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Abstract
Wederive amicroscopic expression for a quantityμ that plays the role of chemical potential of active
Brownian particles (ABPs) in a steady state in the absence of vortices.We show thatμ consists of (i) an
intrinsic chemical potential similar to passive systems, which depends on density and self-propulsion
speed, but not on the external potential, (ii) the external potential, and (iii) a newly derived one-body
swimpotential due to the activity of the particles. Our simulations onABPs show good agreement
with our Fokker–Planck calculations, and confirm that zm ( ) is spatially constant for several
inhomogeneous active fluids in their steady states in a planar geometry. Finally, we show that phase
coexistence ofABPswith a planar interface satisfies not onlymechanical but also diffusive equilibrium.
The coexistence can bewell-described by equating the bulk chemical potential and bulk pressure
obtained frombulk simulations for systemswith low activity but requires explicit evaluation of the
interfacial contributions at high activity.

1. Introduction

The non-equilibriumphase behavior of active Brownian particles (ABPs), which constantly convert energy into
directedmotion, has received considerable attention in recent years. The development of a thermodynamic
framework to describe the clustering phenomena, the pronounced accumulation of active particles at walls, and
the observed coexistence of dilute and dense phases of activematter that resemble gas–liquid and gas–solid
coexistence in passive systems has been of particular interest [1–17]. Even the idea of basic thermodynamic
variables such as temperature and pressure of these active systems is being heavily debated. For instance, the
effective temperature introduced by Loi et al [18] andmeasured in experiments [10, 14]was shown to depend
not only on Péclet number, but also on the external potential and the particle interactions [1, 4, 12, 15, 19–22].
Additionally, it was argued recently that the force per unit area on thewall can depend on thewall-particle
interactions, whichwould imply that the pressure is not even a state function [9, 23, 24]. Similarly, a chemical
potential has been introduced in the literature using phenomenological arguments [12, 13, 25, 26], or noise
approximations [11] in an approach towards a thermodynamic framework for active systems. For instance,
Takatori and Brady [12] introduced a non-equilibrium chemical potential usingmicromechanical arguments,
of similar form to the one that wewill derive using the Fokker–Planck approach in this work. The authors of [12]
even proceed and calculate spinodals and binodals on the basis of either aGibbs–Duhem-like equation or a free
energy for the (realistic) case of an incompressible solvent. Later, however, it was argued in [9] that aMaxwell
construction on the simulated equation of state does not yield the simulated coexistence densities.
Consequently, a complete andwell-established thermodynamic framework to describe the phase behavior of a
model as simple as ABPs is still lacking. Our Fokker–Planck approach is similar in spirit to that of [9, 26], but
defines an expression for the local chemical potential in terms of the new concept of a ‘swimpotential’, which is
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well-defined in planar geometries and curl-free particle fluxes andwhichmay contribute, in these cases, to
formulating a theoretical framework.

In this study, we derive amicroscopic expression for the local chemical potential zm ( ) of ABPs in a spatially
inhomogeneous steady state in a planar geometry, for simplicity, with z the normal Cartesian direction.We
confirmusing Brownian dynamics (BD) simulations that zm ( ) is spatially constant for activefluids in contact
with a soft planar wall, in a gravitational field, and in two-phase coexistencewith a planar interface. Next, we
show that the coexistence is described by diffusive andmechanical equilibriumwith equal bulk pressure and
bulk chemical potential of the coexisting phases, provided the swimpotential that we introduce in this article, is
properly taken into account. However, we conclude that the swimpotential and hence the chemical potential

zm ( ) is not a state function of the density for amacroscopic system.

2.Methods and formulation

Weconsider a three-dimensional dispersion ofNABPswith positions x y zr , ,i i i i= ( ) and orientations
e sin cos , sin sin , cosi i i i i iq f q f q=ˆ ( )with polar angle iq and azimuthal angle if , interacting via an isotropic pair
potentialV r ri j-(∣ ∣) and subject to an external fieldV re i( ) for i N1, ,= ¼ at temperatureT. Particle i
experiences a constant self-propulsion force along its orientation eiˆ . Themotion of particle i is described by the
overdamped Langevin equations

D V V v Dr r r r e 2 , 1i t i e i
j i

i j i t i
t

0åb X= -  + - + +
¹

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥˙ ( ) (∣ ∣) ˆ ( )

