaline and cyclohexyl bromide, i.e. the phase sequence upon
increasing the colloid concentration is fluid-crystal-fluid-crystal. [120] In addition, direct
force measurements between a single pair of colloidal PMMA spheres in hexadecane, a
pair that is part of a triplet, and a pair that is part of a multiplet have very recently
revealed a significant reduction of the force with increasing number of neighbouring par-
ticles. [121] Interestingly, in the three experiments of Refs.[118, 120, 121] the solvent is a
nonpolar medium.
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In fact, the experimental findings of Ref.[121] could well be interpreted and explained in
terms of constant-potential boundary conditions on the colloidal surfaces, rather than the
more usual constant-charge assumption. Recently, electrophoresis experiments on PMMA
spheres in a low-polar solvent that the charge per particle decreased as a function of the
volume fraction, while the surface potential appeared to remain more or less constant.
[122] This chapter addresses the consequence of constant-potential boundary conditions
for the packing fraction-salt concentration phase diagram of Yukawa systems by calcu-
lating the colloidal charge and the effective screening length for various zeta-potentials
as a function of salt- and colloid concentration. In the case of high zeta-potential this
requires nonlinear screening theory, and hence the renormalized rather than the bare col-
loidal charge determines the effective screened-Coulomb repulsions between the colloids.
[98, 105, 108, 116, 123–127] For this reason we use the renormalized charge throughout.
We also compare our constant-potential calculations with those of an explicit charge-
regulation model, [128–133] and conclude that their results are qualitatively similar, and
even quantitatively if they are considered as a function of an effective screening length.

6.2 Model and theory
We consider N colloidal spheres of radius a in a solvent of volume V , temperature T ,
dielectric constant ε and Bjerrum length λB = e2/εkBT . Here e is the elementary charge
and kB the Boltzmann constant. The colloidal density is denoted by n = N/V and
the packing fraction by η = (4π/3)na3. The suspension is presumed to be in osmotic
contact with a 1:1 electrolyte of Debye length κ−1 and total salt concentration 2ρs. We
are interested in suspensions of charged colloids of which the surface (zeta) potential ψ0
rather than the charge Ze is fixed. We will show that this constant-potential condition
mimics charge-regulation on the colloidal surfaces fairly accurately. The first goal of
this article is to calculate Z as a function of η for fixed dimensionless combinations κa,
a/λB, and φ0 ≡ eψ0/kBT . This result will then be used to quantify the effective Yukawa
interactions between pairs of colloids, and hence the phase boundaries between fluid,
face-centered cubic (fcc) and body-centered cubic (bcc) crystalline phases.

In the actual suspension of constant-potential colloidal spheres, the charge distribu-
tion of each of the N colloids will be distributed heterogeneously over its surface due to
the proximity of other colloids in some directions. This leads to a tremendously complex
many-body problem that we simplify here by assuming a spherically symmetric environ-
ment for each colloid, which is nevertheless expected to describe the average electrostatic
properties realistically. Below we will calculate the electrostatic potential ψ(r) at a radial
distance r from a charged colloidal sphere at a given zeta-potential ψ0, i.e. at a given
value ψ(a) = ψ0. The colloidal charge Ze then follows from Gauss’ law

ψ′(a) = −Ze
εa2 , (6.1)

where a prime denotes a radial derivative.
We first consider a single colloid in the center of a spherical Wigner-Seitz cell of radius

R, such that the cell volume equals the volume per particle, (4π/3)R3 = V/N , which
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implies R = aη−1/3. The radial coordinate of the cell is called r. We write the ionic
density profiles for r ∈ (a,R) as Boltzmann distributions ρ±(r) = ρs exp(∓φ(r)), with
φ(r) = eψ(r)/kBT the dimensionless electrostatic potential. Together with the Poisson
equation ∇2φ = −4πλB(ρ+(r) − ρ−(r)), this gives rise to the radially symmetric PB-
equation and boundary conditions (BC’s)

φ′′(r) + 2
r
φ′(r) = κ2 sinhφ(r), r ∈ (a,R); (6.2)
φ(a) = φ0; (6.3)
φ′(R) = 0, (6.4)

where a prime denotes a derivative with respect to r. Note that BC (6.4) implies charge
neutrality of the cell. Once the solution φ(r) is found for given η, κa, and φ0, e.g.
numerically on a radial grid, the colloidal charge Z follows from Eq.(6.1), which we rewrite
in dimensionless form as

ZλB
a

= −aφ′(a). (6.5)

From the numerical solutions that we will present below it turns out that Z decreases
monotonically from a finite asymptotic low-η (large-R) value Z0 to essentially 0 at η ' 1
(or R ' a).

Within linear-screening theory at low packing fraction, where sinhφ ' φ, the potential
distribution can be solved for analytically, yielding φ(r) = φ0a exp[−κ(r−a)]/r, such that
the colloidal charge takes the asymptotic low-η and low-φ0 value

Z0λB
a

= (1 + κa)φ0. (6.6)

In the appendix we show that the discharging effect with increasing η, as found from
the nonlinear screening theory discussed above, can also be approximated within linear
screening theory, yielding

Z(η, κa) = Z0

1 + η/η∗
, η∗ = (κa)2

3(1 + κa) , (6.7)

where η∗ is a crossover packing fraction at which the colloidal charge has decayed to half
its dilute-limit value Z0 given in Eq.(6.6). For typical numbers of experimental interest,
e.g. a/λB = 100 and κa = 0.25, we then find Z0 = 125φ0 and η∗ = 0.017. With
φ0 ' 1− 2, which corresponds to a surface potential of 25-50mV, we should expect a few
hundred charges in the dilute limit and a significant charge reduction for η & 10−2.

The constant-potential boundary condition that we employ here is supposed to mimic
charge-regulation on the colloidal surface through an association-dissociation equilibrium
of chargeable groups on the surface. Here we consider, as a typical example, the reaction
SA⇔ S++A− where a neutral surface group SA dissociates into a positively charged
surface group S+ and a released anion A−. The chemistry of such a reaction can be
characterised by a reaction constant K such that [S+][A−]/[SA]=K, where the square
brackets indicate concentrations in the vicinity of the surface where the reaction takes
place. If we now realise that Z ∝ [S+], we find for the usual case where [S+]�[SA] that
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Z ∝ 1/[A−]. For the case that the released anion is of the same species as the anion in
the reservoir, such that [A−] = ρs exp[φ(a)], we thus have

Z = z exp(−φ(a)), (6.8)

where the prefactor z, which is a measure for the surface chargeability, [134] accounts for
the chemistry, the surface-site areal density, and the total area of the surface between
the colloidal particle and the electrolyte solution. Note that Eq.(6.8) relates the (yet
unknown) colloidal charge Z to the (yet unknown) zeta-potential φ(a), for a given z.
A closed set of equations for charge-regulated colloids is obtained by combining the PB
equation (6.2) with BC (6.4) at the boundary of a spherical Wigner-Seitz cell of radius
R, with BC (6.3) replaced by

aφ′(a) = −λBz
a

exp(−φ(a)), (6.9)

for some given chargeability z. The resulting solution φ(r) gives the zeta-potential φ(a)
as well as the colloidal charge Z using Eq.(6.8). When comparing the constant-potential
model with the ionic association-dissociation model, we will tune the chargeability z such
that the low-η results for Z coincide for both models.

It is well known that nonlinear screening effects, in particular counterion condensation
in the vicinity of a highly charged colloidal surface, reduce the effective colloidal charge
that dictates the screened-Coulomb interactions between the colloids. [105, 108, 123–
125, 135] The so-called renormalized colloidal charge, Z∗, can be calculated from the
electrostatic potential φ(r) as obtained from the nonlinear PB equation by matching the
numerically obtained solution at the edge of the cell to the analytically known solution of
a suitably linearized problem. By extrapolating the solution of the linearized problem to
the colloidal surface at r = a, one obtains the effective charge by evaluating the derivative
at r = a using Eq.(6.5). Following Trizac et al., [136] the renormalized charge Z∗ can be
written as

Z∗λB
a

= −tanhφD
κ̄a

(
(κ̄2aR− 1) sinh[κ̄(R− a)] + κ̄(R− a) cosh[κ̄(R− a)]) , (6.10)

where the ‘Donnan’ potential is defined as φD ≡ φ(R), i.e. the numerically found potential
at the boundary of the cell, and where the effective inverse screening length is

κ̄ = κ
√

coshφD. (6.11)

Note that Z∗ and κ̄ can be calculated for the constant-potential as well as the association-
dissociation model in a spherical cell.

6.3 Effective charge and screening length
For both the constant surface potential (CSP) and the association-dissociation (AD)
model discussed above we calculated the bare colloidal charge Z, the effective (renormal-
ized) charge Z∗, and the effective inverse screening length κ̄ in the geometry of spherical
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Figure 6.1: Left: The bare colloidal charge Z (continuous black curves) and the renormalized
charge Z∗ (dashed black curves), both in units of a/λB (see text), as a function of the colloidal
packing fraction η for several screening parameters κa, for constant surface potentials (a) φ0 = 1
and (b) φ0 = 5. The red curves denote Z and Z∗ as obtained from the association-dissociation
model, with the chargeability z chosen such that the surface potential in the dilute limit η → 0
equals φ0. Right: The effective inverse screening length κ̄ as a function of the packing fraction
η for several reservoir screening parameters κa, for constant surface potentials (c) φ0 = 1 and
(d) φ0 = 5 as represented by the black curves. The red curves denote κ̄ as obtained from the
association-dissociation model, with the chargeability z chosen such that the surface potential
in the dilute limit η → 0 equals φ0. Note that κ̄ = κ in all cases for η → 0.

Wigner-Seitz cells. In Fig.6.1(a) and (b) we show ZλB/a (full curves) and Z∗λB/a (dashed
curves) as a function of packing fraction η, for two screening constants for both the CSP
model (black curves) and the AD model (red curves), in (a) for fixed zeta-potential φ0 = 1
and in (b) for φ0 = 5. In all cases the chargeability parameter z of the AD model is chosen
such as to agree with the CSP model in the low-density limit η → 0. For low packing
fractions, the red and black curves show agreement for equal κa, by construction. At
higher η the agreement is only qualitative, and the charges predicted by the AD model
exceed those of the CSP model, which should not come as a surprise since the former
interpolates between the constant-charge and the constant-potential model. The close
agreement between Z and Z∗ for all κa at φ0 = 1 in Fig.6.1(a) is also to be expected,
since φ0 = 1 is not far into the nonlinear regime. By contrast, deep in the nonlinear
regime of φ0 = 5, as shown in Fig.6.1(b), there is a significant charge renormalization
effect such that Z∗ < Z by a factor of about 1.2 and 1.5 for κa = 0.1 and κa = 0.5,
respectively. The merging of the red and the black curves at high-η in Fig.6.1(b) is due
to the reduction of the charge into the linear-screening regime such that Z = Z∗. The
increase of Z∗ with κ, as observed in both Fig.6.1(a) and (b), is in line with well-known
charge-renormalization results, [105, 108, 123–125, 136] and with Eq. 6.6.
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In Fig.6.1(c) and (d) we plot, for the same zeta-potentials, the effective screening
parameter κ̄ as a function of η for several reservoir screening constants κ. At low enough
η, where κR � 1, the two screening constants are indistinguishable from each other in
all cases. The reason is that the cell is then large enough for the potential to decay to
essentially zero at r = R, such that the asymptotic decay of φ(r) is governed completely
by the screening constant κ of the background (reservoir) salt concentration. At larger
η, and hence smaller cells, φ(R) is no longer vanishingly small and the ion concentrations
ρ±(R) at r = R deviate considerably from the ionic reservoir concentration ρs. This larger
ionic concentration at the cell boundary, which represents an enhanced ion concentration
in between the colloidal particles in the true many-body system, leads to a larger effective
screening constant κ̄ with increasing η at a fixed κ, as is shown in Fig.6.1(c) and (d).
Given that larger charges are obtained in the AD model than in the CSP model at high
η, the number of counterions in the cell, and hence κ̄, is also larger in the AD model.

6.4 Effective interactions and phase diagrams
Once the effective colloidal charge Z∗ and the effective screening length κ̄−1 have been
determined from the numerical solution of the PB equation in a spherical cell, either for
constant-potential or association-dissociation boundary conditions, the effective interac-
tions u(r) between a pair of colloidal particles separated by a distance r follows, assuming
DLVO theory, as

u(r)
kBT

=


∞, r < 2a;

λB

(
Z∗ exp(κ̄a)

1 + κ̄a

)2 exp(−κ̄r)
r

, r > 2a, (6.12)

where we include a short-range hard-core repulsion for overlapping colloids and ignore
Van der Waals forces (which is justified for index-matched particles). Note that the
pair potential u(r) depends on density-dependent parameters Z∗ and κ̄, and therefore
contains two many-body effects, (i) charge renormalization, and (ii) colloidal discharging
with increasing density. However, one could expect macro-ion shielding as another many-
body effect. [98, 116, 126, 137] In states where the pair interaction u(r) is so weak that
a fluid phase results, we expect the macro-ion shielding to be weak; in crystalline states
with strong effective pair interactions macro-ion shielding could also be significant. We
expect, however, that the strongest underlying assumption in crystalline states is the
spherical cell employed in our calculations. The actual Wigner-Seitz cell in face-centered-
cubic and body-centered-cubic crystal phases will probably generate an anisotropic charge
distribution on constant-potential colloids and hence anisotropic pair interactions. Such
a problem could in principle be tackled with the numerical technique developed in Ref.
[138], but due to its numerical involvement such a study is left for future work. Below,
we will find a surprisingly large parameter regime, where a fluid phase is predicted, which
gives an a posteriori justification for the use of the relatively simple pair potential u(r) of
Eq. (6.12).

One could use this pair interaction to simulate (or otherwise calculate) properties of
the suspension in a given state-point, e.g. whether the system is in a fluid or crystalline
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state. We restrict our attention here to the limiting case in which the colloidal particles
are sufficiently highly charged and/or sufficiently weakly screened, that the pair-potential
at contact satisfies u(2a) � kBT , thereby effectively preventing direct particle-particle
contact. In this limit the suspension can be effectively regarded as a point-Yukawa system
that can be completely characterised by only two dimensionless parameters U and λ for
the strength and the range of the interactions, respectively. They are defined as

U =
(
Z∗ exp(κ̄a)

1 + κ̄a

)2
λB
a

(3η
4π

)1/3
(6.13)

λ = κ̄a
(3η

4π

)−1/3
, (6.14)

such that the point-Yukawa interaction potential of interest, in units of kBT , reads
U exp(−λx)/x with x = r(N/V )1/3 the particle separation in units of the typical particle
spacing. Note that three dimensionless parameters would have been needed if hard-core
contact was not a low Boltzmann-weight configuration, e.g. then the contact-potential
βu(2a) (i.e. the inverse temperature), the dimensionless screening parameter κa, and
the packing fraction η would be a natural choice. The mapping of the phase diagram of
the point-Yukawa system onto hard-core Yukawa systems has been tested and verified
explicitly by computer simulation. [104]

The point-Yukawa system has been studied by simulation in great detail over the years,
[101–104] and by now it is well known this model features a disordered fluid phase and two
crystalline phases (face-centered cubic (fcc) and body-centered cubic (bcc)). Their first-
order phase boundaries are well-documented, and can accurately be described by curves
in the two-dimensional (λ, U) plane. Here, we employ the fits for the phase boundaries of
point-Yukawa particles that were presented in Ref. [104], which were based on the results
of Hamaguchi et al.. [103] The melting-freezing line between the bcc crystal and the fluid
is accurately fitted by

lnU = 4.670− 0.04171λ+ 0.1329λ2 − 0.01043λ3

+ 4.343 · 10−4λ4 − 6.924 · 10−6λ5, (6.15)
for 0 ≤ λ ≤ 12,

and the bcc-fcc transition by

lnU = 97.65106− 150.469699λ+ 106.626405λ2

−41.67136λ3 + 9.639931λ4 − 1.3150249λ5

+0.09784811λ6 − 0.00306396λ7, (6.16)
for 1.85 ≤ λ ≤ 6.8.

Here we exploit these empirical relations as follows. For given dimensionless colloid radius
a/λB and screening constant κa, we calculate Z∗ and κ̄a for various η for the CSP and
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Figure 6.2: Phase diagrams in the packing fraction-screening length (η, κ−1) representation for
constant-potential colloids (radius a/λB = 100) interacting with the hard-core Yukawa potential
of Eq.(6.12), for surface potentials φ0 = 1, 2, 3, and 5. The black lines represent phase boundaries
for the constant-potential model, and the red dashed lines for the association-dissociation model
with the surface potential equal to φ0 in the dilute limit. The dashed black lines indicate
extrapolation of Eq.(6.15) beyond its strict regime of accuracy. The inset in the phase diagram
for φ0 = 5 represents η on a logarithmic scale for clarity. The labels “Fluid”, “BCC”, and “FCC”
denote the stable fluid, bcc, and fcc regions. We note that the very narrow fluid-fcc, fluid-bcc,
and fcc-bcc coexistence regions are just represented by single curves. The dotted blue curves
represent the estimated crossover-packing fraction η∗ of Eq.(6.7), beyond which Z(η) < Z(0)/2.
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Figure 6.3: Phase diagrams in the packing fraction-effective screening length representation
(η, (κ̄a)−1), for a/λB = 100, for constant-potential colloids with (a) φ0 = 2 and (b) φ0 = 5, as
well as for charge-regulated colloids. Lines, symbols, and colors as in Fig.6.2.

the AD model in the spherical cell, as described in the previous section. These quantities
can be used to compute the dimensionless Yukawa parameters U and λ from Eqs.(6.13)
and (6.14), such that their phase and phase-boundaries are known from Eqs.(6.15) and
(6.16).

For a/λB = 100, Fig.6.2 shows the phase diagrams that result from this point-Yukawa
mapping procedure in the (η, (κa)−1) representation, for the CSP model (black curves)
with surface potentials (a) φ0 = 1, (b) φ0 = 2, (c) φ0 = 3, (d) φ0 = 5, and for the
corresponding AD model (red curves). The dashed lines represent the phase boundary
fits of Eqs.(6.15) and (6.16) outside their strict λ-regime of applicability. We restrict
attention to η < 0.3, as the point-Yukawa limit breaks down due to strong excluded-
volume effects at higher packing fractions. An expected feature is the shift of the freezing
curves to lower η for higher φ0, due to the higher (renormalized) charge and the stronger
repulsions at higher φ0. Due to the higher charges in the AD model, its crystallisation
regimes (red curves) extend to somewhat lower η’s and longer screening lengths than
those of the CSP model (black curves). However, the most striking feature of all these
phase diagrams is the huge extension of the fluid regime: at high and at low screening
length there is no crystalline phase at all (for η < 0.3), while at some intermediate
salt concentrations the crystal phases are sandwiched in between an ordinary low-density
fluid and a re-entrant fluid phase. This re-entrant fluid regime becomes more prominent
with increasing zeta-potential φ0. The underlying physics of this finite-salt and finite-η
regime where bcc and fcc crystals exist is the discharging of the colloids with increasing η
and decreasing salt concentration: (i) although at high salt (small screening length) the
colloidal charge is high, the screened-Coulomb interaction is then so short-ranged that
the system resembles a hard-sphere system that will only crystallize at η ' 0.5; (ii) at low
salt (long screening length) the colloidal charge is too low to have seizable repulsions that
drive crystallisation. Only at intermediate salt and intermediate colloidal packing the
charge is high enough and the screening sufficiently long-ranged to drive crystallisation.
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Figure 6.4: Maximum and minimum effective screening lengths where bcc and fcc can be found,
as a function of the surface potential, assuming a constant surface potential for a/λB = 100.
The bcc regime is in between the two black lines, and the fcc regime below the gray line. The
gray points indicate the results from the AD model.

The dotted blue curves in Fig.6.2 represent the crossover packing fraction η∗ of Eq.(6.7)
beyond which the colloidal charge has been reduced to less than 50 percent of its dilute-
limit value. Clearly, our expression for η∗ indeed roughly coincides with the onset of the
re-entrant fluid regime. Eq.(6.7) thus provides a quick guide to estimate where or whether
re-entrant melting is to be expected at all. Interestingly, at φ0 = 3, there are values for κa
(albeit in a very narrow range) where a phase sequence fluid-bcc-fcc-bcc is predicted here
upon increasing the colloidal packing fraction, showing a re-entrant bcc phase appearing
after the fcc crystal. Moreover, for η > 0.5 one expects hard-sphere freezing into an fcc
(or hcp) stacking on the basis of hard-sphere interactions, so the fcc phase is then also
re-entrant.

Experimentally it is not always possible or convenient to characterise the screening in
terms of the Debye length κ−1 of the (hypothetical) reservoir with which the suspension
would be in osmotic equilibrium. For instance, in conductivity measurements at finite
colloid concentration one essentially measures the ionic strength of the sample, which is
directly related to the effective screening constant κ̄ rather than κ. Also, any measurement
of effective colloidal interactions will yield κ̄. Because of this accessibility of κ̄, we replot
in Fig.6.3 the phase diagrams for φ0 = 2 and φ0 = 5 of Fig.6.2, but now in the (η, (κ̄a)−1)
representation. While the phase behavior in for example a sedimentation experiment will
be easier to compare to the phase diagrams shown in Fig. 6.2, the representation of Fig.
6.3 could be useful in cases where no ion reservoir is present, while the effective screening
length is known. Interestingly, the CSP and AD model are much closer together in Fig.
6.3 compared to Fig. 6.2, and the re-entrant fluid phase appears even more pronounced
in this representation.

In order to quantify in which finite salt-concentration regime bcc and fcc crystals are
expected in a colloidal concentration series 0 < η < 0.3, we analyse the maximum and
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Figure 6.5: Phase diagrams in the packing fraction-screening length representation (η, (κa)−1),
for constant-potential colloids with (a) φ0 = 5 for a/λB = 10 and (b) φ0 = 1 and for a/λB =
1000. Lines and symbols as in Fig.6.2.

minimum values of κ̄a at which these two crystal phases can exist, as a function of the
zeta-potential φ0, for a/λB = 100. Fig. 6.4 shows the resulting screening-length regimes,
both for bcc (black curves) and fcc (blue curve), where the lowest screening length for
fcc crystals is set to zero because of the hard-sphere freezing into fcc at η = 0.5 even
for 1/κa → 0 —of course we only restricted attention to η < 0.3 until now so strictly
speaking also the fcc phase should have had a nonvanishing lower bound. Nevertheless,
despite this small inconsistency, Fig.6.4 clearly shows not only that a larger zeta-potential
gives rise to a larger crystal regime, but also that for all φ0 there is a limiting screening
length beyond which neither fcc nor bcc crystals can exist, both for the CSP and the AD
model.

