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Introduction

1.1 Liquid crystals

Gas, liquid and solid are known as the three states of matter. The solid phase is recognized

by preserving the volume and the shape of a specimen and is usually associated with low

temperatures (and high pressures), an ice for example. As the temperature increases at

sufficiently high pressure the solid melts and the liquid state is obtained, an ice transforms

into water. This phase is still hardly compressible, but does not keep its shape, water flows.

Increasing the temperature further the water starts to boil and the gaseous phase appears.

Gases retain neither volume nor shape and tend to fill all the volume available.

In addition to the three basic states of matter, liquid crystalline phases are possible

for anisotropic particles. The properties of matter in the liquid-crystalline state are in-

termediate between those of an isotropic liquid and of a crystalline solid. Like liquids,

liquid crystals lack true long-range translational order, but at the same time the molecules

maintain long-range orientational order, and are just like crystalline solids anisotropic.

Let us consider the particle properties that are responsible for the existence of all the

phases. As Van der Waals showed in 1873 the gas-liquid transition can be explained by

assuming that the atoms and the molecules attract each other at large distances, and repel

each other at short distances. Computer simulation studies in 1957 revealed the presence

of a crystalline phase in a system of hard spheres, showing that attractive forces are not re-

quired for crystallization. The origin of the liquid crystalline phases lies in the anisotropy

of the interactions between the particles. In this case not only positional degrees of free-

dom, but also orientational ones should be taken into account. The introduction of ori-

entational degrees of freedom leads to a large variety of orientationally and/or partially

spatially ordered states, called mesophases or liquid crystals.

The discovery of liquid crystals is attributed to Reinitzer [1] who noted that cholesteryl

benzoate exhibits an unusual type of melting, consisting of two melting points: at 145.5 °C
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Figure 1.1: Schematic representation of (a) an isotropic fluid phase, (b) a nematic liquid crys-

talline phase, (c) a smectic liquid crystalline phase.

the solid melts into a cloudy liquid which becomes clear at 178.5 °C. Subsequent stud-

ies established that the intermediate phases of cholesteryl benzoate and a number of

other compounds represent new states of matter that are distinct from the isotropic liq-

uid phase. Depending on the precise details of the molecular interactions, the system may

pass through one or more mesophases before it is transformed into the isotropic liquid.

Transitions to liquid crystalline phases may be driven by thermal processes (thermotropic

liquid crystals) or by the influence of solvents (lyotropic liquid crystals).

Thermotropic and lyotropic liquid crystals are classified broadly into three types: ne-

matic, cholesteric and smectic [2]. The nematic liquid crystal has a high degree of long-

range orientational order of the molecules, but no long-range translational order. It differs

from the isotropic fluid in the sense that the molecules are spontaneously oriented with

their long axes approximately parallel. The preferred direction usually varies from point

to point in the medium, but a homogeneously aligned specimen is optically uniaxial, pos-

itive and strongly birefringent. The mesophase is fluid and at the same time anisotropic

because of the ease with which the molecules can slide along each other whilst still retain-

ing their parallelism. The cholesteric mesophase is also a nematic type of liquid crystal

except that it is composed of optically active molecules. As a consequence the struc-

ture has a screw axis superimposed perpendicular to the preferred molecular direction.

Optically inactive molecules or racemic mixtures result in a helix of infinite pitch which

corresponds to the true nematic. Thermodynamically, the cholesteric is very similar to

the nematic. Smectic liquid crystals have stratified structures but a variety of molecular

arrangements are possible within each stratification. In smectic A the molecules are up-

right in each layer with their centers irregularly spaced in a ’liquid-like’ fashion, thus the

smectic-A phase is orientationally ordered, positionally ordered in only one direction, and

disordered in the other two. The thickness of the layer is of the order of the length of a

single molecule. The interlayer attractions are weak as compared with the lateral forces

between molecules and consequently the layers are able to slide over each other relatively

easily. Thus this mesophase has fluid properties, though it is usually very much more

viscous than the nematic mesophase. In this thesis I focus on suspensions of rod-like

colloidal particles, which are classified as lyotropic liquid crystals. These systems can be

synthesized in a chemical laboratory or may be obtained from biological systems.

Examples are inorganic colloidal particles (V2O5), β-FeOOH, γ-AlOOH, rodlike mi-

celles, DNA, etc. Probably the best examples of rodlike particles are virus particles such

as the tobacco mosaic virus (TMV) and the fd-virus. TMV is a cylindrical particle consist-
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ing of a rigid protein shell enclosing double stranded RNA, while the cylindrical fd-virus

particle consists of a rigid protein shell wound around a single ribbon of a single stranded

DNA. Viewed at low resolution in an electron microscope, TMV appears as a rigid rod of

length L = 3000Å and diameter D = 180Å and light-scattering studies do not detect any

flexibility. In addition, in the pH range of 7-8 TMV has a high negative charge density

distributed uniformly along its length. It was first recognized in 1936 that suspensions

of TMV formed a nematic phase at a sufficiently high particle concentration. TMV had

also been observed to form more highly ordered phases, although the identification of

the phases had remained to be determined. Recently the smectic and cholesteric phases in

suspensions of fd-virus were identified and the kinetics of the transition was studied [3, 4].

As early as 1939 Best [5] studied the phase diagram of TMV as a function of added salt.

Without added salt there is coexistence between an isotropic phase of 15 mg ml−1 and a

nematic phase of 23 mg ml−1. As the ionic strength increased the concentrations of virus

in the coexisting phases increased but the ratio of concentrations remained constant. In

1989 Fraden et al [6] measured the coexisting isotropic and nematic phases over a wide

range of ionic strengths. They showed that replacing the electrostatic potential between

TMV particles by a hard-rod interaction with an appropriate effective diameter and sub-

sequently using this effective diameter (and of course the corresponding packing fraction)

gives a reasonably good description of their experimentally observed phase boundaries.

Experimental techniques that are frequently used to distinguish the different phases

are e.g. birefringence measurements and x-ray diffraction. Usually, the X-ray diffrac-

tion pattern of rod-like molecules in the nematic phase consists of two partially oriented

diffuse rings. One diffuse ring located at small angles corresponds roughly to the in-

terparticle scatter whereas the wide angle ring is related to the intraparticle scatter. The

same type of diffraction pattern was also observed in the nematic phase of side-chain

polymers. The orientational distribution function and the nematic order parameter is usu-

ally obtained through the inspection of the ‘wide angle diffuse ring’ which in side-chain

polymers is due to lateral interference between side groups. This procedure is based on

the treatment of Leadbetter and coworkers, [7] and recently Purdy et al [8] have shown

that the same type of analysis can be applied to small-angle diffraction patterns producing

results, which are in good agreement with birefringence measurements.

1.2 Overview of theoretical results

1.2.1 Onsager model

The first microscopic theory for the isotropic-nematic (I-N) phase transition in a hard-rod

system was developed by Onsager [9]. Onsager modeled a TMV suspension as a fluid

of long rods of length L and diameter D with an aspect ratio L/D → ∞. In the case

of nematic liquid crystals a non-uniform orientational distribution function f(Ω), which

gives the probability density of finding a (rigid) particle with an orientation characterized

by the solid angle Ω has to be taken into account. This orientational distribution function

is normalized as
∫

dΩf(Ω) = 1. (1.1)
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In the isotropic phase all orientations are equally probable and the orientational distribu-

tion function is given by

fiso(Ω) =
1

4π
(1.2)

which is compatible with the normalization (1.1). Considering particles with different ori-

entations as different species Onsager derived the following expression for the Helmholtz

excess free energy

β∆F

N
=

∫

dΩf(Ω) ln[4πf(Ω)] − 1

2

∫

dΩ1dΩ2f(Ω1)f(Ω2)vexc(Ω1,Ω2) (1.3)

where the first contribution is the orientational (or mixing) entropy, and the latter term is

the second virial coefficient, i.e. the cluster integral averaged over all mutual orientations.

This term can be seen as the entropy of packing. The volume excluded to a rod with ori-

entation Ω1 due to presence of another rod with orientation Ω2 is denoted by vexc(Ω1,Ω2).
If we model the rods by spherocylinders which consist of a cylindrical part with length L
and diameter D and two hemispheres of diameter D at both ends, the excluded volume

reads

vexc = 2L2D| sin γ| + 2πD2L+
4

3
πD3 (1.4)

where γ is the angle between two spherocylinders. Although for rods with finite diameter

the virial expansion converges slowly, Onsager showed that Biso
3 /(Biso

2 )2 ∝ D
L
(ln L

D
+

const), and thus the expression (1.3) is exact in the limit of infinitely thin rods.

Minimization of the functional (1.3) can be performed either numerically, or by as-

suming some functional form for the orientational distribution function with one or more

variational parameters. The free energy is then obtained by minimizing it with respect

to these parameters. In the original work of Onsager the following expression for the

distribution function was chosen

fO(cos θ) =
α cosh(α cos θ)

4π sinhα
(1.5)

which works reasonably well. Resulting coexistence number densities are (π/4)L2DρI =
3.340, (π/4)L2DρN = 4.486, while the numerical solution gives (π/4)L2DρI = 3.290,

(π/4)L2DρI = 4.191.

Although the Onsager theory is exact in the limit of infinitely thin rods, subsequent

studies [10, 11] showed that the Onsager theory describes the isotropic-nematic transition

well for rods with length-to-diameter ratios L/D > 100. Moreover this theory shows that

the isotropic-nematic transition can be driven by entropy alone.

1.2.2 Spherical harmonic expansion of correlation functions

To provide an accurate theoretical description of systems of rods with finite length-to-

diameter ratio, higher order virial coefficients should be incorporated. One of the most

successful approaches in theories of simple fluids is the integral equation theory, which is

based on the Ornstein-Zernike equation

h(12) = c(12) +

∫

d3ρ(3)c(13)h(32), (1.6)
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It relates the total pair correlation function h(12) of two particles to a direct correlation

function c(12). While h(12) describes the real correlations between two particles, c(12)
only involves their direct correlation, i.e. excluding the indirect correlation which is trans-

mitted through correlations with other particles in the neighborhood. Equation (1.6) must

be supplemented by a second relation for both correlation functions, which reflects the

interaction between the particles. A number of such closure relations were proposed,

among which the Percus-Yevick and hypernetted chain are the most generally known.

Unfortunately, the state of affairs is less advanced for non-spherical particles because of

the extra angular variables.

To treat the angular variables in h(12) and c(12) Blum and Toruella [12] suggested to

expand all the angular dependencies in a complete set of rotational invariants, which for

linear molecules can be written as

f(r, ω1, ω2) =
∑

l1l2l

fl1l2l(r)Φl1l2l(ωr, ω1, ω2), (1.7)

with the functions Φl1l2l(ωr, ω1, ω2) defined as

Φl1l2l(ωr, ω1, ω2) =
∑

m1m2m

C(l1l2l;m1m2m)Yl1m1
(ω1)Yl2m2

(ω2)Y
∗
lm(ωr), (1.8)

where C(l1l2l;m1m2m) are the Clebsch-Gordan coefficients, and Ylm(ω) the spherical

harmonics.

The harmonic expansions are convenient for calculating correlation functions by com-

puter simulations. The Ornstein-Zernike equation can be rewritten in terms of the har-

monic expansion coefficients as [13]

hl1l2l(k) = cl1l2l(k) + (4π)−
3

2ρ
∑

l3l′l′′

cl1l3l′(k)hl3l2l′′(k)

× (−)l1+l2+l3(2l′ + 1)(2l′′ + 1)

(

l′ l′′ l

0 0 0

){

l1 l2 l

l′′ l′ l3

}

. (1.9)

Although this may seem complicated at first sight, the simple Ornstein-Zernike structure

in (1.9) is apparent, and the equation is not difficult to use in practice.

1.3 Simulations

Computer simulations are in between experimental measurements and theories of con-

densed matter. Typically the aim of a theory is to predict the properties of a system in

terms of the interactions between the molecules. However, theory is always based on

a model system, and when disagreement with experiments is found one likes to know

whether the theory is wrong or the model is inappropriate. Computer simulations play the

role of an experiment designed to test both the model and the theory, providing ‘exact’

numbers corresponding to the model. There are basically two approaches to molecular

simulations, the first one is the Monte Carlo scheme based on the calculation of statis-

tical sums by integration over a set of random points in phase space (usually distributed

with some weight) [14], hence it allows to calculate ensemble averages. Another one is

the Molecular Dynamics scheme [15], in which the equations of motion are numerically

solved, thus recovering the evolution of the model system, and allowing to calculate time

averages.
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1.3.1 Monte Carlo Simulations

Simulations usually aim to calculate average values of observables A like internal energy

or order parameters. The average value 〈A〉 can be calculated as a phase space integral

〈A〉 =

∫

dΓA(Γ)f(Γ). (1.10)

Here Γ is a point in the phase space (r1, . . . , rn,p1, . . . ,pn), and f(Γ) is the distribution

function (probability density) in the phase space. The idea of Monte Carlo simulations is

to estimate this integral by sampling the values of A on a set of configurations distributed

in phase space with probability density f0(Γ)

〈A〉 =

∫

dΓf0(Γ)
A(Γ)f(Γ)

f0(Γ)
≈ 1

M

M
∑

j=1

A(Γj)f(Γj)

f0(Γj)
. (1.11)

Usually it is convenient to use a phase space distribution with probability density f0(Γ) =
f(Γ) which can be achieved by using the Metropolis algorithm described below.

In the canonical ensemble (NV T ), in which the number of particlesN , volume V and

temperature T are fixed, the distribution function f(Γ) is given by

f(Γ) =
exp (−βH(Γ))

Z
, (1.12)

where H(Γ) is the Hamiltonian of the system, and Z =
∫

dΓ exp (−βH(Γ)) is the canon-

ical partition function.

Generating a set of points distributed in phase space with a probability density f(Γ)
can be performed using the Metropolis algorithm [14]. A numerical representation of the

Markov process Γ1,Γ2, . . . is generated through the transition probability

P (Γj → Γj+1) = p(Γj → Γj+1) × acc(Γj → Γj+1), (1.13)

where p(Γj → Γj+1) is the probability of trying the new phase space point Γj+1 if the

current configuration is Γj , and acc(Γj → Γj+1) is the probability to accept this change.

Assuming that the trial probability is symmetric p(Γj → Γj+1) = p(Γj+1 → Γj) (which

is not always the case) one can write

acc(Γj → Γj+1) = min

(

1,
f(Γj+1)

f(Γj)

)

. (1.14)

Now since
f(Γj+1)

f(Γj)
= exp(−β[H(Γj+1) −H(Γj)]), (1.15)

the acceptance probability can be calculated without knowing the partition function Z.

A good test for the validity of a Monte Carlo scheme is the so called ‘detailed balance’

condition

P (Γj → Γj+1)f(Γj) = P (Γj+1 → Γj)f(Γj+1), (1.16)

which is important for developing novel Monte Carlo schemes.

Time plays no role in Monte Carlo simulations, and thus only the equilibrium prop-

erties can be extracted by this method. Discussions of extensions of the Monte Carlo

method to calculate some dynamical properties can be found elsewhere [16].
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1.3.2 MC Simulations of hard rod fluids

An efficient way to generate a new trial configuration is to start from the previous one and

to perform a random displacement of one or more molecules, i.e. to perform a trial move.

If the move is accepted we sample the variables of interest and continue, if not, we retreat

to the previous configuration. It is important to perform sampling even if the move is

rejected, such that the contribution from the given configuration gets properly weighted.

In the case of non-spherical particles one should generate not only positional but also

orientational moves. The new orientation should be uniformly distributed in some solid

angle around the previous one.

In Monte Carlo simulations of hard-core fluids, only those trial moves are accepted

that do not lead to hard-core overlap of the particles, and they are rejected otherwise. This

requires an efficient evaluation of a pair overlap function. The simulations presented in

this thesis are performed on a model liquid crystal consisting of hard spherocylinders, for

which simple and efficient overlap criteria are developed [17].

Just as a sphere can be defined as a set of points that are within a distance R from a

given origin, so the spherocylinder can be thought of as a set of points that are within a

distance R from a line segment of length L. Thus, the test for overlap between two sphe-

rocylinders can be constructed by computing the shortest distance between the two line

segments that form the ‘core’ of the spherocylinders. If this distance of closest approach

is less then D12 ≡ R1 +R2, the two spherocylinders overlap.

To find the closest approach distance for two segments it is convenient to solve first

the corresponding problem for infinite lines. Any point on a line can be described para-

metrically as

r(λ) = r(λ = 0) + λn̂, (1.17)

where n̂ determines the orientation of the line, and r(λ = 0) is chosen to be the center of

the corresponding segment. The distance between two points on these lines is given by

r12(λ1, λ2) = r12 + λ2n̂2 − λ1n̂1. (1.18)

Minimizing the |r12|2 with respect to the parameters λ1, λ2 yields a linear set of two

equations which can be solved easily

(

λ1

λ2

)

=
1

1 − (n̂1n̂2)2

(−n̂1 · r12 + (n̂1 · n̂2)(n̂2 · r12)

+n̂2 · r12 − (n̂1 · n̂2)(n̂1 · r12)

)

. (1.19)

We now have to verify if there is an overlap on two line segments of length Li. If both

λ1, λ2 belong to the line segments (|λi| 6 Li/2) then the distance of the closest approach

between two line segments is given by (1.19). Otherwise one should use only one of the

equations and replace λi for which |λi| > Li/2 by the closest end of the line segment to

λi.

1.3.3 Phase diagram

Fluids consisting of hard spherocylinders serve as a simple model to investigate general

properties of fluids of anisotropic molecules as well as a reference state to study more

complicated systems. In this respect the equation of state and the phase diagram of hard

spherocylinders is crucial for any subsequent study on this subject.
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Figure 1.2: Phase diagram of hard spherocylinders with length-to-diameter ratio 0 6 L/D 6
100. In order to give equal emphasis to all parts of the phase diagram the spherocylinder packing

fraction η = πD3N/6V (1 + 3L/2D) is plotted as a function of log(L/D + 1). The phases are

denoted by I (isotropic), N (nematic), SmA (smectic-A), P (plastic crystal), ABC (crystal with

ABC layer stacking), AAA (crystal with AAA stacking). Gray areas correspond to coexistence

regions and the tielines connecting the coexisting phases are vertical. Based on the data from [18].

Hard spherocylinders exhibit most of the phases observed in experiments, and below

we describe the phase diagram based on the data calculated in [18]. At sufficiently low

packing fractions η = πD3N/6V (1 + 3L/2D) the system is isotropic. As η increases the

phase behavior of the system depends on the elongation of the particles. Particles with

anisotropy larger then L/D ' 3.7 exhibit a first order isotropic-nematic transition, while

for smaller elongations the isotropic phase coexists immediately with an ABC crystal

phase. For yet smaller anisotropies L/D / 0.4 the plastic phase enters, which in turn

transforms to an ABC crystal upon increasing the packing fraction. For longer rods the

nematic phase transforms into a smectic upon compression. This transition is of first order

for moderate particle anisotropies while the order of the transition remains still an open

question in the limit of infinitely thin particles [18, 19]. The smectic phase is followed

by the ABC crystal phase for anisotropies L/D / 0.7, while for larger anisotropies the

AAA crystal phase appears first, subsequently turning into ABC at densities close to the

maximum packing limit. Typical configurations of the phases are shown in figure 1.3.
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(a) (b)

(c) (d)

Figure 1.3: Typical configurations of a system consisting of hard spherocylinders with a length-

to-diameter ratio L/D = 5.0. a) Isotropic η = 0.20, b) nematic η = 0.43, c) smectic-A η = 0.55

and d) ABC crystal η = 0.80 phases are demonstrated.





2

Sedimentation and multi-phase

equilibria in suspensions of colloidal

hard rods

Sedimentation and multi-phase equilibria in a suspension of hard colloidal rods are ex-

plored by analyzing the (macroscopic) osmotic equilibrium conditions. We observe that

gravity enables the system to explore a whole range of phases varying from the most di-

lute phase to the densest phase, i.e., from the isotropic (I), nematic (N), smectic (Sm), to

the crystal (K) phase. We determine the phase diagrams for hard spherocylinders with

a length-to-diameter ratio of 5 for a semi-infinite system and a system with fixed con-

tainer height using a bulk equation of state obtained from simulations. Our results show

that gravity leads to multiphase coexistence for the semi-infinite system, as we observe I,

I+N, I+N+Sm, or I+N+Sm+K coexistence, while the finite system show I, N, Sm, K, I+N,

N+Sm, Sm+K, I+N+Sm, N+Sm+K, and I+N+Sm+K phase coexistence. In addition, we

compare our theoretical predictions for the phase behavior and the density profiles with

Monte-Carlo simulations for the semi-infinite system and we find good agreement with

our theoretical predictions.
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2.1 Introduction

Gravity is often non-negligible in colloidal suspensions, as the gravitational energy be-

comes comparable to the thermal energy for colloid sizes of about a micrometer. Hence, a

spatial inhomogeneous suspension is obtained due to the gravitational field, which is char-

acterized by a density profile ρ(z) that varies with altitude z. The parameter that is associ-

ated with a gravitational field is the so-called gravitational length and reads ℓ = (βmg)−1

where m is the effective or buoyancy mass of the colloidal particle, and β = (kBT )−1 the

inverse temperature with kB Boltzmann’s constant, and g the gravitational acceleration.

Typically, ℓ is of the order of µm −mm for colloidal particles. The density profile ρ(z)
follows from a competition between minimal energy (all colloids at the bottom) and max-

imum entropy (a homogeneous distribution in the available volume). In the case of a very

dilute colloid concentration or at high altitude, where the suspension becomes sufficiently

dilute, the system behaves like an ideal gas and the system obeys the Boltzmann distri-

bution, yielding an exponential density profile with a decay length given by ℓ. In 1910,

Jean Perrin measured such a density profile under the microscope which enabled him to

determine Boltzmann’s constant and hence, Avogadro’s number [20]. However when the

interactions become important, the density profile becomes highly non-exponential. Den-

sity profiles have been calculated for suspensions of hard and charged colloidal spheres

using density functional theory [21], and are measured by light scattering techniques [22].

The measured concentration profiles can be inverted to obtain the osmotic equation of

state [21–23]. Non-trivial sedimentation profiles have been predicted recently for charged

colloids [24–28] (and measured experimentally [29]), colloid-polymer mixtures [30–33],

and binary hard-sphere mixtures [34].

In this chapter we consider suspensions of hard rods, which serve as a simple model

for colloidal rod-like particles, like the tobacco mosaic virus (TMV), fd virus, boehmite

or silica rods. The bulk phase behavior of hard rod fluids has been studied thoroughly

in many theoretical and simulation studies [9, 18, 35]. Suspensions of colloidal rods

show lyotropic liquid crystalline behavior and form an isotropic, nematic, smectic and

crystal phase upon increasing the concentration. Despite the fact that gravity is often

non-negligible for colloidal rods, there are only a few theoretical studies that include its

effect on the phase behavior [36] and on the structure of the fluid [37]. In this chapter

we determine the phase diagram and density profiles from macroscopic equilibrium con-

ditions using the bulk equation of state of hard spherocylinders with a length-to-diameter

ratio L/D = 5 obtained from Monte-Carlo simulations [38]. We consider two situations:

1) a semi-infinite system that extends to infinity in the vertical z-direction and 2) the fi-

nite system. Refs. [36, 37] were both focussed on the finite system, while disregarding

the situation of a semi-infinite system. Surprisingly, the phase behavior depends drasti-

cally on the boundary conditions of the system. Finally, we compare directly our results

derived from macroscopic equilibrium conditions with Monte-Carlo simulations for the

semi-infinite system. Moreover, we examine the accuracy of the osmotic equation of state

derived from an inversion of the sedimentation profiles of hard spherocylinders.