De e2 , 2i r i i
rX= ´ˆ̇ (ˆ ) ( )

whereDt andDr are the translational and rotational diffusion coefficients, k T1 Bb = with kB the Boltzmann
constant, and v0 is the self-propulsion speed. The collisions with the solvent are described by a stochastic force
and torque characterized by randomvectors i

tX and i
rX with 0i
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ij, , , , d d dáX X ¢ ñ = áX X ¢ ñ = - ¢a b a b ab( ) ( ) ( ) ( ) ( )with x y z, , ,a b = [1].
Starting from (1) and (2), we average over the noise to derive the deterministic Fokker–Planck equation
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the averaging over the randomnoise.Here we defined the translational and rotational fluxes

D t V r D V v t D tj r e r e r e r r e r e r ed d , , , , , , , , ;

4

t t e t
2

0^ ^ ^ ^ò òb y b y y= - ¢  - ¢ + -  + -¢ ¢ ¢ˆ ( ) (∣ ∣) ( ( ) ) ( ) ( )

( )

( )

D tj r e, , . 5re ey= - ( ˆ ) ( )ˆ ˆ

We introduced here the instantaneous full two-body correlation function tr e r e, , , ,2 ^y ¢¢( ˆ )( ) º
r r e e r r e ei

N
j i
N

i i j j1 d d d dáå å - - ¢ - ¢ - ñ= ¹ ( ) (ˆ ˆ ) ( ) (ˆ ˆ ) , and hence to obtain a closed set of equations one needs a
BBGKY-like hierarchy of Fokker–Planck equations for the n-body correlation functions or amean-field
approximation such as t t tr e r e r e r e, , , , , , , ,2y y y¢ ¢ ¢ ¢( ˆ ˆ ) ( ˆ ) ( ˆ )( ) .

The zerothmoment t tr e r e, d , ,òr y=( ) ˆ ( ˆ ) defines the local particle density, and its time evolution is
described by the continuity equation obtained from the zerothmoment of equation (3),
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with the particle flux t tJ r e j r e, d , ,ò=( ) ˆ ( ˆ ) given by
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Here t tr r e e r e r e, , d d , , , ,2 2ò òr y¢ = ¢ ¢ ¢( ) ˆ ˆ ( ˆ ˆ )( ) ( ) is the spatial two-body correlation function and the first

moment t tm r e r e e, d , ,ò y=( ) ˆ ( ˆ ) ˆ is the local polarization.
An equation for tm r,( ) follows from thefirstmoment of equation (3)which yields
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with d= 2, 3 the spatial dimension of interest, andwith the two-rankmomentumflux tensor
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where de r e eed , ò y= -ˆ ( ˆ)(ˆ ˆ ) is the traceless alignment tensor.
We now assume that the system is only inhomogeneous in the z-direction, due to either an external potential

Ve(z) or due to coexistence of two phases separated by an interface parallel to the xy-plane.Without loss of
generality, we consider a large, butfinite systemby settingVe ¥ = ¥( ) , such that z 0r  ¥ =( ) . From
equation (7), wefind that the particle flux in the z-direction is given by
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Whendivided by Dtb , we interpret equation (10) as a continuum force balance rather than at themicroscopic
level, which requires averaging over bins that contain enough colloids for the continuumpicture to hold. In the
following sections this is achieved by having bins that are very elongated in the direction(s) perpendicular to the
z-direction.

The term D v m z t,t z
1

0b -( ) ( ) has previously been interpreted as a contribution to the divergence of the stress
tensor, which has led to a debate on pressure being a state function or not in active systems [23, 27, 28]. Here,
however, we take another point of view, and regard this term as an activity-induced body force

z t V z t
v

D
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that is exerted on the active particles by the solvent [27, 29]. This allows us to define the so-called swimpotential
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whereV z t,swim 0( ) is a suitably chosen reference.
Clearly, for a homogeneous and isotropic bulk phase, for which the polarization m 0= in a steady state,

Vswim is a spatial constant. Interestingly, however, the value of this constant is determined by surfaces and
interfaces, where m can be non-zero, not unlike theDonnan potential in inhomogeneous electrolyte solutions
[30, 31]. This is a reflection of the fact that the activity-induced body force on the active particles only averages
out in the bulk, but not near interfaces.