So far we focussed on a/λB = 100, which in aqueous suspensions corresponds to a
colloidal radius of about 70nm. However the colloidal size regime can easily be a factor
10 larger or smaller, and for that reason we also consider the CSP model for a/λB = 10
and 1000. In Fig.6.5 we show the phase diagrams for the smaller colloids with φ0 = 5
in (a), and for larger colloids with φ0 = 1 in (b). When compared to the larger colloids
(a/λB = 100), the phase diagram for the smaller colloids comes closest to the one shown
in Fig.6.2(b) for φ0 = 2, but the reentrant fluid has disappeared completely. Additionally,
the smaller particles need a much higher potential to crystallize – the phase diagram for
a/λB = 10 at φ0 = 1 does not show a crystal phase at all for η < 0.3. Similarly, the larger
colloids require a much lower surface potential to resemble the phase diagram shown in
Fig. 6.2(c). Additionally, the range of screening lengths where a reentrant fluid exists
is much larger than for a/λB = 100. Given that φ0 = 5 is a rather high potential that
may be difficult to achieve in reality while φ0 = 1 is frequently occurring, one concludes
that re-entrant melting occurs in the largest salt-concentration regime and is hence easiest
observable by tuning the salt, for larger colloids.
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6.5 Summary and conclusions
Within a spherical cell model we have calculated the bare charge Z, the renormalized
charge Z∗, and the effective screening length κ̄−1 of colloidal spheres at a constant zeta-
potential φ0. We find from numerical solutions of the nonlinear Poisson-Boltzmann equa-
tion that these constant-potential colloids discharge with increasing packing fraction and
ionic screening length, in fair agreement with analytical estimates for the dilute-limit
charge Z0 in Eq.(6.6) and the typical crossover packing fraction η∗ given in Eq.(6.7).
We also show that the constant-potential assumption is a reasonably accurate descrip-
tion of charge regulation by an ionic association-dissociation equilibrium on the colloidal
surface. We use our nonlinear calculations of Z∗ and κ̄ to determine the effective screened-
Coulomb interactions between the colloids at a given state point, and we calculate the
phase diagram for various zeta-potentials by a mapping onto empirical fits of simulated
phase diagrams of point-Yukawa fluids. This reveals a very limited regime of bcc and fcc
crystals: in order to form crystals, the charge is only high enough and the repulsions only
long-ranged enough in a finite intermediate regime of packing fraction and salt concentra-
tions; at high η or low salt the spheres discharge too much, and at high salt the repulsions
are too short-ranged to stabilise crystals. In the salt-regime where crystals can exist, the
discharging mechanism gives rise to re-entrant phase behaviour, with phase sequences
fluid-bcc-fluid and even fluid-bcc-fcc-bcc (although in an extremely small regime) upon
increasing the colloid concentration from extremely dilute to η = 0.3.

The phase behaviour of constant-potential or charge-regulated colloids as reported here
is quite different from that of constant-charge colloids, for which the pairwise repulsions
do not weaken with increasing volume fraction or decreasing salt concentration. As a
consequence constant-charge colloids have a much larger parameter-regime where crystals
exist, and do not show the re-entrant behaviour. [101–104] The most direct comparison
is to be made with the constant-charge phase diagrams of Fig.2 and Fig.4 of Ref.[104],
where the charge is fixed such that the surface potential at infinite dilution corresponds
to φ0 ' 1 and 2, respectively. Our theoretical findings can thus be used to gain insight
into the colloidal charging mechanism by studying colloidal crystallisation regimes as a
function of packing fraction and salt concentration.
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Appendix
Although it is numerically straightforward to solve the nonlinear PB equation (6.2) with
BC’s (6.3) and (6.4) in a spherical Wigner-Seitz cell of radius R, it may also be convenient
to have analytic results that allow for quick estimates of the (order of) magnitude of the
colloidal charge Z. A standard approach is to linearise the sinhφ(r) term of Eq.(6.2),
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e.g. with φ(r) − φ(R) as the small expansion parameter. The resulting solution is then
of the form φ(r) = A exp(−κ̄r)/r + B exp(κ̄r)/r + C, with κ̄ defined in Eq.(6.11), C =
φ(R) − tanhφ(R), and with integration constants A and B fixed by the two BC’s. The
algebra involved is, however, not very transparent.

A considerable simplification is achieved if we consider the so-called Jellium model,
in which the central colloidal sphere is no longer considered to be surrounded by only
cations and anions in a finite cell, but instead by cations, anions and other colloids with
charge Z (to be determined). [123–125] A nonlinear PB equation and BC’s can then be
written, for r ≥ a,

φ′′(r) + 2
r
φ′(r) = κ2 sinhφ(r)− 4πλBZn; (6.17)
φ(a) = φ0; (6.18)

φ′(∞) = 0, (6.19)

where it is assumed that the ’other’ colloids are distributed homogeneously with density
n. From this one derives directly that the asymptotic potential is given by

sinhφ(∞) = 4πλBZn
κ2 = 3η(ZλB/a)

(κa)2 . (6.20)

Now linearising sinhφ(r) with φ(r) − φ(∞) as the small expansion parameter gives rise
to the solution

φ(r) = φ(∞) + (φ0 − φ(∞))
exp

(
− κ̃(r − a)

)
r/a

, (6.21)

where the effective screening length κ̃−1 is defined by

κ̃ = κ
√

coshφ(∞). (6.22)

We note that the average ion concentrations in the system, within the present linearisation
scheme, is given by c± = ρs exp(∓φ(∞)), such that the corresponding screening length
κ̃−1 is given by κ̃2 = 4πλB(c+ + c−). In other words, the effective screening length κ̃ and
the asymptotic potential φ(∞) of this jellium model play exactly the same role as κ̄ and
φ(R) that we introduced before in the spherical cell. In particular, κ̄−1 and κ̃−1 can be
seen as the actual screening length in the suspension (in contrast to the screening length
κ−1 of the ion reservoir).

From Eq.(6.21) the colloidal charge Z follows, using Eq.(6.5), as the solution of the
transcendental equation

ZλB
a

= (φ0 − φ(∞))(1 + κ̄a), (6.23)

where one should realise that both φ(∞) and κ̃ depend on ZλB/a through Eqs.(6.20) and
(6.22). It is possible to solve Eq.(6.23) explicitly in the dilute limit. For η = 0 one finds
φ(∞) = 0 from Eq.(6.20), and hence Z = Z0 given by Eq.(6.6). For finite but low-enough
η for which φ(∞)� 1 one can ignore O(η2) contributions, such that sinhφ(∞) ' φ(∞)
and coshφ(∞) ' 1, to find Eq.(6.7) from the self-consistency condition Eq.(6.23).
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Crystal nucleation in binary
hard-sphere mixtures: The effect of
the order parameter on the cluster

composition

We study crystal nucleation in a binary mixture of hard spheres and investigate the
composition and size of the (non)critical clusters using Monte Carlo simulations. In
order to study nucleation of a crystal phase in computer simulations, a one-dimensional
order parameter is usually defined to identify the solid phase from the supersaturated fluid
phase. We show that the choice of order parameter can strongly influence the composition
of noncritical clusters due to the projection of the Gibbs free-energy landscape in the two-
dimensional composition plane onto a one-dimensional order parameter. On the other
hand, the critical cluster is independent of the choice of the order parameter, due to the
geometrical properties of the saddle point in the free-energy landscape, which is invariant
under coordinate transformation. We investigate the effect of the order parameter on the
cluster composition for nucleation of a substitutional solid solution in a simple toy model of
identical hard spheres but tagged with different colors and for nucleation of an interstitial
solid solution in a binary hard-sphere mixture with a diameter ratio q = 0.3. In both
cases, we find that the composition of noncritical clusters depends on the order parameter
choice, but are well explained by the predictions from classical nucleation theory. More
importantly, we find that the properties of the critical cluster do not depend on the order
parameter choice.
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7.1 Introduction

The process of nucleation in colloidal systems has attracted significant attention in recent
years, both in experimental and simulation studies. The framework with which phe-
nomena like these have been described traditionally is classical nucleation theory (CNT),
which is based on the notion that a thermal fluctuation spontaneously generates a small
droplet of the thermodynamically stable phase into the bulk of the metastable phase. In
CNT as developed by Volmer [139], Becker [140], and Zeldovich [141], the free energy of
formation of small nuclei of the new phase in the parent phase is described by using the
“capillary approximation”, i.e., the free energy to form a cluster of the new phase relative
to the homogeneous metastable phase is described by their difference in bulk free energy
and a surface free-energy term that is given by that of a planar interface between the two
coexisting phases at the same temperature. Thus the droplet is assumed to be separated
from the metastable bulk by a sharp step-like interface in CNT. The bulk free-energy
term is proportional to the volume of the droplet and represents the driving force to form
the new phase, while the surface free-energy cost to create an interface is proportional to
the surface area of the cluster. Hence, small droplets with a large surface-to-volume ratio
have a large probability to dissolve, while droplets that exceed a critical size and cross
the free-energy barrier, can grow further to form the new stable bulk phase.

CNT has successfully explained simulation results for the nucleation of spherical
particles, such as the fluid-solid and gas-liquid nucleation in Lennard-Jones systems
[87, 142, 143] and crystal nucleation of hard spheres [144, 145]. A modified CNT has been
used to explain the nucleation of anisotropic clusters of the nematic or solid phase (also
called tactoids) from a supersaturated isotropic phase of colloidal hard rods [146–148] and
the nucleation of 2D assemblies of attractive rods [149, 150]. This state of affairs should
be contrasted with the case of binary nucleation for which various nucleation theories
have been developed that differ substantially in the way they describe the composition of
the cluster [151–153]. For instance, Reiss assumed the surface tension to be independent
of composition [151], while Doyle extended CNT by taking into account a surface tension
that depends on the cluster composition [154]. However, more than 20 years later, it was
shown by Renninger [155], Wilemski [156, 157], and Reiss [158] that Doyle’s derivation
leads to thermodynamic inconsistencies. A revised thermodynamically consistent classi-
cal binary nucleation theory was developed by Wilemski in which the composition of the
surface layer and the interior of the cluster could vary independently [156, 157]. However,
in the case of strong surface enrichment effects, this approach can lead to unphysical
negative particle numbers in the critical clusters [159, 160]. In addition, it was shown in
Ref. [161] that the derivation by Wilemski starts off with the wrong equations, but the
resulting equations are correct. Moreover, binary nucleation can be accompanied with
huge fractionation effects, i.e., the compositions of the metastable phase and of the phase
to be nucleated can differ enormously from the compositions of the two coexisting bulk
phases. It is therefore unclear i) how to determine the surface free-energy term for a clus-
ter, which is in quasi-equilibrium with a metastable parent phase with a composition that
is very different from those of the two coexisting bulk phases, ii) whether the interfacial
tension depends on composition, curvature, and surface enrichment effects, and finally
iii) whether or not one can use the capillary approximation in the first place to describe
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binary nucleation in systems where fractionation and surface activity of the species are
important. To summarize, there is no straightforward generalization to multicomponent
systems of classical nucleation theory that is thermodynamically consistent, does not lead
to unphysical effects, and can be applied to small nuclei [153, 162].

Numerical studies may shed light on this issue, as the nucleation barrier can be deter-
mined directly in computer simulations using the umbrella sampling technique [163, 164].
In this method, an order parameter is chosen and configuration averages for sequential val-
ues of the order parameter are taken. While this makes it possible to measure properties
of clusters with specific values for the order parameter, it should be noted that the results
can depend on the choice of order parameter. In this chapter, we investigate whether
the size and composition of (non)critical clusters can be affected by the order parameter
choice employed in simulation studies of multicomponent nucleation. For simplicity, we
focus here on crystal nucleation in binary hard-sphere mixtures, where surface activity
of the species can be neglected, and we assume the surface tension to be composition
independent. The chapter is organized as follows. In Sec. 7.2, we describe the general
nucleation theorem as derived by Oxtoby and Kashchiev [153], which does not rely on the
capillary approximation and can even be employed to describe small clusters. Starting
from the multicomponent nucleation theorem, it is straightforward to reproduce the usual
CNT for binary nucleation, which is the focus in the remainder of the chapter. In Sec.
7.3 and 7.4, we define the (Landau) free energy as a function of an order parameter, and
we describe the order parameter that is employed to study crystal nucleation. Addition-
ally, we discuss the effect of order parameter choice on the nucleation barrier in more
detail. We present results for binary nucleation for a simple toy model of hard spheres in
Sec. 7.5, and subsequently, we study the nucleation of an interstitial solid solution in an
asymmetric binary hard-sphere mixture in Sec. 7.6.

7.2 Classical nucleation theory for multi-component
systems

We study the formation of a multicomponent spherical cluster of the new phase in a
supersaturated homogeneous bulk phase α consisting of species i = 1, 2, . . . . We note that
the thermodynamic variables corresponding to the metastable phase α are denoted by the
subscript α, whereas those corresponding to the new phase do not carry an extra subscript
to lighten the notation. We first consider a homogeneous bulk phase α characterized by
an entropy Soα, volume V o

α , and particle numbers N o
i,α Note that the superscripts denote

the original bulk phase. The internal energy U o
α of the original bulk phase reads

U o
α = T oSoα − P o

αV
o
α +

∑
µoi,αN

o
i,α (7.1)

with T o the temperature, P o
α the bulk pressure, µoi,α the bulk chemical potential of species

i, and the summation runs over all species.
Following the derivation in Refs. [153, 162], we now consider a spherical cluster of the

new phase with a volume V separated from the original phase by an arbitrarily chosen
Gibbs dividing surface. The volume of the interface is set to zero, and the particle number
of species i in the cluster is given by Ni + Ni,s, where Ni is the number of particles of
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species i in a volume V which is homogeneous in the new bulk phase, and Ni,s is the
surface excess number of particles of species i that corrects for the difference between a
step-like interfacial density profile and the actual one. The surface excess number Ni,s

depends on the choice of dividing surface. The internal energy U of the resulting system
is then given by

U = TSα + TS − PαVα − PV + Ψ +
∑

µi,αNi,α +∑
µiNi +

∑
µi,sNi,s, (7.2)

where P and S denote the bulk pressure and entropy of the nucleated phase, and µi and
µi,s are the chemical potentials of species i in the new phase and the surface phase, T
is the temperature of the system with the cluster, and Ψ = Ψ({Ni}, {Ni,s}, V ) is the
total surface energy of the spherical cluster. As the volume of the surface layer is zero,
the corresponding pressure is not defined. Note that we did not include the entropy
associated with choosing the location of the cluster in the system. In other words, the
cluster is placed at a specific location.

The difference in the appropriate thermodynamic potential as a function of cluster size
depends on the quantities that are kept fixed during the nucleation process. If the nucleus
is formed at constant temperature and constant total number of particles of each species i,
and if we keep the pressure of the original phase fixed, then T = T o, Ni,α+Ni+Ni,s = N o

i,α,
and P o

α = Pα. The corresponding Gibbs free energy of the initial system Go
α and that of

the final system G are then given by the Legendre transformation

Go
α = U o

α − T oSoα + P o
αV

o
α =

∑
µoi,αN

o
i,α

G = U − TS + P o
α(Vα + V )

= (P o
α − P)V + Ψ +

∑
µi,αNi,α +

∑
µiNi

+
∑

µi,sNi,s. (7.3)

If we now assume that the composition of the metastable phase α remains unchanged and
we consider the Maxwell relation(

∂Vα
∂Ni,α

)
T,Pα,{Nj 6=i,α}

= vi,α =
(
∂µi,α
∂Pα

)
T,{Ni,α}

(7.4)

with vi,α the partial particle volumes of species i in phase α, we find that at constant
pressure, the chemical potential for each species i remains constant µoi,α = µi,α. Subse-
quently, we obtain for the change in Gibbs free energy ∆G = G − Go

α when a nucleus is
formed in the bulk of the original phase:

∆G = (P o
α − P)V + Ψ +

∑
(µi(P)− µoi,α(P o

α))Ni +∑
(µi,s − µoi,α(P o

α))Ni,s. (7.5)

Consequently, the Gibbs free energy ∆G of a growing cluster depends on the number
of particles Ni and Ni,s in the cluster and the surface energy of the cluster. Hence, one
can define a free-energy surface in the multi-dimensional composition plane with a saddle
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point that corresponds to the critical nucleus [151]. The conditions for the critical cluster
read (

∂∆G
∂Ni

)
V,{Nj 6=i},{Ni,s}

= 0,
(
∂∆G
∂Ni,s

)
V,{Ni},{Nj 6=i,s}

= 0, (7.6)
(
∂∆G
∂V

)
{Ni},{Ni,s}

= 0.

To recover the chemical and mechanical equilibrium conditions, we use the above
conditions as well as the Gibbs-Duhem equation and the Gibbs adsorption equation. The
Gibbs-Duhem equation at constant temperature for the nucleated bulk phase is

− V dP +
∑

Nidµi = 0, (7.7)

and the Gibbs adsorption equation for the surface at constant temperature is

Adγ +
∑

Ni,sdµi,s = 0, (7.8)

where we have employed Ψ = γA. Note that γ denotes the surface free energy per unit
area and A is the surface area of the cluster. The resulting equilibrium conditions for all
particle species i in the critical cluster, the surface, and the metastable parent phase are
then given by

µ∗i (P ∗) = µ∗i,s = µoi,α(P o
α), (7.9)

and for the pressure difference inside and outside the droplet we find

P ∗ − P o
α = ∂γ∗A∗

∂V ∗
, (7.10)

where ∗ denotes quantities associated with a system where a critical cluster is present.
Hence, the composition of the critical cluster can be determined from these saddle point
conditions.

In order to obtain the usual classical nucleation theory for multicomponent systems,
we assume a spherical droplet with radius R. Note that the surface area is then A = 4πR2.
In addition, we use the fact that the volume of a spherical droplet can be expressed in
terms of the partial particle volumes vi of species i:

V = 4
3πR

3 =
∑

Nivi. (7.11)

Combining this with Eq. (7.10), we arrive at the generalised Laplace equation:

P ∗ − P o
α = 2γ∗

R∗
+
[
∂γ∗

∂R∗

]
, (7.12)
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where the square brackets denote a derivative associated with the displacement of the
dividing surface. One can now choose the dividing surface so that[

∂γ∗

∂R∗

]
= 0, (7.13)

and hence one recovers the usual Laplace equation. This choice for the dividing surface,
corresponding to a specific value for R∗ and γ∗, is called the surface of tension. In addition,
if we use the Gibbs adsorption isotherm (7.8) and the Maxwell relation (7.4) for the bulk
phase of the nucleated cluster, we find for the critical cluster

dµ∗i,s = dµ∗i = vidP (7.14)

and [
A
∂γ∗

∂R∗

]
= −

∑
Ni,svi

[
∂P ∗

∂R∗

]
= 0, (7.15)

which is the condition for a curvature independent surface tension. Since ∂P ∗/∂R∗ 6= 0,
Eq. (7.15) implies that the dividing surface has to be chosen such that

∑
Ni,svi = 0, (7.16)

which is called the equimolar surface, as for one-component systems Ni,s = 0, i.e. the
number of particles in the cluster equals the number of particles in a uniform bulk phase
with the same volume. It is generally not possible in a multicomponent system to choose
the dividing surface such that Ni,s = 0 for all species. Thus, as vi is usually positive,
Ni,s < 0 for at least one of the species. This may lead to (unphysical) negative particle
numbers when Ni + Ni,s < 0 as noted in Refs. [159, 160]. However, as will be discussed
in sections 7.5 and 7.6, there are cases in which the assumption Ni,s = 0 for all i is valid.

If the nucleated phase is assumed to be incompressible, one can integrate the Gibbs-
Duhem equation (7.7) at constant temperature to arrive at

V(P o
α − P) =

∑
(µi(P o

α)− µi(P))Ni, (7.17)

and using Eq. (7.5), we find

∆G = γA+
∑

(µi(P o
α)− µoi,α(P o

α))Ni +∑
(µi,s − µoi,α(P o

α))Ni,s. (7.18)

Again using the Gibbs-Duhem equation at constant temperature and pressure and the
Gibbs adsorption isotherm, and minimizing the free energy with respect to Ni at fixed
{Ni,s}, we recover the Gibbs-Thomson (also called Kelvin) equations for multi-component
spherical critical clusters

∆µ∗i = −2γ∗vi
R∗

, (7.19)
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where ∆µ∗i = µ∗i (P o
α) − µoi,α(P o

α). The radius of the critical cluster R∗ and the barrier
height ∆G∗ read

R∗ = 2γ∗vi
|∆µ∗i |

(7.20)

∆G∗ = 4πR∗2γ∗
3 = 16πγ∗3

3(∆µ∗i /vi)2 . (7.21)

Using Eq. (7.20) or the Maxwell relation (7.4), one can show:

vi∆µi = vj∆µj, (7.22)

and the radius of the critical cluster R∗ can be expressed in terms of the bulk composition
xi = Ni/

∑
Ni of the critical cluster and v = V/

∑
Ni:

R∗ = 2γ∗v∑
xi|∆µ∗i |

. (7.23)

In order to study multi-component nucleation, MC simulations are often performed
in the isobaric-isothermal ensemble, in which the number of particles N o

1,α and N o
2,α, the

pressure of the original bulk phase P o
α, and the temperature T are kept fixed. One of

the assumptions of classical nucleation theory is that the composition of the metastable
bulk phase remains constant, while nucleating the new phase, see Eq. (7.4). In simula-
tions this can only be achieved if the system is sufficiently large, i.e., the volume of the
metastable bulk phase is much larger than that of the nucleating cluster. Especially, for
binary (multicomponent) nucleation, where the composition of the stable phase is very
different from that of the metastable phase, this can lead to a huge depletion of one of
the components in the metastable fluid phase, and therefore a change in composition.
In order to circumvent this problem, simulation studies on binary nucleation are often
carried out in the semi-grand canonical ensemble [165, 166], i.e. the total number of par-
ticles N o

α = ∑
N o
i,α, the chemical potential difference ∆µo12,α = µo2,α−µo1,α between the two

species, the pressure P o
α, and the temperature T are kept fixed of the original bulk phase.