This chapter is organized as follows. In Sec. 2.2 we describe the model and the

macroscopic description of sedimentation equilibria. In Sec. 2.3, we determine phase

diagrams for the finite and semi-infinite system. We present Monte-Carlo simulation

results in Sec. 2.4 and we end with some concluding remarks in Sec. 2.5.
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2.2 Macroscopic description of Sedimentation equilibrium

We consider a system of hard spherocylinders with a length-to-diameter ratio of L/D
suspended in a solvent. The suspending solvent is regarded as an incompressible struc-

tureless continuum, characterized by its mass density ρ̃. The effective or buoyancy mass

of a spherocylinder is according to Archimedes’ principle

m = m0 − ρ̃v (2.1)

where m0 is the bare mass of the rod and v = π(LD2/4 +D3/6) the volume of the rod.

In a gravitational field oriented along the z-direction of the vessel, the rods are subjected

to the external potential

φ(z) = mgz (2.2)

where z is the vertical coordinate, and g is the gravitational acceleration.

When the particles are not too large and heavy the density does not vary rapidly with

height. In this case the macroscopic description of the system is applicable and and the

equilibrium condition reads [39]

dP (z)

dz
= −mgρ(z). (2.3)

where P is the osmotic pressure.

Eq. (2.3) allows us to determine the equation of state of the system from a single mea-

surement of the concentration profile, which is convenient in experimental or simulation

studies [21, 23]. The pressure at arbitrary height z can be obtained using

βP (z) = βP (0) − ℓ−1

z
∫

0

dz′ρ(z′) (2.4)

where β = (kBT )−1 and ℓ = (βmg)−1. If the concentration profile ρ(z) is measured,

elimination of z between ρ(z) and P (z) leads directly to the osmotic equation of state

P (ρ) of the colloidal suspension.

On the other hand, if the temperature is assumed to be constant throughout the sample,

the pressure depends only on the local density and Eq. (2.3) can be rewritten as a nonlinear

differential equation for ρ(z)

dρ(z)

dz
= −χT (ρ)ρ(z)

ℓ
, (2.5)

where χT = (∂βP/∂ρ)−1
T is the reduced osmotic compressibility of the bulk fluid at

density ρ. If the osmotic equation of state P (ρ) is known explicitly, the density profile at

various values for the gravitational length can be obtained from Eq. (2.5).

2.3 Phase diagrams for colloidal rods in a gravitational

field

We determine phase diagrams for colloidal rods in a gravitational field using the macro-

scopic conditions for sedimentation equilibrium. We model the colloidal rods as hard
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spherocylinders, for which the bulk phase diagram is well explored [18, 38]. The phase

diagram shows an isotropic fluid phase, nematic and smectic A phases, and a crystalline

phase. In order to determine the phase behavior for colloidal rods in a gravitational field,

we employ fits to the equation of states obtained from Monte-Carlo simulations of hard

spherocylinders with a length-to-diameter ratio L/D = 5 [38]. We determine the phase

diagrams for two situations: 1) a semi-infinite system, and 2) a finite system. We show

that the phase behavior depends sensitively on the boundary conditions of the system.

Below, we discuss the two situations in more detail.

2.3.1 Semi-infinite system

We first consider the case of a semi-infinite system extending from z = 0 to z = ∞. We

confine N rods in an open rectangular vessel with a horizontal xy cross section of area

S. The bottom of the system is located at z = 0 and vertical confinement is determined

by the gravitational force exerted on the particles. We determine the phase behavior using

the values for the pressure at phase coexistence determined by previous simulations in

Ref. [38]. Direct integration of Eq. (2.3) using the boundary condition
∫∞
0
dzρ(z) =

N/S ≡ ns, i.e. keeping the number of particles per unit surface fixed, and employing

P (z = ∞) = 0, yields a simple relation for the pressure at z = 0, i.e. at the bottom of the

sample

P (z = 0) = mgns. (2.6)

Equating the pressure at phase coexistence with the pressure at the bottom of our sample,

given by Eq. (2.6), we can determine easily the phase boundaries of our system, i.e. which

phase appears at the bottom of our system followed by the more dilute phases at higher

altitudes. In Fig. 2.1, three phase boundaries denoted by the solid lines, are shown in

the phase diagram for a semi-infinite system. At low gravity, i.e. low values of D/ℓ, and

low nsD
2, we observe an isotropic phase throughout the whole system. This regime is

denoted by I in our phase diagram. At higher gravity or ns, P (z = 0) becomes larger than

PIN , i.e. the pressure at I-N coexistence and we observe a nematic phase at the bottom of

our sample. At higher altitudes, we still observe an isotropic phase as the system becomes

more and more dilute at higher z. Hence, we observe two phases simultaneously in our

sample with the densest phase (N) at the bottom and the isotropic phase at the top. When

P (z = 0) becomes larger than the pressure PNSm at N-Sm coexistence, we find three-

phase coexistence with the smectic phase at the bottom of the container followed by the

nematic and the isotropic phase at higher altitudes. For P (z = 0) > PSmK , four-phase

coexistence is predicted with the crystal phase at z = 0. The pressure at Sm-K coexistence

is denoted by PSmK . It is worth mentioning that the phase diagram shows one-, two-,

three-, and four-phase coexistence regions and that the isotropic phase is always present

in a semi-infinite system at sufficiently high altitudes.

2.3.2 Finite system

In the previous subsection we considered a situation of a suspension in an open vessel

unlimited in the z-direction, which becomes infinitely dilute in the limit of ℓ → ∞,

i.e. no gravity. In this section, we consider a suspension of N colloidal rods confined

in all directions to a volume V . The bottom of the system is again located at z = 0,
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Figure 2.1: Phase diagram for hard spherocylinders (colloidal rods) with L/D = 5 in a gravi-

tational field for a semi-infinite system. We plot the gravitational length of the rods D/ℓ versus

the number of rods per unit surface nsD
2. The symbols denote the state points employed in our

simulations of spherocylinders. © denotes the isotropic phase, △ the isotropic-nematic (I+N) co-

existence, � isotropic-nematic-smectic A (I+N+Sm) coexistence, and ♦ isotropic-nematic-smectic

A-crystal (I+N+Sm+K) coexistence.

while the height of the vessel H is fixed. In the absence of gravity, the suspension is

homogeneously distributed with a uniform density N/V . Employing Eq. (2.5) using the

boundary condition
∫ H

0
dzρ(z)/H = N/V yields the density at the bottom ρ(z = 0)

and at the top ρ(z = H) of the sample from which we can determine the phase diagram.

Fig. 2.2 shows the phase diagram in the reduced sample height H/ℓ - dimensionless rod

density ρD3 representation. On the horizontal axis we find bulk coexistence densities

of the isotropic-nematic, nematic-smectic, and smectic-crystal transition for zero gravity,

i.e. H/ℓ = 0. At sample heights of about 3 times the gravitational length, we observe an

extremely rich phase behavior. For instance, at rod densities ρD3 ∼ 0.1, we find a pure

nematic phase at low sample heights, which is sandwiched by a more dilute phase (I) at the

top and a denser phase (Sm) at the bottom, as soon as the sample height exceeds H/ℓ =
3.55. The resulting sample exhibit three-phase coexistence of an isotropic, nematic, and

smectic phase. At rod densities ρD3 ∼ 0.125, a pure smectic phase can be transformed

in a three-phase (N+Sm+K) coexistence by increasing the sample height. On the other

hand, at sample heights H/ℓ ∼ 3, a single I phase can be transformed upon increasing

the rod density to a two-phase (I+N) coexistence, a single N phase, N+Sm coexistence, a

single Sm, Sm+K coexistence, to a single crystal phase. At sample heights H/ℓ ∼ 10 the

sequence is I, I+N,I+N+Sm, N+Sm, N+Sm+K, Sm+K, K, upon increasing the rod density.

Four-phase coexistence is observed at rod densities ρD3 ∼ 0.115 at sample heights more

than about 11 gravitational lengths. It is worth noting that there are striking differences

with the semi-infinite system. When phase coexistence is observed in the semi-infinite

system, the most dilute phase at sufficiently high altitudes, is always the isotropic phase.
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Figure 2.2: Phase diagram for hard spherocylinders (colloidal rods) with L/D = 5 in a gravita-

tional field for a closed vessel. We plot the reduced sample height H/ℓ with ℓ the gravitational

length of the rods versus the dimensionless rod density ρD3.

This is not the case in the finite system, yielding many more possibilities for multi-phase

coexistence and resulting in a much more complicated phase diagram as shown in Fig.

2.2 compared to the semi-infinite system in Fig. 2.1.

2.4 Simulations

In this section, we present a Monte-Carlo study of a system of hard spherocylinders with

a length-to-diameter ratio L/D = 5 in a gravitational field. Each spherocylinder consists

of a cylindrical part with diameter D and a length L with spherical caps of diameter D
at both ends. The bulk phase diagram of hard spherocylinders is well explored [18, 38]

and shows a rich phase behavior including isotropic, nematic, smectic A, and crystalline

phases. In Ref. [40–42], the interfacial behavior of a hard-rod fluid is investigated using

density functional theory and computer simulations. The authors find complete wetting of

the nematic phase at the wall-isotropic fluid interface and a uniaxial to biaxial surface tran-

sition well below the bulk I-N transition. Moreover, when the hard-rod fluid is confined

by two walls, a significant shift of the I-N transition is found to lower densities compared

to bulk. In this section, we study the effect of a gravitational field on the phase behavior

of hard rods using computer simulations. We compare our theoretical predictions based

on the macroscopic equilibrium conditions on the phase diagram with simulation results.

We study a system with a fixed number of hard spherocylinders N in a semi-infinite box

with lateral dimensions Lx and Ly applying periodic boundary conditions in the x- and

y- directions. The z-dimension of the box is infinite. While at z = 0 a planar hard wall

is located, the rods are free to move upwards. The confinement of the system is imple-

mented by a gravitational field along the z direction. Each rod is subjected to the external

potential φ(z) = mgz with m the buoyancy mass, g the acceleration of gravity, and z the
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height of the center-of-mass of the rod. The number of particles and the dimensions of the

box are varied in the simulations to adjust the pressure at the bottom of the system. The

starting configuration is prepared as follows: a closed-packed face-centered-cubic (fcc)

lattice of spheres of diameter D with its (001) plane in the xy plane was stretched in the

x direction by a factor of L/D + 1 in order to accommodate the close-packed crystal of

spherocylinders. This lattice was subsequently expanded in x and y direction. For in-

homogeneous phases, such as the smectic and crystal phase, it is often essential that the

simulation box can change its size (and maybe its shape), in order to accommodate the

changes in the phase structures without creating high stresses in the sample. However,

as the concentration varies with height in a gravitational field, it is impossible to avoid

stresses at each height z. We have chosen the area of the sample such that the phase at

the bottom is well-accommodated or is commensurate with the dimensions of the cross-

section of the container. We check for equilibrium by monitoring the height of the center

of mass of the system. When equilibrium is reached we perform sampling at ∼ 1.5× 106

Monte-Carlo cycles (one cycle is one attempted move per particle), the profiles are sam-

pled in bins of width 0.1D. The sampled quantities are the density profile and the profiles

of the eigenvalues of the standard 3 × 3 nematic order parameter tensor defined as [17]

Qαβ(zj) =

〈

1

nj

nj
∑

i=1

3uiαu
i
β − δαβ

2

〉

(2.7)

where uiα is the α-component of the unit orientation vector of particle i with α = x, y, z,

and nj is the number of particles present in bin j. The Kronecker delta is δαβ . Diago-

nalizing this tensor gives three orientational ordering eigenvalues λ+, λ0, and λ− for each

bin.

We perform simulations of spherocylinders with L/D = 5 at three values of the in-

verse gravitational length D/ℓ = 0.3, 0.5, and 0.75, and for varying number of particles

per unit surface nsD
2. The explicit values for D/ℓ and nsD

2 which are employed in the

simulations are displayed by the symbols in Fig. 2.1. We display coarse-grained density

profiles for D/ℓ = 0.30 and 0.75 for varying values of nsD
2 in Figs. 2.3 and 2.4. Similar

results were obtained for D/ℓ = 0.50. We show plots for only a few values of nsD
2 for

clarity. At high altitudes (large z) we find that the density tends to zero, while the highest

density is observed at the bottom of the sample as expected. For comparison, we also plot

the density profiles obtained from Eq. (2.5) and employing the equation of state from Ref.

[38]. We find good agreement of the simulation results with the theoretical predictions

based on the macroscopic osmotic equilibrium conditions. We, therefore, believe that also

the theoretical predictions on the phase behavior are reliable. The density fluctuations due

to the ordering of the rods induced by the wall or due to the ordering in the smectic and

crystal phase is, of course, missing in the density profiles obtained from the macroscopic

osmotic equilibrium conditions. We like to mention that the phase at the bottom of the

container, and hence, the phase diagram can be determined by comparing the theoretical

or simulation contact densities at z = 0.5D with the bulk coexisting densities. The co-

existing densities are determined by McGrother et al. using computer simulations [38].

The reduced densities are at I-N coexistence ρD3 = 0.0914 (I) and ρD3 = 0.0932 (N), at

N-Sm coexistence ρD3 = 0.1061 (N) and ρD3 = 0.1094 (Sm), and at Sm-K coexistence

ρD3 = 0.1319 (Sm) and ρD3 = 0.1380 (K) [38]. For the two lowest density profiles in

Figs. 2.3 and 2.4, we find that the contact density is lower than the coexisting density of
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the nematic phase at I-N coexistence, hence, the whole sample is in the isotropic phase

in agreement with the theoretical phase diagram in Fig. 2.1. The contact densities for

nsD
2 = 4.348 in Fig. 2.3 and nsD

2 = 1.701 in Fig. 2.4 are higher than the coexisting

density of the nematic phase at I-N coexistence, but lower than that at N-Sm coexistence,

and we find two-phase coexistence of the isotropic phase and the nematic phase. We find

that the contact density for nsD
2 = 2.457 in Fig. 2.4 is higher than the coexisting density

of the smectic phase at N-Sm coexistence, but lower than that at Sm-K coexistence. For

this state point, we observe three-phase coexistence of a smectic, nematic, and an isotropic

phase. For all these density profiles, we find good agreement with the theoretical predic-

tions for the phase behavior, as one might expect on the basis of the good agreement of

the density profiles with the theoretical ones. Closer inspection of Fig. 2.1 shows that the

I+N coexistence starts at lower nsD
2 for D/ℓ = 0.5 and 0.3 compared with the theoreti-

cal predictions. A similar shift was also found in previous simulations of a hard-rod fluid

in contact with a planar hard wall: the uniaxial to biaxial surface transition occurs well

below the bulk I-N transition [40–42]. However, it is impossible to determine the contact

density from the density profiles obtained from simulations at high nsD
2 due to the large

density fluctuations close to the wall. Even coarse-graining the density profiles does not

give us a sufficiently accurate value for the contact density. However, the appearance of

the crystal phase can be observed in the raw (not coarse-grained) density profiles. The

inset of Fig. 2.4 shows the raw density profile for nsD
2 = 4.34. We clearly observe the

formation of crystalline layers at the bottom and smectic layers at higher altitudes: the

density drops to zero between the density peaks close to the wall (crystal phase), while

only pronounced peaks are observed at higher z (smectic phase). The system is in the

four-phase coexistence region for nsD
2 = 4.34 and D/ℓ = 0.75. This multi-phase coex-

istence can also be appreciated from the snapshots in Fig. 2.5 that shows nice crystalline

ordering at the bottom of the container in Fig. 2.5c and hexagonal ordering in Fig. 2.5b.

At higher altitudes, the hexagonal ordering is destroyed, and a smectic phase appears.

The smectic layers disappear at even higher heights as can be seen in Fig. 2.5a, and we

observe a nematic phase. At high altitudes, we observe the isotropic phase.

In Fig. 2.6, we plot the order parameter profiles for D/ℓ = 0.75 and varying values

of nsD
2. In bulk, the value of the largest eigenvalue of this tensor determines the nematic

ordering, which is zero for an isotropic fluid phase and one for perfectly aligned rods. In

the presence of the wall at the bottom of the sample the lowest eigenvalue of this tensor

approaches −1/2 as the rods close to the wall have to be oriented parallel to the surface.

Consequently, the two largest eigenvalues are equal to 1/4 when there is no in-plane order,

see Fig. 2.6 (the short-dashed lines for nsD
2 = 0.567). The onset of biaxial and nematic

ordering at the bottom can be observed from the difference of the two largest eigenvalues,

that shows the appearance of a preferred in-plane orientation (the dash-double dotted

lines for nsD
2 = 1.323 ). As nsD

2 increases this difference increases. The nematic phase

appears at the bottom of the container when the largest eigenvalue exceeds 0.5 at z = 0
(dash-dot line for nsD

2 = 1.701), which corresponds well with the value of the nematic

order parameter of 0.471 for the nematic phase at I-N coexistence [38]. Three-phase

coexistence is observed when the largest eigenvalue is roughly 0.9 at the bottom (dotted

and dashed line for nsD
2 = 2.457 and 3.51, respectively), again in agreement with the

fact that the nematic order parameter of the smectic phase in bulk is about 0.893 at N-Sm

coexistence [38]. A crystal phase (solid line for nsD
2 = 4.34) is found at the bottom of

the container when the largest eigenvalue approaches 1, while the order parameter of the
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Figure 2.3: Density profiles ρD3 versus z/D for a semi-infinite system with inverse gravitational

length D/ℓ = 0.30, and for varying number of particles per unit surface nsD
2

= 0.756, 2.268,

4.348 (from bottom to top). The thin lines are the coarse-grained density profiles from computer

simulations, while the thick lines are those obtained from Eq. (2.5) using the equation of state of

Ref. [38].
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Figure 2.4: Density profiles ρD3 versus z/D for a semi-infinite system with inverse gravitational

length D/ℓ = 0.75, and for varying number of particles per unit surface nsD
2 of 0.567, 1.323,

1.701, 2.457, 3.51, 4.34 (from bottom to top). The thin lines are the coarse-grained density profiles

from computer simulations, while the thick lines are those obtained from Eq. (2.5) using the

equation of state of Ref. [38]. The inset shows the raw density profile from simulations for

nsD
2

= 4.34.
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a) b)

c)

Figure 2.5: Snapshots of typical configurations: two sideviews a) and b), and a bottom view c),

obtained from simulations of hard spherocylinders with L/D = 5, for number of particles per unit

surface nsD
2

= 4.34 and for an inverse gravitational length D/ℓ = 0.75.
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Figure 2.6: The profiles of the eigenvalues λ+, λ0, and λ− of the nematic order parameter tensor

(2.7) versus z/D for a semi-infinite system with inverse gravitational length D/ℓ = 0.75, and

varying number of particles per unit surface a) nsD
2

= 0.567, b) nsD
2

= 1.323, c) nsD
2

=

1.701, d) nsD
2

= 2.457 (short-dash), 3.51 (dashed), 4.34 (solid).
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Figure 2.7: Equation of state of hard spherocylinders with a length-to-diameter ratio L/D = 5

obtained by inverting the coarse-grained density profiles from Fig. 2.4 versus reduced densities

ρD3 for nsD
2

= 3.21 (×) and nsD
2

= 4.34 (◦), while — represents the bulk equation of state

from Ref. [38]
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crystal phase in bulk is about 0.974 at Sm-K coexistence [38].

Finally, we obtain the osmotic equation of state for hard spherocylinders by inverting

the coarse-grained simulation sedimentation profiles using Eq. (2.4) and by eliminating

z between ρ(z) and P (z). In Fig. 2.7, we show the results using the profiles for inverse

gravitational length D/ℓ = 0.75 and number of particles per unit surface nsD
2 = 3.21

and 4.34. For comparison, we also plot the osmotic equation of state obtained from bulk

simulations performed at many different densities of Ref. [38] and we find good agree-

ment, even for densities higher than those at I-N coexistence. Similar good agreement of

the equation of state of the isotropic and of the nematic phase was also found by invert-

ing sedimentation profiles for D/ℓ = 0.30 and 0.50, and other values of nsD
2 that we

considered.

2.5 Conclusions

We have investigated sedimentation and phase equilibria in suspensions of hard sphe-

rocylinders with a length-to-diameter ratio L/D = 5 by analyzing the (macroscopic)

osmotic equilibrium conditions. We present phase diagrams for a semi-infinite system

and for a finite system. We find that the phase behavior depends in great detail on the

boundary conditions of the system. To the best of our knowledge, we believe that this is

the first study that investigates the dependence of the phase behavior on the boundary con-

ditions of the system. In addition, we compare our theoretical predictions for the phase

behavior and sedimentation profiles with Monte-Carlo simulations for the semi-infinite

system. We find very good agreement between the two sets of results. Moreover, we find

excellent agreement of the osmotic equation of state obtained from inverting the coarse-

grained sedimentation profiles from a single simulation with the bulk equation of state

determined from bulk simulations at many different densities [38], even for densities in

the nematic phase. This surprisingly good agreement for densities beyond I-N coexis-

tence can be understood as the interfacial width of the isotropic-nematic interface is very

small for the gravitational lengths considered in this work.

It is interesting to study the effect of the addition of an extra component to the sedi-

mentation profiles of a suspension of hard rods, e.g. non-adsorbing polymer that might

yield a floating liquid phase similar as was found in Ref. [32, 33] or thinner rods that

might give a non-trivial density profile of floating thick rods in a suspension of thin rods

similar as Ref. [34]. We plan to study the sedimentation profiles of colloidal rod-mixtures

in future work.
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Figure 2.8: Procedure to generate a trial move that changes the initial orientation of a particle û0

which is oriented along the z-axis: 1) Generate a unit vector v̂ with an angle θ′ to the z-axis. 2)

Scale it by a factor γ. 3) Normalize the sum vector γv̂ + û0. 4) The normalized vector has an

angle θ with the z-axis.

2.A A note on rotational moves

Monte-Carlo simulations of molecular systems require an efficient algorithm to generate

a new orientation uniformly distributed in a solid angle around the previous orientation.

However, several widely used algorithms generate rotational displacements which are

not uniformly distributed. Nonuniform distributions act as a local external field, and

introduces a bias to the sampling. Here we calculate the local field corresponding to the

algorithm described in [43]. First, it suggests to generate a random unit vector v̂, then

scale it by a factor γ, which determines the maximum rotation angle, add it to the initial

orientation vector ûo, and finally normalize the sum ûn = (γv̂ + ûo)/|γv̂ + ûo|.
The problem is equivalent of finding the radial projection of the distribution uniform

on a sphere with radius γ and its center on the surface of a unit sphere onto this sphere. To

this end we need to relate the cosines in the two coordinate systems, one with the origin

in the center of the γ- sphere, and another with the origin in the center of the unit sphere

cos θ′ =
cos2 θ − 1 ± cos θ

√

cos2 θ + γ2 − 1

γ
, (2.A.1)

where plus and minus signs correspond to two possible positions of a point on the γ-

sphere corresponding to the same value of cos θ.