We now combine equations (10)–(12) to construct, in the spirit of the simplest dynamic density functional
theory [32, 33]with a density-independent diffusion coefficient, a local chemical potential-like function z t,m ( )
by J z t D z t z t, , ,z t zr bm= - ¶( ) ( ) ( ) such that

z t z t z t z t
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, , , ,
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The external potentialVe(z) and the intrinsic chemical potential z t k T z t z t, ln , ,int B exm r m= +( ) ( ) ( ),
consisting of an ideal part and an excess chemical potential z t,exm ( ), are contributions similar to those of a
passive system.Here z t,exm ( ) is defined by

z t z t z z t g z z R t Vr r r, , d d , , , , , 14
z

z

zex ex 0
0

ò òm m r= +  ¢ ¢  ¢  ¶ - ¢( ) ( ) ( ) ( ) (∣ ∣) ( )

wherewe have used t z t z t g z z R tr r, , , , , , ,2r r r¢ = ¢ ¢( ) ( ) ( ) ( )( ) , with the in-plane distance

R x x y y2 2= - ¢ + - ¢( ) ( ) , in equation (10). Equation (13) reduces to the conventional chemical potential
for a passive system,where v 00 = , and is constructed such that Jz= 0 if z t,m ( ) is a spatial constant. The local
chemical potential zm ( ) is therefore a prime candidate to describe diffusive equilibriumof coexisting phases in
stationary states of active systems. Interestingly, all terms in equation (13) can be determined in BD simulations
of ABPs.

The body-force interpretation of the polarization (11) can also be used towrite themechanical equilibrium
condition of a stationary state in terms of awell-defined normal component of the stress tensor. Since the
stationary state satisfies z t t, 0r¶ ¶ =( ) , which from equation (6) is equivalent to J z 0z =( ) for a
macroscopically large, butfinite system,we can rewrite equation (10) as

P z

z
z V z z V z

d

d
15N
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with the standard equilibrium-like expression for the (intrinsic)normal pressure

P z P z P z z k T z z VR r r r rd d d , , 16N
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2ò ò òr r= + = -  ¢ ¢  ¢ ¶ - ¢
-¥
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( ) ( ) ( ) ( ) ( ) (∣ ∣) ( )( )

wherewe usedNewton’s third law and the symmetry of r r,2r ¢( )( ) under particle exchange. The last term in
equation (16) is the virial contribution that describes the z-component of the interparticle forces across a plane at
z, which can bemeasured in a BD simulation [34]. Note thatwe did not add a swimpressure [23, 27] to the
‘intrinsic’PN, but instead treated the activity at the level of a swimpotentialVswim in the force balance (15), which
turns out to be crucial for interpreting the (osmotic) pressure as a state function [29]. However, in order to
connect to existing literature, and for later reference, we do define
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which reduces to the conventional swimpressure P z z v k T d d D D1b b t rswim 0
2

Br= -( ) ( ) ( ( ) ) in an ideal active
bulkfluid at z zb= [5, 12]. Note that our local swimpressure (17) deviates fromprevious expressions [35, 36]
due to the gradient term mz z¶ , which plays a non-negligible role in the force balance obtained fromequation (15)
when significant spatial variations are present, e.g. in the interface of a phase coexistence. To summarize, we have
introduced the concept of a swimpotential here using a force balance for only the colloids. This force balance
can be combinedwith an additional force balance for the solvent, which provides an alternative interpretation,
but identical expression, for the swimpressure as an excess solvent pressure [29].

With the definition (17) one can thus define a total pressure P z P z P zN swim= +( ) ( ) ( ), such that
equation (15) can bewritten as P z z V zd d ;z er= - ¶( ) ( ) in the case whereV z 0e =( ) a steady state is then
characterized by a spatially constant total pressure P(z). The intrinsic chemical potential zintm ( ) and intrinsic
normal pressure PN(z), and the swimpotentialV zswim( ) and swimpressure P zswim( ) have thus been constructed
such that
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If we now invoke a local density approximation (LDA), i.e. assume that the local environment behaves as a
bulk such that the local pressure and chemical potential are a function of only the local density zr ( ), then
equation (19) can bewritten in terms of bulk quantities as:
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allowing us towrite
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d
21

r
r

r
m r
r

=
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with Vint swimm r m r r= +( ) ( ) ( ), in a zero external potential. Here, we shall take care to distinguish the notation
m r( ) for the chemical potential obtained via equation (21) from zm ( )which denotes the chemical potential
calculated from equation (13).We recognize equation (21) as a generalization of theGibbs–Duhem relation for
equilibrium systems.Whereas in equilibrium (where P V 0swim swim= = ) it holds true in general, we emphasize
that in this case we had tomake use of the LDA to derive it. This Gibbs–Duhem relation provides away to obtain
the chemical potential m r( ) from the bulk equation of state P r( ), whereas to obtain zm ( ) from equation (13)we
require complete spatial profiles.We test the applicability of equation (21) in simulations and show that it works
well for cases with low anisotropy (e.g. lowpolarization). However, equation (21) does not hold true in general as
V z V zswim swim