The corresponding thermodynamic potential is obtained by a Legendre transformation

Y (N,∆µ12, P, T ) = G(N,N2, P, T )−N2∆µ12 (7.24)

Combining Eq. (7.3) with the conditions that the total number of particles are fixed
N o

1,α +N o
2,α = N1 +N2 +N1,α +N2,α, the chemical potential difference in the metastable

phase is kept fixed ∆µo12,α = ∆µ12,α, constant pressure of the metastable phase P o
α =

Pα and constant temperature T = T o, we find for the corresponding thermodynamic
potentials

Y o
α = Go

α −N o
2,α∆µo12,α = µo1,α(N o

1,α +N o
2,α)

Y = G− (N2,α +N2)∆µ12,α

= (P o
α − P)V + Φ + µ1,α(N1,α +N2,α) +

µ1(N1 +N2)−∆µ12N2 −∆µ12,αN2, (7.25)
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where we have set the surface excess numbers Ni,s to zero. Using the Maxwell equation
(
∂µ1

∂P

)
N,∆µ12,T

=
(
∂V

∂N

)
∆µ12,P,T

= v, (7.26)

we find that due to constant pressure, the chemical potential of species 1 remains un-
changed µo1,α = µ1,α. Hence, we find that the change in free energy due to the formation
of a nucleus ∆Y = Y −Y o

α equals ∆G as given in Eq. (7.5) and the nucleation barrier can
be calculated in the semi-grand canonical ensemble. Similarly, one can show that in any
statistical ensemble (grand canonical, canonical, etc. ), the change in the corresponding
thermodynamic potential as a function of cluster size is always the same, provided that
the metastable parent phase is sufficiently large. A similar result was also obtained by Ox-
toby et al., who showed that the nucleation free-energy barriers in the isobaric-isothermal
and grand canonical ensemble are identical, i.e., ∆G = ∆Ω for a one-component system
[167].

7.3 Free-energy barrier
While nucleation is an inherently non-equilibrium process, the assumption of local equilib-
rium is often made to describe the behavior of the system during the nucleation process.
In essence, this assumption states that the nucleus is in quasi-equilibrium with the parent
phase for every cluster size. This is approximately true if the time required to reach
an equilibrium distribution of clusters is short compared to the time needed to nucleate.
After the system crosses the free-energy barrier, the cluster of the new phase grows too
rapidly for this assumption to be accurate, but during the nucleation process itself, local
equilibrium has proven to be a useful assumption.

In order to compute the free-energy barrier that separates the metastable phase from
the stable phase, an order parameter Φ (or reaction coordinate) should be defined that
quantifies how much the system has transformed to the new phase. A common order
parameter that is employed in nucleation studies is the size of the largest cluster in the
system as defined by a certain cluster criterion. In this chapter, we restrict ourselves to
binary nucleation. From Eq. (7.18), we find that the Gibbs free energy ∆G of a growing
binary cluster depends on the number of particles of species 1 and 2 in the cluster, and
hence, one can define a free-energy surface in the (N1, N2)-plane with a saddle point that
corresponds to the critical nucleus [151]. By projecting the phase space of the system
onto the (usually) one-dimensional order parameter, one can define the (Landau) Gibbs
free energy ∆G(Φ) as a function of this order parameter Φ

β∆G(Φ) = Gc − lnP (Φ), (7.27)

where β = 1/kBT , kB Boltzmann’s constant, T the temperature, Gc is a normalization
constant generally taken to correspond to the free energy of the homogeneous metastable
phase, and P (Φ) is the probability of observing an order parameter of value Φ. In a
system of N particles, at fixed pressure P , and constant temperature T , the probability
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P (Φ) is given by:

P (Φ) =∫
dV

∫
drN exp[−β(U(rN) + PV )]δ(Φ− Φ(rN))∫
dV

∫
drN exp[−β(U(rN) + PV )] (7.28)

with V the volume of the system, U the potential energy, and δ the Kronecker delta
function. The order parameter function Φ(rN) is a function that assigns to each config-
uration rN of the system a value for the order parameter. The probability distribution
P (Φ) can be obtained from Monte Carlo (MC) simulations via the umbrella sampling
technique [163, 164]. In this method, an additional external potential Ubias is added to
the system to bias the sampling towards configurations corresponding to a certain window
of order parameter values centered around Φo. By increasing Φo sequentially, the entire
free-energy barrier as a function of Φ can be sampled. The typical biasing potential used
in umbrella sampling simulations is given by:

βUbias(rN) = k(Φ(rN)− Φo)2, (7.29)

where the constants k and Φo determine the width and location of the window, and rN
are the positions of all N particles in the simulation.

7.4 Order parameter
In order to follow a phase transformation, a cluster criterion is required that is able to
identify the new phase from the supersaturated phase. In this chapter, we focus on the
formation of a solid cluster in a supersaturated fluid phase. In order to study crystal
nucleation, the local bond-order parameter is used to differentiate between liquid-like and
solid-like particles and a cluster algorithm is employed to identify the solid clusters [87].
In the calculation of the local bond order parameter a list of “neighbours” is determined
for each particle. The neighbours of particle i include all particles within a radial distance
rc of particle i, and the total number of neighbours is denoted Nb(i). A bond orientational
order parameter ql,m(i) for each particle is then defined as

ql,m(i) = 1
Nb(i)

Nb(i)∑
j=1

Yl,m(θi,j, φi,j), (7.30)

where Yl,m(θ, φ) are the spherical harmonics, m ∈ [−l, l] and θi,j and φi,j are the polar and
azimuthal angles of the center-of-mass distance vector rij = rj − ri with ri the position
vector of particle i. Solid-like particles are identified as particles for which the number of
connections per particle ξ(i) is at least ξc and where

ξ(i) =
Nb(i)∑
j=1

H(dl(i, j)− dc), (7.31)
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H is the Heaviside step function, dc is the dot-product cutoff, and

dl(i, j) =

l∑
m=−l

ql,m(i)q∗l,m(j)
 l∑
m=−l

|ql,m(i)|2
1/2 l∑

m=−l
|ql,m(j)|2

1/2 . (7.32)

A cluster contains all solid-like particles which have a solid-like neighbour in the same
cluster. Thus each particle can be a member of only one cluster.

The parameters contained in this algorithm include the neighbour cutoff rc, the dot-
product cutoff dc, the critical value for the number of solid-like neighbours ξc, and the
symmetry index for the bond orientational order parameter l. The hard-sphere crystals
considered here are expected to have random hexagonal order, thus the symmetry index
is chosen to be 6 in the present study.

This choice of order parameter Φ, defined as the number of solid-like particles in
the largest crystalline cluster, has been used to study crystal nucleation in various one-
component systems, e.g., Lennard-Jones systems [87], hard-sphere systems [144], and
Yukawa systems [168].

On the other hand, for binary systems, a variety of crystal structures can appear in
the bulk phase diagram, e.g., substitutionally ordered (superlattice) crystal structures
with varying stoichiometries, substitutionally disordered solid solutions, interstitial solid
solutions, crystalline phases of species 1 with a dispersed fluid of species 2, etc. Nucleation
of a substitutionally disordered solid solution and a crystal with the CsCl structure has
been studied in a binary mixture of hard spheres using the total number of particles in
the largest crystalline cluster as an order parameter, i.e. Φ = N1 + N2 [165]. This or-
der parameter has also been employed in a crystal nucleation study of a substitutionally
disordered face-centered cubic crystal and a crystal with the CsCl structure of oppositely
charged colloids [169], and nucleation of the NaCl salt crystal from its melt using the
symmetry index l = 4 instead of l = 6 for the bond orientational order parameter [170].
However, one can also define other linear combinations of N1 and N2 as an order param-
eter. When the partial particle volumes of the two species are very different, one can
employ the volume of the largest crystalline cluster Φ = V = N1v1 + N2v2 as an order
parameter. While, if the crystal structure consists of only one species, say species 1, with
the other species randomly dispersed, the number of particles of species 1 in the largest
crystalline cluster would be more appropriate to use as an order parameter Φ = N1. On
the other hand, one can also use the stoichiometry n of the ABn superlattice structure
to define the order parameter Φ = N1 + N2/n in order to prevent a strong bias towards
one of the species. More generally, if the cluster size is measured by the order parameter
Φ = N1+λN2, the sensitivity of the order parameter to particles of species 2 can be tuned
via the parameter λ. For λ = 1, this corresponds to the total number of particles in the
cluster, while for λ = 0, this corresponds to the number of particles of type 1.

As already mentioned above, the umbrella sampling technique is often employed to
determine the probability distribution P (Φ) and the Gibbs free energy ∆G(Φ). To this
end, a biasing potential is introduced to sample configurations with certain values for
this order parameter Φ. In this chapter, we investigate the effect of the choice of order
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parameter on the properties of the clusters during nucleation in a binary mixture of hard
spheres, where we assume that the surface excess numbers of species i are negligible.
Using Eq. (7.18), we now write down explicitly the change in Gibbs free energy for binary
nucleation

∆G = γA+ ∆µ1N1 + ∆µ2N2, (7.33)

where ∆µi = µi(P o
α)−µoi,α(P o

α). The Gibbs free energy ∆G depends on the particle num-
bers N1 and N2 and the composition of the critical cluster can be determined from the sad-
dle point conditions for ∆G. The free-energy surface in the two-dimensional composition
plane (N1, N2) is projected in umbrella sampling MC simulations onto a one-dimensional
order parameter, e.g. Φ = N1 + λN2. Hence, the projected ∆G(Φ) and the averaged (or
projected) cluster composition of noncritical clusters both depend on the order parame-
ter. We note that this is not an artifact of the umbrella sampling MC simulations, but
merely the projection of a correctly measured equilibrium distribution. To determine the
averaged composition of noncritical spherical clusters with radius R as a function of Φ,
we can minimize ∆G with respect to N2 while keeping the order parameter Φ fixed:(

∂∆G
∂N2

)
Φ

= ∆µ2 − λ∆µ1 + 2γv1

R
(ω − λ) = 0, (7.34)

where ω = v2/v1. If we use the umbrella sampling technique in MC simulations to
determine the Gibbs free energy ∆G(Φ) as a function of Φ, one can easily determine the
slope of the barrier from the simulations, which is equal to

d∆G
dΦ = (∆µ2 + 2γv1

R
ω)
(
∂N2

∂Φ

)
+

(∆µ1 + 2γv1

R
)
(
∂N1

∂Φ

)
(7.35)

with

∂N1

∂Φ =
1− x− λN ∂x

∂Φ
1− x+ λx

(7.36)

∂N2

∂Φ =
x+N ∂x

∂Φ
1− x+ λx

, (7.37)

where we define the composition x = N2/N and N = N1 + N2. Combining Eqs. (7.34)
and (7.35) yields

ω∆µ1 −∆µ2 = (ω − λ)d∆G
dΦ . (7.38)

We wish to make a few remarks here. First, we recover the Gibbs-Thomson equations
for the critical cluster (7.19) when we set d∆G/dΦ in Eq. (7.35) to zero, and we recover
Eq. (7.22) from Eq. (7.38) for critical clusters. Consequently, the size and composition of
the critical cluster are independent of the choice of λ. This can also be understood from
the fact that the saddlepoint in the free-energy landscape is invariant under coordinate
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transformations. As long as the top of the nucleation barrier corresponds to this saddle
point, the average properties of the cluster will be dominated by the configurations around
this saddlepoint, regardless of the chosen order parameter. While most reasonable choices
of order parameter fulfill this requirement, it is possible to design order parameters that
shift the top of the barrier away from the saddle point. In this case, the clusters at the
top of the barrier are non-critical clusters, and rates calculated from the resulting free
energy barrier are unreliable. It is important to note that a different choice of order
parameter can change the height of the nucleation barrier, since the barrier height is
determined by the fraction of phase space mapped to the same order parameter value
at the top of the barrier. However, this effect should be small, as the probability of
finding a cluster at the top of the nucleation barrier is dominated by the probability of
being in the saddle point of the free-energy landscape. For noncritical clusters, we clearly
find that the slope of the barrier, and hence the composition of the cluster, depends on
the choice of order parameter via λ. Below, we study the effect of the choice of order
parameter for a simple toy model of hard spheres and for the nucleation of an interstitial
solid solution in an asymmetric binary hard-sphere mixture. It is interesting to compare
this to past studies investigating one-component systems with higher-dimensional order
parameters [171, 172]. For the Lennard-Jones system, Moroni et al., have shown that the
number of particles in the cluster alone is insufficient to provide a good prediction for
the probability a cluster will grow out to a large crystal [171]. Using a two-dimensional
order parameter, they observed a strong correlation between the crystallinity and the
size of clusters with a 50% probability of growing out. Specifically, clusters with a large
amount of face-centered-cubic (fcc) ordering require much smaller sizes to grow out than
those with more body-centered-cubic (bcc) ordering. They found that this correlation
was not visible in the two-dimensional free-energy landscape, and argued that the shape
and structure of a nucleus could determine whether it will grow out. However, we note
that the two-dimensional order parameter is still a projection from a higher-dimensional
phase space. Thus, the properties of non-critical clusters likely depend on the choice of
this order parameter as well.

7.5 A substitutional solid solution
In order to obtain more insight in the effect of order parameter choice on the cluster
composition of noncritical clusters, we first investigate binary crystal nucleation in a toy
model of hard spheres. Here, we consider a system consisting of two species of hard spheres
with identical sizes, but tagged with different colors, say species 1 is red and species 2 is
blue. Obviously, the stable solid phase to be nucleated is a substitutional disordered face-
centered-cubic (fcc) crystal phase with the red and blue particles randomly distributed on
an fcc lattice. Refs. [144, 145] showed that the nucleation barriers for pure hard spheres
are well-described by the predictions from classical nucleation theory, where because of
the condition of the equimolar surface, the surface excess number Ns = 0. It is therefore
safe to neglect the surface excess numbers for the present model as well. In addition, it
is clear that the partial particle volumes vi and volume per particle v are identical, and
ω = v2/v1 = 1. Using the Gibbs-Thomson equations for a binary critical cluster (7.19),
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Figure 7.1: Gibbs free energy ∆G(Φ)/kBT as a function of order parameter Φ = N1 +λN2 for
a binary mixture of red (species 1) and blue (species 2) hard spheres with equal diameter σ as
obtained from umbrella sampling MC simulations at a reduced pressure of P ∗ = P oασ

3/kBT = 17
with λ = 1 and λ = 0.5.

we find that the supersaturation ∆µ∗1 = ∆µ∗2 = −2γ∗v/R∗, and hence the composition
of the critical cluster follows straightforwardly from the bulk chemical potentials µ∗1(P o

α)
and µ∗2(P o

α), which depends on the bulk chemical potentials of the original bulk phase and
the supersaturation.

As already mentioned above, the composition of noncritical clusters depends on the
choice of order parameter, i.e., the projection of the two-dimensional composition plane
onto a one-dimensional order parameter Φ. Using Eq. (7.38), we find that for λ = 1,
the composition of noncritical cluster is determined by the supersaturation ∆µ1 = ∆µ2
and the bulk chemical potentials of the original bulk phase. For λ = 0, we only measure
the number of particles of one color, say red, in the cluster. However, a thermodynamic
average of all clusters with N1 red particles also includes all post-critical clusters with
many blue particles, and as a result, the order parameter fails to work for λ = 0. For
non-zero values of λ, the ensemble of clusters of each size is well-defined, and we can
perform umbrella sampling MC simulations to measure the average cluster composition.

In order to keep the composition of the metastable fluid fixed, we perform Monte
Carlo simulations on a binary mixture with N = 1000 hard spheres in the semi-grand
canonical ensemble. Both species of hard spheres are identical in size with diameter σ,
and are either tagged red (species 1) or blue (species 2). The simulations were carried out
in a cubic box with periodic boundary conditions and the Metropolis sampling consists of
particle displacements and volume changes, and attempts to switch the identity (color)
of the particles. The acceptance rule for the identity swap moves is determined by the
chemical potential difference ∆µo12,α [165, 166]. We use the umbrella sampling technique
to determine the nucleation barrier ∆Y = ∆G as a function of an order parameter
Φ = N1 + λN2, where N1(N2) denotes the number of red (blue) solid-like particles in the
largest crystalline cluster in the system as determined by the local bond-order parameter
and cluster criterion described in Sec. 7.4 with cutoff radius rc = 1.3σ, dot-product
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Figure 7.2: Composition x = N2/N of the largest crystalline cluster as a function of order
parameter Φ = N1 + λN2 for a binary mixture of red (species 1) and blue (species 2) hard
spheres with equal diameter σ as obtained from umbrella sampling simulations at pressure
P ∗ = P oασ

3/kBT = 17 with λ = 1 (red circles) and λ = 0.5 (green squares). For comparison,
we plot the theoretical prediction (7.38) using the measured nucleation barrier of Fig. 7.1
(black solid line) and the composition determined from a steady-state cluster size distribution
for λ = 0.5 (blue dashed line). The critical cluster size is Φ ' 79 and 96 for λ = 0.5 and 1,
respectively.

cutoff dc = 0.7, and number of solid bonds ξc ≥ 6. We first calculate the nucleation
barrier for λ = 1, for which the order parameter Φ is simply the total number of solid-like
particles in the largest cluster. We set the reduced pressure P ∗ = P o

ασ
3/kBT = 17, and

∆µo12,α = 0, which corresponds on average to an equimolar mixture of red and blue hard
spheres for the metastable fluid phase. We plot the resulting nucleation barriers ∆G as
a function of Φ in Fig. 7.1. We note that the nucleation barrier for λ = 1 is equivalent
to the nucleation barrier for a pure system of hard spheres [144, 145]. In addition, we
show the composition of the largest cluster as a function of Φ in Fig. 7.2. We find
that the averaged composition x = N2/N = 0.5 as it should be since ∆µ1 = ∆µ2 and
the bulk chemical potentials of the metastable fluid are equal µo1,α = µo2,α. Using the
binomial coefficients and the measured one-dimensional free-energy barrier, we determine
the two-dimensional free-energy landscape ∆G(N1, N2)/kBT = − lnP (N1, N2) from the
probability distribution function

P (N1, N2) = exp[−∆G(N1 +N2)/kBT ] 2N
(
N
N1

)
. (7.39)

Fig. 7.3 presents a contour plot of the two-dimensional free-energy landscape β∆G(N1, N2)
as a function of N1 and N2. Exemplarily, we also plot isolines for the order parameter
Φ = N1+λN2 for λ = 1 and 0.5 to show the projection of the two-dimensional composition
plane onto a one-dimensional order parameter.

In order to check the effect of order parameter choice in the biasing potential (7.29) on
the nucleation barrier and the composition of the clusters, we also calculate the nucleation
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barrier for λ = 0.5 at the same reduced pressure. We plot the nucleation barrier in Fig.
7.1 and the averaged composition of the cluster as a function of Φ in Fig. 7.2. While
the barrier height is not significantly affected by the choice of order parameter in the
biasing potential, in agreement with our predictions in Sec. 7.4, the critical cluster “size”
as measured by Φ, i.e. ' 79 and 96 for λ = 0.5 and 1, respectively, depends on the order
parameter choice as expected. In addition, we determine the theoretical prediction for the
cluster composition using Eq. (7.38). Using the measured slope of the nucleation barrier
from Fig. 7.1, we obtain the chemical potential difference ∆µ12(Φ) of species 1 and 2 in
the cluster from Eq. (7.38). Using Eq. (7.39), we find

P (N1, N2) ∝ 2N N !
N2!(N −N2)!

exp[−βN2∆µ12(Φ)] (7.40)

from which we determine the most probable (or averaged) composition:

x = 1− exp[−β∆µ12(Φ)]. (7.41)

The theoretical prediction for the composition is plotted in Fig. 7.2. We find good
agreement with the measured composition, except for very small cluster sizes, where we
do not expect CNT to match our nucleation barriers. For comparison, we also plot the
same predictions for the nucleation paths in Fig. 7.3. We clearly observe that the two
nucleation paths cross at the saddle point yielding the same size and composition of the
critical cluster for both order parameters, as expected.

Finally, we also determine the composition of the clusters from the steady-state distri-
bution. In systems where the nucleation of the new phase is measured directly, either in
experiments or simulations, the measured cluster size distribution corresponds to a steady-
state distribution rather than an equilibrium distribution. The steady-state distribution
observed during the nucleation process is different from the equilibrium distribution, as
clusters that exceed the critical cluster size during the steady-state process will continue
to grow further. The steady-state distribution depends both on the free-energy land-
scape and the dynamics of the system, and includes a flux across the free-energy barrier,
whereas the equilibrium distribution can only be determined by preventing the system
from nucleating, i.e, constraining the maximum cluster size by e.g. umbrella sampling MC
simulations. While the equilibrium and steady-state distributions are in good agreement
for small cluster sizes, they disagree strongly for postcritical cluster sizes, i.e., when the
system crosses the free-energy barrier. In particular, the equilibrium cluster size distribu-
tion shows a minimum corresponding with the maximum in the free-energy barrier, and
the steady-state distribution generally decreases continuously (even) beyond the critical
cluster size.

We calculate the cluster composition from the steady-state distribution for our binary
mixture of hard spheres. To this end, we determine the free energy as a function of
cluster size N1 and N2 from Eq. (7.39) using a fit to the free-energy barrier obtained from
umbrella sampling MC simulations with λ = 1. The dynamics of the cluster are described
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by the following rates:

k+,1
N1,N2 = 1
k+,2
N1,N2 = 1
k−,1N1,N2 = exp[−β(G(N1 − 1, N2)−G(N1, N2))]
k−,2N1,N2 = exp[−β(G(N1, N2 − 1)−G(N1, N2))].

Here, k+(−),i
N1,N2 is the rate associated with adding (removing) a particle of species i to (from)

the nucleus consisting of N1 and N2 particles. Hence, clusters can only grow or shrink by
one particle at a time with a rate determined by the corresponding free-energy difference.
In order to determine the steady-state cluster size distribution, we set a limit to the steady-
state distribution by defining a maximum cluster size, which exceeds the critical cluster
size. As a barrier crossing can be considered as a one-way event, subsequent nucleation
events should start again from the metastable fluid phase. To this end, we impose that
the addition of an extra particle to a nucleus with this maximum cluster size falls back to
size zero. We note that this step is not reversible, and results in slightly modified rates
for nuclei with the maximum cluster size and for clusters of zero size. With the exception
of these steps, the dynamics obey detailed balance.

In order to determine the steady-state distribution, we set the rate at which clusters
of size (N1, N2) are created to zero. Hence, the flux with which clusters of size (N1, N2)
are created should balance the flux with which clusters of this size disappear:

Pss(N1, N2)
∑
i

(k+,i
N1,N2 + k−,iN1,N2) =

Pss(N1 + 1, N2)k−,1N1+1,N2 + Pss(N1 − 1, N2)k+,1
N1−1,N2 +

Pss(N1, N2 + 1)k−,2N1,N2+1 + Pss(N1, N2 − 1)k+,2
N1,N2−1.