Now, if we generate a uniform random variable x from the distribution p(x) and then

take some function y(x) of it, then the probability distribution of y is determined via the

transformation law of probabilities

|p(y)dy| = |p(x)dx|. (2.A.2)

Recalling that a uniform distribution of points on the surface of a sphere implies a uniform

distribution of cos θ′, and that the derivative is given by

∂ cos θ′

∂ cos θ
=

1

γ

(cos θ ±
√

cos2 θ + γ2 − 1)2

√

cos2 θ + γ2 − 1
,

we can easily find the distribution of generated rotational moves on a surface of a unit

sphere

p(cos θ) =
2 cos2 θ + γ2 − 1

γ
√

cos2 θ + γ2 − 1
. (2.A.3)
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Figure 2.9: The probability distribution of cos θ for varying γ. The open circles denote simulation

data while Eq. (2.A.3) is denoted by the solid line.

Fig. 2.9 shows the probability distribution p(cos θ) using the procedure described above

for varying γ. The unbiased p(cos θ) should be constant for all possible values of cos θ.

Fig. 2.9 shows clearly that this procedure to generate orientational moves yields a non-

trivial non-uniform probability distribution as a function of γ. Changing γ during simula-

tion to adjust the acceptance ratio is even more hazardous. The corresponding local field

is given by

βϕ(cos θ) = − ln(p(cos θ)). (2.A.4)

We performed simulations of a bulk nematic phase at varying densities. We found that

this scheme does not produce any significant bias for the order parameter. However, we

found that in the case of hard platelets in the external field of a hard wall, the system can

get trapped in a configuration with the platelets severely absorbed at the wall.

Here we propose another scheme to generate rotational moves uniformly distributed

in the angle cos θmax 6 cos θ 6 1. The efficiency of this procedure is similar to the

previous method. First we generate a unit vector uniformly distributed on a circle in the

plane perpendicular to the initial orientation ûo, we then generate a random rotation of

the initial orientation around this vector.
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On the accuracy of measuring the

nematic order from X-ray diffraction:

a simulation study

The determination of the nematic order parameter S and the orientational distribution

function (ODF) from scattering data involve severe approximations. The validity of these

are studied here using Monte-Carlo simulations of hard spherocylinders with an aspect

ratio of 15 for varying densities in the isotropic and nematic phase. The ”exact” ODF of

the rods, the ”exact” value of S, and the scattered intensity I(~q) are determined directly

in simulation. In addition, we determine the ODF and S from the simulated scattered

intensity which includes spatial and orientational correlations of the particles. We investi-

gate whether correlations present in the interparticle scatter influences the determination

of the single particle orientational distribution function by comparing the results obtained

from scattering with the “exact” results measured directly in our simulations. We find that

the nematic order parameter determined from the scattered intensity underestimates the

actual value by 2-9%. We also find that the values of S and the ODF are insensitive to the

absolute value of the scattering vector for 1.2π < |~q|D < 2π which agrees well with the

assumption proposed by Leadbetter that I(q, ψ) along the equatorial arc is independent of

|~q| . We also observe that the best fit of the “exact” ODF is given by the Maier-Saupe dis-

tribution when nematic director fluctuations are ignored, while the Gaussian distributions

provides the best fit when these fluctuations are included.
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3.1 Introduction

Liquids consisting of anisotropic molecules exhibit a number of liquid-crystalline phases,

that are intermediate between the well-ordered crystalline solid and the isotropic fluid

phase (see Fig. 3.1a). The simplest liquid-crystal phase is the so-called nematic phase,

in which the particles exhibit long-range orientational order but no translational order

(see Fig. 3.1b). Extensive theoretical and simulation studies are performed on hard-

rod fluids, which serve as a good model for rodlike colloidal particles like the inorganic

boehmite rods [44] or the biological TMV and fd virus particles [45]. The phase behavior

of colloidal hard rods starts with the seminal work of Onsager, who showed that infinitely

thin hard rods exhibit an entropy-driven isotropic-nematic phase transition at sufficiently

high densities [9]. Subsequently, extensive computer simulation studies showed that also

finite hard rods show a nematic phase [11, 46–48], a smectic phase [11, 46, 47, 49] and

a columnar phase [46]. More recently, the phase diagram of hard rods is determined as a

function of the aspect ratio and density of the rods [18].

The focus of this chapter is, however, not on the phase behavior as many previous

studies, but on the structure of the fluid, in particularly, the single particle distribution and

two-body distribution functions. The nematic phase is often characterized by the orien-

tational distribution function (ODF) f(θ), which is a single-particle distribution function

and describes the distribution of orientations of the particles about a preferred direction,

i.e., director. The angle between the long molecular axis and the director is denoted by

θ ∈ [0, π/2]. This function plays a key role in understanding the properties of nematic

phases and many theoretical investigations rely on the explicit functional form of it. The

nematic order parameter S of a system is quantified by

S =

∫ π/2

0

dθ sin θP2(cos θ)f(θ) (3.1)

where P2 is the second Legendre polynomial. The orientational distribution function can

be determined experimentally by various methods; one of them is based on diffraction ex-

periments, which measures the Fourier transform of a two-body correlation function. It is

interesting to investigate how a single-particle distribution can be obtained from measure-

ments of the two-body correlations. If we consider N identical particles with orientations

given by the unit vectors {ω̂}, and ρ(~r; ω̂) describes the internal (electron) density of each

individual particle, then the scattered intensity of the total system is given by

I(~q) = 〈
N
∑

i=1

N
∑

j=1

∫ ∫

d~rd~r′ρ(~r − ~ri; ω̂i)ρ(~r
′ − ~rj; ω̂j) exp[i~q · (~r − ~r′)]〉

= 〈
N
∑

i=1

N
∑

j=1

exp[i~q · (~ri − ~rj)]ϑ(~q; ω̂i)ϑ(−~q; ω̂j)〉 (3.2)

with ϑ(~q; ω̂i) =
∫

d~rρ(~r; ω̂i) exp[i~q ·~r], the Fourier transform of the (electron) density dis-

tribution ρ(~r; ω̂i) of particle i. Note that ρ(~r; ω̂i) depends on the orientation of particle i.
The total scattered intensity can be split into a part F (~q) that depends on a single-particle

distribution function and a second part S(~q) that includes the spatial and orientational

correlations

I(~q) = NF (~q)S(~q). (3.3)
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The intraparticle scatter or form factor F (~q) is given by

F (~q) =
〈

|ϑ(~q; ω̂)|2
〉

(3.4)

and the angular brackets denote an average over all the particles with their orientations

given by the unit vectors {ω̂}. The interparticle scatter or structure factor term S(~q) reads

[50]

S(~q) = 1 +
1

NF (~q)

〈

N
∑

i6=j
exp[i~q · (~ri − ~rj)]ϑ(~q; ω̂i)ϑ(−~q; ω̂j)

〉

. (3.5)

The structure factor depends on the positions of the rods and their relative orientations.

For spherical symmetric particles, the (electron) density distribution ρ(~r; ω̂) is indepen-

dent of the orientation of the particle, and ϑ(~q; ω̂i) = ϑ(~q; ω̂j). The structure factor

is then decoupled from the form factor. However, for anisotropic density distributions,

ϑ(~q; ω̂i) 6= ϑ(~q; ω̂j) and the structure factor is not decoupled from the form factor, hence,

the structure factor includes spatial and orientational correlations. In the isotropic and

nematic phase, it is often assumed that S(~q) → 1 at high angle and the intensity depends

only on the form factor, i.e., I(~q) = F (~q). If the intensity can be measured at high angle,

the orientational distribution function can be obtained directly from the intensity. At low

angle, i.e., |~q|D < 2π, the scattering intensity depends on S(~q) which includes angular

and spatial correlations between neighboring rods. In our simulations, we observe that

S(~q) 6= 1 for |~q|D < 2π and it is interesting to investigate the validity and consequences

of the assumption I(~q) ≃ F (~q) that is often employed experimentally in the determination

of S and the ODF from scattered intensity. Leadbetter [7, 51] showed that the intensity

distribution along the equatorial arc, thus at fixed |~q|, can be related to the ODF of the

sample. The integral equation relating these two quantities was inverted by Deutsch [52].

However, using scattering data that includes experimental errors, a numerical inversion of

the integral equation is very inaccurate. Therefore, one often assumes an analytical form

of the ODF with some fitting parameters which are chosen such that it provides the best

fit of the measured intensity distribution [8, 53, 54]. The resulting ODF and the nematic

order parameter derived from the ODF may depend sensitively on the precise trial func-

tion of the ODF. The validity of these approaches to measure the nematic order and ODF

in scattering experiments was studied by Purdy et al. [8] by comparing the nematic or-

der parameter obtained from low angle scattering experiments (which include spatial and

orientational correlations) with high angle scattering experiments (which depends only

on the single particle ODF). However, both approaches to obtain the nematic order pa-

rameter from low and high angle scattering involve approximations and are based on trial

functions.

In this chapter we test the validity of these approaches by determining the ”exact” ori-

entational distribution function of the rods, the ”exact” nematic order parameter, and the

scattered intensity directly in simulation. We compare the orientational distribution func-

tion and nematic order parameter obtained from the simulated scattered intensity using

several trial functions with the “exact” results measured directly in our simulations.

The chapter is organized as follows: In Section 3.2 we describe the simulations, Sec-

tion 3.3 presents the results, and the conclusions are drawn in Section 3.4.
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Figure 3.1: Snapshot of a fluid of hard spherocylinders for packing fraction a) η = 0.1723

(Isotropic phase) and b) η = 0.2338 (Nematic phase)

3.2 Simulations

Extensive simulation studies are performed to determine the phase behavior of fluids con-

sisting of hard spherocylinders [11, 18, 46, 47, 49]. The focus of this chapter is, however,

not on the phase behavior, but on the structure of the fluid, in particularly, the single par-

ticle distribution and two-body distribution functions. The ”exact” orientational distribu-

tion function of the rods, the ”exact” nematic order parameter, and the scattered intensity

are determined directly in simulation. We study a system of hard spherocylinders in a

cubic box with periodic boundary conditions. Each rod consists of a cylindrical part with

diameter D and length L = 15D and of spherical caps at both ends with diameter D.

We present Monte-Carlo simulations in the canonical ensemble, so we fix the number of

particles at N = 1000, and the volume V of the system. We perform simulations at vary-

ing packing fractions η = π(D3/6 + D2L/4)N/V in the isotropic and nematic phase.

In Fig. 3.1, we present snapshots of the isotropic and nematic phase at packing fractions

η = 0.1723 and 0.2338, respectively. The packing fractions of the coexisting isotropic

and nematic phases are predicted to be ηI = 0.1777 and ηN = 0.2058, while the packing

fraction of the nematic-smectic transition is at about ηSm ≃ 0.4438. [18].

The simulations are started from an initial condition in which the orientations of the

rods are randomly distributed in a cone with 0 6 θ 6 0.15π, where θ is the angle between

the z-axis and the orientation of the rod. The deviations of the nematic director from the

initial direction, which is along the z-axis, are often assumed to be small [55]. However,

we find that during our simulations the director fluctuations have significant impact on the

value of the order parameter and moreover on the best fitting distribution of the ODF. We

therefore determine for each configuration the actual nematic director and we determine

the ODF and the nematic order parameter with respect to the present director. In this way

we ignore the fluctuations of the nematic director, which can be achieved experimentally
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by switching on a magnetic field that fixes the nematic director of the sample. The current

nematic director and the nematic order parameter are determined from the standard 3× 3
nematic order parameter tensor defined as [56]

Qαβ =
1

N

N
∑

i=1

3uiαu
i
β − δαβ

2
(3.6)

where uiα is the α-component of the unit orientation vector of particle i, and δαβ is the

Kronecker delta. The nematic order parameter is given by the largest eigenvalue of this

tensor and the corresponding eigenvector is the nematic director of the sample.

We check for equilibration by monitoring the nematic order parameter of the system.

The maximum allowed values for displacement and rotational moves are chosen such

that the product of acceptance ratio and maximum displacement is maximum which cor-

responds with an acceptance ratio of about 25-30%. When equilibrium is reached, we

perform a production run of 1.5 × 106 sweeps (one displacement attempt per particle),

while sampling is performed once every sweep. The quantities that are sampled are the

nematic order parameter, the orientation distribution function f(θ) , which is proportional

to the probability to find a rod with an angle within [θ, θ + dθ] relative to the nematic

director, and the scattered intensity I(~q) given by Eq. (3.3). It is convenient to write

the reciprocal vector in cylindrical coordinates ~q = (qr, qz, qφ). If the system possesses

uniaxial symmetry relatively to the nematic director lying along the z-axis, the scattered

intensity depends only on r and z coordinates, and is independent of φ.

The Fourier transform of the (electron) density of a spherocylinder ϑ(~q; ω̂) can be ap-

proximated by the Fourier transform of only the cylindrical part of length L and diameter

D as the contribution from the caps is negligible for the given length-to-diameter ratio

ϑ(~q; ω̂) ∼ j0

(

L

2
qz

)

J1

(

D
2
qr
)

D
2
qr

(3.7)

where j0(x) is the spherical Bessel function of the zeroth order, and J1(x) is the cylindri-

cal Bessel function of the first order. Note that in Eq. (3.7) the polar axis of the coordinate

system is defined along ω̂, which can easily be transformed to the coordinate system where

the polar axis coincides with the direction of scattering vector ~q. For infinitely thin rods,

the Fourier transform is defined by j0(x) only and J1(x)/x allows for a finite diameter of

the rods. The averaged square 〈|ϑ(~q; ω̂)|2〉 of this property is the formfactor F (~q) of the

system that contains information about the shape, the inner structure of the molecule, and

the ODF. The structure factor S(~q) of the system contains information about the positional

and orientational correlations between the scattering particles. Equation (3.3) with (3.4)

and (3.5), however, is not convenient for sampling the scattered intensity in simulations

as it contains a double summation, and the difference ~ri − ~rj in the exponent requires

paying attention to the periodic boundary conditions. Using simple algebra the scattered

intensity can be written as

I(~q) =

(

N
∑

i=1

cos(~q · ~ri)ϑ(~q; ω̂i)

)2

+

(

N
∑

i=1

sin(~q · ~ri)ϑ(~q; ω̂i)

)2

(3.8)

which does not contain double summation and allows for twice the higher resolution as

the smallest nonzero qmin is given by qmin = 2π/Li due to periodic boundary conditions
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compared to Eq. (3.3) where qmin = 4π/Li with Li the dimension of the box in the i-th
direction (due to the difference ~ri − ~rj in Eq. (3.5)).

3.3 Results and discussion

As we wish to investigate whether correlations present in the interparticle scatter influ-

ences the determination of the ODF and S from scattered intensity, we first determine the

”exact” value of S and the ”exact” ODF of the rods directly in simulation. We perform

simulations at varying packing fractions η in the isotropic and nematic phase. We mea-

sure S from Eq. (3.6), the ODF f(θ), and the scattered intensity I(~q). The latter two are

both measured from simulations i) where the z-axis is taken to be the fixed nematic di-

rector, i.e., nematic director fluctuations are included and ii) where for each configuration

the present nematic director is calculated such that nematic director fluctuations are disre-

garded. The latter can be achieved experimentally by applying a magnetic field that fixes

the nematic director of the sample. We present results for the case that nematic director

fluctuations are disregarded, unless stated differently. Table 3.1 shows S as a function of

η for the statepoints we considered in this study. Note that the statepoint corresponding

with a packing fraction η ≈ 0.185 lies in the I−N coexistence region. For this statepoint,

we observe large fluctuations in the nematic order parameter during our simulations. Figs.

3.2 and 3.3 show typical examples of the ”exact” orientational distribution function f(θ).
The measured ODF’s are fitted with three different trial functions containing one fit-

ting parameter α
f1(θ) = N1(α) exp

(

α cos2 θ
)

, (3.9a)

f2(θ) = N2(α)e−
θ2

2α2 , (3.9b)

f3(θ) =
α

sinhα
cosh (α cos θ) (3.9c)

where Ni(α) are the normalization constants, such that
∫ π/2

0
dθ sin θfi(θ) = 1. The first

ODF is the Maier-Saupe distribution, the second is the Gaussian distribution introduced

by Odijk, and the third one was proposed by Onsager [9]. The trial function introduced by

Oldenbourg [57] is not considered here as the fitting parameter can be chosen such that it

coincides with the Maier-Saupe distribution. We determine the nematic order parameter

S from the three fitted ODF’s using Eq. (3.1). The values of S are listed in Table 3.1 and

plotted in Fig. 3.4. Figs. 3.2 and 3.3 and Table 3.1 show that at all densities the measured

orientational distribution function is perfectly fitted by the Maier-Saupe distribution for

all values of θ when nematic director fluctuations are ignored. The value of S calculated

with the fitted Maier-Saupe distribution matches closely to the one measured as the largest

value of the nematic order parameter tensor (3.6). The fits of the ODF’s using the Onsager

and Gaussian distributions are less peaked then the measured ones, which result in a

slightly overestimated nematic order parameter. However the nematic order parameters

obtained from the different distributions differ only by a few percent. Increasing the

density, the fits of the ODF’s using different trial functions and the resulting values for S
approach each other.

We also study the influence of nematic director fluctuations on the ODF by comparing

simulations where the z-axis is chosen to be the fixed nematic director with simulations

where the nematic director is calculated for each configuration. As expected, we observe
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η 0.1846 0.1969 0.2092 0.2215 0.2338

”Exact” 0.627 0.747 0.799 0.825 0.861

Maier-Saupe fit of ODF 0.631 0.754 0.805 0.824 0.866

Onsager fit of ODF 0.674 0.777 0.819 0.835 0.872

Gaussian fit of ODF 0.683 0.781 0.822 0.837 0.874

Maier-Saupe fit of I(ψ) 0.568 0.708 0.762 0.775 0.832

Gaussian fit of I(ψ) 0.596 0.732 0.779 0.790 0.840

Table 3.1: The nematic order parameter S of a fluid of hard spherocylinders for different pack-

ing fractions η determined directly in simulations (”exact”), determined from a fit of the ”exact”

orientational distribution function, and determined from a fit of the scattering intensity I(ψ).

nematic director fluctuations no yes

”Exact” 0.799 0.785

Maier-Saupe fit of ODF 0.805 0.769

Gaussian fit of ODF 0.822 0.793

Table 3.2: The nematic order parameter S of a fluid of hard spherocylinders with packing fraction

η = 0.2092 determined directly in simulations with and without nematic director fluctuations.

that the ODF is slightly broader and gives lower values of S (see Table 3.2) when we

use the z-axis as the nematic director and, thus, allow for nematic director fluctuations.

These findings are a logical consequence of the method we used for taking into account

director fluctuations, i.e., via a reference to the fixed z-axis. More surprisingly, we find

that the ODF is best fitted by the Gaussian distribution, when we allow for nematic di-

rector fluctuations, while the one without nematic director fluctuations is best fitted by

the Maier-Saupe distribution. The values of S are shown in Table 3.2. In the sequel, we

calculate the actual nematic director for each configuration and ignore nematic director

fluctuations.

We plot the scattered intensity I(~q) in Fig. 3.5. As the simulated rods do not have any

inner structure we do not observe a diffusive ring at high values of scattering angle, and the

scattered patterns resemble those obtained from interparticle scatter in experiments [8]. In

experiments, the interparticle scatter is measured for 0 6 |~q|D 6 2π. We therefore focus

ourselves to this range in simulations. Moreover, for |~q|D ≫ 2π, the statistical accuracy

of I(~q) decreases significantly as F (~q) → 0 and the computational cost in measuring I(~q)
increases dramatically. Fig. 3.5a shows I(~q) for the isotropic phase at η = 0.1723. We

clearly see that I(~q) is isotropic and does only depend on |~q|. Figs. 3.5b-3.5d show the

scattered intensity for the nematic phase at varying η. We observe the typical anisotropic

pattern of the scattering as also found experimentally for nematic solutions of the TMV

and fd virus [8, 50].

In order to obtain information about the spatial order of the system, we investigate the

scattered intensity I(qr, qz) along the equators qz = 0 and qr = 0. We plot I(qr, 0)/N ,

F (qr, 0), and I(0, qz)/N in Fig. 3.6 for a nematic phase at η = 0.2092 and η = 0.2338.

The inset shows S(qr, 0) which is obtained by dividing the scattered intensity per particle
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by the formfactor (3.3). The intensity at |~q| = 0 is related to the isothermal compressibility

χT , i.e. I(0, 0) = NkBTχT/V , where kB is Boltzmann’s constant, T the temperature, and

χT = −1/V (∂V/∂P ) with P the pressure. In the Gaussian approximation, the pressure

of the nematic phase reads P ≃ 3NkBT/V , yielding I(0, 0) ≃ 1/3. Fig. 3.6 shows

indeed that I(0, qz) ≃ 1/3 for qz → 0 and that I(qr, 0) ≃ 1/3 for qr → 0. However, it is

difficult to obtain an accurate estimate of the intensity I(0, qz) for qz → 0 as the intensity

is a rapidly varying function of qz near the origin.

While the well-pronounced intensity peak as observed in x-ray diffraction experiments

of suspensions of colloidal fd virus and TMV [8, 50] is missing in our I(~q), we do clearly

observe a very broad peak in the structure factor, as found experimentally. The main rea-

son for the absence of the intensity peak is that the virus particles used in the experiments

carry a surface charge and are dressed with a cloud of co- and counterions, resulting in a

much larger effective diameter Deff of the particles compared to the actual (scattering)

diameter Dscat. Although the effective length-to-diameter ratio L/Deff of the fd or TMV

virus is close to our value for the length-to-diameter ratio L/D of the simulated rods,

the scattering length-to-diameter ratio L/Dscat is much larger than L/Deff . If we use

in our simulations of rods with L/D = 15, the formfactor of infinitely thin rods (which

is of course much broader than the one shown in Fig. 3.6 for finite L/D), we obtain an

intensity peak similar to the one found in experiments. The diameters Deff and Dscat

in the simulations can be varied such that it matches the experiments. However, vary-

ing the diameters does not change significantly the normalized arc intensity distribution,

and we therefore decided to use the same diameters for Deff and Dscat. The structure

factor peak is at about qrD ∼ 4 corresponding with scattering from typical distances

2π/qr ∼ 1.57D, which can be associated with the average rod separation in radial di-

rection. We also observe that the structure factor peak moves to higher qr at increasing

η as expected. Compared to the strongly peaked structure factor peak in experiments of

colloidal fd virus and TMV, we find a very broad structure factor peak in our simulations.

Again, the discrepancy in the sharpness of the structure factor peak can be explained by

the surface charge of the experimental rods, which increases the effective diameter of the

rods considerable compared to the actual scattering diameter Dscat in experiments. More-

over, we expect that the flexibility of the fd virus particles broadens the structure factor

peak compared to the rigid rods used in the simulations and counterbalances the effect of

charge. It is worth noting that no structure factor peak was found by Van der Schoot et al.

[58] using infinitely thin rods, i.e., D = 0 and ignoring the cylindrical Bessel function of

the first order in Eq. (3.7). An explanation is still lacking and it is interesting to study this

in more detail.

We also find parallel to the nematic director presmectic correlation peaks in the in-

tensity I(0, qz) at about qzD ∼ 0.4 corresponding with scattering from a typical distance

2π/qz ∼ 16D which is associated with the length of the rods. The appearance of pres-

mectic peaks are in agreement with theoretical predictions by Van der Schoot [59], who

observed that the primary peak diverges at the spinodal instability to the smectic phase. It

is worth noting that the presmectic peaks are already observed at packing fractions which

are a factor of two smaller than the packing fraction at which the nematic-smectic phase

transition occurs.