LDA r¹( ) ( ( )) for high anisotropy aswe discuss later.
We note that equation (21) is akin to the one in [12], apart from a factor that is equal to the (incompressible)

solvent volume fraction. The equilibrium analog of equation (21) follows naturally if the solvent is treated grand-
canonically whichwe implicitly assume. Both approaches are also similar in the sense that they both identify the
fluxes as being proportional to the gradient of a (scalar) chemical potential.

In the next section, we apply the formalismof equations (12)–(17) to activefluids and consider four different
scenarios.We performBD simulations of non-interacting aswell as interacting particles in two and three-
dimensions by employing equations (1) and (2). In section 3.1we study a non-interacting activefluid in contact
with a short-ranged planar soft wall.We compare and verify that the stationary state is indeed described by
constant zm ( ) in both the Fokker–Planck calculations and particle based simulations. Next we present the

4
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results of BD simulations of an active fluidwith Lennard–Jones (LJ) interactions subject to a gravitational field in
section 3.2. In section 3.3we consider an active LJfluid exhibiting gas–liquid coexistence with a planar interface
and confirmmechanical and diffusive equilibrium.We perform aMaxwell equal-area construction to identify
phase coexistence frombulk equations of state.We then attempt to apply the same formalism to active particles
which undergoMotility Induced Phase Separation at high activity in section 3.4.

3. Results

3.1. Active ideal gas
Wefirst consider a three-dimensional active ideal gas (withV r 0=( ) ) at Péclet numberPe v D 0r0 s= =
(passive), 1, 3, 5, in the external potential V z ze

2b s=( ) ( ) for z 0< andV z 0e =( ) for z 0> , where the unit of

length D D3 t rs = is chosen to be theparticlediameter so that the Stokes–Einstein relation for spheres in three-
dimensions is satisfied.Note thatPe can also be perceived as the ratio of thepersistence length v Dr0 and the particle
diameter [5]. For large butfinite z z 3b  s= , the activefluid reaches a bulk statewith bulkdensity zb br r= ( ),
and the normal pressure reduces to the bulk pressure P P z k Tb N b b Br= =( ) . Infigures 1(a) and (b)we show the
time-averageddensity profiles zr ( ) andorientationprofiles m z zz r( ) ( ), respectively.Weobserve that the particles
penetrate deeper into thewall at higherPe resulting into amore extended zr ( )within thewall accompanied by a
small adsorption (thatwas found in [37] aswell) close to z=0. Infigure 1(b)we see no average polarizationoutside
or inside thewall for the passive case. AtfinitePe, however,figure 1(b) shows that the average orientation is zero in
the bulkwhereV z 0e =( ) andnegativewithin thewall, corresponding toparticles oriented towards thewall.
Figures 1(c) and (d) showV zswim( ) and zm ( ) as obtained fromequations (12) and (13), respectively.Wefind that

zm ( ) is indeed constantwithinour statistical accuracy of k T0.1 B~ . Clearly, for zm ( ) to be constant it is crucial that
V zswim( ), which is attractive towards thewall consistentwith the polarization and extendeddensity profile close to
thewall, is included in equation (13); ignoring this contributionof k T10 30 B– wouldnothave yielded a spatially
constant chemical potential in the stationary state. Although zm ( )was constructed to be spatially constantwithin
the Fokker–Planck formalism, a confirmation from the simulations serves as a useful validation.

Additionally, we verify that the swimpressure (given by equation (17))measured in the bulk reduces to
P z k Tv D D6b b r tswim B 0

2r=( ) ( ).Vswim can similarly be obtained asV z k Tv D D6 lnb r t bswim B 0
2 3r s=( ) ( ) .We use

this bulk state at z 3b  s withV z zbswim 0 =( ) as the reference point for the profiles ofV zswim( ) and zm ( ) in
figures 1(c) and (d), respectively.