Here, Pss(N1, N2) denotes the steady-state cluster size distribution. The equations for
cluster size zero and the maximum cluster size are slightly different due to a flux of clusters
from maximum to zero cluster size. By solving this set of linear equations numerically,
we obtain the steady-state distribution. Subsequently, the average cluster composition
can be obtained from the steady-state distribution by averaging over clusters with equal
Φ = N1 + λN2. The resulting cluster composition is shown in Fig. 7.2 for λ = 0.5.
Since the two-dimensional steady-state cluster size distribution, which is symmetric in
N1 and N2 decreases monotonically with cluster size, the resulting projected composition
is always lower than 0.5 and matches well with the cluster compositions obtained from
umbrella sampling MC simulations and the theoretical prediction, except at small cluster
sizes as expected. Moreover, in the limit of large (postcritical) clusters, the cluster growth
rate approaches a constant for the current choice of dynamics, resulting in a nearly flat
steady-state cluster size distribution and a cluster composition of 0.5.

In conclusion, we have shown using a simple model for a binary mixture of hard
spheres that the composition of the critical cluster does not depend on the choice of
order parameter, while the composition of noncritical clusters is affected by the order
parameter. This is a direct consequence of the projection of the two-dimensional free-
energy landscape onto a one-dimensional order parameter, say Φ = N1 + λN2, which
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Figure 7.3: Contour plot of the two-dimensional free-energy landscape ∆G(N1, N2)/kBT as a
function of N1 and N2. We also plot a few isolines for the order parameter Φ = N1 + λN2 for
λ = 0.5 and 1 (dashed lines), and we plot the nucleation path (solid lines labeled with λ = 1
and λ = 0.5) for the two order parameters that we considered as predicted by (7.38). The two
nucleation paths cross at the saddle point corresponding to the critical cluster size.

influence directly the projected (Landau) ∆G(Φ) and the averaged (or projected) cluster
composition. Moreover, as the umbrella sampling method allows us to equilibrate the
system for various values of the order parameter, the system can be regarded to be in
local equilibrium for each value of the order parameter. The nucleation paths that the
system then follows remain close to the minimum free-energy path (see Fig. 7.3), and thus
the height of the nucleation barrier is largely unaffected by the choice of order parameter.

7.6 An interstitial solid solution
We consider crystal nucleation of an interstitial solid solution in a highly asymmetric
binary mixture of large and small hard spheres with size ratio q = σ2/σ1 = 0.3, where σ1(2)
denotes the diameter of species 1 (large spheres) and 2 (small spheres). The interstitial
solid solution consists of a face-centered-cubic crystal phase of large spheres with a random
occupancy of the octahedral holes by small spheres, and hence the composition of the
interstitial solid solution can vary from x = N2/N ∈ [0, 1] [173]. As the volume of this
solid phase is not largely affected by the density of small spheres, we set the partial particle
volume v2 and ω = v2/v1 to zero. Using Eq. (7.38), we find the following relation if the
system is in local equilibrium at fixed order parameter Φ = N1 + λN2

∆µ2 = λ
d∆G
dΦ . (7.42)
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For λ = 0, the order parameter Φ = N1 measures only the large spheres in the cluster,
and the cluster composition of both critical and noncritical clusters is determined by the
chemical equilibrium condition for the small spheres in the cluster and the metastable
fluid phase, i.e., ∆µ2 = 0. For λ = 1, when all particles in the clusters are counted
by the order parameter Φ = N1 + N2, the composition of precritical clusters will have
a higher density of small particles compared to the chemical equilibrium condition for
the small particles in the cluster and the metastable fluid phase, as the slope of the
nucleation barrier is positive, and similarly postcritical clusters will have a lower density
of small particles. For both order parameters, we find that the critical cluster satisfies
the Gibbs-Thomson equation (7.19), and thus for a partial particle volume v2 = 0, we
obtain chemical equilibrium for the small particles in the critical cluster and the fluid
phase independent of the order parameter choice.

As the composition and size of the critical cluster are not affected by the choice of
order parameter, we set λ = 0 in order to investigate whether or not we observe diffusive
equilibrium for species 2 for all noncritical clusters. To keep the composition of the fluid
fixed, it would be convenient to use again Monte Carlo simulations in the semi-grand
canonical (NPT − ∆µ12,α) ensemble. However, the acceptance probability of changing
small spheres into large spheres is extremely small, which makes the equilibration time of
the simulation prohibitively long, even when we use the augmented semigrand ensemble
presented in Ref. [165], where the diameter of the particles is changed gradually in
different stages. In order to solve this problem, we determine the free-energy barrier
using the umbrella sampling technique in isothermal-isobaric MC simulations, in which
the pressure P o

α, the temperature T , and the particle numbers N o
1,α and N o

2,α are kept
fixed of the original metastable bulk phase. We perform successive simulations for each
window, but in such a way that the composition xoα = N2,α/(N o

1,α+N o
2,α) of the metastable

fluid phase is on average kept fixed during the growth of the nucleus. To this end, we first
measure the instantaneous composition xα of the fluid phase in the initial configuration
for the successive umbrella sampling windows centered around a new order parameter
value Φ. If the composition of the fluid has changed more than 0.1%, we resize random
particles in the fluid phase during an equilibration run until the fluid phase reaches its
original composition xoα. We then start the production run to measure the probability
distribution function P (Φ) and the corresponding part of the free-energy barrier in a
normal isobaric-isothermal MC simulation. We assume that the composition of the fluid
phase during MC simulations of a single umbrella sampling window does not change
significantly, since the cluster size is approximately constant. In order to determine the
composition of the fluid phase, we first determine the largest crystalline cluster in the
system by using the local bond-order parameter and cluster criterion as described in Sec.
7.4 with cutoff radius rc = 1.1σ1, dot-product cutoff dc = 0.7, and number of solid bonds
ξc ≥ 6. The composition of the fluid is defined as xα = (N o

2,α−N2)/(N o
2,α+N o

1,α−N2−N1)
where N1 is the number of large spheres in the cluster and N2 is the number of small
spheres which have at least 6 neighbors of large spheres in the cluster within cut-off
distance rc = 1.1σ1. N o

1,α and N o
2,α denote the total number of large and small spheres in

the MC simulation.
In addition, we determine the composition of the solid nucleus x = N2/N . In order to

avoid surface effects and defects in the crystal structure of the solid nucleus, we determine
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the fraction of octahedral holes that is occupied by a small sphere in the fcc lattice of
the large spheres in the solid cluster. An octahedral hole is defined as a set of 6 large
particles, where each particle is a neighbour of 4 other particles in the same set, and the
octahedral hole is occupied by a small particle if all 6 large particles are within a cutoff
radius of 0.22σ1 of the center-of-mass of this small sphere.

We first determine the nucleation barrier in a normal N o
1,αN

o
2,αP

o
αT MC simulation

using the umbrella sampling technique for system sizes N o
α = N o

1,α + N o
2,α = 3000, 6000,

and 9000 particles. The initial fluid composition is set to xoα = 0.5 and reduced pressure
P ∗ = βP o

ασ
3
1 = 25. We plot the Gibbs free energy ∆G/kBT as a function of the number

of large spheres N1 in the largest crystalline cluster in Fig. 7.4. We observe that the
nucleation barrier height and critical cluster size decreases upon increasing system size.
This can be explained by a change in the composition of the metastable fluid phase during
the growth of a crystalline cluster. In Fig. 7.5, we plot the composition of the metastable
fluid phase as a function of the cluster size N1 for the various system sizes. We clearly find
that the fluid composition changes significantly during the growth of a solid nucleus for
smaller system sizes. In order to corroborate this result, we perform umbrella sampling
MC simulations in which the composition of the metastable fluid phase is kept fixed in
each successive umbrella sampling window using the method as described above. The
composition of the fluid phase is indeed kept fixed by this method as shown in Fig. 7.5.
The nucleation barrier as obtained by fixing the composition of the metastable fluid phase
is presented in Fig. 7.4. As the nucleation barrier calculated at fixed fluid composition
should correspond to an infinitely large system size, we plot the barrier heights ∆G∗/kBT
as a function of 1/N o

α with N o
α = N o

1,α + N o
2,α. We find that the barrier height depends

linearly on 1/N o
α within errorbars. Moreover, extrapolating the barrier heights obtained

from N o
1,αN

o
2,αP

o
αT MC simulations to the thermodynamic limit, we find that the finite-size

corrected barrier height agrees well within errorbars with the barrier height determined
from umbrella sampling MC simulations with fixed fluid composition corresponding to an
infinitely large system size. In addition, we plot the composition of the solid cluster as a
function of cluster size N1 in Fig. 7.5, and we find no strong dependence of the cluster
composition on system size.

Finally, we determine the composition of (non)critical clusters for the nucleation of
the interstitial solid solution for four different fluid compositions xoα = 0.2, 0.5, 0.7 and
0.8 at statepoints well-inside the fluid-solid coexistence region using umbrella sampling
MC simulations with fixed fluid composition and system size N o

α = 3000. Following Ref.
[165], the “supercooling” was kept fixed, i.e., P o

α/P
∗
coex = 1.2, where P ∗coex is the pressure at

the bulk fluid-solid coexistence at the corresponding fluid composition. We note however
that these statepoints correspond to different values for the supersaturation, and can
therefore lead to significantly different barrier heights. We determine the Gibbs free-
energy barrier and the cluster composition as a function of cluster size N1 using umbrella
sampling MC simulations, and plot the results in Fig. 7.6 and 7.7 for the four different
fluid compositions. In Fig. 7.7, the dashed lines indicate the compositions predicted by
Eq. (7.42) with λ = 0, i.e., chemical equilibrium for species 2 in the clusters and the
metastable fluid phase. For comparison, we also plot the composition of the coexisting
solid phase at P o

α. We clearly observe that the measured cluster compositions obtained
from umbrella sampling MC simulations are in good agreement with the predictions from
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CNT for cluster sizes larger than 30, which predicts chemical equilibrium for the small
spheres in the cluster and the metastable parent phase. If we now take a closer look at
the statepoint defined by xoα = 0.2 and P o

α/P
∗
coex = 1.2 for the metastable fluid phase,

we find from Ref. [173] that the composition of the coexisting fluid and solid phase after
full phase separation should be x ' 0.47 and 0.15, respectively. Interestingly, we find
that the composition of the nucleating clusters is much lower (x ' 0.07) than that of
the coexisting bulk crystal phase. Hence, the phase separation is mainly driven by the
nucleation of large spheres while maintaining chemical equilibrium for the smaller species
throughout the whole system. Only when the chemical potential of the large spheres in
the metastable fluid is sufficiently low due to a depletion of large spheres as a result of
crystal nucleation and crystal growth, small spheres will diffuse into the crystal phase in
order to increase the composition of the solid phase. However, we note that the chemical
equilibrium condition for the smaller species only holds for the present order parameter
choice Φ = N1, whereas any other choice of order parameter would certainly yield different
results for the cluster composition.

For highly asymmetric binary hard-sphere mixtures, where the stable solid phase cor-
responds to a fcc of large spheres with a dispersed fluid of small particles, one would
naively expect that the small particles are always in chemical equilibrium during the
nucleation process. Hence, in order to study crystal nucleation in highly asymmetric mix-
tures, one can employ an effective pairwise depletion potential description as described in
Ref. [174–176] provided that three- and higher-body interactions are negligible and the
depletion potentials are determined at fixed chemical potential of the small spheres. Such
an effective pair potential approach was employed in a nucleation study in the vicinity
of a critical isostructural solid-solid transition in a binary mixture of hard spheres with
size ratio q = σ2/σ1 = 0.1, but this study showed according to the authors a breakdown
of classical nucleation theory [177]. It would be interesting to investigate whether or
not the breakdown is caused by the (false) assumption of chemical equilibrium of small
spheres during the nucleation process. For less asymmetric binary hard-sphere mixtures,
where the small spheres cannot diffuse freely in the solid cluster, chemical equilibrium
of the smaller species is harder to maintain, especially when the nucleated crystal phase
has long-range crystalline order for both species as in the case of a superlattice structure
where the chemical potentials of the two species are not independent as it is determined
by the stoichiometry of the crystal structure. It would be interesting to investigate at
which size ratio and pressures this crossover occurs.

7.7 Conclusions
In this chapter, we have studied crystal nucleation in a binary mixture of hard spheres
and we have investigated what the effect is of the choice of order parameter on the com-
position and size of both critical and noncritical clusters. We have studied nucleation of
a substitutional solid solution in a simple toy model of identical hard spheres but tagged
with different colors and we investigate the nucleation of an interstitial solid solution in
a binary hard-sphere mixture with a diameter ratio q = 0.3. In order to study nucleation
of a crystal phase in computer simulations, a one-dimensional order parameter is usually
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defined to identify the solid phase from the supersaturated fluid phase. We have shown
that the choice of order parameter can strongly influence the composition of noncritical
clusters, as the free-energy landscape in the two-dimensional composition plane (N1, N2)
is projected onto a one-dimensional order parameter, say Φ = N1 +λN2, in umbrella sam-
pling MC simulations. This is supported by the good agreement that we found between
our results on the composition of noncritical clusters obtained from umbrella sampling
MC simulations and the predictions from CNT for the nucleation of a substitutional solid
solution in a toy model. While the effect is clearly visible in the case of a binary system, it
should occur more generally whenever a higher-dimensional free-energy landscape is pro-
jected onto a single order parameter. For the nucleation of an interstitial solid solution
in a highly asymmetric hard-sphere system, we found that the composition of noncritical
clusters is determined by the chemical equilibrium condition of the small spheres in the
cluster and the fluid phase, as the partial particle volume of the small spheres in the solid
phase can be neglected. We compared the composition of the noncritical clusters obtained
from umbrella sampling MC simulations and the theoretical prediction from CNT, and
found again good agreement. More importantly, we find that the barrier height and the
composition of the critical cluster are not significantly affected by the choice of order
parameter. As a result, critical clusters and the barrier height should be comparable even
with different order parameters.
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Assembly of colloidal spheres and
dumbbells through emulsion

droplet evaporation

In this chapter, we examine the clusters formed by particles confined to emulsion droplets.
By slow evaporation of the droplets, small numbers of particles can be forced together
into densely packed clusters. We use Monte Carlo simulations to investigate clusters of
both spheres and dumbbells, modeling the evaporation process as two separate steps: a
compression step in which the particles are forced into a dense packing due to spherical
confinement, and a subsequent second step that minimizes the second moment of the mass
distribution of the cluster. This second step mimics the rearrangements of the cluster
in the final stages of evaporation, where the shape of the emulsion droplet is strongly
influenced by the particles. While only hard-core interactions are taken into account,
comparisons between clusters obtained from simulations and experimental snapshots lead
us to conclude that good agreement is found when using this simple model.
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8.1 Introduction
As spherical colloidal particles are often considered as a model system for atoms, a logi-
cal extension would be modeling clusters of colloidal spheres as colloidal molecules.[178]
Various methods have been proposed for the fabrication of colloidal molecules,[179] e.g.
by geometrical confinement of colloidal spheres and capillary forces, [180] by controlled
coagulation, [181, 182] or by coalescence of colloids with liquid protrusions. [183, 184]
Emulsion droplet evaporation, was introduced by Manoharan et al. a number of years
ago. [185] In this method, emulsion droplets containing small numbers of particles are
suspended in a liquid. By evaporating the solvent in the emulsion droplets, the size of the
droplets can be slowly reduced, causing the particles in each droplet to be compressed into
densely packed clusters. For clusters of up to around 16 particles, it has been shown that
this method leads to well-defined cluster shapes that are largely consistent across various
systems with different particles and solvents. [186, 187] By separating these clusters based
on their size, this process can yield largely monodisperse anisotropic building blocks that
could be useful in engineering a range of complex structures. For example, it has been
suggested that the tetrahedral clusters commonly seen in these experiments could be used
to create crystals with a diamond lattice, potentially allowing for structures with useful
optical properties.[188–191]

The structure of the particles in an emulsion droplet suspended in a liquid is deter-
mined not only by the interactions between the particles, but also on the droplet volume
and the particle-droplet (γpd), particle-liquid (γpl) and droplet-liquid (γdl) surface ten-
sions. The particle configuration and droplet shape can be determined from minimizing
the total surface energy. [192] While the surface tensions and interaction potentials in ex-
periments are often not exactly known, the uniqueness of the structures found in different
experiments suggests that they do not depend strongly on the details of the underlying
system. Indeed, Ref [192] shows that the clusters are unique over a whole range of contact
angles and are mostly determined by geometrical constraints. The contact angle θ is given
by Young’s equation and depends on the three surface tensions:

γdl cos θ = γpl − γpd. (8.1)

Interestingly, for cluster sizes N ≤ 11, the clusters observed closely correspond to the
particle configurations that minimize the second moment M2 of the mass distribution:

M2 =
N∑
i=1
|ri − r0|2 , (8.2)

with r0 the center of mass of the cluster, and ri the position of the center of particle i.[185,
192, 193] For larger clusters, the clusters that minimize this second moment generally
have a central particle, a feature absent in the experimentally observed structures. As
the particles in experiments were seen to stick to the surface of the emulsion droplets at
all times during the evaporation process, it was suggested by Manoharan et al.[185] that
the structures were formed in two steps. The colloids first reach an optimal close packing
confined to the surface of a sphere, and are then pulled towards the center by capillary
forces while the particles are restricted to a continuous and smooth surface. In agreement
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with the observed clusters, this last step reduces the second mass moment, but prevents
any spheres from ending up on the inside of the cluster. Lauga and Brenner [192] showed
that this process can be accurately modeled with simulations of particles attached to a
deformable surface, yielding the experimentally observed structures for all sizes N ≤ 12.
Additionally, they argued that the uniqueness of these packings can be understood from
geometrical considerations: the close-packed configurations where all particles are confined
to the surface of a sphere are unique for almost all N , and in nearly all cases the force
constraints in the system limit the cluster to a single mode of rearrangement, resulting in
a single final configuration.

The emulsion evaporation method has been applied to a variety of systems, including
nanoparticles [194–196] and colloidal spheres mixed with either smaller particles [196, 197]
or polymers [198]. In this chapter, we use simulations to investigate the clusters formed by
both symmetric and asymmetric colloidal dumbbells in evaporating droplets, and com-
pare the results with experimental results. In the experiments, PMMA (poly-methyl-
methacrylate) dumbbell particles were produced via an overswelling method. [199] The
resulting particles were dispersed in aqueous emulsion droplets suspended in an oil phase.
After evaporation of the droplets, small clusters of dumbbells remain. The structure of
these clusters has been studied using Scanning Electron Microscopy (SEM), and shows
a larger variety of cluster shapes than those found in clusters of spherical particles. We
performed simulations on a simple model for these droplets where both the particles and
interface are modeled purely as hard-core interactions. When comparing the structures re-
sulting from the simulations with those found in the experiments, we find good agreement
for the symmetric dumbbells if the dumbbell particles in the simulations are constrained
to the droplet interface. For the asymmetric dumbbells, we find that the larger spheres
dominate the cluster shape, and we recover the same structures seen in clusters of spheres
with no specific ordering of the smaller spheres of the dumbbells.

8.2 Simulation Methods
We study the behavior of colloidal particles in an emulsion dropet during the evaporation
of the solvent. In the experimental setup, the particle-particle and particle-wall interac-
tions are difficult to determine and will probably change during the evaporation process.
We assume that the particles are confined in a spherical cavity that shrinks during the
evaporation of the droplets. As a first approximation, we model the particles and the
droplet interface by hard interactions. As a result, no deformations of the wall from its
spherical shape occur, which is justified in the first stage of the evaporation process, i.e.
before packing constraints become important.

We simulate both spherical and dumbbell particles. In both cases, our unit of length
is taken to be σ, the diameter of the largest sphere size. The dumbbells are modeled as
two partially overlapping hard spheres with diameter ratio q = σS/σ, at a fixed distance
d between the centers. For both systems, the center of mass of each sphere is confined
to a spherical simulation box with hard walls. During the simulations, the pressure is
slowly increased from P ∗ = Pσ3/kBT = 1 to 20 to mimic the evaporation of the droplet.
At P ∗ = 20, the particles no longer have enough freedom of movement to rearrange, but
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still vibrate. To fix the structure, the pressure is then increased to P ∗ = 100, effectively
leading to a fully jammed state.

In our simulations, we consider two different regimes for the particle wettability. In
the non-wetting regime (contact angle cos θ = 1), the particles can move freely within the
spherical cavity under the constraint that the particles do not overlap with each other or
the droplet interface. For finite wettability (−1 < cos θ < 1), the particles are attached at
the droplet interface by an adsorption free energy [200] which we model by confining the
center of mass of the particles to a thin spherical shell with thickness dS = 0.1σS at the
droplet surface, where σS is the diameter of the smallest sphere in the system. We find
that the final structure of the cluster is not affected by the shell thickness dS, provided
that dS � σS.

Manoharan et al. suggested [185] that after reaching this spherical packing stage,
further evaporation of the droplet induces a reorganization of the particles due to the
attractive Van der Waals interactions, which reduces the second moment of the mass
distribution in the system. To model the second stage of the evaporation process, we
use the jammed spherical clusters obtained from the spherical compression simulations,
remove the spherical confinement, and use a standard Monte Carlo scheme to minimize
M2. In this simulation, the total energy of the system is taken to be proportional to M2,
with a dimensionless proportionality constant α that is increased slowly to anneal the
cluster to a local potential energy minimum:

βU(rNs ) = α
Ns∑
i=1

mi |ri − r0|2 /σ2, (8.3)

with β = 1/kBT , kB Boltzmann’s constant, T the temperature, σ the sphere diameter,
and Ns the number of spheres in the cluster. In the case of dumbbell particles, each sphere
is counted separately in the summation. The (dimensionless) mass mi is only important
if multiple sphere sizes appear in the system, and is taken to be 1 for the largest sphere
size in the system. The strength of the potential α is increased from 100 to 1000, at which
point no further reorganization is observed. The system is then quenched at α = 10000 to
remove any further vibrations. For the results presented below, both the compression and
annealing parts of the simulation consist of 8 ·106 Monte Carlo cycles. We also performed
simulations with lower compression and annealing rates, but found similar results for the
final clusters.