The scattered intensity in the direction of a vector ~q can be related to the orientational

distribution function. At small absolute values of the scattering angle where the diffraction

pattern depends on the structure factor one does not measure the single particle ODF but



ON THE ACCURACY OF MEASURING THE NEMATIC ORDER FROM X-RAY

DIFFRACTION: A SIMULATION STUDY 33

0.00 /2
0

2

4

6

8

f(
)

0 /2

1

f(
)/f

ex
ac

t(
)

 

 

 

Figure 3.2: Orientational distribution functions f(θ) for packing fraction η = 0.1846. The solid

line denotes the ”exact” ODF measured directly in simulation. The ”exact” ODF is fitted with the

Maier-Saupe distribution (�), the Onsager distribution (◦), and the Gaussian distribution (△). The

inset shows the fits divided by the ”exact” ODF.
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Figure 3.3: Orientational distribution functions f(θ) for packing fraction η = 0.2338. The solid

line denotes the ”exact” ODF measured directly in simulation. The ”exact” ODF is fitted with the

Maier-Saupe distribution (�), the Onsager distribution (◦), and the Gaussian distribution (△). The

inset shows the fits divided by the ”exact” ODF.
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Figure 3.4: The nematic order parameter S as a function of the packing fraction η obtained from

different routes: direct measurement of (3.6) –�–, using a Maier-Saupe fit of the ODF –△–, using

a Gaussian distribution fit of the ODF –▽–, using an Onsager distribution fit of the ODF –◦–, using

an Onsager distribution fit of the scattered intensity –×–, using a Maier-Saupe fit of the scattered

intensity –�–.

the coupled fluctuations of adjacent rods. This is expected to result in overestimation of

the order parameter [7, 60]. At sufficiently high values of the scattering vector, it is often

assumed that the structure factor approaches unity and the diffraction is determined by

the form factor only. Note, however, that Fig. 3.6 shows that our structure factor does not

approach unity for qrD < 2π. Averaging over all possible orientations of the rods, we

can approximate the scattering intensity to be

I(~q) ≃ F (~q) =
〈

|ϑ(~q; ω̂)|2
〉

=

∫

dΩ f(Ω)|ϑ(qr(Ω), qz(Ω))|2 (3.10)

where Ω is the solid angle (θ, ϕ) of a rod with respect to the nematic director (θ) and

azimuthally with respect to the incident beam (ϕ). Due to the axial symmetry relatively to

nematic director f(Ω) simplifies to f(θ). Using the explicit form of the Fourier transform

(3.7) this expression can be easily related to the intensity distribution along the equatorial

arc of diffraction pattern

I(q, ψ) =

2π
∫

0

dϕ

π/2
∫

0

dθ sin θf(θ)

[

j0

(

L

2
q cosα

)

J1

(

D
2
q sinα

)

D
2
q sinα

]2

(3.11)

where q is the absolute value of the scattering vector ~q along the arc, ψ is the angle with the

qr-axis as denoted in Fig. 3.5, and α is defined by cosα = sinψ cos θ + cosψ sin θ cosϕ.

This formula is difficult to use in the analysis of experimental data, and instead the ex-
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Figure 3.5: Density plots of the scattered intensity I(qr, qz) for varying packing fractions: a)

η = 0.1723 (isotropic), b) η = 0.1846, c) η = 0.2092, d) η = 0.2338. Bright areas correspond to

high and dark areas correspond to low scattered intensity.

pression relating I(ψ) to f(θ) proposed by Leadbetter is commonly used [7, 53]

I(ψ) =

π/2
∫

ψ

dθ
f(θ) sin θ

cos2 ψ
√

tan2 θ − tan2 ψ
. (3.12)

It does not depend on the absolute value of the scattering vector and is based on sev-

eral drastic assumptions which are discussed in [53, 60]. Leadbetter proposed it for the

intensity distribution along the “wide angle ring” corresponding to the lateral mean dis-

tance between neighboring molecules. An analytical inversion of this formula (3.12) was

proposed by Deutsch [52] and reads

f(θ) = − 1

N sin θ

d

dθ

π/2
∫

θ

dψI(ψ)
tanψ

√

tan2 ψ − tan2 θ
. (3.13)
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Figure 3.6: Intensity distribution per particle along the qr = 0 and qz = 0 directions: � I(qr, 0),

−�− I(0, qz) for η = 0.2092, ▽ I(qr, 0), −H− I(0, qz) for η = 0.2338, together with the

formfactor F (qr, 0) (+), which is not significantly distinct for these two packing fractions. The

inset shows the structure factor S(qr, 0) for the two packing fractions

with normalization constant N =
∫ π/2

0
f(θ) sin θdθ. This allows calculating the exact

form of ODF from X-ray diffraction data. However, using scattering data that includes

experimental and statistical errors, a numerical inversion of the integral equation is very

inaccurate. Hence, one often employs a trial function for the ODF with some fitting pa-

rameters. If one uses the Maier-Saupe distribution function f(θ) = N(α) exp(α cos2 θ),
the scattered intensity is described by [61, 62]

I(ψ) = N1(α)
exp(α cos2 ψ)√

α cosψ

√
π

2
erf(

√
α cosψ) (3.14)

with fitting parameter α. If we use the Onsager distribution function

f(θ) = α cosh(α cos θ)/ sinhα, the integration of (3.12) yields [63]

I(ψ) =
α

sinhα
[1 +

π

2
L1(α cosψ)] (3.15)

where L1(x) is the modified Struve function of the first order. Unfortunately, the Gaussian

form for the ODF does not lead to a simple expression for the intensity distribution.

Comparison of different distribution functions is straightforward due to simple nor-

malization rules. The Leadbetter expression provides similar normalization for scattered

intensity; provided that an orientational distribution function is properly normalized we

can integrate the intensity along the arc to obtain
π/2
∫

0

dϕI(ϕ) = π/2 which is independent

of the particular form of the trial ODF.

We determine the ODF from the intensity distribution along the equatorial arc of the

x-ray diffraction patterns for different absolute values of the scattering vector to check
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Figure 3.7: Equatorial intensity distributions I(ψ, |~q|) for packing fractions η = 0.1846, η =

0.2329, dots represent the intensities measured along several arcs with absolute value of scattering

vector between 1.2π < |q|D < 2π, solid lines are fits of these intensities with distributions (3.14)

(thick line) and (3.15) (thin line), dashed and dashed-dotted lines are the intensities obtained from

the formula proposed by Leadbetter formula using the fits of the “exact” orientational distribution

function with the Onsager and Maier-Saupe distributions, respectively.

how strong it depends on |~q|. This can serve as a test of the applicability of the formula

proposed by Leadbetter Eq. (3.12) which is independent on |~q|. In Fig. 3.7, we plot

equatorial intensity distributions for packing fractions η = 0.1846 and η = 0.2338 with

3.7 < |~q|D < 6.3. We do not observe strong dependence on |~q|, which agrees with the

assumption used in the formula proposed by Leadbetter. However, Fig. 3.6 shows that

the structure factor only tends to approach unity at the highest value of qr, i.e., qrD = 2π
and, the approximation I(~q) ≃ F (~q) is not valid.

We, however, do fit our measured intensities with the intensity distributions using the

Maier-Saupe distribution (3.14) and the Onsager distribution (3.15) and the corresponding

ODF’s are compared with the ones measured directly in simulation in Figs. 3.8 and 3.9.

Figs. 3.8 and 3.9 show clearly that the ODF obtained from scattered intensity are less

peaked than the “exact’ ones. Using the ODF’s from scattered intensity, we determine the

nematic order parameter using (3.1). The values of the nematic order parameter obtained

from scattered intensity underestimate the “exact” S by 2 − 9%. Although the “exact”

ODF is best fitted by the Maier-Saupe distribution, the Onsager distribution gives a better

estimate of the nematic order parameter calculated from scattered intensity as shown in

Figs. 3.8 and 3.9. On the other hand, the result of the Leadbetter formula supplied with

the fits using the Onsager and Maier-Saupe distribution of the “exact” ODF is compared

to the measured intensities in Fig. 3.7. Fig. 3.7 shows, that the intensity distributions

obtained from the fits of the “exact” ODF is more peaked than the measured intensity

distributions.

3.4 Conclusions

The orientational distribution function, the nematic order parameter, and the scattered in-

tensity are calculated in simulations for a system of hard spherocylinders with an aspect

ratio of 15 for varying densities in the isotropic and nematic phase. The angular distri-
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bution function in the nematic phase is well described by the Maier-Saupe distribution

when nematic director fluctuations are ignored. Including nematic director fluctuations,

the ODF is best fitted by the Gaussian distribution. The Leadbetter approach is found to

give a reasonable description of the x-ray scattering pattern, even when S(~q) 6= 1 and

thus spatial and orientational correlations are present. The values of the nematic order pa-

rameter S and the ODF’s obtained from interparticle scattering were compared with the

”exact” ones determined directly in simulation in order to study the effect of correlations

between the rods. We find that the values for S determined from interparticle scattering

are smaller than the “exact” ones by about 2-9 % and that the ODF’s are broader than the

“real” ones. We also find that the values for S and the ODF are rather insensitive to the

absolute value of the scattering vector which agrees well with the assumption proposed

by Leadbetter that I(q, ψ) along the equatorial arc does not dependent on |~q|.
The length-to-diameter ratio of the rods used in simulation are much smaller than

those used in experiments on colloidal fd virus and TMV. However, the effective anisotropy,

can be tuned by the salt concentration such that it approaches the value used in simula-

tion. It is interesting to investigate in more detail what the effect of anisotropy is on the

scattered intensity. As already explained above, one expects that the structure factor peak

becomes more pronounced along the qr-direction upon increasing the aspect ratio of the

rods. When the structure factor peak is sharper, one expects that S(~q) approaches 1 more

rapidly and that the influence of the structure factor and correlations become less im-

portant in the determination of the nematic order parameter and the ODF from scattered

intensity. One might also argue that a more pronounced structure factor peak as expected

at higher aspect ratios of the rods may yield a peak in the scattered intensity as observed

experimentally [8, 50], but which was never predicted theoretically [58]. This will be

investigated in future work.
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Figure 3.8: Orientational distribution functions f(θ) for packing fraction η = 0.1846. The solid

line denotes the ”exact” ODF measured directly in simulation. The scattered intensity is fitted

with the Maier-Saupe distribution (◦) and the Onsager distribution (△).
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Figure 3.9: Orientational distribution functions f(θ) for packing fraction η = 0.2338. The solid

line denotes the ”exact” ODF measured directly in simulation. The scattered intensity is fitted

with the Maier-Saupe distribution (◦) and the Onsager distribution (△).
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3.A Formfactor of a spherocylinder

3.A.1 contribution of a cylinder

The form factor of a spherocylinder is constructed from contributions of the cylinder part,

and of the spherical caps. First, let us consider the cylinder formfactor, which is basically

the Fourier transform of a density, considered constant inside the volume of a cylinder

and zero otherwise. To accomplish the integration over the volume of a cylinder it is

convenient to change to new coordinates, which are defined as follows

~r =







x

y

z






→







D
2
p cosφ

D
2
p sinφ
L
2
t






. (3.A.1)

It is basically cylindrical coordinates rescaled such that a cylinder of length L and diame-

ter D is described by the parameters −1 6 t 6 1, 0 6 p 6 1, and 0 6 φ 6 2π. Recalling

the corresponding Jacobian the volume differential can be written as

d~r =
LD2

8
dtdppdφ. (3.A.2)
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The integral over the volume of cylinder can be calculated as follows

∫

Vcyl
d~rei~q~r =

LD2

8

1
∫

−1

dt

2π
∫

0

dφ

1
∫

0

dpp exp

[

i

(

D

2
qxp cosφ+

D

2
qyp sinφ+

L

2
qzt

)]

=
LD2

8
2j0

(

L

2
qz

)

2π
∫

0

dφ

1
∫

0

dpp exp

[

i
D

2
p
√

q2
x + q2

y(cosψ cosφ+ sinψ sinφ)

]

=
LD2

8
2j0

(

L

2
qz

)

2π

1
∫

0

dppJ0

(

D

2
pqr

)

=
LD2

8
2j0

(

L

2
qz

)

2π
J1

(

D
2
qr
)

D
2
qr

= 2Vcylj0

(

L

2
qz

)

J1

(

D
2
qr
)

D
2
qr

,

(3.A.3)

where j0(x) is the zero order spherical Bessel function, J1(x) is the first order cylindrical

Bessel function and where Vcyl is the volume of a cylinder, and qr =
√

q2
x + q2

y .

3.A.2 contribution of the caps

Similarly, for the contribution of the semi-spherical caps

~r = ±







0

0
L
2






± D

2
t







sin θ cosφ

sin θ sinφ

cos θ






, d~r =

D3

8
t2 cos θdtdθdφ. (3.A.4)

The caps are described by 0 6 t 6 1, 0 6 θ 6 π, and 0 6 φ 6 2π. The Fourier transform

reads

∫

Vcaps
d~rei~q~r =

D3

8

1
∫

0

dt t2
π/2
∫

0

dθ sin θ

2π
∫

0

dφ ei
D
2

(qz cos θ+qx sin θ cosφ+qy sin θ sinφ)teiqz
L
2 +

D3

8

1
∫

0

dt t2
π
∫

π/2

dθ sin θ

2π
∫

0

dφ ei
D
2

(qz cos θ+qx sin θ cosφ+qy sin θ sinφ)te−iqz
L
2

=
D3

8
eiqz

L
2

1
∫

0

dt t2
1
∫

0

d cos θ

2π
∫

0

dφ ei
D
2

(qz cos θ+qr sin θ cosφ)t+

D3

8
e−iqz

L
2

1
∫

0

dt t2
0
∫

−1

d cos θ

2π
∫

0

dφ ei
D
2

(qz cos θ+qr sin θ cosφ)t

=
D3

8
2πeiqz

L
2

1
∫

0

dt t2
1
∫

0

d cos θ eiqz
D
2
t cos θJ0(qr

D

2
t sin θ)+

D3

8
2πe−iqz

L
2

1
∫

0

dt t2
0
∫

−1

d cos θ eiqz
D
2
t cos θJ0(qr

D

2
t sin θ).

(3.A.5)
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As long as the Fourier transform of the point-symmetric object is real, it is convenient to

separate the real and the imaginary parts of the integral over the volume of the caps

∫

Vcaps
d~rei~q~r =2π

D3

8
2 cos

(

qz
L

2

)

1
∫

0

dt t2
1
∫

0

d cos θ cos

(

qz
D

2
t cos θ

)

J0

(

qr
D

2
t sin θ

)

+

i2π
D3

8
2 sin

(

qz
L

2

)

1
∫

0

dt t2
1
∫

0

d cos θ sin

(

qz
D

2
t cos θ

)

J0

(

qr
D

2
t sin θ

)

.

(3.A.6)

Indeed, the angular integral in the imaginary part of this expression is recognized as the

Gegenbauer sine-integral [64] and equals zero, while the integration of the real part yields

[65]

∫

Vcaps
d~rei~q~r =

πD3

2
cos

(

qz
L

2

)

1
∫

0

dt t2
1
∫

0

dx
x√

1 − x2
cos

(

qz
D

2
t
√

1 − x2

)

J0

(

qr
D

2
tx

)

=
πD3

2
cos

(

qz
L

2

)

1
∫

0

dt t2j0

(

D

2
t
√

q2
z + q2

r

)

=
πD3

2
cos

(

qz
L

2

)

j1
(

D
2
q
)

D
2
q

,

(3.A.7)

where j1(x) is the spherical Bessel function of the first order and q =
√

q2
z + q2

r . For the

length-to-diameter ratio L/D = 15 used in the chapter, the contribution of the caps is

negligible and we set these to zero in our calculations of the diffraction patterns.

3.B Intensity distributions based on trial functions

The equation (3.12) proposed by Leadbetter for the intensity distribution I(ψ) can be

integrated for several trial functions. Here we give the expressions obtained by employing

the Maier-Saupe and the Onsager distribution functions. We were not able to find an

analytic expression using the Gaussian distribution function. Employing the Maier-Saupe

distribution function f(θ) = N(α) exp(α cos2 θ) yields

I(ψ) =

π
2
∫

ψ

dθ
eα cos2 θ sin θ

cos2 ψ
√

tan2 θ − tan2 ψ
=

1

cosψ

cosψ
∫

0

d cos θ cos θ
eα cos2 θ

√

cos2 ψ − cos2θ
=

1√
α cosψ

√
α cosψ
∫

0

dx x
ex

2

√

α cos2 ψ − x2
=

eα cos2 ψ

√
α cosψ

√
α cosψ
∫

0

d
√

α cos2 ψ − x2eα cos2 ψ−x2

=
eα cos2 ψ

α cos2 ψ

√
π

2
erf(

√
α cosψ). (3.B.8)
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And for the Onsager distribution function f(θ) = α cosh(α cos θ)/ sinhα:

I(ψ) =

π
2
∫

ψ

dθ sin θ
cosh(α cos θ)

cos2 θ
√

tan2 θ − tan2 ψ
=

1

cosψ

cosψ
∫

0

d cos θ
cosh(α cos θ) cos θ
√

cos2 ψ − cos2 θ
=

1
∫

0

dx x
cosh(αx cosψ)√

1 − x2
= −

√
1 − x2 cosh(αx cosψ)

∣

∣

∣

1

0
+α cosψ

1
∫

0

dx
√

1 − x2 sinh(αx cosψ)

= 1 +
π

2
L1(α cosψ). (3.B.9)

Here L1(x) is the modified Struve function of the first order.



4

Asymptotic decay of the pair

correlation function in molecular

fluids: application to hard rods

We investigate the asymptotic decay of the total correlation function h(1, 2) in molecular

fluids. To this end, we expand the angular dependence of h(1, 2) and the direct correlation

function c(1, 2) in the Ornstein-Zernike equation in a complete set of rotational invariants.

We show that all the harmonic expansion coefficients hl1l2l(r) are governed by a common

exponential decay length and a common wavelength of oscillations in the isotropic phase.

We determine the asymptotic decay of the total correlation functions by investigating

the pole structure of the reciprocal (q-space) harmonic expansion coefficients hl1l2l(q).
The expansion coefficients in laboratory frame of reference hl1l2l(r) are calculated in

computer simulations for an isotropic fluid of hard spherocylinders. We find that the

asymptotic decay of h(1, 2) is exponentially damped oscillatory for hard spherocylinders

with a length-to-diameter ratio L/D 6 10 for all statepoints in the isotropic fluid phase.

We compare our results on the pole structure using different theoretical Ansätze for c(1, 2)
for hard ellipsoids. The theoretical results show that the asymptotic decay of h(1, 2) is

exponentially damped oscillatory for all elongations of the ellipsoids.
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4.1 Introduction

The asymptotic analysis of pair correlation functions dates back to the work of Kirk-

wood [66], who showed that the total correlation function h(r) of a fluid with interatomic

potentials decaying faster then a power law, can be presented as a sum of exponential

contributions rh(r) =
∑

nAne
−α0,nr cos(α1,nr + θn) with An and θn the amplitude and

phase, respectively. Consequently, the asymptotics, i.e., the ultimate or leading decay of

h(r) is determined by the pole or poles closest to the real axis (smallest α0,n).

The asymptotic behavior of the pair correlation function plays a significant role in

the understanding of interfacial phenomena in fluids, e.g., it has an impact on the wet-

ting transition at wall-fluid interfaces [67, 68] as well as on the structure of interfaces

between coexisting phases [67, 69, 70]. For high temperatures and densities the asymp-

totic behavior is determined by repulsive forces, while at low densities and temperatures

attractive forces are more important and correlations exhibit monotonic decay. Consid-

ering a one-dimensional model, Fisher and Widom showed that there exists a line in the

temperature-density plane where the asymptotic decay of the pair correlation function

crosses over from monotonic to exponentially damped oscillatory behavior [71]. The

authors also conjectured that a similar transition should occur in three-dimensional sys-

tems provided that the potential is short-ranged. The Fisher-Widom line was calculated

for three-dimensional model fluids, e.g., the square-well fluid [68], Lennard-Jones fluid

[72, 73], (screened) Coulombic fluids [74, 75], hard-core attractive Yukawa fluids [76] and

general binary mixtures [77], screened-Coulomb charged hard sphere binary fluids [78],

binary Gaussian core mixtures [79], colloid-polymer mixtures [80], binary star-polymer

solutions [81], and binary hard-sphere mixtures [82]. The asymptotic decay of the radial

distribution function g(r) is determined by investigating the pole structure of the struc-

ture factor S(q) [68, 77]. Moreover, the asymptotic decay was also studied recently in

computer simulations [83]. Here, the longest range decay of the total correlation func-

tion h(r) = g(r) − 1 was determined by calculating the direct correlation function c(r)
from the simulated h(r) using the Ornstein-Zernike equation, in this way the truncated

Lennard-Jones and a hard sphere fluid were studied. In conclusion, the asymptotic decay

of pair correlations in simple fluids is well-studied by now. This should be contrasted to

molecular fluids, which show the existence of orientational degrees of freedom that in-

terplay in a nontrivial way with the translational degrees of freedom. To the best of our

knowledge, we are not aware of any study on the asymptotic decay of the total correlation

function h(1, 2) in fluids interacting with anisotropic pair potentials.

In this chapter, we give a brief summary of the asymptotics of the pair correlation

function of a fluid with short-ranged spherically symmetric pair potentials and we give a

generalization for fluids interacting with anisotropic interaction potentials. Expanding the

Ornstein-Zernike (OZ) equation in a complete set of rotational invariants, we show that in

the isotropic phase the asymptotic decay of all r-frame harmonic expansion coefficients

hl1l2l(r) is governed by a common exponential decay length and a common wavelength of

oscillations. The asymptotic decay is determined by the pole with the slowest exponential

decay of the q-space harmonic expansion coefficient hl1l2l(q), which is related through a

Hankel transform to the r-space harmonic expansion coefficient hl1l2l(r). Analogous to

our previous study of the Lennard-Jones fluid [83], we measure the space-fixed harmonic

expansion coefficients of the total correlation function hl1l2l(r), extract the expansion co-

efficients of the direct correlation function cl1l2l(r) using the harmonic expansion of the
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OZ equation, and determine the asymptotic behavior from the latter. We compare our

results for c(1, 2) with some theoretical Ansätze for c(1, 2).
This chapter is organized as follows: in Sec. 4.2, we briefly discuss the asymptotics of

the pair correlation function of a simple fluid with spherically symmetric pair potentials,

and we give a generalization for fluids interacting with anisotropic pair potentials. In Sec.

4.3, we present details on the simulations, from which we obtain the direct correlation

function. The results of c(1, 2) are compared with several theoretical Ansätze. Finally,

the results are discussed in Sec. 4.4.