8.3 Results
8.3.1 Spheres
Several experimental studies have shown that colloidal spheres confined to emulsion
droplets form unique clusters for sizes N ≤ 16 upon slow evaporation. [185–187] As
a test of our method, we first apply it to clusters of spherical particles, with cluster sizes
2 ≤ N ≤ 16. We study the resulting packing of spheres in a shrinking spherical cavity for
non-wettable particles and wettable particles which are adsorbed at the interface. Subse-
quently, we employ the resulting spherical packings in MC simulations to minimize M2,
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thereby mimicking the final stage of the evaporation process. We present the results of
the packing before and after minimizing M2 for both wettable and non-wettable particles
in Table 8.1. We find that the cluster configuration for cluster size N = 4 and 6, are
a tetrahedron and an octahedron respectively, independent of the particle wettability or
M2 minimization. For N = 5, 7, 8, 9 and 10, we find that the configurations are inde-
pendent of the particle wettability, but different structures are observed before and after
the M2 minimization. The final configurations are the triangular dipyramid (N = 5),
pentagonal dipyramid (N = 7), snub disphenoid (N = 8), triaugmented triangular prism
(N = 9), and the gyroelongated square dipyramid (N = 10). The configurations for
N = 11, 13, 14, 15 and 16 are all different and depend on the particle wettability and the
M2 minimization. For N = 12, we find that the configurations depend on the particle
wettability, but not on the M2 minimization.

We now compare the resulting structures with the experiments on polystyrene, silica
and PMMA spheres in toluene or hexane droplets suspended in water by Manoharan
[185] and the experiments on water-borne polystyrene and silica spheres in water-in-
oil emulsions by Cho.[187] During the evaporation process, the polystyrene, silica and
PMMA spheres in Ref. [185, 186] are attached at the droplet interface and as expected
the observed clusters with N ≤ 12 match with our predictions for wettable particles after
M2 minimization, with one exception: for cluster size N = 11, the non-convex structure
seen by Manoharan only appears for non-wettable particles.

In the experiments by Cho, [187] the water-borne particles form the same clusters as
observed in Ref. [185, 186], but additional isomeric structures were found for N = 7, 8,
and 11. As the isomeric clusters correspond to the optimal sphere packings for particles
interacting with a Coulomb potential, it was argued by Cho that the electrostatic repul-
sion between the polystyrene and silica spheres caused the formation of these Coulomb
clusters: the stronger electrostatic repulsion between the particles prevents the reorgani-
zation of the cluster in the second stage of the evaporation process. [187] The isomeric
clusters for N = 7 and 8 agree well with our predictions before the M2 minimization
which are independent of the wettability of the particles. For N = 11, the two isomeric
structures found correspond to those we found for wettable particles before and after M2
minimization (for silica and polystyrene spheres, respectively).

For larger clusters (N > 12), no clear match between simulations and experiments can
be found. Nonetheless, it is clear that for sufficiently small clusters, our method provides
a good indication of the types of structures that can be expected in clusters formed by
evaporation of emulsion droplets with spherical particles.

8.3.2 Symmetric dumbbells
While spheres already provide a variety of cluster shapes depending on the number of par-
ticles per cluster, new structures can be obtained by replacing the spheres with anisotropic
particles. As a simple example, we consider colloidal dumbbells.

In the experiments by Peng et al.,[201] both symmetric and asymmetric colloidal
dumbbells were synthesized and dispersed in emulsion droplets. After evaporating the
emulsion droplets, the resulting clusters were observed via Scanning Electron Microscopy
(SEM). The symmetric dumbbells consisted of two spheres, each with a diameter σ =
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N Non-wettable Wettable Mano- Cho
before after before after haran Polyst. Silica

4 a a a a a

5 a b a b b

6 a a a a a

7 a b a b b a

8 a b a b b a a

9 a b a b b

10 a b a b b

11 a b c d b d c

12 a a b b b

13 a b c d e

14 a b c d e

15 a b c d e

16 a b c d

Table 8.1: Structures found from simulations of spherical particles in evaporating droplets,
and experimental results. The first column shows the number of particles N . The next two
columns show the results if the particles are not confined to the droplet interface, both before
and after minimizing M2. The fourth and fifth column show the configurations resulting from
fixing the particles to the droplet interface. The last columns show the experimental results by
Manoharan et al.[185] and the additional structures seen by Cho et al. [187]
The letters denote structures that are (almost) the same for the same cluster size.
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1.42 µm, and a distance d = 0.5σ between the two centers. In the experiments, the
dumbbells formed a series of structures different from those found when using spherical
particles, often with several different configurations per cluster size.

We performed simulations of hard dumbbells with sizes corresponding to the experi-
mental system using the same methods as we used for spheres. In contrast to clusters of
spherical particles, but in agreement with the experimental snapshots, these simulations
result in multiple isomeric configurations. Even with slow compression speeds, the system
can reach several distinct states. Interestingly, for cluster sizes N = 3 and 6, two mirrored
structures appear with a different chirality, a property that is absent in the clusters of
spherical particles.

In the experimental setup, the particles were seen to stick to the oil-water interface
before the evaporation of the emulsion droplets. In our simulations, we indeed find better
agreement with the experimental snapshots in the case of particles with finite wettability:
for small cluster sizes (N < 5) wettability does not affect the structures formed, but for
all larger cluster sizes N ≥ 5 good agreement was only found for wettable particles. Table
8.2 shows the configurations obtained from simulations of wettable particles, matched
with experimental snapshots where possible. For cluster sizes N = 2 and 4, only one
cluster shape is found, with no significant changes after M2 minimization. Cluster sizes
N = 3 and 6 both show a single structure as well, but each has an isomer that is its
mirror image. Both structures show rotational symmetry over a 120◦ angle. For N = 6,
the cluster deforms slightly during M2 minimization, but stays qualitatively the same.
For cluster size N = 5, only a single (highly asymmetric) structure is found, with some
reorganization during the final minimization step. For all clusters up to size N = 6, almost
all experimental snapshots agree well with the structures found before M2 minimization,
and the small changes during the minimization step do not break this agreement. For
larger clusters (N ≥ 7), we still find good agreement between the spherical packings and
experiments, although a number of different isomeric structures can also result from the
same simulations. While one of the experimental snapshots for N = 8 was best matched
by a configuration after M2 minimization, this minimization step generally reduced the
agreement between simulation and experiment. Moreover, the final configurations often
showed a clearly visible central particle in the cluster (such as the one shown for N = 10
in Table 8.2), which was absent in the experimental snapshots.

Apart from cluster sizes N = 2, 3, 4 and 6, the clusters obtained from symmetric
dumbbells do not appear symmetric themselves. While it seems likely the larger cluster
sizes would behave more or less as spherical particles with some degree of surface roughness
when used as colloidal building blocks, these smaller clusters sizes could well provide a
more interesting phase behavior.

8.3.3 Asymmetric dumbbells
The same experiment was applied to asymmetric colloidal dumbbells, where one of the
two spheres in each dumbbell is smaller than the other. In this case, the diameters of the
smaller and larger spheres were σS = 1.03µm and σ = 1.42µm, respectively, corresponding
to a size ratio of q = 0.73. The centers of the two spheres are d = 0.37σ apart. For these
particles, an even larger variety was observed in the resulting clusters, particularly in the
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N Sim. Exp. Sim. Exp. M2 Exp.

2 a a a

3 a a a a a

4 a a a a a

5 a a a a a

6 a a a a a

7 a a a a b

8 a b c c

9 a a b

10 a b

11 a a b b c

Table 8.2: Comparison of experimental clusters of symmetric dumbbells with simulation results
of wettable particles. The first column shows the number of dumbbells N in the cluster. The
second and fourth columns show configurations resulting from simulations, next to similar con-
figurations observed in experiments in the third and fifth column (where available). The fourth
column shows the results after minimizing M2 from a typical spherically packed configuration,
compared with a matching experimental cluster in the last column cluster size N = 8. The
letters indicate clusters with (almost) the same structure.
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positioning of the small spheres. Table 8.3 shows two experimental snapshots for each
cluster size 2 ≤ N ≤ 12. Apparently, the locations of the smaller parts of the dumbbells
are not strongly determined by the forces that form the cluster. In fact, regardless of
the positions of the small spheres, the configurations of large spheres closely resemble the
structures found in clusters of spherical particles, as shown by the last column in Table
8.3.

When applying the same simulation method to this system, the configurations found
after the compression step do not agree with the experimental snapshots for either wet-
table or non-wettable particles. Clear differences in the positions of the large spheres can
be seen, and the small spheres generally still have limited freedom of movement beforeM2
minimization, rather than being mechanically arrested due to contacts with other spheres
as seen in the experimental snapshots. When minimizing the second moment of the mass
distribution, the resulting configuration is influenced by the mass ratio mS/mL of the
small and large spheres. Of course, as the minimization of M2 is only an empirical model
for the final stages of droplet evaporation, the “mass” in this context is not physically
linked to the real mass of the sphere. Simply letting the mass of each sphere scale with
its volume, such that mS/mL = σ3

S/σ
3, generally leads to configurations with the smaller

spheres preferentially residing in the center of the cluster, which deviates from the exper-
imental observations. Reducing the effect of the positions of small spheres on M2 yields
much better agreement with the experimental observations. The resulting clusters are
independent of the exact mass ratio, as long as 0 < mS/mL � σ3

S/σ
3: all that appears

to be required is a strong preference for large spheres to be near the center of the cluster,
and a weak contribution of the small spheres to prevent any freedom of movement in
the final configuration. In Table 8.3, the simulation results for wettable particles with
mS/mL = 0.1σ3

S/σ
3 are shown both before and after M2 minimization. For all cluster

sizes shown, the structure of the large spheres in the final configuration agrees with those
seen in experiments, with the positions of the small particles varying between different
simulation runs and experimental snapshots.

The effect of particle wettability is largely the same as in the case of spherical particles:
for all cluster sizes N ≤ 10, the large spheres end up in the same configuration after M2
minimization. For cluster size N = 11, we now see both the convex and non-convex
configurations appear, regardless of particle wettability. However, at cluster size N = 12
non-wettable particles show a central particle that is absent in the experimental snapshots,
resulting in slightly better overall agreement if the particles are assumed to be wettable.

In short, asymmetric dumbbells at this size ratio do not seem to meaningfully affect the
configuration of large spheres in the resulting clusters when compared to spherical parti-
cles. However, for small clusters, the presence of the small spheres could still significantly
affect the phase behavior of the newly formed colloidal building blocks. For example, the
small spheres will likely have a strong influence on the densest packing crystal phases for
these cluster sizes.
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N Sim. M2 Exp. Exp. Sph.

2

3

4

5

6

7

8

9

10

11

12

Table 8.3: Comparison simulation results for wettable asymmetric dumbbells (size ratio 0.73)
with experimental snapshots. The first column shows the number of dumbbells N in the cluster.
The second column shows a typical configuration after the compression step, and the third
column the resulting configuration after minimizing M2, using a mass ratio mS/mL = 0.1σ3

Sσ
3.

The next two columns show experimental snapshots of two different clusters. Note that in both
simulations and experiments, there are variations in the positions of the small spheres. The last
column shows the packing of spherical particles that corresponds to the configuration of large
spheres in the observed clusters.
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8.4 Conclusions
In summary, we have investigated the effect of a shrinking spherical confinement on sys-
tems of both wettable and non-wettable colloidal particles, as a simple model for particles
trapped in evaporating emulsion droplets. After compression, the second moment of the
mass distribution M2 of the obtained spherical packing was minimized. For spherical
particles, this technique results in clusters that show good agreement with those found
in earlier experimental studies. When applying the same method to symmetric colloidal
dumbbells, we obtained clusters very similar to those in an experimental setup even be-
fore the M2 minimization step, particularly for wettable particles. This suggests that
the structures found for this system are mainly determined by the densest packing of
dumbbells on a spherical surface.

For asymmetric dumbbells with size ratio q = 0.73, the larger spheres strongly domi-
nates the process that shapes the cluster: in the resulting configurations the large spheres
form the same structures as observed in clusters of spherical particles, while the small
spheres can be found in a variety of configurations. To model this, a relatively small effec-
tive mass mS � mLσ

3
S/σ

3 has to be assigned to the small spheres in theM2 minimization
step.

For almost all clusters considered, fixing the particles to the droplet interface during
the compression step yields either the same results or a configuration in closer agreement
with experimental snapshots. From the available experimental data, the model used
appears to be able to give good qualitative predictions for possible structures of clusters
formed in emulsion droplet evaporation experiments for particles consisting of one or more
spheres.
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Crystallization of colloidal spheres
in evaporating emulsion droplets

The slow evaporation of emulsion droplets containing colloids or nanoparticles provides
a straightforward method of producing compact clusters. The structure of the clusters
resulting from this process is determined both by the bulk phase behavior of the particles
and the confining effects of the droplet interface. In this chapter, we study crystallization
of hard spheres in an evaporating droplet, modeled as a slowly shrinking spherical wall
confining the cluster, and compare our results with experimental observations of clusters
of nanoparticles. The orientation of the crystalline domains that appear in the cluster is
strongly influenced by the presence of the confining wall, leading to frustrations between
multiple domains that grow inward from the droplet interface to the center of the cluster.
Suppressing surface ordering on the droplet interface by adding a long-range repulsive
wall-particle potential limits cluster growth on the surface of the cluster and leads to
much larger continuous crystal domains. Additionally, we investigate the effect of system
size and square-shoulder repulsions between the particles on the crystallization process,
but find no qualitative differences in the resulting crystal domains.
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9.1 Introduction
Emulsion droplet evaporation has proven to be a useful experimental method for produc-
ing compact clusters of either colloids or nanoparticles. [185, 194–196] In the previous
chapter, we investigated the structures formed by colloidal spheres and dumbbells on the
surface of small evaporating emulsion droplets. The small number of particles (N < 16)
on these droplets lead to largely monodisperse clusters for each cluster size with a well-
defined shape. In this case, the behavior of the particles is dominated by the presence
of the spherical confinement. In larger clusters, the bulk phase behavior of the particles
starts to play an important role. In the limit of sufficiently large droplets, the influence of
the droplet interface is negligible, and the behavior of the particles is determined by the
slowly increasing density of the system. Assuming the evaporation rate is low enough to
allow the particles to reach equilibrium during the evaporation of the droplet, the system
will follow the bulk phase behavior of the particles. For example, if the colloids inside
the droplets can be effectively described as hard spheres, we expect a face-centered-cubic
(FCC) structure to appear at high densities, with possible stacking errors leading to ran-
dom hexagonally close-packed (RHCP) structures. In a bulk system, these crystals would
nucleate at random locations, but the presence of an interface can significantly affect the
nucleation of crystals. In particular, it is well known that flat interfaces assist crystal for-
mation, strongly increasing nucleation rates.[202] The same effect has been demonstrated
for both concave and convex spherical surfaces with a sufficiently large radius of curvature
compared to the particle diameter.[203] As a result, the presence of spherical confinement
is expected to increase the rate of crystal nucleation at the edge of the droplet, potentially
leading to multiple domains aligned with the droplet interface at different locations.

In this chapter, we investigate the crystallization of hard spheres confined in evaporat-
ing emulsion droplets modeled as a shrinking spherical confinement, using Event-Driven
Molecular Dynamics (EDMD) simulations. We compare our results with experimental
findings in systems of nanoparticles in droplets of cyclohexane suspended in an aqueous
solution. In particular, we study the shape and size of the crystalline domains formed
during the evaporation process, and investigate the effect of the number of particles on
the resulting crystallinity. Additionally, we investigate the effect of a repulsive potential
between the particles, and study the ordering of the spheres at the surface of the cluster.

9.2 Methods
We study the behavior of colloidal hard spheres with diameter σ in a shrinking spherical
confinement, for system sizes in the range of 2000 to 64000 particles. The pair interaction
of the particles is given by

βUHS(rij) =
{
∞, rij < σ
0, rij ≥ σ

, (9.1)

with rij the center-of-mass distance between particles i and j. In addition, we examine the
effect of a square-shoulder repulsion potential U rep added to the hard-sphere potential:

βU rep(r) =
{
ε, r < q
0, r ≥ q

, (9.2)
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where q is the interaction range, ε denotes the height of the repulsive shoulder, and
β = 1/kBT with kB Boltzmann’s constant and T the temperature of the system.

We employ Event-Driven Molecular Dynamics simulations, as described in Chapter
1. The diameter σ of the spheres is taken as our unit of length, and the mass m of the
particles as the unit of mass. The time unit is τ =

√
mσ2/kBT . The emulsion droplet

interface is implemented as a hard spherical wall with a radius R that linearly decreases
in time at rate vR. The center of mass of each particle is confined to the to the spherical
cavity by a wall-particle potential

βUwall(r) =
{
∞, r ≥ R
0, r < R

, (9.3)

with r the distance of the center of mass of the particle to the center of the cavity.
Simulations are started in a homogeneous random configuration at a low packing frac-

tion η = Nσ3/8R3 ' 0.3. Since crystallization is only expected to begin at significantly
higher packing fractions, the system is first compressed relatively quickly to a higher pack-
ing fraction η = 0.45, well below the hard-sphere crystallization point at η = 0.492.[17]
Snapshots of the system at this packing fraction did not show any sign of crystallization.

To keep the temperature of the system constant during compression, we use an Ander-
sen thermostat: at regular intervals during the simulation, a random selection of particles
are selected and given new velocities taken from a Boltzmann distribution. As the system
approaches a jammed state, both the pressure and the amount of energy added to the
system per time unit due to compression increase more and more rapidly. As a result, at
some point the increase in temperature is faster than can be controlled by the thermostat,
and the number of collisions per time unit diverges due to the faster movement of the
particles, slowing down the speed of the simulation until it has effectively stopped. At
this point, the simulation is ended, and we compare the final snapshots with experimental
results.

To introduce wall-particle interaction in the system, spherical interfaces corresponding
to steps in potential energy can be added to the system. In our simulations, we approxi-
mate several continuous wall-particle interaction potentials using 30 concentric spherical
interfaces at distance Ri from the center of the cavity, with i = 1, . . . , 30. The interfaces
are evenly spaced between the outermost shell at distance R30 = R from the center, and
the innermost shell at R1 = R− 4σ. The outer interface still functions as a hard confine-
ment, while the potential energy of a particle at a distance r from the center of the cavity
is given by

βUwall(r) =


∞, r ≥ R
εwalli , Ri < r ≥ Ri+1
0, r < R1

. (9.4)

The values of εwalli are based on a continuous particle-wall potential V wall(r), such that

εwalli = βV wall(Ri) (9.5)

We investigate the crystalline domains inside the cluster using the orientational bond-
order parameter q6, as described in Chapter 7. The bond length cutoff was chosen to be
rc = 1.4σ, the bond order cutoff dc = 0.6, and the minimum number of neighbors required
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for a particle to be considered crystalline was ξc = 7. Additionally, crystalline domains
are distinguished by the requirement that the dot product between the q-vectors of two
particles in the same domain is at least ddom = 0.9.

We compare our results to an experimental system of nanoparticles consisting of an
iron oxide (FeO) core surrounded by a shell of iron cobalt oxide (CoFe2O4), which in turn
is coated with a layer of surfactant (oleic acid). The surfactant layer functions like a soft
shell preventing aggregation. These particles are synthesized according to the method
described in Ref. [204]. The particles have a core diameter of 6.5 nm and a polydispersity
of 2% (not including the soft shell, which makes them more monodisperse). Measurements
in 2D images of crystalline domains give a typical interparticle distance of 9.5 nm. This
would imply that the thickness of the soft shell is on the order of 1.5 nm, not taking into
account the effects of compression. Additionally, we investigated larger particles with a
core diameter of 18 nm.

To form clusters, we suspend 7 mg of nanoparticles in 2 ml of cyclohexane. This
suspension is added to a mixture of 10 ml of purified water, 400 mg of Dextran (2M)
and 70 mg of sodium dodecyl sulphate. The prepared solution is sheared at 7500 rpm at
a radius of 2.5 cm with a space of 0.1 mm resulting in a nearly monodisperse emulsion.
The emulsion is heated to 80◦C for 4 hours to evaporate the cyclohexane and the remain-
ing clusters are washed three times by centrifuging and redispersing in ultrapure water.
Analysis was performed using a Tecnai20 electron microscope. The sample was deposited
on a TEM-grid together with 18 nm gold markers, and cooled to -180◦C using liquid
nitrogen. The sample was then heated to -85◦C under high vacuum in order to sublimate
the water and freeze dry the clusters. This was done to preserve the shape and structure
of the clusters and to prevent capillary forces during drying. The images were taken after
cooling the sample down again to a temperature of -180◦C.

To analyze the crystal structure of the resulting clusters, we determined the 3D co-
ordinates of the nanoparticles using electron tomography. Crystalline clusters are then
detected using the same method as applied to the simulated clusters. To account for
errors in the measurement of the particle positions, the cluster criterion is chosen to be
less strict, using ξc = 4 and ddom = 0.85.

9.3 Results
9.3.1 Colloidal hard spheres in a hard spherical cavity
To investigate the effects of the rate of compression on the cluster, we simulate systems
of N = 4000 hard spheres inside a spherical shell, for a range of compression speeds
vR. Typical snapshots for a low compression speed vR = 10−5σ/τ are shown in Fig.
9.1. Different crystalline domains are indicated with different colors, with light blue
denoting particles in a fluid environment. For compression speeds higher than 10−3σ/τ ,
the amount of crystalline order is significantly less, as the system has less time to arrange
into an ordered configuration during the compression. Varying the compression speed
below vR = 10−4σ/τ does not significantly affect the resulting configuration.

When observing the crystallization of the cluster during the simulation, crystalline
clusters are always seen to appear at the edge of the droplet, aided by the presence of
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the confining interface. At packing fractions near the fluid coexistence density (ηf =
0.492[17]), several crystalline layers are already observed at the edge, forming a basis for
further crystal growth as the density of the system increases. As a result, crystals grow
out more or less continuously with increasing density: no real nucleation effect is required
for further crystallization, and the crystal grows inwards from multiple direction at once,
resulting in several wedge-shaped crystalline domains with different orientations pointing
towards the center of the cluster.

While the wedge-shaped domains are locally aligned with the wall, the curvature of
the spherical surface frustrates the first two crystalline layers, causing these to become
less ordered. Thus, in Fig. 9.1, the crystalline domains start several layers away from the
droplet surface. This can be compared with a similar effect seen in nucleation of hard
spheres at the interface of a convex spherical seed particle, where the resulting crystal
nucleus was even seen to detach from the surface after a sufficiently large cluster size was
reached. [203] We observed similar wedge-shaped domains in the experimental system, as
shown on the left in Fig. 9.2. A typical electron microscopy snapshot is also shown.

In some of the clusters in both the experiments and simulations, the wedge-shaped
clusters show signs of icosahedral symmetry. Figure 9.3 shows both a snapshot of a
cluster of N = 4000 hard spheres and an experimental cluster. In both clusters, five-fold
symmetry of the crystalline domains can clearly be seen from multiple directions. While
not all domains are perfectly tetrahedral, they can be seen to form 20 roughly equal
clusters arranged into an icosahedron.

While the interparticle and particle-wall interactions in the experimental system are
not likely to be strictly hard-core, the qualitative agreement between experiments and
simulations suggests that the structures formed in clusters produced via emulsion droplet
evaporation can be modeled effectively by a simple hard-sphere approximation in at least
some cases. As a result, we can use this model to study the effects of system size and
wall-particle interactions on the structure of the cluster, and to study the ordering of
particles on the cluster surface in more detail.

In clusters containing more particles, the larger radius of curvature of the droplet sur-
face allows the orientation of the crystal to change direction more or less continuously
around almost the entire crystal surface, as shown in Fig. 9.4 for clusters of N = 10000
and 64000 particles. This effect appears to be stronger for larger clusters. In addition,
the number of crystalline layers formed near the droplet edge before the crystal domains
extend further inwards is larger than in smaller clusters. However, the frustrations caused
by the surface curvature still lead to disordered areas within the cluster. During compres-
sion, the crystallization progresses slowly from the droplet interface towards the middle
as the packing fraction increases. For these larger clusters, no icosahedral symmetry was
observed.

We investigated the ordering of particles on the surface of the cluster by performing De-
launay triangulation to determine the number of nearest neighbors of each particles.[205]
In this analysis, a particle was considered to be on the droplet surface if its center of
mass was less than half of the particle diameter away from the surface (r > R − σ/2).
In Fig.9.5, we show snapshots of clusters where the surface particles are colored based
on the number of nearest neighbors. Most particles have 6 neighbors (purple), but de-
fects of particles with 4 (yellow), 5 (pink) or 7 (red) neighbors can be seen as well. For
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Figure 9.1: Typical configurations of N = 4000 hard spheres compressed in a hard spherical
cavity at a compression rate vR = 10−5σ/τ obtained from EDMD simulations. The picture on
the left shows the outside of the cluster, while the picture on the right shows a cut through
the middle of the cluster, with the different colors showing different wedge-shaped crystalline
domains. Particles identified as fluid-like are colored light blue.

Figure 9.2: Left: Crystalline domains found experimentally in two clusters of nanoparticles
with a core diameter of 18 nm, after evaporating the emulsion droplet. Only the particles that
are part of a crystalline domains are shown. Right: Typical electron microscopy image of two
clusters of nanoparticles. The clusters are around 320 nm in diameter.
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Figure 9.3: Icosahedral symmetry in a cluster ofN = 4000 hard spheres compressed in spherical
confinement (left) and an experimental cluster of nanoparticles with a core diameter of 7 nm
(right). The five-fold symmetry is visible from many directions. Only particles that are part of
a crystalline cluster are shown.

N = 10000, outside N = 10000, inside

N = 64000, outside N = 64000, inside

Figure 9.4: Left: Typical configurations in a system of N = 10000 (top) and N = 64000 (bot-
tom) hard spheres compressed in a hard spherical cavity at a compression rate vR = 10−3σ/τ ,
obtained from EDMD simulations. In this case, a large crystalline domain (red) changes orien-
tation continuously over the entire surface of the cluster, and grows inward at multiple locations
with different orientations. The pictures on the left show the outside of the clusters, while the
pictures on the right show a cut through the middle of the clusters, with the different colors
showing different crystal domains.
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larger clusters (N = 10000 and 64000), these defects are clustered in 12 roughly evenly
spaced locations over the spherical surface. For comparison, the bottom right picture
shows the surface ordering on a hollow spherical shell, where the particles were confined
to the droplet surface by a strong wall-particle square well attraction with a well width
of 0.1σ. In this case, long scars of particles with alternatingly 5 or 7 neighbors can be
seen at several points on the sphere. Both the formation of these scars and the necessity
of forming at least 12 surface defects are well-known behavior for spherical packings of
spheres [206]. It is interesting to note that a cluster with icosahedral symmetry would
als lead to at least 12 evenly spaced defects, as an icosahedron has 12 points where five
domains touch.

Depending on the system, strong attractions between the particles and the droplet
interface can occur in experiments. In some cases, the droplet evaporation can even re-
sult in hollow shells of particles, indicating that the particles are firmly adsorbed to the
interface between the two solvents. If we introduce a sufficiently strong, short-ranged
attractive potential between the wall and the particles in our simulations, the same be-
havior can be observed. Here, the attractive force is modeled by a square well attraction
with width of 0.1σ and a well depth that is sufficiently large to prevent particles from
escaping. Particles form a single layer at the interface, resulting in an ordered hexagonal
pattern after compression.

9.3.2 Colloidal hard spheres in a spherical cavity with a repul-
sive wall-particle interaction

In some experimentally observed droplets of nanoparticles, we also observe domains that
span a much larger part of the cluster. While it is not clear why the experimental system
is more ordered in these cases, it is important to note that neither the particle-wall
nor the particle-particle interactions are perfectly hard in the experimental system. To
investigate the effects of this, we performed simulations where the particles were repelled
from the droplet interface. When the continuous wall-particle repulsion is short-ranged
(V wall(r) ∝ σn/(R− r)n, with n ≥ 2), the resulting clusters are not significantly affected,
and contain the same wedge-shaped crystal domains. However, in the case of a long-
range interaction (βV wall(r) = 32σ/(R − r)), the effects of the interface on nucleation
are suppressed and wedge-shaped domains no longer form. Instead, the orientation of
the crystalline order is often constant throughout the cluster, although cases with two or
three domains are seen as well. An example is shown in Fig. 9.6. In this case, nucleation
at the droplet interface is suppressed sufficiently to allow a single nucleus to grow to the
size of the droplet before more crystal domains can form.

9.3.3 Colloidal hard spheres in a hard spherical cavity with re-
pulsive particle-particle interactions

To investigate the possible effects of steric repulsions between the spheres, we performed
EDMD simulations on hard particles interacting with a square-shoulder interaction po-
tential, as described above. Figure 9.7 shows the resulting configurations of a cluster of
N = 4000 particles, with a shoulder width of q = 0.05σ. No qualitative differences in
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N = 4000 N = 10000

N = 64000 N = 2000, hollow

Figure 9.5: Surface order in clusters of hard spheres in compressed in hard spherical confine-
ment, with N = 4000, 10000, and 64000 particles. For comparison, a hollow cluster of N = 2000
particles with strongly attractive wall-particle interactions is also shown. The colors denote the
number of neighbors in the Delaunay triangulation. Purple particles have 6 nearest neighbors
on the surface, while defects most commonly lead to particles with 4 (yellow), 5 (pink) and 7
(red) neighbors.

the resulting domains was observed for a range of shoulder heights 0.5 < ε < 5, and for
shoulder widths q/σ = 0.02, 0.05 and 0.1. While it is possible that smoother potentials
significantly affect the crystallization process in the cluster, the formation of wedge-shaped
domains appears to be at least insensitive to the pair potentials tried here.
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Simulations:

Experiments:

Figure 9.6: Crystalline domains in clusters obtained from simulations (top two pictures) and
experiments (bottom two pictures). For the simulations, N = 4000 hard spheres were com-
pressed with a long-range repulsive wall-particle interaction βV wall ∝ 1/r and compression
rates vR = 10−4σ/τ (left) and 10−5σ/τ (right). In all snapshots, different colors denote different
crystalline domains, and only the particles identified as solid-like are shown. The experimental
clusters consisted of nanoparticles with a core diameter of 7 nm.

ε = 1 ε = 2 ε = 3 ε = 4

Figure 9.7: Crystalline domains in systems of N = 4000 hard spheres interacting with a square
shoulder repulsion in a hard spherical cavity, with ε = 1 (left), 2, 3, and 4 (right). No qualitative
differences in the domains was observed.
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9.4 Conclusions
In summary, we have investigated the effect of shrinking spherical confinement on sys-
tems of colloidal hard spheres, as a simple model for particles trapped in evaporating
emulsion droplets. In the presence of a hard confining interface, crystallization in the
clusters always starts at the surface of the cluster, leading to crystalline order with dif-
ferent orientations along the droplet edge. In sufficiently small systems (N ' 4000), the
domains change orientation discontinuously, leading to wedge-shaped crystalline domains
growing inward from the surface. These domains show good qualitative agreement with
those seen in experiments on droplets containing nanoparticles. In both experiments and
simulations, icosahedral ordering of tetragonal domains was observed. In simulations of
clusters containing more particles (N = 10000 or larger), the larger spherical confinement
allows the hard-sphere crystal to change orientation continuously, leading to a large crys-
talline domain in the shape of a spherical shell, which grows inwards at several points
with different orientations. Even in this case, the internal part of the cluster shows a
large degree of disorder, and icosahedral ordering of the crystalline domains was not ob-
served for these larger clusters. Larger clusters do show a more ordered surface, with
defects in the surface ordering often largely restricted to twelve evenly spaced clusters. In
small clusters, this surface order is destroyed by the domain boundaries of the underlying
crystalline structure.

If a long-range repulsion between the droplet interface and the particles is implemented
in the simulations, the internal order of the generated clusters increases significantly.
This soft potential almost completely prevents ordering of particles on the surface during
compression, making crystallization along the surface much more difficult than in the
case of a hard wall or short-ranged repulsion. As a result, crystallization occurs at only
a single location in the cluster, leading to a much larger degree of crystalline order in
the resulting crystal. In the experiments these more ordered clusters appear to be more
common in systems with smaller nanoparticles. It is likely that any interactions with
the droplet interface are also relatively longer ranged in this case: in the case of smaller
particles both the size of the surfactants in the system and the range of any electrostatic
interactions are larger compared to the size of a single nanoparticle.

Finally, we investigated the effects of square shoulder repulsions between the spheres,
but found no significant differences in the resulting crystalline domains for the parameter
range we studied. While more complex interactions could influence domain formation,
our simulations suggest that the most direct route of influencing crystallization in clusters
formed via emulsion droplet evaporation involves changing the interactions between the
particles and the droplet surface.
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Colloidal micelles from asymmetric
hard dumbbells

In colloidal systems, effective depletion attractions between particles can be induced by
the addition of depletants to the suspension. These interactions can be suppressed by a
rough surface coating of smaller particles. In the case of colloidal dumbbells consisisting
of one smooth sphere and one coated sphere, the depletion attractions are effectively
limited to the uncoated spheres. The resulting interactions can induce the formation of
clusters, but the aggregation is hindered by the presence of the non-interacting spheres.
This causes the dumbbells to self-assemble into micelle-like clusters, with the attractive
parts in the center and the rough spheres on the edges. Hence, the particles can act as a
simple model system for surfactants. In this chapter, we study cluster size distributions
in these systems using both Monte Carlo simulations and free-energy calculations, and
compare the results to distributions measured in an experimental system. Direct Monte
Carlo simulations starting from a homogeneous state give rise to cluster distributions that
are in good agreement with those found in experiments. However, it is clear that these
simulations do not reach full equilibrium, as the slow exchange of particles between clusters
gives rise to extremely long equilibration times. Our free-energy calculations demonstrate
that the equilibrium size distribution shows a strong preference for specific cluster sizes
larger than those that readily form via self-assembly, suggesting strong non-equilibrium
effects on the clusters arising in these systems.

10.1 Introduction
Due to recent advances in colloidal synthesis techniques, the variety of colloidal particles
with anisotropic interactions has increased considerably. [4] These new colloids can be
used as the colloidal building blocks for a wide range of structures. In particular, colloidal
particles with site-specific interactions, so-called ’patchy particles’ have received a large
amount of attention over the last few years. [15, 207] Patchy particles have already been
shown to give rise to interesting phase behavior, leading to both clusters and crystals
with structures that can be tuned by modifying the number and positions of the patches
on each colloid,[16, 49, 208, 209] as well as equilibrium gel-like structures.[210] A special
case of these patchy particles is formed by particles with only a single attractive patch.



136 Chapter 10

Spherical colloids of this type, often referred to as Janus particles, have already been
shown to form both micelle-like and vesicle-like structures. [211, 212]

In this chapter, we investigate asymmetric colloidal dumbbells where the smaller
sphere in each particle acts as a single attractive patch as a result of depletion inter-
actions. By giving the surface of the larger spheres a rough coating, all depletion inter-
actions aside from those between the smaller spheres are strongly suppressed, effectively
leaving only specific attractions between the smaller smooth spheres. As a result, these
particles form clusters that resemble micelles formed by surfactant molecules: the smooth
spheres are positioned on the inside of the cluster and surrounded by a layer of the larger
rough spheres. The size of these clusters is strongly determined by the geometry of the
dumbbells: in the absence of rough spheres, clusters could grow without limit, and any
attractions sufficiently strong to cause significant cluster formation would lead to a phase
separation in the system. In the case of dumbbells, however, adding more particles to the
cluster also increases the number of purely repulsive rough spheres on the outside of the
cluster. These rough spheres in turn limit the number of bonds that a smooth particle
can form and reduce the freedom of movement of the other large spheres in the cluster,
making larger clusters less favorable. As this effect is stronger for relatively larger rough
spheres, more asymmetric dumbbells tend to form smaller clusters.

We study the cluster sizes and shapes formed in systems of these dumbbells using free-
energy calculations, and compare them with those seen in experiments, as well as with
direct simulations starting from a homogeneous initial configuration. In particular, we
investigate the effect of colloidal number density, interaction range, interaction strength,
and dumbbell size ratio on the clusters formed in equilibrium, and the effects of the
dynamics of the system on the formation of these clusters.

10.2 Theory

10.2.1 Free-energy calculations
We consider a system of N dumbbells in a volume V at temperature T . These dumbbells
interact with hard-core interactions and depletion attractions and tend to form micelles
under the constraint that the total number of dumbbells satisfies

N =
∞∑
n=1

Nn, (10.1)

where Nn is the number of micelles consisting of n dumbbells. For sufficiently dilute
micelle fluids the system can be modeled as an ideal gas of clusters, non-interacting but
capable of exchanging particles. This allows us to write the canonical partition function
Z(N, V, T ), as:

Z(N, V, T ) =
∞∏
n=1

QNn
n

Nn!
(10.2)

Qn = 1
(4π)nΛ3nn!

∫
V
drn

∫
dωn exp(−βU(rn, ωn))c(rn), (10.3)
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where Qn is the internal configurational integral of a cluster of n dumbbells, β = 1/kBT
with kB Boltzmann’s constant, Λ3 is the thermal volume of a dumbbell particle, rn de-
notes the positions of the attractive spheres of the dumbbells in the cluster, and ωn the
orientations of the dumbbell particles. The function c(rn) equals 1 if the smooth spheres
at positions rn form a single cluster and is 0 otherwise. We consider two particles to be
part of the same cluster if their smooth spheres are close enough to attract each other.
Since the partition function for a monomer is Q1 = V/Λ3, we can rewrite Eq. 10.3 as:

Q =
∞∏
n=1

(V/Λ3)Nn
Nn!

(
Qn

Q1

)Nn
(10.4)

Here, Qn/Q1 is the ratio of the partition function of a cluster of n particles to that of a
cluster of a single particle. Due to the restriction that the cluster be connected, this no
longer depends on the volume of the box, as long as V is large enough to accomodate any
cluster. The Helmholtz free energy reads:

F (N, V, T, {N1, . . . , Nn}) = −kBT logZ(N, V, T ) (10.5)

=
∞∑
n=1

NnkBT

[
log

(
Nn

V
Λ3Q1

Qn

)
− 1

]
(10.6)

For an ideal gas of these particles, with only clusters of size 1, the Helmholtz free energy
reduces to that of an ideal gas of monomers βF/N = log(ρΛ3) − 1, with ρ = N/V the
particle density.

The ratio Qn/Q1 can be measured using a grand-canonical (µV T ) Monte Carlo sim-
ulation (GCMC).[213] By imposing the constraint of having only a single cluster in a
GCMC simulation, the probability P (n) of observing a cluster of size n reads:

P (n)
P (1) = Qn

Q1
exp[βµ(n− 1)], (10.7)

Hence, the ratio Qn/Q1 can be directly obtained for all n from the GCMC simulation.
In principle, Qn/Q1 is independent of µ, although simulations at different values of µ
can be used to sample all cluster sizes. We can now minimize the Helmholtz free energy
functional F (N, V, T, {N1, . . . , Nn})of the cluster gas with respect to the distribution Nn,
while satisfying the normalization constraint 10.1:

∂

∂Nn

(
F − µ

∞∑
n=1

nNn

)
= µn − µ0, (10.8)

with µ = µ1 a Lagrange multiplier. This yields:

µn =
(
∂F

∂Nn

)
V,T,N1,...Nn−1,Nn+1,...

= kBT log
(
Nn

V
Λ3Q1

Qn

)
(10.9)

Combining Eqs. 10.8 and 10.1 gives

ρnΛ3 = (ρ1Λ3)nQn

Q1
(10.10)

with ρ the overall particle density in the system and ρn is the number density of clusters
of size n. The resulting polynomial equation in ρ1Λ3 has only one solution for ρ1 ≥ 0,
which depends continuously on ρ. In other words, no phase transitions will occur.
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10.2.2 Critical micelle concentration
As is generally the case for adsorption equilibria and micelle-like systems, the monomer
density ρ1 as a function of the particle density crosses over from a linear regime to a nearly
constant value as the density increases. As an example, consider a system where only one
cluster size appears consisting of n particles. Inserting Eq. 10.10 into 10.1 gives:

ρ1Λ3 + nρn1Λ3nQn

Q1
= ρΛ3. (10.11)

This can be rewritten as:

ρ1

ρ0
+ n

(
ρ1

ρ0

)n
= ρ

ρ0
, (10.12)

where

ρ0 ≡
(
Qn

Q1

)1/(n−1)

Λ−3. (10.13)

When the density of the system is low, i.e. ρ � ρ0, the density of monomers is approxi-
mately equal to the system density, as the second term in Eq. 10.12 is negligible compared
to the first one. In this regime, the entropy the particles lose by bonding is much larger
than the potential energy difference gained by forming a cluster. However, for larger
densities clusters appear, and the density of monomers will be more or less constant.
The crossover density between these regimes is often referred to as the critical micelle
concentration (cmc). For sufficiently large micelles (n � 1), the density of monomers is
approximately equal to the cmc when ρ � ρcmc. While the density ρ0 defined here is a
good indication of the critical micelle concentration, calculation of the cmc becomes more
difficult in systems with an equilibrium between multiple cluster sizes, such as the one
studied here. In addition, due to the relatively small cluster sizes (n < 30) considered
here the density of monomers continues to increase slowly as a function of density even if
the majority of the system consists of dumbbells, without reaching a clear limiting value
that could be used as a cmc.

In this chapter, we use a commonly used definition of the cmc that corresponds to
the point where exactly half of the particles in the system are part of a cluster. Thus,
at ρ = ρcmc, ρ1 = ρ/2. As an additional clustering criterion, we also determine the
heat capacity as a function of the interaction strength ε. The heat capacity at constant
volume cV = (dU/dT )V corresponds to the change in energy if the temperature increases
by a small amount. In the regime where the number of clusters increases strongly with
decreasing temperature, the heat capacity is maximal. In our system, a decrease in the
temperature is equivalent to an increase in the interaction strength ε, as ε is measured in
units of kBT . Thus, cV ∝ −

(
dU
dε

)
V
, and a maximum in the heat capacity corresponds to a

minimum in (dU/dε)V . By combining measurements of the average potential energy per
cluster size from GCMC simulations with the cluster size distribution, we can calculate
the total potential energy per particle for different values of ε, and find the maximum in
the heat capacity.
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10.3 Model and methods

10.3.1 Interactions
The particles are modeled by hard-core asymmetric dumbbells with only depletion at-
tractions between the smooth sides. Any remaining depletion interaction between the
rough spheres, and any charges on the particles are neglected. For the hard-core inter-
actions, the rough and smooth spheres have diameters σR and σ, respectively, and are a
distance d apart. The rough spheres only interact with other spheres (smooth or rough)
via hard-core interactions. The depletion potential between the smooth spheres is given
by [214, 215]

βUdepl(r) =


∞, r ≤ σ

−ε
r3

2q3−
3r
2q+1

σ3
2q3−

3σ
2q+1

, σ < r ≤ q

0, r > q

, (10.14)

where r is the distance between the small spheres of two dumbbells. The interaction
potential is described by two parameters, an interaction range q and interaction strength
ε. The range of attraction is q = σ+σpol, with σpol the diameter of the polymer responsible
for the depletion interactions. For two smooth spheres in contact, the potential well depth
is εkBT , with ε given by

ε = φp

σ3

2q3 − 3σ
2q + 1

(q − σ)3 q3. (10.15)

Here, φp = πσ3
polNpol/6V is the packing fraction of polymers in a reservoir in chemical

equilibrium with the system and Npol is the number of polymers.

10.3.2 Direct simulations
We study this model using both direct Monte Carlo simulations and free-energy calcula-
tions. In the direct Monte Carlo simulations, we simulate a system of N = 1000 particles
at constant density ρ and temperature T . We directly measure the cluster size distribu-
tion during the simulation. The initial configuration consists of particles with random
orientations and positions, effectively leading to a system of monomers. The simulation
is then equilibrated for at least 107 MC cycles. To improve mobility of clusters with more
than one particle, cluster moves are introduced which collectively move all particles that
are part of the same cluster. Particles are considered to be part of the same cluster if the
center-of-mass distance between their smooth spheres is less than the attraction range q.

10.3.3 Grand-canonical Monte Carlo
To measure the cluster free energies fn, we simulate single clusters at constant chemical
potential µ and temperature T , allowing only moves that result in a single cluster. In
addition to performing normal translation and rotation moves, we insert and remove
particles according to a standard GCMC scheme, but restrict the system to single clusters.
The box volume has no influence on the outcome of the simulation, as insertions are only
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accepted near the cluster. To prevent insertions too far away from the cluster, the trial
insertion moves can in principle be restricted to a small region around the cluster, as long
as no valid insertions (that would not result in more than one cluster) are excluded. While
this could be done by restricting the insertions to a sufficiently large spherical volume
around the center of mass of the cluster, a better solution is to only insert particles inside
the attractive wells of particles already in the cluster.

Ideally, we would like to attempt insertions such that the center of the smooth sphere
of the new particle is restricted to a volume vw, corresponding to the union of all attractive
wells in the cluster. The attractive well for each particle is the spherical shell where the
distance r to the center of the smooth sphere satisfies σ < r < q. Any insertions outside
this volume would be rejected due to the single-cluster constraint, and are therefore not
useful.