4.2 Theory

4.2.1 Simple fluids

Below, we give a brief outline of the asymptotic decay of the pair correlation function of a

fluid with short-ranged, spherically symmetric interaction potentials. For more details, we

refer the reader to Refs. [68, 77]. The asymptotics of the total pair correlation function

h(r) = g(r) − 1 is most easily determined by investigating the pole structure of the

structure factor S(q).
In an isotropic homogeneous bulk fluid, all correlation functions depend on the abso-

lute distance and the Ornstein-Zernike (OZ) equation reads

h(r) = c(r) + ρ

∫

dr′c(|r − r′|)h(r′), (4.1)

where ρ is the bulk density. The OZ equation relates the total pair correlation function

h(r) to the direct correlation function c(r). The three-dimensional Fourier transform f̂(q)
of a spherically symmetric function f(r) reads

f̂(q) = 4π

∞
∫

0

dr r2f(r)
sin qr

qr
,

f(r) =
1

2π2

∞
∫

0

dq q2f̂(q)
sin qr

qr
,

(4.2)

and the OZ equation (4.1) in Fourier representation reads

ĥ(q) =
ĉ(q)

1 − ρĉ(q)
, (4.3)

where the convolution theorem is used. Applying the inverse Fourier transform, one ob-

tains

rh(r) =
1

4π2i

∞
∫

−∞

dqqeiqr
ĉ(q)

1 − ρĉ(q)
. (4.4)

For short-ranged or exponentially decaying pair potentials, where c(r) decays faster than

a power law, the asymptotic behavior of rh(r) is determined by the poles of ĥ(q), i.e.,

complex values of the wave number q = α1 + iα0 that satisfy

1 − ρĉ(q) = 0. (4.5)
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Here α0, α1 ∈ R. Eq. (4.4) can be evaluated by performing the contour integration on an

infinite semicircle in the upper half-plane, and provided all poles are simple, one obtains

rh(r) =
∑

n

Rne
iqnr, (4.6)

where qn is the n-th pole and 2πRn is the corresponding residue of qĉ(q)/(1 − ρĉ(q)) at

q = qn. The poles can be found by equating the real and imaginary part in Eq. (4.5),

yielding the following set of equations for α1 and α0































1 = 4πρ

∞
∫

0

dr r2 c(r)
sinh(α0r)

α0r
cos(α1r)

1 = 4πρ

∞
∫

0

dr r2 c(r) cosh(α0r)
sin(α1r)

α1r
.

(4.7)

Provided c(r) is known for a given statepoint, this set of equations can be used to find

the poles. In general, an infinite number of poles can be expected. However, the pole or

poles with the smallest imaginary part of qn has the slowest exponential decay, and dom-

inates the asymptotic behavior or longest range part of h(r). Two scenarios are possible:

(a) Pure exponential decay dominates at longest range, if a pole lying on the imaginary

axis, i.e., q = iα0, has the smallest value of α0. The pure imaginary pole can be ob-

tained from the first equation of (4.7) with α1 = 0. Using Eq. (4.6), we find that the

contribution of a pure imaginary pole to rh(r) is rh(r) ∼ A exp(−α0r) with 2πA the

corresponding residue. (b) Exponentially damped oscillatory decay with a wavelength

2π/α1 dominates at longest range, if a conjugate pair of poles q = ±α1 + iα0 has a

smaller imaginary part than the pure imaginary pole. The decay of rh(r) at longest

range is then determined by the contribution of the conjugate pair of complex poles:

rh(r) ∼ 2|A| exp(−α0r) cos(α1r − θ). Explicit formulas for the amplitude |A| and

phase θ are given elsewhere [75, 77].

For potentials, which are purely repulsive and of finite range, c(r) can be considered

negative for all r and thus no solution can be found for a pure imaginary pole, the fast

decaying positive tail of c(r), which appear in some theories and also simulations, do not

seem to play significant role for asymptotic decay. Consequently, one expects exponen-

tially damped oscillatory decay for fluids interacting with purely repulsive short-ranged

potentials.

4.2.2 Molecular Fluids

In molecular liquids, the interaction potential and, hence, the correlation functions, de-

pend no longer only on the absolute center-of-mass distance of the two particles, but

also on their orientations. We stress that this even holds in the isotropic phase. Con-

sequently, the structure in molecular fluids is described by the total correlation function

h(r1,u1, r2,u2) ≡ h(1, 2), where r1 and r2 are the center of mass coordinates of particle

1 and 2, and u1 and u2 denote the unit vectors defining the orientations of the molecules.

The interaction potential in molecular systems is usually very complicated, i.e., Lennard-

Jones potentials for each individual atom in a molecule and, thus, the orientational degrees
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of freedom mixes in a nontrivial way with the translational degrees of freedom. In this

chapter, we limit ourselves to uniaxially symmetric particles, which are invariant under

inversion of their principle axis. A simple model to study the interplay of translational

and rotational degrees of freedom is a fluid consisting of hard spherocylinders or hard

ellipsoids of revolution. These systems serve as simple models for molecular fluids and

lyotropic liquid crystals.

It is convenient to expand the total correlation function in a complete set of angu-

lar functions with expansion coefficients depending on the separation r = |r12| with

r12 ≡ r1 − r2 [13]. There are two common choices for this expansion. In one ex-

pansion, the molecular orientations are referred to an intermolecular reference frame in

which the polar axis is along the intermolecular vector r12. In the other expansion, the

molecular orientations are defined in a space-fixed or laboratory frame of reference. Here,

we employ the latter expansion:

f(r,u1,u2) =
∑

l1l2l

fl1l2l(r)Φl1l2l(u1,u2,ur), (4.8)

where ur is the unit vector in the direction of r12, and fl1l2l(r) are the harmonic ex-

pansion coefficients based on a laboratory reference frame. The rotational invariants

Φl1l2l(u1,u2,ur) are given by [12]

Φl1l2l(u1,u2,ur) =
∑

m1m2m

C(l1l2l;m1m2m)Yl1m1
(u1)Yl2m2

(u2)Y
∗
lm(ur) (4.9)

with C(l1l2l;m1m2m) the Clebsch-Gordon coefficient, Ylm(u) the spherical harmonics,

and ∗ indicates the complex conjugate. Selection rules require that l1, l2, l form a triangle,

for example, l must obey |l1 − l2| 6 l 6 (l1 + l2) [13].

Since our particles have uniaxial and head-to-tail symmetry, l1, l2, l are all even and

the harmonic expansion coefficients satisfy the symmetry property hl1l2l(r) = hl2l1l(r)
[12]. Moreover, all of the harmonic expansion coefficients are real, and consequently,

their transforms in Fourier space are even.

The direct correlation function c(1, 2) ≡ c(r1,u1, r2,u2) is defined through the Ornstein-

Zernike equation

h(1, 2) = c(1, 2) +
ρ

4π

∫

dr3du3c(1, 3)h(3, 2), (4.10)

where ρ is the number density. Expanding c(1, 2) and h(1, 2) in rotational invariants (4.8),

and applying the Fourier transform, one obtains [13]

hl1l2l(q) = cl1l2l(q) + (4π)−3/2 ρ
∑

l3l′l′′

hl3l2l′′(q)cl1l3l′(q)K
l1l2l
l′′l′l3

(4.11)

with the coefficients

K l1l2l
l′′l′l3

= (2l′ + 1) (2l′′ + 1)

(

l′ l′′ l

0 0 0

){

l1 l2 l

l′′ l′ l3

}

, (4.12)

where

(

l′ l′′ l

0 0 0

)

and

{

l1 l2 l

l′′ l′ l3

}

are the 3j and 6j symbols, respectively. Here

the r-space harmonic expansion coefficients fl1l2l(r) are related to the q-space harmonic
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expansion coefficients fl1l2l(q) through a Hankel transform

fl1l2l(q) = 4πil
∫ ∞

0

drr2jl(qr)fl1l2l(r),

fl1l2l(r) =
4π

(2π)3
(−i)l

∫ ∞

0

dqq2jl(qr)fl1l2l(q),

(4.13)

where jl(qr) is the spherical Bessel function. For l = 0, the Hankel transform coincides

with the Fourier transform (4.2).

The pole analysis for simple fluids described in Section 4.2.1 can be extended to

molecular fluids. If we truncate the expansion by imposing an upper limit l1, l2, l 6 lmax,

the set (4.11) can be solved by rewriting it as a simple matrix equation Aijhj = ci. The

component j of vector h is short for j = (l1l2l), the q-dependence is dropped for clarity

and the elements of matrix Aij are functions of cl1l2l(q). We give explicit expressions for

Aij in the Appendix for lmax = 2. It is straightforward to derive that hj = (A−1)jici
where (A−1)ji = |A|ij/|A| with |A|ij the cofactor of matrix element Aji. Hence, hl1l2l(q)
can be expressed as a function of cl1l2l(q) in the form hl1l2l(q) = Dl1l2l(q)/D(q). Here

D(q) = |A| is the determinant of the coefficients matrix of (4.11) and the determinants

Dl1l2l(q) are dependent on the indices (l1l2l). Both determinants are polynomials in

cl1l2l(q) [84].

The total pair correlation function can now be expressed as

hl1l2l(r) =
(−i)l
2π2

∫ ∞

0

dq q2jl(qr)
Dl1l2l(q)

D(q)
. (4.14)

By analogy with Eq. (4.4), the asymptotic behavior of hl1l2l(r) is determined by the poles

of hl1l2l(q). This is similar to the case of binary mixtures, for which it was shown explicitly

that a common denominator exists for all partial pair correlation functions in Ref. [77].

We stress that the situation here is more complicated than in the case of binary mixtures,

although formally there exists a common denominator for all hl1l2l(q) [77]. The matrix

equation (4.11) decouples into separate subsets each corresponding to a different value of

l2. In the Appendix we show explicitly that in the case of binary mixtures, the determinant

of the subsets are all equal. For molecular fluids, the coefficients matrix of (4.11) has

a block structure, but the dimension of the determinants varies for different values of

l2 as the selection rules exclude certain values of l1, l2, l for the expansion coefficients.

We now define |A(l2)| as the determinant of block l2. The expansion coefficient can be

expressed as hj = (A−1)ji ci where (A−1)ji = |A|ij/|A| with |A| =
∏

l′
2

|A(l′
2
)|, and

|A|ij = |A(l2)|ij
∏

l′
2
6=l2 |A(l′

2
))|. Hence, (A−1)ji reduces to (A−1)ji = |A(l2)|ij/|A(l2)|.

The asymptotic behavior of the total correlation functions is determined by the poles and

residues of hj and are thus determined by the zeros of the denominator |A(l2)|.
Consequently, only the harmonics belonging to a particular subset corresponding to

a certain value of l2 share the same determinant and the same pole structure. It should

be noted that the determinants for all the subsets contain all the cl1l2l(q) expansion coeffi-

cients, which are allowed by the selection rules.

Employing the symmetry property that the harmonic expansion coefficients are in-

variant under l1 ↔ l2 permutation, we can conclude that determinants corresponding to

blocks with different values of l2, being not equal in general, do share the zeros, and thus

all the expansion coefficients again share the same pole structure.
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This is similar to the case of (binary) mixtures, where the total pair correlation func-

tions hαβ(r) of species α and β possess the same characteristic decay length and, if

present, oscillatory wavelength for the asymptotic decay [77, 79]. This analogy is clear

as each harmonic expansion coefficient in the expansion of the Ornstein-Zernike equation

can be regarded as a separate species in a multi-component mixture. It also means that

the decay of correlations between two molecules at large distances from each other does

not depend on their relative orientations but is determined by the integral properties of the

fluid in between. We note that the amplitudes A and the phases θ are dependent on the

indices (l1l2l).
As mentioned before, Eq. (4.11) separates into independent subsets corresponding

to different values of l2. The most convenient subset is certainly the one corresponding

to l2 = 0. Selection rules imply that the only nontrivial expansion coefficients in this

set are those of type hl0l(q) ≡ hl(q). The 6j symbol contains now a zero in one of the

six positions. Employing the symmetry property that the 6j symbol is invariant under

permutations of the columns, one can evaluate the 6j symbol as follows

{

l1 0 l

l′′ l′ l3

}

=

{

l1 l 0

l′′ l3 l′

}

= (−)l1+l′′+l′ [(2l1 + 1)(2l′′ + 1)]−1/2δl1lδl′′l3 . (4.15)

The corresponding set simplifies to a simple matrix equation, which reads

hl(q) = cl(q) + ρ
∑

k

blk(q)hk(q), (4.16)

where the coefficients blk(q) are defined as

blk(q) = (4π)−3/2

√

2k + 1

2l + 1

∑

m

(2m+ 1)

(

m k l

0 0 0

)

clkm(q) (4.17)

with blk(q) = bkl(q)(2k + 1)/(2l + 1). The asymptotic behavior of hl0l(r) ≡ hl(r) is

determined by the poles of hl(q)

D[δlk − ρblk(α1 + iα0)] = 0. (4.18)

Thus, the complex values of q = α1 + iα0, at which one of the eigenvalues of ρblk(q)
equals 1, govern not only the asymptotic decay of the harmonic expansion coefficients

of type hl0l(r) but also of all the other expansion coefficients. The q-space coefficients

blk(q) can be obtained by employing the Hankel transform (4.13) of cl1l2l(r). In the case

of simple fluids, lmax can be set to 0 and Eq. (4.18) simplifies to (4.5). We follow the con-

vention, where c000(r) = (4π)3/2c(r), with c(r) the direct correlation function averaged

over all possible orientations.

We employ the following expression for the spherical Bessel functions

jn(x) = mn+1(x) sin(x) + pn(x) cos(x), (4.19)

wheremn+1(x) and pn(x) are polynomials of order −(n+1) and −n, respectively, which

can be obtained from the recurrence relations [85]. The integration limits in (4.14) can

be extended to (−∞;∞) and the resulting integral (4.20) can be carried out by contour

integration

hl(r) =
(−1)l/2

4π2

∫ ∞

−∞
dqq2 exp(iqr)[−iml+1(qr) + pl(qr)]

Dl[δlk − ρblk(q)]

D[δlk − ρblk(q)]
. (4.20)
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Provided all the poles are simple and leaving only the leading order, we find

rl+1hl(r) =
(−)l/2Ml+1

2π

∑

n

q1−l
n

Dl[δlk − ρblk(qn)]

D′[δlk − ρblk(qn)]
exp(iqnr), (4.21)

where Ml+1 is the coefficient of the leading power in ml+1(qnr) and D′[δlk − ρblk(qn)]
denotes the derivative of the determinant of (4.18) at q = qn. Eq. (4.21) generalizes the

corresponding expression for simple fluids, and can be used to determine the character

of asymptotic decay of correlations in molecular fluids provided the harmonic expansion

coefficients cl1l2l(r) are known. If the pole with the lowest imaginary value lies on the

imaginary axis then the asymptotic decay is pure exponential, otherwise it is determined

by a conjugate pair of poles and the asymptotic decay is exponentially damped oscillatory.

The number of harmonic expansion coefficients grows very quickly as lmax increases.

However, the determinant in (4.18) can be expanded in the density. If we keep only the

linear terms in the density, Eq. (4.18) simplifies to

(4π)−3/2ρ
∑

lm

(2m+ 1)

(

m l l

0 0 0

)

cllm(α1 + iα0) = 1. (4.22)

In the low density approximation only the diagonal expansion coefficients of the form

cllm(r) determine the asymptotic decay of the correlations.

4.3 Hard-rod fluids

The occurrence of both pure imaginary and complex poles in simple fluids is a conse-

quence of the fact that the pair potential contains attractive and repulsive parts. In the case

of simple fluids interacting with purely repulsive short-ranged potentials, the asymptotic

decay is exponentially damped oscillatory, as the direct correlation function is negative

(or close to zero) for all distances [83]. For instance, the asymptotic decay of h(r) in

the hard-sphere fluid is exponentially damped oscillatory for all statepoints, even for very

low densities. More significantly, perhaps, we did not find any pure imaginary pole, that

can give rise to monotonic asymptotic decay, using simulation data [86] for the c(r) of

hard spheres [83]. For molecular fluids interacting with purely repulsive short-ranged

potentials, there is no such simple argument about whether the asymptotic decay is ex-

ponentially damped oscillatory or monotonic. The aim of this chapter is to study the

asymptotic decay of the pair correlations in fluids consisting of hard spherocylinders and

hard ellipsoids. In particular, we explore whether a pure imaginary pole can be present in

hard-rod fluids and, if so, we investigate whether there is a crossover from damped oscil-

latory decay for hard spheres to monotonic decay upon increasing the aspect ratio. To this

end, we determine the harmonic expansion coefficients of the direct correlation function

cl1l2l(r) by simulations for hard spherocylinders and by different theoretical Ansätze for

hard ellipsoids. We describe the simulation results in Sec. 4.3.1 and the theoretical results

in Sec. 4.3.2

4.3.1 Simulations

We perform Monte-Carlo simulations of an isotropic fluid of hard spherocylinders, con-

sisting of a cylindrical part with diameter D and length L, and capped with hemispheres
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Figure 4.1: The selected harmonic expansion coefficients of the direct correlation function

cl1l2l(r) with l1l2l = 000, 220, 222, 440, 442 and 664 for a fluid of hard spherocylinders with

L/D = 10 and packing fraction η = 0.1592 obtained from simulations.

of diameter D at both ends. Note that the full length of the rod is equal to L + D. We

wish to determine the harmonic expansion coefficients of the direct correlation function in

laboratory frame. The approach is similar to Ref. [83], where the Ornstein-Zernike equa-

tion was used to determine the direct correlation function c(r) from the total correlation

function h(r) measured directly in simulations. In contrast to experiments, where only

information of a few harmonics are directly accessible, computer simulations provide a

way to measure all the expansion coefficients of the pair correlation function. To this

end, we calculate the harmonic expansion coefficients gl1l2l(r) in bins of width ∆r. By

applying the orthogonality condition of the spherical harmonics, Eq. (4.8) can be inverted

to yield [87]

gl1l2l(rj) =
(4π)3/2[(2l1 + 1)(2l2 + 1)(2l + 1)]1/2

ρV (rj)C(l1l2l; 000)N

〈

nj
∑

i=1

Pl1(cos θ1)Pl2(cos θ2)Pl(cos θr)

〉

,

(4.23)

where N is the number of particles, nj is the number of particle pairs whose center-

of-mass distances are within a range of rj ± ∆r/2, V (rj) denotes the volume of the

spherical shell of thickness ∆r centered at rj , and C(l1l2l; 000) are the Clebsch-Gordan

coefficients. The standard polar and azimuthal angles ui = (θi, φi) are used for the

orientations of particle i with 0 6 θi 6 π and 0 6 φi 6 2π.

The only relevant parameters that determine the thermodynamic properties of a fluid

of hard spherocylinders are the number density and the length-to-diameter ratio L/D.

We perform simulations of a system consisting of hard spherocylinders with a length-to-

diameter ratio of L/D = 5 and 10 at densities below the bulk isotropic-nematic transition

(ηINL/D=5 = 0.40, ηINL/D=10 ≈ 0.24 [18]). The simulations are started from an initial con-

figuration with all the center-of-masses of the rods distributed randomly in the simulation

box, but all the orientations aligned along one direction. We check for equilibrium by

monitoring the nematic order parameter. When equilibrium is reached, we perform pro-
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duction runs of 106 sweeps. The harmonic expansion coefficients of the pair correlation

function are sampled every sweep up to lmax = 10. The gl1l2l(r) profiles are accumulated

in bins of width ∆r = D/10. The simulations are computationally more expensive with

increasing L/D. For instance, the simulation for L/D = 10 at a density just below the

bulk isotropic-nematic transition takes about two months of ’500MHz R14000‘ processor

time. We are therefore restricted to length-to-diameter ratios L/D 6 10.

In contrast to earlier simulations, where the expansion coefficients were sampled in

molecular frame for calculating c(1, 2) in fluids of hard ellipsoids [88], we are able to

apply the Hankel transform directly to obtain the set of gl1l2l(q) from which we can ex-

tract hl1l2l(q) through hl1l2l(q) = gl1l2l(q) − (4π)3/2δ0l1δ0l2δ0l. Subsequently, we solve

the set (4.11) to find cl1l2l(q). Applying the inverse Hankel transform, we obtain the har-

monic expansion coefficients cl1l2l(r). Fig. 4.1 shows simulation results for a fluid of

N = 600 − 1200 hard spherocylinders in a volume V with L/D = 10 and packing frac-

tion η = (πD3/6 + πLD2/4)N/V = 0.1592. Fig. 4.1 shows only a selection of the

harmonic expansion coefficients cl1l2l(r). All the functions are short-ranged and decay

rapidly outside the overlap region r > L + D. At small r, the accuracy of cl1l2l(r) de-

creases significantly with increasing values of l1, l2, l, which is due to the truncation of

the Hankel transform. However, this does not have a strong impact on the values ob-

tained for the poles [83]. Fig. 4.1 shows that the position-position correlation function

c000(r) is negative inside the core, while the orientation-orientation correlation function

c220(r) is mostly positive, indicating an effective attraction between the rods with similar

orientations. Fig. 4.2 shows c000(r) for a hard spherocylinder fluid with L/D = 5 and

L/D = 10 at varying packing fractions. The direct correlation function averaged over all

possible orientations, i.e., c000(r), is negative inside the core independent of L/D, while

it oscillates close to zero outside the core. This is similar to the case of hard spheres

with diameter D. Groot et al. found a rapidly decaying tail in c(r) with |c(r)| 6 0.01 for

r > 2D using simulation data for h(r) in the OZ equation [86]. We observe clearly in Fig.