To generate a uniformly random position in vw, we proceed as follows: when inserting
a particle, we first randomly select a particle already present in the cluster. Subsequently,
we choose a random location inside the attractive well of this particle for the center of
the smooth sphere of the particle. However, as the attractive wells of multiple particles
can overlap, the probability of attempting a particle insertion at a position where k
wells overlap is biased by this method. To correct for this bias, an insertion move into
k overlapping wells is only attempted with a probability 1/k, and is otherwise rejected.
Using this method, the probability of selecting a position for the trial particle that satisfies
the single-cluster criterion is vw/vn, where v = 4π

3 (q3−σ3) is the volume of the attractive
well around one particle. Compared to inserting into a fixed volume of size V , this
improves the acceptance of insertion moves by a factor V/nv. The position of the rough
sphere is simply chosen by generating a random orientation for the particle.

To maintain detailed balance, the acceptance rules for insertion and deletion moves
have to be modified slightly. We require that

P (n)α(n→ n+ 1)acc(n→ n+ 1) = P (n+ 1)α(n+ 1→ n)acc(n+ 1→ n), (10.16)

where P (n) is the probability of finding exactly n particles in the system, α(i → j) is
the probability of attempting a move that changes the number of particles from i to j,
and acc(i → j) is the acceptance probability of such a move. In our simulation, the
number of insertion and deletion moves in our simulations is the same. However, since
the probability of choosing a valid location for a particle insertion is now larger by a factor
V/nv, this is equivalent to increasing the number of particle insertions attempted by the
same factor. Thus,

α(n→ n+ 1) = V

nv
α(n+ 1→ n). (10.17)

In the grand-canonical ensemble, the probability density function P (rn, ωn;n) for finding
the system in a state with n particles at positions rn and with orientations ωn is given by

P (rn, ωn;n) ∝ exp(βµn)V n

Λ3nn! exp(−βU(rn, ωn))c(rn), (10.18)

As a result, the acceptance probabilities for inserting and removing particles should obey
acc(n→ n+ 1)
acc(n+ 1→ n) = vn

V

exp(βµ)V
Λ3(n+ 1) exp(−β[U(rn+1, ωn+1)− U(rn, ωn)]), (10.19)
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with the additional constraint that the particles should still form a single cluster after the
insertion or deletion. This leads to the following acceptance rules for particle insertion
and deletion:

acc(n→ n+ 1) = min
[
1, nv

Λ3(n+ 1) exp(β[µ− U(rn+1, ωn+1) + U(rn, ωn)])
]

acc(n+ 1→ n) = min
[
1, Λ

3n

nv
exp(−β[µ− U(rn, ωn) + U(rn+1, ωn+1)])

]
c(rn).

(10.20)

Here, we have left out the constraint c(rn+1) in the case of particle insertion, as insertions
are only performed on valid location. Note that the rejection of insertions into overlapping
potential wells are not included in this acceptance rule.

In principle, the choice of µ in the GCMC simulations does not matter for the resulting
probability distribution. However, in order to sample clusters of all relevant sizes properly,
one can perform simulations at different values of µ. In practice, it is not straightforward
to determine the value of µ that allows a good sampling of cluster sizes, and it turns out
to be more practical to set µ to 0 and to use an Umbrella Sampling scheme to sample
the cluster distribution.[17] An extra energy term UUS(n) = k(n − n0)2 is added to the
potential energy function, which biases the cluster size n towards a target value n0. The
probabilities Pbias(n) measured in these simulations have to be corrected to obtain the
unbiased probabilities:

P (n) ∝ exp(k(n− n0)2)Pbias(n), (10.21)

with a proportionality constant depending on the target cluster size n0. From simulations
with different values of n0 the full probability distribution P (n) can be calculated.

At high interaction strengths, reorganization of the cluster is a slow process, due to the
number of bonds that have to be broken to reach a new configuration. To speed up equi-
libration and sampling, we employ the parallel tempering method.[17] In one simulation,
we simulate a number of separate clusters at different interaction strengths ε. The differ-
ent clusters do not interact in any way, but a new Monte Carlo move is introduced that
swaps configurations of two different interaction strengths. The acceptance probability of
such a move is only based on the difference in total energy, including the US potential. To
maximize the acceptance of these swap moves, the centers of the US windows are tuned
(during equilibration) such that all clusters contain roughly the same average number of
particles.

10.3.4 Effective density
In our assumption that a fluid of micelles can be treated as an ideal gas of clusters, we
slightly underestimate the density of larger clusters. Analogous to Wertheim theory, we
can estimate a first-order correction by using the radial distribution function g(r) of a of
a system with only hard-core interactions (i.e. ε = 0) at the same density. To do this,
we assume that the system mainly consists of free dumbbells and calculate the effective
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Figure 10.1: Comparison of cluster distributions calculated using free energy calculations
(blue lines) with distributions from direct simulations (red points) at a packing fraction η = 0.1,
interaction range q = 1.1σ and interaction strength ε = 6 kBT and 7 kBT . The solid lines show
the calculated distributions after rescaling the density using Eq. 10.23. For the dashed lines the
density has not been rescaled.

density ρeff of particles inside the potential well:

ρeff = ρ
∫ q
σ drr

2g(r)∫ q
σ drr

2 (10.22)

' ρg(σ), (10.23)

where in the second step we have assumed that g(r) is approximately constant over the
(short-ranged) attractive well. Hence, the excluded-volume effects in the system lead to a
slightly higher effective density near the particles, and we expect that at least for systems
dominated by monomers using the effective density ρeff rather than ρ should lead to
better predictions of the cluster size distributions. In the limit of low densities, ρeff → ρ.

We performed single-cluster simulations on rough-smooth dumbbells with size ratio
σ/σR = 0.5, and compared the cluster distributions resulting from the calculated free
energies to those found in direct simulations. The distance between the two spheres of each
dumbbell was chosen such that the spheres touch and do not overlap, i.e. d = (σ+σR)/2.
Figure 10.1 compares distributions from direct simulations (red points) with those from
free-energy calculations both before rescaling (dashed blue lines) and after (solid blue
lines), for interaction range q = 1.1σ and packing fraction η = 0.1. For the interaction
strengths shown, the rescaled version clearly results in a better prediction. At lower
densities, the difference between the two lines decreases significantly. At higher interaction
strength, equilibration issues in the direct simulations make comparisons more difficult.

10.3.5 Experimental system
We compare our results to the experiments performed by Kraft et al.[216] The experimen-
tal system consisted of polystyrene dumbbell particles synthesized following a modified
method of Kim et al. [217] Spherical colloids with a diameter of 2.41 µm were synthe-
sized, washed, and redispersed in an aqueous solvent. During this step, small polystyrene
particles (0.18 nm in diameter) were adsorbed onto the colloid surface, forming a rough
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coating. A spherical protrusion with a diameter of 1.11µm was then created on each
particle using an overswelling method, leading to asymmetric dumbbell particles with a
rough sphere diameter of σR = 2.92 µm, a dumbbell size ratio of σ/σR = 0.76, and a total
particle length of 4.9 µm, corresponding to a distance d = 0.79σ between the spheres.
To induce depletion interactions, dextran polymers were added at several concentrations.
While NaCl was added to the system to screen the electrostatic interactions, some of the
charge repulsion remains between the particles. As a result, it is difficult to calculate the
effective interaction strength from the concentration of polymers. However, the size of
the polymer (σp = 38 nm) and the packing fraction of the system (η = 0.003) are known,
and we expect that the electrostatic repulsions will mainly affect the effective strength
of the interaction, without strongly influencing the behavior of the system. Thus, the
interaction strength ε will be our only fitting parameter when comparing distributions
from simulations or free-energy calculations to the experimental results.

10.4 Results
10.4.1 Size ratio 0.76
In order to compare with experimental results, we choose the size ratio between the
smooth and rough spheres to be σ/σR = 0.76, at a distance d = 0.79σ between the
spheres. We performed single-cluster simulations to calculate cluster distributions for
a range of interaction strengths ε and interaction ranges q. We measured the average
cluster size as a function of these two parameters, at a fixed packing fraction η = 0.003
(corresponding to the packing fraction used in the experimental setup). As an illustration
of the clusters formed, Fig. 10.2 shows both experimental and simulation snapshots of
clusters up to size n = 15. Figure 10.3 shows the average cluster size as a function of
interaction range q and interaction strength ε, as well as the most common cluster size in
the distribution calculated from the free energy calculations. The points corresponding
to the cmc (defined as the point where exactly half of all particles are part of a cluster)
and the maximum in the heat capacity are denoted by a white and blue line, respectively.
Despite small differences, both criteria provide good estimates of the interaction strength
where clustering becomes significant. At this point, we observe a sharp crossover between
a system consisting of only small clusters and systems dominated by large clusters with
cluster size n ' 20. This is in sharp contrast with the distributions found in direct
simulations, where the cluster distribution peaks around n = 13. We note that the
direct simulations are in closer agreement with the experimental results at this size ratio.
The left side of Figure 10.4 shows a comparison between cluster size distributions from
experimental results (bars), direct simulations (black circles), and free-energy calculations
(colored lines). In both types of simulations, the interaction range q = 1.02σ and packing
fraction η = 0.003 were chosen to match the experimental parameters. For the direct
simulation, the interaction strength ε = 10 kBT was tuned to approximately match the
first peak in the distribution function. The free-energy calculations are shown for a range
of interaction strengths. While reasonable agreement between direct simulations and
experiments can be seen, the free-energy calculations clearly predict either much larger
clusters or no clusters at all. While the distribution is influenced by the interaction
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Figure 10.2: Comparison between experimental snapshots of clusters (left) and clusters seen
in the direct Monte Carlo simulations (right).

strength, clusters around size 10 never appear in significant quantities. On the right, Fig.
10.4 shows the effect of the number density on the distribution. While the number of
clusters formed strongly depends on the packing fraction, the peaks in the distribution do
not shift. As Fig. 10.3 already suggests, varying the interaction range does not strongly
influence the cluster size either.

While the MC simulation used to generate the distribution shown in Fig. 10.4 was
allowed to equilibrate for 108 MC cycles, the potential energy of the system was still seen to
decrease slowly over time. Clearly, the equilibration of cluster sizes in the system happens
on timescales much longer than those that can reasonably be simulated directly. This also
explains the marked difference between the direct simulations and free-energy calculations:
the direct simulations have not yet reached equilibrium. While we do not have such clear
indications of change over time in the experimental setup, the match between experiments
and direct simulations strongly suggests that the experimental system is likely far out of
equilibrium as well.

The reason for this slow equilibration can be found in the rate at which particles
attach and detach from the clusters. The free-energy barrier between a monomer and
larger clusters is shown in Fig. 10.5. While the free-energy barrier is 15 kBT in height,
making the growth from cluster size 1 to 20 a rare event, it is important to note that



Colloidal micelles from asymmetric hard dumbbells 145

Figure 10.3: Left: Average cluster size as a function of the interaction range q and interaction
strength ε, for size ratio σ/σR = 0.76, and packing fraction η = 0.003. Right: Most common
cluster size (ignoring monomers) as a function of the q and ε for the same system. In both plots,
the white and blue lines (here nearly on top of eachother) show the cmc and the maximum of
the heat capacity, respectively.
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Figure 10.4: Left: Comparison of experimental results (bars) and direct simulations (•) with
equilibrium cluster size distributions of dumbbells consisting of a rough and a smooth sphere
with size ratio σ/σR = 0.76, packing fraction η = 0.003 and polymer size σp/σ = 0.02. In
the direct simulations, ε = 10 kBT , and for the free-energy calculations ε varies from ε = 8 to
11 kBT , denoted by the colored lines. Right: Cluster size distribution for the same system,
with the interaction strength fixed at ε = 9.85 kBT , at four different packing fractions η =
0.0001, 0.001, 0.01, and 0.1. The inset shows the monomer concentration as a function of the
packing fraction, with the colored dots indicating the points corresponding to the distributions
in the main figure. The black square denotes the cmc, where exactly half of the dumbbells are
part of a cluster.
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Figure 10.5: Free-energy barrier between small and large clusters, at ε = 9.85 and q = 1.02σ.
For this interaction strength, the chemical potential corresponds to the experimental packing
fraction η = 0.003.

the diffusion of even a single dumbbell in or out of a cluster is a slow process as well.
To attach to a cluster, the smooth part of a dumbbell has to come within a very short
distance of the attractive core of that cluster, which is surrounded by repulsive rough
spheres. Since moving the new dumbbell into this outer shell restricts the movement of
all nearby particles, the accompanying entropy loss effectively forms an additional free-
energy barrier between two consecutive cluster sizes, which becomes higher for increasing
cluster size. Conversely, to remove a particle from a cluster, a large potential energy
barrier has to be overcome due to the breaking of one or more bonds. For larger clusters,
removing a particle from a cluster requires the breaking of at least three bonds, if not
more. As this corresponds to a potential energy barrier on the order of 30 kBT , this is an
extremely rare event. The slow process of adding or removing a particle from a cluster is
likely responsible for the slow equilibration of the direct simulations: while small clusters
up to size 10 are quickly formed, the timescale required to reach a cluster of 20 particles
is simply prohibitively long.

Snapshots of clusters of the most common sizes in the equilibrium distributions are
shown in Fig. 10.6. Cluster size 22 corresponds to a very low potential energy due to
the large number of bonds per particle. However, as the rough spheres have very little
freedom of movement the entropy of such a cluster is low as well. As a result, this type
of cluster only appears at very high interaction strength ε. The structure of these larger
clusters is generally based on one or more tetrahedral structures of smooth spheres, with
three spheres at each edge of the tetrahedron. These are shown in pink in the figure. In
principle, this type of structure can be extended indefinitely, with each smooth sphere in
contact with on average 7.5 other smooth spheres. The shape of such a structure is shown
in Fig. 10.7. By reducing the number of tetrahedrons in the structure, and removing
the edge particles with only 3 neighbours, the resulting clusters match the lowest-energy
clusters observed for sizes 16, 20, 24, and 28. However, particularly for larger clusters,
these structures are extremely difficult to form both in experiments and direct simulations.
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Figure 10.6: Snapshots of the most commonly seen configurations of micelles of size n = 20,
22, and 23, in a system of dumbbells with size ratio σ/σR = 0.76. The two first columns show
the clusters from two angles, with the rough spheres hidden. In the column on the right, the
red spheres are the rough spheres, and the blue spheres are smooth.

Figure 10.7: Candidate for the shape of lowest potential energy clusters as the clustersize
increases. Discounting boundary effects, each sphere has 7.5 neighbours on average.
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Figure 10.8: Left: Average cluster size as a function of the interaction range q and interaction
strength ε, for size ratio σ/σR = 0.5, and a packing fraction of η = 0.01. Right: The most
common cluster size in the same system, ignoring monomers. In both plots, the white and blue
lines (now nearly on top of eachother) show the cmc and the maximum of the heat capacity,
respectively.

Figure 10.9: Snapshots of the most common configurations of micelles of size n = 12, 16, and
19, in a system of dumbbells with size ratio σ/σR = 0.5. The two first columns show the clusters
from two angles, without the rough spheres. In the column on the right, the rough spheres are
denoted by the red spheres and the smooth spheres by the blue ones.
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10.4.2 Size ratio 0.5
As seen in the previous section, changes to either the interaction details or the dumbbell
density can be used to influence the amount of clustering in the system, while the cluster
sizes that appear are largely unaffected by these parameters. However, as we will demon-
strate in the remainder of this chapter, the geometry of the dumbbell particles does have
a strong influence on the cluster size distribution, by changing the preferred curvature
of the micelle surface. A similar effect was seen in the study of clusters of cone-shaped
particles, where larger cone angles were shown to lead to smaller cluster sizes.[218] Sim-
ilarly, for the dumbbells investigated in this chapter, larger rough spheres will stabilize
smaller micelles. In this section, we study the clusters formed in systems of dumbbells
with a size ratio of σ/σR = 0.5. The distance between the two spheres was chosen to
be d = (σ + σR)/2. Figure 10.8 shows the average and most common cluster sizes as a
function of the interaction range q and interaction strength ε, for a fixed packing fraction
η = 0.01. In this case, the system clearly favors clusters of sizes n = 12, 16 and 19. The
most common configurations are shown in Fig. 10.8, both with and without the rough
spheres. The interior of the clusters shows crystalline order, increasing the number of
bonded pairs of spheres in the cluster. The rough spheres still have a large amount of
freedom of movement for most clusters, although some order is seen in the cluster of size
n = 19.

10.4.3 Size ratio 0.3
For size ratio σ/σR = 0.3, the rough spheres severely limit the number of particles in
a cluster, and clusters larger than size n = 8 are rare. Figure 10.10 shows the average
cluster size as a function of the interaction range q and interaction strength ε, as well as
the most common cluster sizes. For this size ratio, the particles mainly formed clusters of
size n = 6 or 7, with structures typically corresponding to those also seen in small clusters
of attractive spherical particles. In particular, the smooth spheres in the clusters shown
in Fig. 10.11 are in a configuration that minimizes the potential energy for spherical
particles with short-ranged interactions. [219]

10.5 Discussion
Using Monte Carlo simulations, we have stidied the cluster size distribution for a sys-
tem consisting of dumbbells. The dumbbell particle consists of a smooth sphere with
diameter σ and a surface-coated rough sphere with a diameter σR. The distance between
the rough and the smooth sphere is equal to d = (σ + σR)/2, i. e. the spheres are at
contact. We assume hard-sphere interactions between the rough and smooth spheres and
the smooth spheres interact with with an attractive Asakura-Oosawa depletion interac-
tion. By tuning the size ratio of the dumbbells, the size of the clusters can be tuned,
assuming equilibrium can be reached. At least up to a size ratio of σ/σR = 0.76, the gen-
eral behavior of the system does not seem to change qualitatively, although this should
happen at larger size ratios, where lamellar structures and wide phase coexistences would
be likely. In particular, in systems of purely spherical particles (σ/σR →∞), a gas-liquid
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Figure 10.10: Left: Average cluster size as a function of the interaction range q and interaction
strength ε, for size ratio σ/σR = 0.3, and a packing fraction of η = 0.01. The white and blue
lines show the cmc and the maximum of the heat capacity, respectively. Right: The most
common cluster size n > 1 in the same system.

Figure 10.11: Typical clusters of size n = 6 and 7 for size ratio σ/σR = 0.3. For each size,
the rough spheres in the two pictures on the left are hidden to show the structure of the smooth
spheres.
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coexistence appears in the phase diagram for sufficiently long interaction ranges (around
q/σ ' 1.5 [220]). For colloidal dumbbells with size ratio σ/σR = 0.76, this coexistence
appears to be strongly suppressed: no noticeable gas-liquid coexistence was observed up
to q/σ = 3 (much longer than physically reasonable for depletion interactions) at any
density or interaction strength over a wide range in Gibbs ensemble Monte Carlo simula-
tions. Instead, either crystalline or fluid-like droplets form with a layer of rough spheres
on the outside. While it is possible that it is simply very difficult to equilibrate these
simulations, it appears that the wide coexistence region is suppressed by the formation
of micelles. In sufficiently dense systems, a transition to another fluid phase (possibly
similar to the vesicle phase found in spherical Janus particles [211]) could still occur, but
further study of the system would be required to map out the full phase behavior.

The structure of the clusters formed shows similarities between all studied size ra-
tios. For small cluster sizes (up to around 10), the smooth spheres form structures sim-
ilar to those that minimize the potential energy of spherical particles with short-ranged
attractions.[221] However, for larger cluster sizes, the rough spheres prevent configurations
where a smooth sphere is not on the surface of the cluster. Additionally, the presence
of the rough spheres increases the attraction strength needed to form clusters, since the
colloids lose rotational as well as translational freedom by joining a cluster. Higher in-
teraction strengths cause a preference for more compact clusters, with as many bonds
as possible, although this effect is somewhat diminished by the fact that these compact
clusters further inhibit the rotational entropy of the particles. For the range of interaction
strengths studied in this chapter, a variety of cluster shapes was observed for each cluster
size. While the most commonly observed structure often corresponds to the lowest-energy
state for that particular cluster size, higher energy configurations are still common, and
the most common cluster size does not always correspond to the largest number of bonds.
Clearly, entropic effects still play an important role in determining the structure of the
clusters.

To prevent the prohibitively long equilibration times involved in forming the larger
clusters in these systems, the best strategy would be to focus on reducing the large energy
barriers involved in cluster reorganization and breakup. This can be done by simply
reducing the volume fraction of depletants in the system (i.e. lowering the interaction
strength ε), and compensating for the reduced cluster formation by either increasing the
colloidal packing fraction η or the interaction range q. Another option would be to reduce
the cluster size by tuning the size ratio, leading to a smaller number of bonds per particle.

10.6 Conclusions
We investigated the distribution of cluster sizes in systems of hard-core asymmetric dumb-
bells, with depletion interactions between the smaller spheres in each dumbbell. We find
that the number of clusters depends strongly on the packing fraction, but the cluster size
is largely independent of the packing fraction, interaction range and interaction strength.
Instead, changing the size ratio of the dumbbells imposes a preferred curvature on the
micelle surface and therefore allows for tuning of the cluster size: more asymmetric dumb-
bells lead to smaller clusters. We compared our results with both Monte Carlo simulations
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starting from a homogeneous initial configuration, and experimental observations. We ob-
served a strong discrepancy between the predicted equilibrium cluster size distribution and
those in both the direct MC simulations and experiments. We conclude that both the
direct simulations and experiments are far out of equilibrium, due to the prohibitively
long time scales involved in the breaking of bonds once they are formed.
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Summary

A colloidal dispersion consists of small particles called colloids, typically tens of nanome-
ters to a few micrometers in size, suspended in a solvent. Collisions with the much smaller
particles in the solvent cause colloids to perform Brownian motion: randomly directed
movements that cause the particles to diffuse through the system. In principle, this mo-
tion allow the system of particles to explore all configurations available to them, sampling
all of phase space according to the Boltzmann distribution. Analogous to molecular and
atomic systems, colloidal systems can form disordered gas and liquid phases, as well as
more ordered phases such as crystals, liquid crystals, or finite-sized aggregates. Since the
particles form these phases based purely on their own interaction and the Brownian mo-
tion that results from thermal fluctuations in their solvent, the process of forming these
ordered structures is called self-assembly. In this thesis, we study the self-assembly of a
variety of colloidal systems. We attempt to determine what structures can be expected
to form, investigate the order and stability of these phases, and examine the nucleation
of self-assembled crystals. To do this, we make use of computers to simulate the behavior
of colloidal particles in suspension. Depending on the system under consideration, we
perform either Monte Carlo simulations or event-driven molecular dynamics.