4.2 that c000(r) becomes more negative inside the core as the packing fraction increases

and the effect of repulsion becomes more important.
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Figure 4.2: Simulation results for the harmonic expansion coefficient of the direct correlation

function c000(r) for a fluid of hard spherocylinders with a length-to-diameter ratio L/D = 5 (left)

and packing fractions — η = 0.0979, −− η = 0.2003, · · · η = 0.3694, and L/D = 10 (right)

and packing fractions — η = 0.0922, −− η = 0.1257, · · · η = 0.1927.
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4.3.2 Model functions

In addition to the simulations, we also use two theoretical model expressions for the direct

correlation function. The first one is the Pynn [89] and Wulf [90] Ansatz: cPynn(1, 2) =
cHS(r/σ(1, 2), η), where cHS is the hard-sphere function evaluated at the same packing

fraction η as the molecular fluid, and σ(1, 2) = σ(û1, û2, r̂12) is the closest approach

distance for given orientations of molecules and center-center vector. The latter can easily

be calculated for hard ellipsoids of revolution [91]. Another Ansatz, we employ is due to

Parsons [92] and Lee [93]. It approximates the direct correlation function by a density-

scaled Mayer function cParsons(1, 2) = ϕ(η)f(1, 2). The Mayer function f(1, 2) = −1
for r 6 σ(1, 2) and f(1, 2) = 0 for r > σ(1, 2). The weight function reads ϕ(η) =
(1 − η/4)/(1 − η)4, which produces an accurate equation of state for hard spheres. We

calculate the harmonic expansion coefficients for cl1l2l(r) of a fluid consisting of hard

ellipsoids using the Pynn-Wulf and Parsons-Lee approximations. A selection of cl1l2l(r) is

shown in Fig. 4.3 for hard ellipsoids with an elongation of a/b = 10 and packing fraction

η = πab2N/6V = 0.1592. The major and minor axis of the ellipsoids are denoted by a
and b, respectively. For the theoretical Ansätze, we calculate only those harmonics that

are required for the low density approximation (4.22) with lmax = 10. While the particle

shape is different in our simulations and in our theories, the overall features of cl1l2l(r)
are similar. For instance, in both simulation and theory, c000(r) is negative, and c220(r)
and c440(r) are mostly positive inside the overlap region. In spite of moderate success of

the theoretical ansätze in the partial overlap region, inside the core region r/b < 1 they

fail to provide an adequate description. Indeed, the Parsons scaling depends on the Mayer

f(1, 2) function which is identically equal to −1 inside the core r/b < 1 (so that only

c000(r) is different from 0), while the Pynn approximation predicts the isotropic function

in the limit r → 0, so it fails to describe the harmonics which are not equal to zero at

r = 0.
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Figure 4.3: The selected harmonic expansion coefficients of the direct correlation function

cl1l2l(r) with l1l2l = 000, 220, 222, 440, 442 and 664 for a fluid of hard ellipsoids with elon-

gation a/b = 10 and packing fraction η = 0.1592 obtained from the Pynn-Wulff [89, 90] (dotted)

and Parsons-Lee [92, 93] (short-dashed) Ansätze.
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4.4 Results and discussion

We investigate the asymptotic decay of the total pair correlation functions for a fluid

of hard rods. We obtain the leading poles of hl1l2l(q) for a hard spherocylinder fluid by

solving Eq. (4.18) employing the harmonic expansion coefficients of the direct correlation

functions obtained from simulations, which were described in Sec. 4.3.1. In order to

locate the pure imaginary pole, we consider only the real part of (4.18) with the fixed

value of α1 = 0. Results for the pure imaginary pole and the pole off the imaginary axis

with the smallest value of α0 are shown in Fig. 4.4 for hard spherocylinders withL/D = 5
and 10, at varying densities in the isotropic phase ranging from very dilute to just below

the density at the bulk isotropic-nematic transition, and lmax = 10. For comparison, we
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Figure 4.4: The imaginary (α0) and real (α1) part of the leading poles obtained from simulations

of a fluid of hard spherocylinders with a length-to-diameter ratio L/D = 5 (left) and L/D = 10

(right). The symbols with α1 = 0 refer to the pure imaginary pole (open symbols) while those

with α1L/2π ∼ 1.3 refer to the lowest-lying complex pair q = ±α1 + iα0 (filled symbols, only

the pole with α1 > 0 is shown). The circles denote the results using the lmax = 0 approximation

(4.7), the triangles show the results using the low-density approximation (4.22) with lmax = 10,

and the squares the results for lmax = 10 in Eq. (4.18). The arrows denote the direction, in which

the density is increased. The dashed line show the results for lmax = 2 in Eq. (4.18) for the

complex pole, while the crossed squares denote the results for lmax = 4 for the pure imaginary

pole, showing the good convergence of lmax for L/D = 10.

also plot the results for the leading poles by solving Eq. (4.7), i.e, using only c000(r),
corresponding to lmax = 0, as in the case of spherically symmetric pair potential, and by

solving Eq. (4.22) with lmax = 10, which is based on a low density approximation. We

also check for convergence with respect to lmax in Eq. (4.18) for L/D = 10. The results

for lmax = 2 for the lowest lying conjugate pair of poles are shown by a dashed line in

Fig. 4.4. We find that it approaches the results of lmax = 10 very closely. For the pure

imaginary pole, we find bad convergence for lmax = 2, while good agreement is found for

lmax = 4. The crossed squares denote the results for lmax = 4. For all our simulations,

we find that lmax = 10 is sufficient to provide good convergence. Fig. 4.4 shows that

the period 2π/α1 obtained from the low density approximation (4.22) is larger than that

obtained from the lmax = 0 approximation (4.7). On the other hand, the inverse decay

length α0 from the low density approximation with lmax = 10 (4.22) is smaller than that

of the lmax = 0 approximation (4.7). The poles calculated using lmax = 10 in Eq. (4.18)
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lmax = 0, Eq. (4.7) lmax = 10, Eq. (4.22) lmax = 10, Eq. (4.18)

low density

L/D = 0 no - -

L/D = 5 no no yes

L/D = 10 no yes yes

Table 4.1: The occurrence of a pure imaginary pole in simulations of hard spheres (L/D = 0)

and hard spherocylinders (L/D = 5 and 10) using different approximations.

lie between the two approximations of Eq. (4.7) and (4.22).

In the case of the low density approximation (4.22) and the lmax = 0 approximation

(4.7), we did not find a pure imaginary pole forL/D = 5 and we plot only the lowest lying

conjugate pair of poles in Fig. 4.4 for the two approximations. For L/D = 10, we do find

a pure imaginary pole for the low density approximation (4.22) using lmax = 10, while it

is absent for the lmax = 0 approximation (4.7). In Table 1, we summarize the presence

or absence of the pure imaginary poles using different approximations and varying L/D.

We conclude that the appearance of a pure imaginary pole is more related to the positive

parts of the higher harmonic expansion coefficients in (4.18) than to the tiny positive tail

in c000(r) outside the core region. As for L/D = 10, the pure imaginary pole can even be

found using the low density approximation with lmax = 10 in contrast with L/D = 5, it

is tempting to argue that the occurrence of the monotonic pole is less sensitive for larger

L/D. In addition, we found good convergence for the value of the monotonic pole using

lmax = 4 in Eq. (4.18) for L/D = 10, and we can argue that the occurrence of the

monotonic pole is due to the positive part of c220(r) and c440(r).

ln
[r
h
l 1
l 2
l 3
(
r)

]

r/D
1 5 9

0

−3

−6

−9

Figure 4.5: The harmonic expansion coefficients of the total correlation functions obtained from

simulations for a fluid of hard spherocylinders with a length-to-diameter ratio L/D = 5, and

packing fraction η = 0.2003: ◦ ◦ ◦ ln[rh000(r)], + + + ln[rh220(r)]. The dashed line is the slope

predicted for the exponential decay using the pole analysis (4.18).
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As expected, the inverse decay length α0 decreases with increasing density. The varia-

tion of the period 2π/α1 is weak and changes roughly from 0.85 L to 0.70 L with increas-

ing density. We find that the imaginary part of both the pure imaginary pole and the lowest

lying complex pole becomes smaller, upon increasing the density toward the value at the

isotropic-nematic transition. In addition, the difference between the two imaginary parts

decreases with increasing density. However, we find that for all statepoints in Fig. 4.4, the

complex pole has always the smallest value of α0. Consequently, the asymptotic decay of

the total pair correlation function is exponentially damped oscillatory for a fluid of hard

spherocylinders with L/D 6 10 at all densities in the isotropic fluid phase. For packing

fractions just below the bulk isotropic-nematic transition, the pure imaginary pole and the

lowest lying complex pole (α1(L + D)/2π, α0(L + D)/2π) are given by (0, 0.53) and

(1.44, 0.35) for L/D = 5, and for L/D = 10 by (0, 0.57) and (1.36, 0.50). The differ-

ence between the imaginary parts of the imaginary and the complex pole decreases from

0.18 for L/D = 5 to 0.07 for L/D = 10. As our simulations are limited to L/D 6 10,

we are unable to investigate whether the monotonic pole will have a smaller imaginary

part than the complex pole and will become dominant upon increasing the aspect ratio.

It remains therefore an open question whether the asymptotic decay of the total pair cor-

relation function crosses over from exponentially damped oscillatory to monotonic upon

increasing the aspect ratio.

In addition, we performed very long simulations (5× 106 cycles) in order to study the

similarity of the decay of the harmonic expansion coefficients. In Fig. 4.5, we compare

the simulation results for two harmonic expansion coefficients of the total correlation

function h000(r) and h220(r) for L/D = 10 and η = 0.2003. For comparison, we also

show the slope predicted for the exponential decay using the pole analysis (4.18). As

the statistical accuracy of h000(r) and h220(r) is poor, it is hard to make any definite

statements on the decay of the harmonics. However, it is tempting to conclude that the

two expansion coefficients h000(r) and h220(r) decay similarly at intermediate range and

seem to agree with the decay predicted by the pole analysis.

We also employ the theoretical results for the direct correlation function as described

in Sec. 4.3.2 in our pole analysis. We obtain the leading poles of hl1l2l(q) for a fluid of

hard ellipsoids using the lmax = 0 approximation (4.7) and the low-density approximation

(4.22) with lmax = 10 employing cl1l2l(r) obtained from the Pynn-Wulff and Parsons-Lee

Ansätze. We did not find a pure imaginary pole using these Ansätze. Comparing c220(r)
and c440(r) in Fig. 4.1 and 4.3, we observe that the positive part, which is responsible

for the occurrence of the monotonic pole in the simulations, is smaller in the theoretical

Ansätze and apparently too weak to predict a pure imaginary pole. Fig. 4.6 shows only

results for the lowest lying complex pole with the smallest value of α0 for a fluid of hard

ellipsoids with an elongation of a/b = 5 and 10, at varying densities. The inverse decay

length α0 decreases upon increasing the density using the Parsons-Lee approximation

in agreement with simulations. However, the Pynn-Wulff approximation shows that the

value of α0 decreases and increases later upon increasing the density.

In Fig. 4.7, we show the lowest lying complex pole using the Parsons-Lee approxi-

mation for a fluid of hard ellipsoids for several packing fractions and varying elongations

1 6 a/b 6 25. We only show results using the low-density approximation (4.22) with

lmax = 10. Fig. 4.7 shows that the period of the oscillations 2π/α1 scales roughly with the

major axis of the ellipsoids, but decreases slightly upon increasing a/b. For an elongation

equal to one, the results are in agreement with those for hard spheres [83].
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Figure 4.6: The imaginary (α0) and real (α1) part of the lowest-lying conjugate pole q = ±α1 +

iα0 (only the pole with α1 > 0 is shown) of a fluid of hard ellipsoids with an aspect ratio a/b = 5

(left) and a/b = 10 (right). The circles denote the results using the lmax = 0 approximation (4.7)

and the triangles the results using the low-density approximation (4.22) with lmax = 10 employing

the Pynn-Wulff [89, 90] (upper half filled) and the Parsons-Lee [92, 93] (left half filled) Ansätze.

The arrows denote the direction, in which the density is increased. No pure imaginary pole is

found.

In conclusion, we have investigated the asymptotic decay of the total pair correlation

functions in fluids consisting of hard spherocylinders and hard ellipsoids. We determined

the harmonic expansion coefficients of the direct correlation function cl1l2l(r) by simula-

tions for hard spherocylinders using the OZ equation and by different theoretical Ansätze

for hard ellipsoids. We have shown that the anisotropy of the particles plays an important

role in the asymptotic decay of molecular fluids. Although the pair potential is purely re-

pulsive for hard rods, we do find the occurrence of a pure imaginary pole in our simulation

results. However, for all densities in the isotropic fluid phase, the oscillatory pole has a

smaller imaginary part than the pure imaginary pole, and the asymptotic decay of the total

pair correlation function is damped oscillatory for length-to-diameter ratios L/D 6 10.

It remains an open question whether the decay of the total correlation function at longest

range crosses over from damped oscillatory to monotonic upon increasing L/D. Em-

ploying the cl1l2l(r) for hard ellipsoids obtained from the Parsons-Lee and Pynn-Wulff

approximations, no pure imaginary pole was found. Consequently, the asymptotic decay

is predicted to be exponentially damped oscillatory for all elongations. In this chapter, we

have limited ourselves to the asymptotic decay of pair correlations in bulk fluids of par-

ticles interacting with anisotropic pair potentials. It is interesting to investigate whether

the pole structure given by hl1l2l(q) determines not only the decay of the total correlation

functions in a bulk fluid but also the decay of the one body density profiles at wall-fluid

interfaces. We plan to study this in future work.
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Figure 4.7: The imaginary (α0) and real (α1) part of the lowest-lying conjugate pole

q = ±α1 + iα0 (only the pole with α1 > 0 is shown) of a fluid of hard ellip-

soids for varying densities in the isotropic fluid phase and varying aspect ratios a/b =

1 (�), 1.5 (�), 3.2 (×), 6.0 (▽), 11 (+), 25 (◦) using the low-density approximation (4.22) with

lmax = 10 and employing the Parsons-Lee [92, 93] Ansätze.

4.A Appendix

4.A.1 Binary fluid mixtures

The pole analysis can easily be extended to binary mixtures. The OZ equation for a binary

(α, β) mixture in Fourier space reads [77]

hαβ(q) = cαβ(q) +
∑

γ

ργcαγ(q)hγβ(q) (4.A.1)

where ργ is the number density of species γ. It is convenient to write the OZ equation in

a simple matrix equation of the form Aijhj = ci, where component j of vector h is short

for j = (αβ), the q-dependence is dropped for clarity, and the elements of matrix Aij are

functions of cαβ:










1 − ρ1c11 −ρ2c12
−ρ1c12 1 − ρ2c22

1 − ρ1c11 −ρ2c12
−ρ1c12 1 − ρ2c22





















h11

h21

h12

h22











=











c11
c21
c12
c22











(4.A.2)

The coefficients matrix Aij has a block structure with identical blocks for each β. We

define |A(β)| as the determinant of block β, which are identical for each β. It is straight-

forward to derive that hj = (A−1)ji ci where (A−1)ji = |A|ij/|A| with |A| the product

of two identical determinants, |A| =
∏

β |A(β)|, and |A|ij = |A(β)|ij
∏

α 6=β |A(α)| the co-

factor of matrix element Aji. Hence, (A−1)ji reduces to (A−1)ji = |A(β)|ij/|A(β)|. The



ASYMPTOTIC DECAY OF THE PAIR CORRELATION FUNCTION IN MOLECULAR

FLUIDS: APPLICATION TO HARD RODS 59

asymptotic behavior of the total correlation functions are determined by the poles and

residues of hj . As these are determined by the zeros of a denominator |A(β)|, which is

identical for each β, all hj ≡ hαβ(q) exhibit the same pole structure and all hαβ(r)’s have

the same asymptotic decay. However, the amplitudes are dependant on indices αβ. It

is straightforward to extend the pole analysis to multi-component mixtures yielding that

there is only one decay length and (if applicable) one oscillatory wavelength that specifies

the asymptotic decay of all partial total correlation functions hαβ(r).

4.A.2 Molecular Fluids

In a similar way, the OZ equation for molecular fluids (4.11) can be expressed as a simple

matrix equation of the form Aijhj = ci. The component j of vector h corresponds to

j = (l1l2l). We give explicit expressions for Aij for lmax = 2. We first set K l1l2l
l′′l′l3

to one

for all values of (l′′, l′, l3, l1, l2, l) and ignore the selection rules for the indices l1l2l. The

matrix equation reads





























A
(l2=0)
ij ∅

∅ A
(l2=2)
ij

























































h000

h002

h200

h202

h020

h022

h220

h222





























=





























c000
c002
c200
c202
c020
c022
c220
c222





























(4.A.3)

where A
(l2=0)
ij = A

(l2=2)
ij and reads

A
(l2)
ij =











1 − ρ̂c000 − ρ̂c002 −ρ̂c000 − ρ̂c002 −ρ̂c020 − ρ̂c022 −ρ̂c020 − ρ̂c022
−ρ̂c000 − ρ̂c002 1 − ρ̂c000 − ρ̂c002 −ρ̂c020 − ρ̂c022 −ρ̂c020 − ρ̂c022
−ρ̂c200 − ρ̂c202 −ρ̂c200 − ρ̂c202 1 − ρ̂c220 − ρ̂c222 −ρ̂c220 − ρ̂c222
−ρ̂c200 − ρ̂c202 −ρ̂c200 − ρ̂c202 −ρ̂c220 − ρ̂c222 1 − ρ̂c220 − ρ̂c222











(4.A.4)

We define ρ̂ = (4π)−3/2ρ. The coefficients matrix Aij decouples into separate subsets,

which are all equal, for each value of l2. However, if we include K l1l2l
l′′l′l3

and employ the

selection rules, certain values of l1, l2, l for the expansion coefficients vanish and, we find:















A
(l2=0)
ij ∅

∅ A
(l2=2)
ij
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h220

h222















=















c000
c202
c022
c220
c222















(4.A.5)

where

A
(l2=0)
ij =

(

1 − ρ̂c000 −5ρ̂c022

−ρ̂c202 1 −
√

1
5
ρ̂c220 +

√

10
7
ρ̂c222

)

, (4.A.6)
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and

A
(l2=2)
ij =











1 − ρ̂c000 −
√

1
5
ρ̂c022

√

10
7
ρ̂c022

−
√

5ρ̂c202 1 −
√

1
5
ρ̂c220 −

√
5ρ̂c222

−
√

10
7
ρ̂c202 −

√

1
5
ρ̂c222 1 −

√

1
5
ρ̂c220 − 3

7

√

5
14
ρ̂c222











. (4.A.7)

The coefficients matrix Aij has still a block structure and decouples into separate sub-

sets corresponding to different values of l2. However, the dimension of the subsets differ

for different values of l2. We define |A(l2)| as the determinant of block l2. The expan-

sion coefficient can now be expressed as hj = (A−1)ji ci where (A−1)ji = |A|ij/|A|
with |A| =

∏

l′
2

|A(l′
2
)|, and |A|ij = |A(l2)|ij

∏

l′
2
6=l2 |A(l′

2)|. Hence, (A−1)ji reduces to

(A−1)ji = |A(l2)|ij/|A(l2)|. The asymptotic behavior of the total correlation functions is

determined by the poles and residues of hj ≡ hl1l2l(q) and are, thus, determined by the

zeros of a denominator |A(l2)|. Consequently, only the harmonics belonging to a particu-

lar subset corresponding to a certain value of l2 share the same determinant and the same

pole structure. Employing the symmetry property that the harmonic expansion coeffi-

cients are invariant under l1 ↔ l2 permutation, we find that the determinants of different

blocks, which are not equal in general, should share the zeros, i.e., hl1l2l(q) should exhibit

the same pole structure as hl2l1l(q), resulting in the same asymptotic decay of hl1l2l(r) and

hl2l1l(r). More explicitly, in the case of lmax = 2, we find a common asymptotic decay for

h000(r) and h202(r) and for h022(r), h220(r), and h222(r). The l1 ↔ l2 symmetry property

yields that the asymptotic decay of h202(r) and h022(r) are equal and, hence, all hl1l2l(r)
have the same asymptotic decay.

4.B Asymptotic decay of the pair correlation function in

Onsager theory.

The approach that we used to determine the pole structure for the two Ansätze is identi-

cal to the one that was used in simulations. However, the Onsager theory as well as the

Parsons-Lee ansätz allows for a more straightforward treatment. Here we will only dis-

cuss the Onsager theory, although the derivation follows the same line for the Parsons-Lee

ansätze.

The Onsager theory describes a fluid of long rods with an aspect ratio L/D → ∞.

Using the second virial approximation, the excess free enrgy reads

βF [ρ] =

∫

d~rdω̂ρ(~r, ω̂)(log ρ(~r, ω̂)−1)− 1

2

∫

d~rdω̂d~r′dω̂′fM(~r, ω̂;~r′ω̂′)ρ(~r, ω̂)ρ(~r′, ω̂′),

(4.B.1)

one can see that the direct correlation function for this model is simply equal to the Mayer

function

cOns(~r, ω̂;~r′ω̂′) = fM(~r, ω̂;~r′ω̂′), (4.B.2)

where the Mayer function fM(~r, ω̂;~r′ω̂′) = exp[−βu(~r, ω̂;~r′ω̂′)] − 1 equals −1 for over-

lapping rods and 0 if the rods do not overlap.

Then the Fourier transform c(~q; ω̂1, ω̂2) of the direct correlation function can be calcu-

lated analytically. In the limit L/D → ∞ we can neglect contributions due to cap-cap and
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cap-cylinder interactions, and thus only the cylinder-cylinder contributions are discussed

here.

Two cylinders with orientations ω̂1 and ω̂2, length L and diameter D overlap if the

separation ~rcc of the two centers of mass is in the parallelepiped described by

~rcc =
L

2
r1ω̂1 +

L

2
r2ω̂2 +Dr3v̂ (−1 6 ri 6 1 for i = 1, 2, 3), (4.B.3)

where the unit vector v̂ is given by v̂ = (ω̂1 × ω̂2)/ sin γ, and sin γ is the sine of the angle

between ω̂1 and ω̂2. The integration with Jacobian d~rcc = 1
4
L2D sin γdr1dr2dr3 yields

c(~q; ω̂1, ω̂2) = −
∫

d~rcc exp(i~q~rcc)

= −2L2D sin γj0(D~q · v̂)j0(
L

2
~q · ω̂1)j0(

L

2
~q · ω̂2).

(4.B.4)

It is most convenient to expand the direct correlation function (4.B.4) in molecular

frame, i.e. the frame with one of the axes aligned along ~r2 − ~r1 direction

cl1l2m(q) =

∫

dΩ1dΩ2cmf (q, ω̂1, ω2)Yl1m(ω1)Yl2m(ω2), (4.B.5)

with the cmf standing for the direct correlation function (4.B.4) with the arguments of the

Bessel functions j0 calculated in molecular frame

cmf (q, ω̂1, ω̂2) =

− 2L2D sin γj0

(

L

2
q cos θ1

)

j0

(

L

2
q cos θ2

)

j0

(

Dq sin θ1 sin θ2

sin γ
sin(φ2 − φ1)

)

.

(4.B.6)

After some manipulation the expansion coefficients of the direct correlation function in

Fourier space can written as

cl1l2m(q) = alll2m

∫ 1

−1

dx1Pl1m(x1)j0

(

L

2
qx1

)∫ 1

−1

dx2Pl2m(x2)j0

(

L

2
qx2

)

Km(x1, x2),

(4.B.7)

with x1, and x2 standing for cos θ1 and cos θ2 correspondingly,

al1l2m ≡ (−)m+18πL2D

√

(2l1 + 1)(2l2 + 1)

(4π)2

(l1 −m)!(l2 −m)!

(l1 +m)!(l2 +m)!
, (4.B.8)

and

Km(x1, x2) ≡ lim
D→0

∫ π

0

dϕ cosmϕ sin γj0

(

Dq
√

(1 − x2
1)(1 − x2

2)

sin γ
sinϕ

)

=

∫ π

0

dϕ cosmϕ sin γ.

(4.B.9)

Harmonic expansion coefficients in laboratory frame, which enter the pole analysis,

can be then easily calculated via

cl1l2l(q) = (4π)1/2

l
∑

m=−l

(

l1 l2 l

m m 0

)

cl1l2m(q). (4.B.10)
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Figure 4.8: The imaginary (α0) and real (α1) parts of the lowest-lying conjugate poles q = ±α1+

iα0 for the spherocylinders in Onsager approximation. Density ranges from 0.15 6 ρOns 6 3.10

which covers the whole isotropic part of the phase diagram. The arrows denote the direction in

which the density is increased.

The expression (4.B.7) shows that in Onsager limit any solution of equation (4.18) scales

exactly as 1/L which was conjectured in section 4.4, and which is not surprising as this

is the only relevant length scale in the system.

Figure 4.8 shows the two lowest lying poles of the isotropic phase for varying den-

sity. The figure 4.8 suggests that the asymptotic decay of the pair correlation function is

monotonic for all densities in the isotropic phase. It illustrates that the introduction of

orientational degrees of freedom can result in monotonic asymptotic decay. However no

leading monotonic poles were found in the previous sections for finite L/D ratios. This

suggests that there must be a crossover at L/D ratios larger then studied there. The study

of the Parsons-Lee ansätz using a procedure as described here should be able to answer

this question.
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Phase behavior of a suspension of

colloidal hard rods and non-adsorbing

polymer

We study the phase behavior of a mixture of colloidal hard rods with a length-to-diameter

ratio of L/σc = 5 and non-adsorbing ideal polymer. We map our binary mixture onto an

effective one-component system by integrating out the degrees of freedom of the polymer

coils. We derive a formal expression for the exact effective Hamiltonian of the colloidal

rods, i.e., it includes all effective many-body interactions and it is related to the exact free

volume available for the polymer. We determine numerically on a grid the free volume

available for the ideal polymer coils “on the fly” for each colloidal rod configuration dur-

ing our Monte-Carlo simulations. This allows us to go beyond first-order perturbation the-

ory, which employs the pure hard-rod system as reference state. We perform free energy

calculations for the isotropic, nematic, smectic, and crystal phase using thermodynamic

integration. We use common tangent constructions at fixed polymer fugacities to map out

the phase diagram. We determine the phase behavior for size ratios q = σp/σc = 0.15,

0.5, and 1, where σp is the diameter of the polymer coils. We compare the phase diagrams

based on the full effective Hamiltonian with those obtained from first-order perturbation

theory, from simulations using the effective pair potential approximation to the effective

Hamiltonian and with those based on an empiric effective depletion potential for the rods.