In the first few chapters of this thesis, we looked at the behavior of colloidal particles
in an external electric or magnetic field. Typically, colloidal particles have a dielectric
constant that is different from that of the solvent material. If such a solution is placed in
a homogeneous electric field, each particle obtains a dipole moment parallel to the field,
leading to dipole-dipole interactions between the particles. Additionally, the field affects
the orientation of most anisotropic particles, typically causing them to align their longest
axis parallel to the electric field. Similarly, if a contrast in the magnetic susceptibility
exists between the colloids and their solvent, magnetic fields can be used to induce these
dipolar interactions instead. Since the induced dipole moments have the same direction for
each colloid in the system, the system favors configurations where particles are assembled
into string-like clusters along the field direction.

In Chapter 2, we study the shape and length of these strings in several systems. For
monodisperse spheres, we measure the length of the strings observed at low packing frac-
tions, and show that the results can be accurately predicted usingWertheim’s perturbation
theory. If two sizes of spheres are used, the structure of the clusters depends strongly on
the size ratio: for highly asymmetric mixtures (size ratio 0.33 or smaller), small parti-
cles cluster in ring-like and flame-like formations around strings of larger colloids, while
spheres of nearly equal size can form strings that consist of both species. Around a size
ratio of 0.8, strings consisting of regularly alternating large and small particles have been
observed in experiments. We are able to see these in our simulations as well, but only if
a charge repulsion between the particles is included in the model. While neither types of
bidisperse strings studied in Chapter 2 are likely to be thermodynamically stable, both
experiments and simulations show that particles can be trapped in such strings for long
periods of time. Recently developed techniques for making such strings permanent could
thus allow for the production of novel composite particles out of these clusters. Finally, we
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examine the strings formed by asymmetric dumbbells in an external field. In this case, we
investigate the effects of the size difference between the particles as well as the difference
in dipole strength. For sufficiently strong interactions between the smaller spheres in each
dumbbell, various chiral clusters can be formed.

Chapter 3 discusses the phase behavior of colloidal spheres in a biaxial electric or
magnetic field: a field with a direction that is constantly and rapidly rotating within
a fixed plane. Due to the rapid oscillations of the field, the dipole-dipole interactions
between the particles at each instant average out to what is effectively an inverted dipolar
interaction: particles attract each other in the plane of the field, but repel in the direction
perpendicular to that. As a result, sheet-like rather than string-like clusters are formed,
and the phase behavior of the system changes significantly. Using free energy calculations,
we map out the phase diagram of both charged and uncharged spheres in a biaxial field.
Both phase diagrams include a gas-liquid coexistence, and stretched face-centered-cubic
(fcc) and hexagonally-close-packed (hcp) crystal structures. In addition, the charged
spheres in a biaxial field exhibit a strongly layered fluid phase.

As already shown in Chapter 2, applying external fields to non-spherical particles
can lead to interesting new structures. In Chapter 4, we investigate the phase behavior
of colloidal cubes in an external electric field, again observing the formation of string-
like clusters, as well as a columnar phase of hexagonally ordered strings of particles,
and a body-centered-tetragonal (bct) crystal phase, where all particles are aligned, and
the strings are arranged on a square lattice. Colloidal cubes have also recently been
synthesized experimentally, and both hexagonal and square order were observed in a
system of these cubes in an external electric field.

In Chapter 5, we continue our investigation of colloidal cubes, this time without an
external field. This seemingly simple system of purely hard cubes has been the subject of
several studies, and its phase behavior was reported to contain a cubatic phase, where the
orientations of the particles show long-range order, but the positions are not correlated
over large distances. Using molecular dynamics simulations, we investigate the regime
where this cubatic phase was observed more closely, and observe the spontaneous forma-
tion of crystal vacancies in simulations started in the (simple cubic) crystal face. Free
energy calculations show the stability of a crystal phase with a strikingly high vacancy
concentration, which near the fluid-solid coexistence is orders of magnitude larger than
that found in e.g. hard-sphere systems.

In several of the chapters involving dipolar interactions, we have made use of screened
Coulomb potentials to describe the interactions of charged particles in solution. In a
colloidal solution, particles often obtain a charge as a result of ions either attaching to the
colloids out of the solvent, or detaching from the colloid surface. In either case, the total
charge of the suspension should still be zero: the solvent contains ions of the opposite
charge compensating for the charge of the particles. Due to electrostatic attractions, these
particles are attracted to the colloids, and form a layer around each colloid that decreases
(“screens”) the repulsion between the like-charged colloids. If the surface potentials of the
colloids are sufficiently weak, and the double layers of different particles do not strongly
affect each other, the screened Coulomb potential provides a good model for the resulting
interactions between the colloids. However, in denser or more strongly interacting systems,
the effective charge and screening length may depend on the presence of other nearby
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particles. In Chapter 6, we use a simple cell model to estimate these parameters for
colloidal particles with a constant surface potential, and calculate phase diagrams based
on the resulting interactions. Depending on the surface potentials, the phase diagrams
show a reentrant fluid phase: for increasing density, the system returns to a fluid state
after crystallizing due to a decrease in the effective charge.

In Chapter 7, we study the nucleation of crystals in binary systems of hard spheres.
The way small fluctuations in a metastable fluid can lead to the nucleation of a more stable
phase is traditionally described by classical nucleation theory, which describes the free
energy of a cluster as a function of its size. Determining the size of a cluster in simulations
requires the definition of an order parameter that distinguishes the nucleus from the
surrounding fluid. Even for monodisperse fluids, the choice of order parameter has some
influence on the structure of the observed clusters. For example, if the order parameter is
strict, only well-ordered clusters will be seen, with the outer layers of disordered particles
excluded from the cluster. This is not an artifact in the simulations, but rather the
result of the way the same clusters are described. We study the effect of the choice of
order parameter in binary systems, and compare the resulting theoretical predictions with
simulations done on two model systems, one where the two species were the same size,
and only artificially labeled as two different species, and one with two different sizes of
hard spheres.

Chapters 8 and 9 investigate the behavior of particles in evaporating emulsion droplets.
Experimentally, the evaporation of droplets can be used to force colloidal particles sus-
pended inside the droplets to form roughly spherical clusters. If this technique is used
on small numbers of spheres (up to around 16), there is generally one specific shape
for clusters of each size, readily reproducible even in significantly different experimental
systems. For a few cluster sizes, two or three options exist for the resulting shape. In
Chapter 8, we model the formation of these clusters with a very simple model, where
hard spheres are compressed in spherical confinement. Additionally, we investigate the
clusters formed by small numbers of symmetric or asymmetric dumbbells, and compare
the results to experiments. Chapter 9 investigates the evaporation of droplets containing
more particles, yielding clusters consisting of thousands of spheres. In this case, multiple
crystal domains nucleate and grow inwards from the confining walls. We compare the
shape of these wedge-shaped domains with crystal domains observed in recent experi-
ments on clusters of nanoparticles, and find good agreement. Additionally, we investigate
the effects of wall-particle and particle-particle repulsions.

Finally, Chapter 10 describes the use of asymmetric dumbbells as a colloidal model
system for micelles. In surfactant systems, micelles are formed by large molecules with
one hydrophilic side and one hydrophobic side. When placed in water, these surfactants
cluster together into micelles, where the hydrophobic parts are surrounded by a shell of
hydrophilic material. Similar clusters can be formed by asymmetric dumbbells, where only
the smaller spheres in each dumbbell attract each other. Such a system can be realized
experimentally using depletion interactions: by applying a rough coating to the larger
sphere in each dumbbell, it is possible to ensure that only the smaller spheres attract. We
study the cluster size distribution in such systems, and examine the shape of the resulting
clusters. Comparisons between free energy calculations, direct Monte Carlo simulations,
and experiments suggest that the short interaction range required in this approach leads
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to very slow equilibration of the system, with non-equilibrium effects strongly limiting
the cluster size.



Samenvatting

Colloïden zĳn microscopisch kleine deeltjes (normaal gesproken tussen enkele tientallen
nanometers en een paar micrometer in grootte), beduidend groter dan atomen en de
meeste moleculen, maar te klein om met het blote oog te zien. Een colloïdale suspensie
bestaat uit een oplosmiddel waarin dit soort deeltjes zĳn opgelost. In veel gevallen gaat
het hier om vaste deeltjes in een vloeistof (denk bĳvoorbeeld aan pigmentdeeltjes in verf
of inkt), maar de deeltjes kunnen ook gevormd worden door kleine gasbelletjes (scheer-
schuim) of druppeltjes van een andere vloeistof (mayonaise). Een van de belangrĳkste
redenen dat colloïdale systemen interessant zĳn is de chaotische beweging van de colloïden:
als je zulke deeltjes onder een microscoop bekĳkt, zie je dat ze continu in beweging zĳn
en willekeurig van richting veranderen. Deze zogenaamde Brownse bewegingen, genoemd
naar Robert Brown, die dit gedrag bestudeerde in 1827, zĳn het gevolg van de beweging
van de moleculen in het oplosmiddel, die voortdurend van alle kanten tegen het deeltje
botsen. Hoewel de botsingen van verschillende kanten elkaar tegenwerken, en elke botsing
op zich maar weinig energie overdraagt op het deeltje, zĳn colloïdale deeltjes licht genoeg
om door dit bombardement van moleculen voortdurend in beweging te blĳven. Hoewel
dit effect ook plaats vindt voor grotere deeltjes (mensen worden immers ook voortdurend
van alle kanten geraakt door moleculen in de lucht), zĳn de verplaatsingen voor deeltjes
groter dan een paar micrometer in het algemeen verwaarloosbaar klein.

Brownse beweging heeft belangrĳke gevolgen voor de structuur van een colloïdale
suspensie. Denk bĳvoorbeeld aan een enkel deeltje, iets zwaarder dan de omringende
vloeistof. Zwaartekracht zal dit deeltje naar beneden trekken, en zonder Brownse bewe-
ging zou het uiteindelĳk op de bodem blĳven liggen. Een deeltje dat licht genoeg is kan
echter door Brownse beweging alsnog omhoog geduwd worden, en in principe de hele met
vloeistof gevulde ruimte verkennen. De zwaartekracht zal er nog steeds voor zorgen dat
het deeltje vaker bĳ de bodem te vinden is dan ver ervandaan, al kan dit effect teniet
worden gedaan door deeltjes te maken uit een materiaal met dezelfde dichtheid als het
oplosmiddel. De kansverdeling voor de hoogte van het systeem kan eenvoudig bepaald
worden uit de potentiële energie van het deeltje op elke hoogte: hoe hoger de energie, hoe
onwaarschĳnlĳker het is om het deeltje op die hoogte te vinden. In de praktĳk bevatten
colloïdale systemen grote aantallen deeltjes, en het aantal mogelĳke configuraties in een
systeem is dan enorm groot. In dit geval wordt het gedrag van de deeltjes sterk beïnvloed
door de interacties tussen de deeltjes: deeltjes met dezelfde lading stoten elkaar bĳvoor-
beeld af, en zullen dus het liefst ver uit elkaar blĳven om de energie van het systeem
te minimaliseren. Zulke afstotende (of aantrekkende) krachten kunnen leiden tot de vor-
ming van kristalstructuren, waarin de afstand tussen naburige deeltjes zo groot (of juist
zo klein) mogelĳk is. Zelfs zonder dit soort interacties kunnen kristallen gevormd worden:
een systeem van harde bollen kan bĳvoorbeeld kristalliseren omdat, bĳ voldoende hoge
dichtheden, er maar weinig ongeordende configuraties bestaan waarin de deeltjes niet over-
lappen, vergeleken met configuraties waarin de deeltjes (ongeveer) op een kristalrooster
zĳn geordend. Met andere woorden, het is makkelĳker bollen dicht op elkaar te pakken
als ze netjes zĳn opgestapeld. Niet alleen de energie van configuraties is dus van belang,
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maar ook het aantal manieren waarop een toestand gevormd kan worden. De entropie
van het systeem in een bepaalde toestand is een maat voor dit aantal mogelĳkheden.

Dit samenspel tussen energie en entropie kan leiden tot een rĳk fasegedrag in colloïdale
systemen: niet alleen kunnen colloïden kristallen vormen, maar ook vloeistoffen en gassen.
Daarnaast kunnen anisotrope colloïden (die dus niet bolvormig zĳn) zich in verschillende
toestanden bevinden waarin ze niet geordend op een kristalrooster zĳn geplaatst, maar
bĳvoorbeeld wel allemaal dezelfde kant op wĳzen: zogenaamde vloeibare kristallen. Het
omgekeerde is ook mogelĳk: een kristal van colloïden die vrĳ rond kunnen draaien wordt
wel een plastisch kristal genoemd.

Om te voorspellen in welke toestand een colloïdaal systeem zich onder bepaalde om-
standigheden waarschĳnlĳk zal bevinden moet in principe rekening gehouden worden met
alle mogelĳke configuraties van een systeem. In de praktĳk maakt het grote aantal moge-
lĳkheden exacte berekeningen meestal onmogelĳk voor systemen van meer dan een paar
deeltjes. In plaats daarvan gebruiken we vaak computersimulaties om configuraties te
genereren die voorkomen met dezelfde kansverdeling als waarin ze in werkelĳkheid voor
zouden komen. In dit proefschrift wordt daarbĳ gebruik gemaakt van twee simulatiemeth-
oden: Monte Carlo simulaties en moleculaire dynamica. In Monte Carlo simulaties wor-
den een reeks configuraties gemaakt door telkens de vorige configuratie een klein beetje te
veranderen door bĳvoorbeeld een deeltje willekeurig te verplaatsen, en de wĳziging af te
wĳzen of te accepteren op basis van het energieverschil tussen de oude en de nieuwe config-
uratie. Simulaties die gebruik maken van moleculaire dynamica berekenen de bewegingen
van de deeltjes in het systeem op basis van de krachten tussen de deeltjes en de wetten
van Newton. Hoewel voor geen van beide simulatiemethoden de dynamica van de deeltjes
precies overeenkomt met die in een colloïdaal systeem, kan aangetoond worden dat het
fasegedrag van een systeem onafhankelĳk is van de manier waarop de deeltjes bewegen,
aangenomen dat het systeem zich in een evenwichtstoestand bevindt. Hierdoor kunnen
computersimulaties gebruikt worden om het gedrag van colloïdale systemen te voorspellen
en te verklaren, aangenomen dat we op de hoogte zĳn van de interacties tussen de deeltjes,
en van eventuele externe factoren die het systeem beïnvloeden. In sommige gevallen kun-
nen zulke simulaties gebruikt worden om directe waarnemingen in het systeem te doen,
maar in veel gevallen is het nauwkeuriger om simulaties toe te passen voor metingen die
gebruikt worden in het berekenen van de vrĳe energie van de verschillende fasen: een
maat voor de relatieve waarschĳnlĳkheid om een systeem in een bepaalde toestand aan
te treffen.

In de eerste paar hoofdstukken van dit proefschrift bestuderen we het gedrag van
colloïden in externe elektrische of magnetische velden. Beide velden hebben ongeveer
dezelfde werken op de colloïdale deeltjes: ze wekken een dipoolmoment op in elk deeltje,
dat er voor zorgt dat de deeltjes zich gaan gedragen als kleine parallele magneetjes. Bĳ een
verticaal veld trekken twee deeltjes elkaar dus aan als ze boven elkaar liggen, maar stoten
elkaar af als ze zich naast elkaar bevinden. Dit heeft als gevolg dat de deeltjes zichzelf
ordenen in kettingvormige clusters parallel aan de veldrichting, die zich bĳ hoge dichtheden
weer ordenen in een kristalstructuur. In hoofdstuk 2 bekĳken we de structuur en lengte
van deze kettingen in systemen van bolvormige deeltjes, en bestuderen we het effecten van
het mengen van deeltjes van twee verschillende grootten. In hoofdstuk 3 modelleren we
een iets ander extern veld, waarvan de richting met hoge snelheid ronddraait. Hierdoor
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worden de interacties tussen de deeltjes precies omgedraaid, zodat ze hexagonale vlakken
van deeltjes vormen in plaats van kettingen. We berekenen het fasegedrag van dit systeem
zowel voor geladen als ongeladen deeltjes. In hoofdstuk 4 bekĳken we weer een elektrisch
veld in een constante richting, maar ditmaal met kubusvormige deeltjes. De meeste van de
colloïdale systemen in deze hoofdstukken zĳn recentelĳk ook experimenteel gerealiseerd,
en we vergelĳken onze resultaten met de structuren die zĳn waargenomen in experimentele
observaties.

Hoofdstuk 5 kĳkt in meer detail naar het fasegedrag van kubussen, ditmaal zonder
lading en externe velden. Zonder de aanwezigheid van interacties speelt alleen de entropie
een rol voor het fasegedrag. Eerder onderzoek aan dit systeem gaf het vermoeden dat
het een zogenaamde kubatische fase zou vertonen (waarin de deeltjes niet op een kristal-
rooster zitten, maar wel allemaal ongeveer dezelfde oriëntatie hebben). Onze simulaties en
berekeningen wĳzen hier niet op, maar tonen de stabiliteit aan van een kristalfase waarin
een verrassend hoog aantal lege plekken op het kristalrooster zitten. Hoewel bekend was
dat kristallen in evenwicht vrĳwel altĳd een kleine hoeveelheid van zulke defecten be-
vatten, kan de concentratie in dit systeem ruim 100 keer groter zĳn dan in bĳvoorbeeld
kristallen van harde bollen. Daarnaast bleek dat het toevoegen van defecten aan een
kristal, tegengesteld aan wat je zou verwachten, de mate van orde in het systeem kan
verhogen.

In hoofdstuk 6 bekĳken we hoe de interactie tussen geladen bollen verandert als de
dichtheid van het systeem toeneemt, en berekenen we de effecten daarvan op het fasege-
drag. Omdat de effectieve lading van dit soort deeltjes vermindert als de dichtheid toe-
neemt, kan het voorkomen dat een systeem als functie van een toenemende dichtheid eerst
een vloeibare fase, dan een kristal, dan weer een vloeibare fase, en uiteindelĳk weer een
kristalfase vertoont.

Hoofdstuk 7 behandelt de vorming van kristallen in mengsels van harde bollen met
twee verschillende diameters. Kristallisatie begint in veel gevallen met een proces dat
nucleatie wordt genoemd: ergens in de vloeistof ontstaat als gevolg van Brownse beweging
een gebiedje waar de deeltjes meer geordend zĳn dan in hun omgeving. Een erg kleine
kristalvormige nucleus is in principe niet stabiel als gevolg van de oppervlaktespanning,
waardoor grenslagen tussen kristal en vloeistof in het systeem de entropie van een systeem
verminderen. Als zo’n nucleus echter groter wordt dan een zekere kritieke grootte, dan
kan hĳ uitgroeien tot een groot kristal. Omdat zulke gevallen van nucleatie meestal vrĳ
zeldzaam zĳn in een systeem dat klein genoeg is om op een computer te kunnen simuleren,
zĳn er speciale methoden nodig om nucleatie in simulaties te bekĳken. Een methode
daarvoor is Umbrella Sampling, waarbĳ simulaties uitgevoerd worden met de restrictie
dat de grootste kristalcluster in het systeem (ongeveer) een specifiek aantal deeltjes moet
bevatten. Door zulke simulaties te combineren kan dan berekend worden hoe groot een
kritieke cluster is, en hoe vaak zo’n cluster voorkomt. Hoe je de grootte van een cluster
bepaalt is hierbĳ erg belangrĳk, en in dit hoofdstuk bekeken we hoe de keuze van een
methode daarvoor de gemeten resultaten kan beïnvloeden.

In hoofdstuk 8 en 9 bestuderen we het gedrag van bollen en dumbbells (deeltjes die
bestaan uit twee bollen die aan elkaar vastzitten) in verdampende druppels. In recent
onderzoek worden verdampende druppels regelmatig gebruikt kleine deeltjes samen te
persen tot al dan niet geordende clusters. De structuur van de clusters wordt bepaald
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door onder andere de vorm van de deeltjes, en de interacties tussen de wand en de deel-
tjes. We bekeken verschillende simpele modellen om de structuur van de resulterende
clusters te voorspellen, en vergeleken onze resultaten met observaties in experimentele
systemen. Voor grote aantallen (duizenden) bollen kan dit leiden tot interessant gevor-
mde kristaldomeinen, die als taartpunten in elkaar passen. Voor kleinere aantallen bollen
en dumbbells zĳn de gevormde clusters vaak zeer reproduceerbaar, en komen de experi-
mentele en gesimuleerde structuren goed overeen.

Het laatste hoofdstuk kĳkt opnieuw naar clusters van dumbbells, ditmaal gevormd
door aantrekkende krachten tussen de deeltjes: elke dumbbell bestaat uit een grote en een
klein bol, en de kleinere bollen trekken elkaar op korte afstand aan. Hierdoor ontstaan
zogenaamde colloïdale micellen: clusters waarin de kleine bollen in het midden zitten,
terwĳl de grotere de buitenkant afschermen. Door deze afscherming is het lastig om
nieuwe deeltjes aan een bestaande cluster toe te voegen, en het berekenen van de vrĳe
energie van clusters van verschillende formaten tonen dan ook aan dat in veel gevallen het
voor directe simulaties aan dergelĳke systemen vrĳwel onmogelĳk is om een evenwicht-
stoestand te bereiken. De uitwisseling van deeltjes tussen clusters wordt uiteindelĳk zo
traag dat de clusters nooit de grootte bereiken die ze in een evenwichtstoestand zouden
hebben. Vergelĳkingen met een experimenteel systeem waarin dezelfde clusters werden
geproduceerd suggereren dat daar hetzelfde gebeurt.

In het kort hebben we dus een reeks colloiïdale systemen bestudeerd die nu of in
de nabĳe toekomst ook experimenteel gerealiseerd kunnen worden, en geprobeerd te
voorspellen welke structuren deze systemen zullen vormen. Hoewel directe praktische
toepassingen van dit onderzoek niet makkelĳk te vinden zullen zĳn, wordt er in het
dagelĳks leven op genoeg plaatsen van colloïden gebruik gemaakt om ervoor te zorgen dat
een beter begrip van het gedrag van zulke deeltjes nuttig kan zĳn. Daarnaast is er grote
interesse in het gebruik van colloïdale structuren voor de manipulatie van licht, bĳvoor-
beeld in zogenaamde optische schakelingen. Doordat de deeltjesafstand in een colloïdaal
kristal dezelfde orde van grootte hebben als de golflengte van zichtbaar licht, kunnen dit
soort kristallen in principe gebruikt worden om lichtsignalen met grote nauwkeurigheid te
manipuleren, afhankelĳk van de kristalstructuur. Ook voor het maken van deze fotonische
kristallen zĳn voorspellingen over de manieren waarop colloïdale deeltjes zichzelf kunnen
ordenen van groot belang.
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