We find that the many-body character of the effective interactions stabilizes the nematic

and smectic phase for large q, while the effective pair potential description overestimates

the attractive interactions and favors, hence, a broad isotropic-crystal coexistence.



64 CHAPTER 5

5.1 Introduction

The addition of non-adsorbing polymer to a suspension of colloidal rods can be used to

purify the rods [94] or to modify the effective interactions between the rodlike particles

[95]. The presence of polymer leads to an effective attraction between the rods due to

the so-called depletion effect [96]. The range of this attraction is equal to the radius

of gyration of the polymer coils and the strength of the attraction is proportional to the

fugacity of the polymers [96, 97].

For spherical colloids, a particularly simple model for colloid-polymer mixtures was

proposed by Vrij [97], which is often referred to as the Asakura-Oosawa-Vrij (AO) model.

In this model, the colloids are modeled as hard spheres with diameter σc, while the poly-

mer coils with diameter σp are assumed to be ideal and non-interacting. Moreover, the

polymer coils are excluded by a center-of-mass distance of (σc +σp)/2 from the colloids.

In this simple model colloid-polymer mixture, Vrij showed the existence of a spinodal

instability. Moreover, the effective two-body or Asakura-Oosawa depletion potential can

be calculated analytically for this highly idealized model. Gast et al. calculated phase

diagrams using this effective pair potential in first-order thermodynamic perturbation the-

ory and employing the hard-sphere system as a reference state [98]. They found that

the addition of polymer can give broad fluid-solid coexistence regions, but also stable

fluid-fluid and colloidal gas-liquid-solid coexistence, for sufficiently large polymer coils.

Similar phase diagrams were determined by Lekkerkerker et al. using the so-called free-

volume approach [99] and by Meijer and Frenkel using computer simulations with lattice

polymers [100, 101]. Recently, another approach was followed in Ref. [102–106], which

is based on a mapping of the binary mixture onto an effective one-component system.

A formal expression for the effective colloid Hamiltonian can be derived by integrat-

ing out formally the degrees of freedom of the polymer coils in the partition function

[105–107]. This effective Hamiltonian consists of zero-body, one-body, two-body, and

higher-body terms, where the two-body (pairwise-additive) term is precisely that given

by the Asakura-Oosawa depletion potential. For size ratios q < 2/
√

3 − 1 = 0.1547,

three- and higher-body terms are zero and the mapping onto an effective Hamiltonian

truncated at the effective pair-potential level is exact. Full phase diagrams using the two-

body (Asakura-Oosawa pair potential) approximation to this effective Hamiltonian were

determined by computer simulations [108]. For higher size ratios, however, three- and

higher-body effective interactions are not necessarily small. We therefore developed an

efficient Monte-Carlo simulation scheme for the AO model, based on the exact or full

effective colloid Hamiltonian, i.e., it includes all the effective many-body interactions

[105, 106]. Employing this scheme, we are able to study the full phase diagram and

we found that the effective many-body interactions can significantly alter the phase be-

havior of colloid-polymer mixtures. In conclusion, the AO model is well-studied and

well-understood by now for colloidal hard spheres. This should be contrasted to the case

of non-spherical particles.

The effect of non-adsorbing polymer on the isotropic-nematic transition of rod-like

colloids was investigated by Lekkerkerker et al. [109, 110] using perturbation theory.

The free volume accessible to the polymers was calculated using scaled particle theory.

Simulations of mixtures of colloidal hard rods with polymer are, however, less advanced.

Approximate phase diagrams are determined for hard spherocylinders and ideal polymer

using thermodynamic perturbation theory and measuring the free volume available for
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the polymer in a pure hard-spherocylinder system in simulations [110]. The isotropic-

isotropic coexistence was, however, determined by performing Gibbs ensemble simu-

lations of the true binary colloidal rod-polymer mixture [110]. As there is no general

expression for the effective polymer-mediated pair potential for two rods with arbitrary

orientations and positions, Bolhuis et al. used a generalized square-well potential to draw

some qualitative conclusions on the phase behavior of short-ranged attractive rods [110].

The crystal phase was, however, not included in this study.

In the present chapter, we describe simulations of mixtures of colloidal hard rods and

ideal polymer using the exact effective one-component Hamiltonian, i.e., it includes all

the effective many-body interactions. We therefore extended our Monte-Carlo simulation

scheme [105, 106] for the effective colloid Hamiltonian to rodlike particles. Employing

this scheme, we are able to study the full phase diagram for arbitrary values of q. We

compare our simulation results with those obtained from thermodynamic perturbation

theory using the hard-spherocylinder system as reference state. In addition, we compare

the phase diagrams with those obtained from simulations using the effective pair potential

approximation to the effective Hamiltonian. This allows us to estimate the significance

of the effective many-body interactions. We also propose a new two-parameter effective

pair potential to approximate the volume of two overlapping depletion zones.

This chapter is organized as follows. In Sec. 5.2, we describe the model and present

an explicit expression for the effective one-component Hamiltonian by integrating out

the degrees of freedom of the polymer coils in the partition function. We also introduce

the two-parameter effective pair potential to approximate the depletion pair potential, i.e.,

the volume of two overlapping depletion zones. In Sec. 5.3 we describe the simula-

tion scheme based on the exact or full effective colloid Hamiltonian, and in Sec. 5.4 we

present phase diagrams based on i) the exact effective Hamiltonian, ii) the exact effective

Hamiltonian but using first-order perturbation theory, iii) the effective pair potential ap-

proximation to the effective Hamiltonian and iv) an empiric effective depletion potential

for the rods. We end with some concluding remarks.

5.2 Model

5.2.1 Effective Hamiltonian

A simple model for a mixture of sterically-stabilised colloidal particles and non-adsorbing

polymer is the so-called Asakura-Oosawa-Vrij (AO) model [96, 97]. In this model, the

colloids are treated as hard particles, while the non-interacting polymer coils are treated

as point particles, which are excluded from the surface of the colloids by a distance equal

to the radius of gyration of the polymer Rg. The diameter of the polymer coils is σp =
2Rg. The colloids are represented by hard spherocylinders, which consist of cylinders of

diameter σc and length L with semi-spherical caps at both ends with diameter σc. The
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pair potentials in this model are given by:

φcc(Rij; ω̂i, ω̂j) =

{

∞ for dm(Rij; ω̂i, ω̂j) < σc

0 otherwise

φcp(Ri − rj; ω̂i) =

{

∞ for dm(Ri − rj; ω̂i) < σcp/2

0 otherwise

φpp(rij) = 0,

where σcp = σc + σp, Rij = Ri − Rj with Ri and Rj the center-of-masses of the

spherocylinders and dm(Rij; ω̂i, ω̂j) denotes the minimum distance between the central

axes of the two spherocylinders with orientations ω̂i and ω̂j , dm(Ri−rj; ω̂i) the minimum

distance between the spherocylinder axis and the polymer center-of-mass at rj in the case

of colloid-polymer interactions, and rij = |ri− rj| the distance between the two polymer

center-of-masses.

The total Hamiltonian of a mixture of Nc colloidal rods and Np ideal polymer coils

in a volume V and at temperature T reads H = Hcc + Hcp + Hpp, where Hcc =
∑Nc

i<j φcc(Rij; ω̂i, ω̂j), Hcp =
∑Nc

i=1

∑Np

j=1 φcp(Ri−rj; ω̂i), andHpp =
∑Np

i<j φpp(rij) = 0.

In this chapter, we map the rod-polymer mixture with interaction Hamiltonian H
onto an effective one-component colloid system interacting with the effective Hamilto-

nian Heff. Here we briefly sketch the derivation of a formal expression for the effective

Hamiltonian for colloidal particles that possess orientational degrees of freedom, obtained

by integrating out the degrees of freedom of the polymer coils in the partition function.

For more details, we refer the reader to Refs. [102–106].

We fix the number of colloidal rods Nc and the fugacity zp = Λ−3
p exp(βµp) of the

polymer coils, where Λν denotes the thermal wavelength of species ν = c, p, µp the chem-

ical potential of the reservoir of polymer coils and β = 1/kBT the inverse temperature.

The thermodynamic potential F (Nc, V, zp, T ) of this system can be written as

exp[−βF ] =
1

Nc!Λ3Nc
c

Trc exp[−βHeff], (5.1)

where Heff = Hcc + Ω and the trace Trc is short for the integrals over the coordinates

and the orientations of the rods
∫

V
dRNc

∫

dω̂Nc . Because of the ideal character of the

polymer-polymer interactions in the AO model, βΩ simplifies to

−βΩ = zp

∫

V

dr exp[−β
Nc
∑

i=1

φcp(Ri − r; ω̂i)] = zpVf , (5.2)

where Vf = Vf ({R; ω̂}; zp) is the volume available for polymer, which depends on the

static configuration of Nc colloidal rods with positions {Ri} and orientations {ω̂i}; i =
1, 2, . . . Nc. Non-vanishing contributions to Vf stem from those positions r that are outside

any of the Nc depletion zones. Once Vf , and thus Heff, are known for each colloidal

rod configuration, the thermodynamics and the phase behavior of the mixture can be

determined. We first show that Vf , and hence, the polymer-induced colloid interactions

Ω can be split into zero-body, one-body, two-body, etc. contributions. To this end, we

expand Vf in terms of the colloid-polymer Mayer-function f(Ri − r; ω̂i), which for the
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present model equals −1 for 0 < dm(Ri−r; ω̂i) < σcp/2, and 0 otherwise, with dm(Ri−
r; ω̂i) the minimum distance between the spherocylinder axis and position r. We arrive at

Vf =

∫

dr
Nc
∏

i

[1 + f(Ri − r; ω̂i)] = V
(0)
f +

Nc
∑

i

V
(1)
f (Ri; ω̂i)+

+
Nc
∑

i<j

V
(2)
f (Ri,Rj; ω̂i, ω̂j) + . . .

+
Nc
∑

i1<...<ik

V
(k)
f (Ri1 , . . . ,Rik ; ω̂i1 , . . . , ω̂ik) + . . . , (5.3)

where the zero-body contribution V
(0)
f is equal to the volume of the system V . For k > 1,

we find

V
(k)
f =

∫

dr

k
∏

m=1

f(Rim − r; ω̂im). (5.4)

The one-body contribution can be interpreted as the volume that is excluded for a polymer

coil by a single rod. The two-body term is the overlap volume of two depletion zones

of two colloidal rods. Introducing n = n(r) ≡ −∑Nc

i=1 f(Ri − r; ω̂i), the number of

simultaneously overlapping depletion layers in r, one finds the identity

Nc
∑

i1<...<ik

V
(k)
f (Ri1 , . . . ,Rik) = (−1)k

∫

n≥k
dr

n(r)!

(n(r) − k)!k!
. (5.5)

All k′ ≥ k terms in Eq. (5.3) can be summed to obtain (for the present Mayer function

only)

V
(k+)
f =

∑

k′>k





Nc
∑

i1<...<ik′

V
(k′)
f (Ri1 , . . . ,Rik′

; ω̂i1 , . . . , ω̂ik′ )





=
(−)k

(k − 1)!

∫

n≥k
dr

k−1
∏

i=1

(n(r) − i).

(5.6)

The terms V
(0)
f , V

(1)
f are irrelevant offsets that do not influence the thermodynamic prop-

erties of the bulk mixture [104]. Setting V
(3+)
f equal to zero, the pairwise additivity ap-

proximation is recovered.

5.2.2 Effective pair potential description

In the case of spherical colloids, it can be shown explicitly that for sufficiently small

polymer coils, the three-body and higher-body terms are identically zero, and that the

mapping onto an effective Hamiltonian truncated at the effective pair-potential level is

exact. Hence, the pairwise additivity approximation to the effective Hamiltonian, i.e.,

V
(3+)
f = 0, proves to be a reasonable approximation to predict the phase behavior of

the AO model for polymer coils that are small compared to the size of the colloids. For

spherical colloids, the effective pair-potential is given by the Asakura-Oosawa depletion
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potential [96], which is known analytically, while V
(3+)
f can only be evaluated numer-

ically [106]. In the case of colloidal rods, the overlap volume of two infinitely long

cylindrical depletion zones can be calculated exactly [111, 112]. However, no analytic

expression exists for the overlap volume of two depletion zones of finite spherocylinders

with arbitrary orientations and positions and, hence, V
(2)
f can only be calculated numer-

ically. The numerical evaluation of V
(2)
f is almost as expensive as V

(2+)
f , that includes

all the effective many-body interactions. It is therefore useful to have a good model pair

potential that is mathematically simple and fits reasonably well the exact overlap volume

of two depletion zones. Bolhuis et al. [110] approached this problem by using a gener-

alized square-well potential, which provides qualitatively correct phase diagrams, when

the size of the polymer is small compared to the diameter of the rods. It lacks, how-

ever, quantitative agreement with the exact overlap volume of the depletion zones of two

spherocylinders, thereby overestimating significantly the attraction (especially at larger

distances).

Here we propose a two-parameter pairwise additive depletion potential βφdep(Rij, ω̂i, ω̂i)
to approximate the exact overlap volume of the depletion zones of two spherocylinders

Voverlap(Rij, ω̂i, ω̂j), and hence βφdep(Rij, ω̂i, ω̂i) ≃ −zpV (2)
f = −zpVoverlap(Rij, ω̂i, ω̂j).

We start with the assumption that the overlap volume of the depletion zones can be fit-

ted by the overlap of two axially symmetric anisotropic Gaussian functions. The overlap

integral of two Gaussian distributions can be calculated exactly to give [91]

φdep(Rij, ω̂i, ω̂j) = ε(ω̂i, ω̂j)e
−R2

ij/σ(R̂ij ,ω̂i,ω̂j)
2

(5.7)

where R̂ij is the unit vector in the direction of the center-of-mass distance of two rods,

Rij ≡ |Ri−Rj|, ε(ω̂i, ω̂j) is the angle-dependent strength parameter given by ε(ω̂i, ω̂j) =
ε0(1−χ2(ω̂i·ω̂j)2)−1/2, with the parameter χ determined by the anisotropy of the particles,

and σ(R̂ij, ω̂i, ω̂j) is the angle-dependent range parameter. Various modifications of these

single site potentials with angle-dependent strength and range parameters exist [113–115]

tailored to fit the wide range of anisotropic interactions.

Here we construct a modified single-site potential that fits reasonably well the exact

overlap volume of the depletion zones. The first modification is to replace the center-to-

center distance Rij in (5.7) to the minimum distance x = dm(Rij; ω̂i, ω̂j)/σcp between

the spherocylinder axes together with a replacement of the angle-dependent range pa-

rameter σ(R̂ij; ω̂i, ω̂j) by simply the isotropic interaction range σcp, such that the range

of the potential at the minimum distance is independent of the orientation. The second

modification is to replace the Gaussian potential in Eq. (5.7) by a more realistic expres-

sion. The first option is to use the volume excluded by two spheres, which fits accurately

the interaction of perpendicular cylinders, or parallel ellipsoids. Moreover this choice is

convenient for an extrapolation from hard rods to hard spheres using a Parsons approach.

As this chapter is focused on the liquid crystalline behavior of elongated rods, we use

here the overlap volume of two parallel cylinders with diameter σcp per unit length at a

minimum distance x

f(x) =
σ2
cp

2

[

arccos(x) − x
√

1 − x2
]

. (5.8)

In addition, we define a new strength parameter, which is a function of ω̂i and ω̂j as well as

on Rij . To this end, we replace the anisotropy parameter χ in ε(Rij; ω̂i, ω̂j) by an angle-
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and distance-dependent anisotropy parameter χ(Rij; ω̂i, ω̂j), which is used to ensure that

the overlap volume remains constant when two non-parallel cylinders slide along each

other, and changes when two nearly parallel rods shift along each other. To achieve this,

we introduce the concept of interaction length, which can be interpreted as the length of

the spherocylinder that is felt by the other spherocylinder. We illustrate this in Fig. 5.1.

This length is defined as the length of that part of the central axis of the spherocylinder for

which there are points on the axis of the other spherocylinder within a distance σcp, i.e.,

that part of the cylinder that lies within the other spherocylinder with a length-to-diameter

ratioL/2σcp. The anisotropy parameter is now based not on the actual length and diameter

of the spherocylinder, but rather on the interaction length of the two spherocylinders, say

λ and µ. For large polymer diameters, however, it is possible that when two aligned

spherocylinders shift along each other, they still feel each other by the full length of the

cylinder axis even for considerable shifts. We correct this by the following constraint. We

take the shortest distance from the two endpoints of one spherocylinder axis to the other

spherocylinder axis. This yields two points on the central axis of the other spherocylinder

(or an extension thereof). Our second constraint is that the interaction length lies between

these two points.

Ri
Rj

wi

wj

2
σ
cp λ

µ

Figure 5.1: A schematic sketch of the interaction lengths for two spherocylinders with a length-

to-diameter ratio L/σc and non-adsorbing polymer coils with diameter σp. The positions and the

orientations of the spherocylinders are denoted by Ri, Rj , ω̂i, and ω̂j . The interaction length

is defined as the length of that part of the cylinder axis of the spherocylinder for which there

are points on the axis of the other spherocylinder within a distance σcp. Moreover, the interaction

length should also satisfy a second constraint, which can be determined as follows: Take the short-

est distance from the two endpoints of one spherocylinder axis to the other spherocylinder axis.

This yields two points on the central axis of the other spherocylinder (or an extension thereof).

The interaction length should lie in between these two points. The interaction lengths µ and λ are

denoted by the thick lines.

The anisotropy parameter for two identical ellipsoids was calculated by Berne [91].

Here, we use a simple multiplication of the square root of the anisotropy parameter of an

ellipsoid with major and minor axis λ+σcp and σcp times the square root of the anisotropy

parameter of an ellipsoid with major and minor axis µ+ σcp and σcp.

χ(Rij; ω̂i, ω̂j) = χ2(λ, µ) =
(ξλ+ σcp)

2 − (σcp)
2

(ξλ+ σcp)2 + (σcp)2
× (ξµ+ σcp)

2 − (σcp)
2

(ξµ+ σcp)2 + (σcp)2
. (5.9)

Moreover, we introduce the fitting parameter ξ to correct for the difference in overlap

volumes of ellipsoids and of spherocylinders. This anisotropy parameter yields the cor-

rect results for identical rods and vanishes in the case when only the spherocylinder cap

interacts with the cylinder, i.e., when µ or λ equals zero.
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q ε0/2 ξ

0.15 0.277089 4.14477

0.50 0.546528 2.74785

1.00 0.875059 2.29393

Table 5.1: The values of the fitting parameters ε0 and ξ of the two-parameter depletion potential

for a system of colloidal hard rods with a length-to-diameter ratio L/σc = 5 and non-adsorbing

polymer coils with diameter σp and varying diameter ratios q = σp/σc.

Finally, our modified two-parameter depletion pair potential that approximates the

exact overlap volume of two depletion zones reads

φdep(Rij, ω̂i, ω̂j) =
ε0σ

2
cp

2

arccos(x) − x
√

1 − x2

√

1 − χ2(λ, µ)(ω̂i · ω̂j)2
(5.10)

with χ2(λ, µ) given by (5.9). The two fitting parameters ε0 and ξ can be determined

independently from each other. To this end, we employed a fit of
∫

drr exp(zpVoverlap) =
∫

drr exp(−βφdep) for a pair of spherocylinders that are perpendicular to each other and

for two spherocylinders that are parallel. The exact overlap volume of two depletion zones

Voverlap can be calculated analytically in a few cases or otherwise numerically. We like

to stress that for spherocylinders of fixed diameter σc and polymer size σp, ξ is rather

independent of the spherocylinder length L, which justifies the use of the interaction

length. Fig. 5.2 shows the good agreement between the exact overlap volume with the

two-parameter depletion pair potential (5.10) for a system of colloidal hard rods with

L/σc = 5 and non-adsorbing polymer coils with diameter σp and q = σp/σc = 0.5. The

values of the fitting parameters are displayed in Table 5.1 for the size ratios employed in

this work.
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Figure 5.2: The negative of the exact overlap volume of two depletion zones −Voverlap (plusses)

and the approximate effective pair potential (solid lines) for two spherocylinders with L/σc = 5,

and σp/σc = 0.5 as a function of a center-of-mass displacement in the r-direction. a) Parallel

spherocylinders oriented in the z−direction for a fixed shift of the center-of-mass of the second

spherocylinder in the z−direction. The curves from bottom to top denote a shift of z/σc =

0, 1, 2, 3, 4, 5. b) Two spherocylinders with zero z-shift, the second one rotated about the line

through the center-of-masses by θ = 0, arccos(12/13), π/2 from bottom to top.
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5.3 Simulations

In section 5.2 we derived the effective Hamiltonian of the colloids by integrating out

the degrees of freedom of the polymer coils in the partition function. The key quantity

in the effective Hamiltonian is the available volume Vf for the polymer coils which de-

pends on the instantaneous colloid positions {Ri} and orientations {ω̂i}. We calculate

Vf numerically on a smart grid, which allows us to employ the full effective Hamiltonian

or to employ the pairwise additivity assumption for the effective Hamiltonian by setting

V
(3+)
f = 0. As already noted in Refs. [105, 106], the standard Metropolis algorithm in

Monte Carlo simulations is based on the acceptance probability min(1, exp[−β∆Heff]),

with ∆Heff the change of Heff due to a displacement of a single colloidal rod at position

R1 → R′
1 with orientation ω̂1 → ω̂′

1. The only contributions to ∆Vf and hence to ∆Heff

occurs inside the two spherocylinders with length-to-diameter ratio L/σcp centered about

R1 with orientation ω̂1 and about R′
1 with orientation ω̂′

1. We mesh these two sphero-

cylinders by a uniform grid with typically 0.8 − 1.8 × 106 gridpoints. It is convenient

to use the coordinate frame of the spherocylinder, in which the central axis of the sphe-

rocylinder coincides with the z-axis. Subsequently, all the other spherocylinders whose

depletion zones overlap with the depletion zone of this spherocylinder, are transformed to

this coordinate frame. We also correct for the gridpoints that belong to both grids of the

spherocylinders.

We performed NVT Monte Carlo simulations of the isotropic and nematic phase using

762 particles in a cubic box. For the smectic and crystal phase, we employed 462 and

240 particles, respectively. In addition, we allowed for box shape fluctuations during our

simulations of the smectic and crystal phase, while the total volume of the system was kept

fixed. Equilibration is checked by monitoring the free volume accessible for the polymers.

In order to determine the phase diagram of the effective one-component system, we first

calculate the thermodynamic potential F , defined in Eq. (5.1), as a function of Nc, V, zp.
The polymer fugacity zp is related to the reservoir packing fraction ηrp ≡ πσ3

pzp/6. We

use thermodynamic integration to relate the free energy F (ηc, zp) of the effective system

to that of a reference system of pure hard rods at the same colloidal rod packing fraction

ηc ≡ πσ3
cNc/6V .

βF (ηc, zp) = βF (ηc, 0) −
∫ zp

0

dz′p〈Vf (z′p)〉. (5.11)

The free energies for the reference system of pure hard spherocylinders are determined

from the equation-of-state data obtained from simulations of Ref. [18]. The thermo-

dynamic integration is based on typically 20 − 30 points in the (ηc, zp) plane for each

phase. Once the free energies are known for each phase as a function of ηc and zp, we can

determine the densities of the coexisting phases by equating the pressures and chemical

potentials in both phases.

5.4 Results and discussion

The procedure described above was used to determine the phase behavior of mixtures con-

sisting of colloidal hard rods with a length-to-diameter ratio L/σc = 5 and non-adsorbing

polymer coils with a radius-of-gyration Rg = σp/2. We mapped out the phase diagram

for diameter ratios q = σp/σc = 0.15, 0.5, and 1. Fig. 5.3 shows the phase diagrams for
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Figure 5.3: Phase diagrams for a mixture of hard spherocylinders with L/σc = 5 and non-

adsorbing polymer coils with a diameter σp. The size ratio q = σp/σc = 0.15. a) phase diagram

based on the full effective Hamiltonian, i.e., including all effective many-body interactions, ther-

modynamic integration —, first-order perturbation theory, −−−, and b) phase diagram based on

the effective pair potential approximation to the effective Hamiltonian, i.e., V
(3+)
f = 0 —, and

using the two-parameter effective depletion potential (5.10) −−.
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Figure 5.4: Same as in Fig. 5.3, but for q = 0.5.
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Figure 5.5: Same as in Fig. 5.3, but for q = 1.
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Figure 5.6: Typical configuration of a mixture of colloidal hard rods with L/σc = 5 and non-

adsorbing polymer (not visible) with q = 0.5 well inside the broad isotropic-crystal coexistence

region at a colloidal rod packing fraction ηc = 0.0884 and a polymer reservoir packing fraction

ηrp = 1.83.

q = 0.15 in the (ηc, η
r
p) plane. In Fig. 5.3a, we present the resulting phase diagram based

on the full effective many-body Hamiltonian. The binodals are shown by the solid lines.

In this representation, the tielines connecting coexisting state points are horizontal. The

phase diagrams show thermodynamically stable regions of the isotropic (I), nematic (N),

smectic-A (Sm) and crystalline (K) phases. At ηrp = 0, we recover the I-N, N-Sm, Sm-K

transition of the pure hard-rod system. Increasing ηrp, we observe an enormous broaden-

ing of the Sm-K coexistence region, while the I-N and N-Sm coexistence region broadens

only slightly. We also find that the smectic phase becomes metastable with respect to the

nematic phase for ηrp higher than the N-Sm-K triple point, resulting in a broad N-K coex-

istence region. At slightly higher ηrp, the phase diagram shows a I-N-K triple point and

a I-K coexistence, which widens upon increasing ηrp. For comparison, we also plot the

phase diagram based on first-order perturbation theory (dashed lines), where we assume

that the available free volume for the polymer does not depend on the polymer fugacity,

i.e., we set Vf (ηc, zp) = Vf (ηc, 0). Note that the phase diagrams presented in Ref. [110]

are also based on first order perturbation theory. We observe that in first-order perturba-

tion theory all the binodals and triple points are slightly shifted to lower polymer reservoir

packing fractions compared to the exact phase diagrams. For this size ratio the mapping

of the binary mixture onto an effective one-component system with only effective pair

potentials, i.e., V
(3+)
f = 0, is exact. In Fig. 5.3b, we compare the phase diagram based on

the effective pair potential description to the effective Hamiltonian (solid lines) with the

one based on the two-parameter effective depletion potential (5.10) (dashed lines). Fig.

5.3b shows that employing the effective depletion potential yields a shift of the binodals

to lower polymer reservoir packing fractions, but the overall agreement is reasonable.



74 CHAPTER 5

Figure 5.7: Same as Fig. 5.6, but at ηrp = 2.09.

In Fig. 5.4, we present the phase diagrams for q = 0.5. We now observe a broadening

of both the N-Sm and the Sm-K coexistence region upon increasing ηrp. At sufficiently

high ηrp, a I-N-Sm triple point and subsequently, a broad I-Sm coexistence region appears.

At slightly higher ηrp, we find a I-Sm-K triple point and a broad I-K coexistence region,

which widens even further upon increasing ηrp. The first-order perturbation theory (dashed

lines) results again in a shift of all binodals towards lower polymer reservoir packing

fractions. For q = 0.5, the effective three- and higher-body many-body interactions are

not identical to zero and Fig. 5.4b shows the phase diagram based on the effective pair

potential approximation to the effective Hamiltonian (solid lines), i.e., V
(3+)
f = 0. We

find that neglecting the effective many-body interactions results in a shift of the broad I-K

coexistence region to lower ηrp, and it widens the I-N coexistence region. Fig. 5.4b also

shows the phase diagram based on the two-parameter effective depletion potential (5.10)

(dashed lines). Again, we find that employing the effective depletion potentials results in

a shift of the binodals to lower polymer reservoir packing fractions.

In Fig. 5.5, we present the phase diagrams for q = 1. We now observe a slight

widening of the N-Sm and the Sm-K coexistence region upon increasing ηrp. Moreover, we

find at sufficiently high ηrp, a I-I coexistence region ending in a critical point. For polymer

packing fraction higher than the critical point a phase separation occurs in an isotropic

”gas” phase which is dilute in colloidal rods and an isotropic ”liquid” phase which is dense

in rods. Upon increasing ηrp, a I-I-N triple point is found and the ”liquid” phase becomes

metastable with respect to the nematic phase. A broad I-N coexistence region is observed

for ηrp higher than the I-I-N triple point. Upon increasing ηrp, we observe successively an

I-N-Sm triple point, a broad I-Sm coexistence, a I-Sm-K triple point and finally, a broad

I-K coexistence region. First-order perturbation theory (dashed lines) shows an overall

shift of all binodals, triple points, and the critical point towards lower polymer reservoir

packing fractions. Fig. 5.4b shows the phase diagram based on the effective pair potential
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approximation to the effective Hamiltonian (solid line). We find that the main effect of

the many-body interactions is that the I-I demixing transition is enhanced and that the

binodals are shifted to higher ηrp. Moreover, we find that the nematic and smectic phase

are stabilized by the many-body interactions, resulting in broad I-N and I-Sm coexistence

regions. Fig. 5.4b also shows the phase diagram based on the two-parameter effective

depletion potential (5.10) (dashed lines). Again, we find that employing the effective

depletion potential results in a shift of the binodals to lower polymer reservoir packing

fractions.

In summary, we find that the phase diagram for large polymer coils displays an isotropic

”gas-liquid” phase separation ending in a critical point and a I-I-N triple point. Moreover,

the phase diagram shows I-N-Sm and I-Sm-K triple points and broad coexistence of I-

N, I-Sm, and I-K phases. For smaller polymer coils, we find that the polymer reservoir

packing fractions of the I-N-Sm triple point moves to higher values and consequently, we

only find broad I-K coexistence regions. Reducing the polymer coils even further, we

observe a I-N-K and a N-Sm-K triple point. The topologies of these phase diagram as

a function of q are consistent with the first order perturbation theory calculations in Ref.

[110]. In addition, we find that the two-parameter depletion potential yields reasonable

agreement with the exact phase diagrams, in particularly at small q. This potential can

be used in nucleation studies where the simulations based on the exact effective Hamil-

tonian is computationally too expensive. Very recent experiments on mixtures of fd virus

particles and dextran (non-adsorbing polymer) by Dogic and Fraden showed different ki-

netic pathways of the formation of the smectic or crystal phase as a function of the exact

dextran concentration [4]. At low polymer concentrations, they observe the nucleation

of colloidal membranes, that consist of a single layer of rods, which can coalesce later-

ally. At higher polymer concentrations, the membranes can stack on top of each other

to form long thin filaments. Figs. 5.6 and 5.7 show typical configurations of a mix-

ture of colloidal hard rods with L/σc = 5 and non-adsorbing polymer (not visible) with

a diameter ratio q = 0.5 well inside the broad isotropic-crystal coexistence region at

ηc = 0.0884, ηrp = 1.83 and at ηc = 0.0884, ηrp = 2.09, respectively. In Fig. 5.6, we find

the formation of single membranes, while Fig. 5.7 shows the formation of long filaments.

These results are in agreement with these experimental findings. The formation of such

filaments was studied theoretically by Frenkel and Schilling [116]. The nucleation of the

crystal phase in a fluid of hard rods with L/σp = 2 was investigated in an earlier simu-

lation study [117]. This work shows that in the earliest stages of nucleation, a colloidal

crystalline membrane is formed, but nucleation growth is then hampered by the fact that

the top and bottom surfaces of this crystallite are preferentially covered by rods that align

parallel to the surface; the surface poisons itself [117]. Nucleation studies of longer rods

are hampered due to severe equilibration problems. The widening of the biphasic regions

due to the presence of non-adsorbing polymer may circumvent the equilibration problems

and more detailed nucleation studies of mixtures of colloidal rods with polymer-mediated

effective attractions will be future work.
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Summary

In this thesis, we present simulation studies on the structure and phase behavior of col-

loidal rod suspensions. The interest in these systems is due to the fact that these suspen-

sions form so-called liquid crystalline phases. The properties of liquid-crystalline states

are intermediate between those of an isotropic liquid and of a crystalline solid. The dis-

covery of liquid crystals is attributed to Reinitzer and dates back to 1888. However, the

industrial needs and introduction of computer simulations as an investigation tool caused

a significant progress in understanding the physical properties of liquid crystals in recent

years.

The first chapter of this thesis provides a general background on this subject. An

overview of experimental results and some key theoretical developments is given and the

simulation methods are briefly discussed.

In Chapter 2, the sedimentation and multi-phase equilibria in a suspension of hard col-

loidal rods are explored by analyzing the (macroscopic) osmotic equilibrium conditions.

We observe that gravity enables the system to explore a whole range of phases varying

from the most dilute phase to the densest phase, i.e., from the isotropic (I), nematic (N),

smectic (Sm), to the crystal (K) phase. We determine the phase diagrams for hard sphe-

rocylinders with a length-to-diameter ratio of 5 for a semi-infinite system and a system

with fixed container height using a bulk equation of state obtained from simulations. Our

results show that gravity leads to multiphase coexistence for the semi-infinite system, as

we observe I, I+N, I+N+Sm, or I+N+Sm+K coexistence, while the finite system show I,

N, Sm, K, I+N, N+Sm, Sm+K, I+N+Sm, N+Sm+K, and I+N+Sm+K phase coexistence.

In addition, we compare our theoretical predictions for the phase behavior and the den-

sity profiles with Monte-Carlo simulations for the semi-infinite system and we find good

agreement with our theoretical predictions.

Experimental techniques that are frequently used to distinguish the different liquid

crystalline phases are e.g. birefringence measurements and X-ray diffraction. The ac-

curacy of measuring the nematic order from X-ray diffraction is the subject of Chapter

3. The determination of the nematic order parameter S and the orientational distribution

function (ODF) from scattering data involve severe approximations. The validity of these

are studied here using Monte-Carlo simulations of hard spherocylinders with an aspect

ratio of 15 for varying densities in the isotropic and nematic phase. The ”exact” ODF of

the rods, the ”exact” value of S, and the scattered intensity I(~q) are determined directly

in simulation. In addition, we determine the ODF and S from the simulated scattered

intensity which includes spatial and orientational correlations of the particles. We investi-

gate whether correlations present in the interparticle scatter influences the determination

of the single particle orientational distribution function by comparing the results obtained

from scattering with the “exact” results measured directly in our simulations. We find that

the nematic order parameter determined from the scattered intensity underestimates the
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actual value by 2-9%. We also find that the values of S and the ODF are insensitive to the

absolute value of the scattering vector for 1.2π < |~q|D < 2π which agrees well with the

assumption proposed by Leadbetter that I(q, ψ) along the equatorial arc is independent of

|~q|. We also observe that the best fit of the “exact” ODF is given by the Maier-Saupe dis-

tribution when nematic director fluctuations are ignored, while the Gaussian distributions

provides the best fit when these fluctuations are included.

The structure of a fluid can be described by means of correlation functions. The corre-

lation functions determine the thermodynamics of a system, while the asymptotic behav-

ior of the pair correlation function is important for understanding the interfacial proper-

ties. The asymptotic behavior of the total correlation function h(1, 2) in molecular fluids

is investigated in Chapter 4. To this end, we expand the angular dependence of h(1, 2)
and the direct correlation function c(1, 2) in the Ornstein-Zernike equation in a complete

set of rotational invariants. We show that all the harmonic expansion coefficients hl1l2l(r)
are governed by a common exponential decay length and a common wavelength of oscil-

lations in the isotropic phase. We determine the asymptotic decay of the total correlation

functions by investigating the pole structure of the reciprocal (q-space) harmonic expan-

sion coefficients hl1l2l(q). The expansion coefficients in laboratory frame of reference

hl1l2l(r) are calculated in computer simulations for an isotropic fluid of hard spherocylin-

ders. We find that the asymptotic decay of h(1, 2) is exponentially damped oscillatory

for hard spherocylinders with a length-to-diameter ratio L/D 6 10 for all statepoints in

the isotropic fluid phase. We compare our results on the pole structure using different

theoretical Ansätze for c(1, 2) for hard ellipsoids. The theoretical results show that the

asymptotic decay of h(1, 2) is exponentially damped oscillatory for all elongations of the

ellipsoids. However in the limit L/D → ∞ the dominant poles for Onsager model are

monotonic for all densities in the isotropic phase.

Finally, Chapter 5 is devoted to the phase behavior of a mixture of colloidal hard

rods with a length-to-diameter ratio of L/σc = 5 and non-adsorbing ideal polymer. We

map our binary mixture onto an effective one-component system by integrating out the

degrees of freedom of the polymer coils. We derive a formal expression for the exact

effective Hamiltonian of the colloidal rods, i.e., it includes all effective many-body inter-

actions and it is related to the exact free volume available for the polymer. We determine

numerically on a grid the free volume available for the ideal polymer coils “on the fly”

for each colloidal rod configuration during our Monte-Carlo simulations. This allows us

to go beyond first-order perturbation theory, which employs the pure hard-rod system as

reference state. We perform free energy calculations for the isotropic, nematic, smectic,

and crystal phase using thermodynamic integration. We use common tangent construc-

tions at fixed polymer fugacities to map out the phase diagram. We determine the phase

behavior for size ratios q = σp/σc = 0.15, 0.5, and 1, where σp is the diameter of the

polymer coils. We compare the phase diagrams based on the full effective Hamiltonian

with those obtained from first-order perturbation theory, from simulations using the effec-

tive pair potential approximation to the effective Hamiltonian and with those based on an

empiric effective depletion potential for the rods. We find that the many-body character

of the effective interactions stabilizes the nematic and smectic phase for large q, while

the effective pair potential description overestimates the attractive interactions and favors,

hence, a broad isotropic-crystal coexistence.



Samenvatting

In dit proefschrift presenteren we computersimulatie-studies van de structuur en het fasen-

gedrag van suspensies van colloı̈dale staafjes. De interesse in deze systemen komt voort

uit hun vermogen om zogenaamde vloeibaar-kristallijne fasen te vormen. De eigenschap-

pen van de vloeibaar-kristallijne toestand liggen tussen die van een isotrope vloeistof en

een kristallijne vaste stof in. De ontdekking van vloeibare kristallen wordt toegeschreven

aan Reinitzer en gaat terug tot 1888. Echter, de industriële behoefte en de introductie van

computersimulaties als onderzoeksmethode hebben in recente jaren geleid tot een signifi-

cante vooruitgang in ons begrip van de fysische eigenschappen van vloeibare kristallen.

Het eerste hoofdstuk van dit proefschrift geeft de algemene achtergrond van dit onder-

werp. Er wordt een overzicht gegeven van de experimentele resultaten en de belangrijkste

theoretische ontwikkelingen. Daarnaast worden de simulatiemethoden kort besproken.

In hoofdstuk 2 onderzoeken we de sedimentatie en meerfasenevenwichten in een sus-

pensie van harde colloı̈dale staven door de (macroscopische) osmotische evenwichtscon-

dities te analyseren. We zien dat de zwaartekracht er voor zorgt dat het systeem een heel

scala van fasen vertoont, reikend van de meest verdunde tot de meest dichte fase. Dit

betekent dat zowel de isotrope (I), nematische (N), smectische (Sm) als de kristallijne

(K) fase kan worden waargenomen. We verkennen het fasediagram van harde staven met

een lengte-diameter verhouding van 5 door de uit simulaties verkregen bulk-toestandsver-

gelijking te gebruiken. Hierbij bekijken we een semi-oneindig systeem en een systeem

met een vaste reservoirhoogte. Onze resultaten laten zien dat de zwaartekracht leidt tot

meerfasencoexistentie. Voor het semi-oneindige systeem vinden we naast de isotrope fase

(I), ook coexistentie tussen I+N, I+N+Sm, en I+N+Sm+K. Het eindige systeem vertoont

een nog rijker fasegedrag, in dit geval zien we de volgende (combinaties van) fasen: I,

N, Sm, K, I+N, N+Sm, Sm+K, I+N+Sm, N+Sm+K en I+N+Sm+K. Tenslotte vergelijken

we onze theoretische voorspellingen voor het fasengedrag en de dichtheidsprofielen met

Monte-Carlo simulaties van het semi-oneindige systeem en vinden daarbij goede over-

eenkomsten.

Enkele experimentele technieken die vaak gebruikt worden om de verschillende fasen

van een vloeibaar kristal te onderscheiden zijn dubbelbreking en röntgenverstrooiing. In

hoofdstuk 3 wordt bestudeerd hoe nauwkeurig de nematische ordening bepaald kan wor-

den uit röntgenverstrooiingsdata. Bij het bepalen van de nematischeordeparameter S en

de oriëntationeledistributiefunctie (ODF) uit verstrooiingsdata worden er grove aannames

gemaakt. De geldigheid van deze aannames wordt hier bestudeerd met behulp van Monte

Carlo simulaties voor verschillende dichtheden in een systeem van harde spherocilinders

in zowel de isotrope als de nematische fase. De verhouding tussen de lengte en de dia-

meter van de spherocilinders is 15. De ’exacte’ ODF van de staafjes, de ’exacte’ waarde

voor S en de verstrooide intensiteit I(~q) worden direct gemeten in simulaties. Verder

onderzoeken we of de correlaties in de onderlinge verstrooiing tussen de deeltjes invloed
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hebben op de bepaling van de ODF van één enkel deeltje. Dit doen we door de uit de ver-

strooiing afgeleide resultaten voor de ODF te vergelijken met de ’exacte’ resultaten uit de

simulaties. We concluderen dat de nematischeordeparameter die uit de verstrooiingsdata

gehaald wordt 2-9% kleiner is dan de eigenlijke waarde. We concluderen verder dat de

waarde van S en de ODF niet afhangen van de absolute waarde van de verstrooiingsvec-

tor ~q, mits 1.2π < |~q|D < 2π. Dit komt overeen met de door Leadbetter voorgestelde

aanname dat |I(q, ψ)| langs de (equatoriale arc) onafhankelijk is van de lengte van de

verstrooingsvector ~q (|~q|). We merken daarnaast op dat de ’exacte’ resultaten het best

gefit kunnen worden met behulp van de Maier-Saupeverdeling, mits de fluctuaties van

de nematische voorkeursrichting genegeerd worden. Als die fluctuaties wel meegenomen

worden, dan is het juist een Gaussische verdeling die de beste fit oplevert.

De structuur van een vloeistof kan worden beschreven door middel van correlatiefunc-

ties. Deze correlatiefuncties bepalen de thermodynamica van het systeem. Het asymptoti-

sche gedrag van de paar-correlatiefunctie is belangrijk voor het begrip van vloeistoffen in

de buurt van grensvlakken. Het asymptotische gedrag van de totale paar-correlatiefunctie

h(1, 2) in moleculaire vloeistoffen word onderzocht in hoofdstuk 4. Dit doen we door

de hoekafhankelijkheid van de totale en de directe paar-correlatiefunctie (uit de Ornstein-

Zernikevergelijking) te expanderen in een complete verzameling van rotatie invarianten.

We laten zien dat in de isotrope fase al de harmonische coëfficiënten hl1l2l(r) van de-

ze expansie dezelfde vervalsexponent en dezelfde golflengte hebben. We bepalen het

asymptotische verval van de totale correlatiefunctie door de structuur van de polen van de

coëfficiënten van de reciproke harmonische expansie (in de q-ruimte) hl1l2l(q) te onder-

zoeken. Deze coëfficiënten hl1l2l(r), in het laboratoriumstelsel, worden uitgerekend door

middel van computersimulaties van een isotrope vloeistof van harde spherocilinders. We

vinden dat het asymptotische gedrag van h(1, 2) exponentieel gedempt en oscillerend af-

valt voor harde spherocilinders met een lengte-diameter-verhouding van L/D 6 10 voor

alle toestanden in de isotrope vloeistof. We vergelijken onze resultaten met verschillende

theoretische aannames voor c(1, 2) van harde ellipsoiden. Deze theorieën voorspellen dat

het verval van de totale correlatie h(1, 2) exponentieel gedempt en oscillerend is voor alle

lengte-diameter-verhoudingen van ellipsoiden. Echter, in de limiet L/D → ∞ zijn de

dominante polen van het Onsager model monotoon voor alle dichtheden in de isotrope

phase.

Tenslotte bestuderen we in hoofdstuk 5 het fasengedrag van een mengel van colloı̈dale

staafjes met een lengte-diameter verhouding van 5 en niet-adsorberende ideale polyme-

ren. We beschouwen het binaire mengsel als een effectief een-component systeem, waarin

de polymeer vrijheidsgraden uitgeı̈ntegreerd zijn. We leiden een formele uitdrukking af

voor de exacte effectieve Hamiltoniaan van de colloı̈dale staafjes, die alle effectieve veel-

deeltjes interacties bevat en gerelateerd is aan het vrije volume dat beschikbaar is voor

het polymeer. We bepalen numeriek op een rooster het vrij beschikbare volume voor het

polymeer voor elke configuratie van staafjes tijdens een Monte-Carlo simulatie. Hier-

door kunnen we verder gaan dan eerste-orde storingsrekening, waarbij het pure systeem

van harde staafjes als referentie wordt gebruikt. We berekenen de vrije energie voor de

isotrope, nematische, smectische, en kristallijne fase met behulp van thermodynamische

integratie. De diameterverhoudingen van de polymeer kluwens en de staafjes zijn 0.15,

0.5, en 1. We vergelijken de fasendiagrammen gebaseerd op de exacte effectieve Hamilto-

niaan met die verkregen uit eerste-orde storingsrekening, uit simulaties met de effectieve

paar potentiaal en met een empirische effectieve paar potentiaal voor de staafjes. We vin-
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den dat de veel-deeltjes interacties de nematische en de smectische fase stabiliseren voor

grote diameterverhoudingen, terwijl de effectieve paar potentiaal beschrijving de attrac-

tieve interacties overschat, wat een brede isotroop-kristal overgang geeft.
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