3.2. Sedimentingweakly active Lennard–Jones-particles
Wenowconsider simulations ofweakly active LJ particleswith an isotropic pair potential,V r r4LJ

12 s= -( ) (( )
r 6s( ) ), at k T 2.0B  = in the gravitational potentialV z Mgze =( ) for z 0> with a hard ‘bottom’ at z=0,with

M the buoyant particlemass. These systems are supercritical in thepassive case, and therefore evenmore so in the
active cases since the ‘critical temperature’decreaseswith increasing activity [6, 17].Wemeasure thedensity z 3r s( ) ,
polarization m z zz r( ) ( ), swimpotential V zswimb ( ), and chemical potential zm ( ) for Mg 0.5b s = and1.0 for

Figure 1. (a)Density profile zr ( ), (b)polarizationprofile m z zz r( ) ( ), (c) swimpotential V zswim ( ) and the soft external potentialVe(z)
(see text), and (d) local chemical potential zm ( ) (with error bars), all as a function of z for an active ideal gas in contactwith aplanar soft
wall, as obtained fromBDsimulations (solid lines) andFokker–Planck calculations (dashed lines), for varyingPéclet numbers as labeled.
In (d) the solid lines represent zbm ( ) obtainedby the integrationof J z zz r( ) ( ), whichfluctuates about zero,whereas the square symbols
show the resultant fromequation (13). The errorbars represent the error induced in zbm ( ) due to the statistical error in zr ( ). The
deviation fromthe Fokker–Planck calculations deep into thewall forhighPe is due to the correlationof errorupon integration.

5
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Pe= 0, and Mg 3b s = and5 forPe= 10 and20, all plotted infigures 2(a)–(d). In order to obtain a comparable
length scale loverwhich variations are observed in the passive (wherewe choose l s= ) and in the active cases
(where l v Dr0= ), we used a smaller buoyantmass of theparticles in thepassive case.Weobserve that the
polarizationmz(z) is positive forPe= 10 and20, andhence themean swimmingdirection is opposite to the
gravitationalfield, consistentwith thefindings in [14].Moreover,figure 2(b) shows that the polarizationprofile
m z zz r( ) ( ) is surprisingly constant over a large regimeof heights z. As a consequence, the swimpotential profile

V zswimb ( ) essentially decreases linearlywith height z forPe 10= and20 and counteracts largely the gravitational
field, as shown infigure 2(c), leading to an enormous increase in sedimentation length Mg 1b -( ) [10]. The chemical
potential profile zm ( ) is calibrated by z 00m =( ) at the reference point z0 determinedby the condition

z 5 100
3 3r s = ´ -( ) . zm ( ) is shown infigure 2(d) and is indeed spatially constantwithin our statistical accuracy of

k T0.3 B~ . It is important tonote here thatV zswim( ) decreases by a fewhundred kBT and the external gravitational
potentialV z Mgze =( ) increases by a fewhundred kBT in the z-rangeof interest as shown infigure 2(d).

In addition, we show infigures 2(e) and (f) bothPN and intm as a function of ρ, obtained by eliminating z from
PN(z) and zr ( ), and zintm ( ) and zr ( ), respectively.We observe that the data collapse at fixedPe, and it is alluring
to interpret that P ,N r( Pe) and ,intm r( Pe) are state functions of the density in this regime.

3.3. Active-Lennard–Jones phase coexistence
Wenow consider aweakly active LJ fluidwithout any external potential (V z 0e =( ) ), and at subcritical
temperatures such that coexistence of a gas and a liquid phasewith bulk densities gr and lr , respectively, is to be
expected at overall intermediate densities g lr r r< < in an elongated simulation boxwith periodic boundary

conditions [6, 17]. A temperature k T 0.43B  = and a Péclet numberPe v D 3r0 s= = are used in this case. In
figure 3(a), we show a typical configuration of a liquid slab in the center of the simulation box in coexistencewith
a gas phase on either side. Infigure 3(b)weplot the corresponding density profile zr ( )which can befitted to a
hyperbolic tangent function (equation (A.1)), independently for z 0> and z 0< , to obtain the coexistence
densities zgr ( ) and zlr ( ) of the two bulk phases asfit parameters, with zg and zl a position in the bulk gas and
liquid respectively. In the samefigure we also plot the polarization profile m z zz r( ) ( ), showing that the
swimming direction of the particles at the liquid–gas interface is pointing from the liquid phase towards the gas
phase, i.e., against the attractive interparticle forces from the liquid [17, 38].

Infigures 3(c) and (d)weplot the profilesP(z) and zm ( ), respectively, which clearly show that both are
spatially constant.We hence conclude that P z P zg l=( ) ( ) and z zg lm m=( ) ( ), demonstratingmechanical and
diffusive equilibriumof the coexisting gas and liquid phase. For completeness, infigure 3(c)we also plot the
individual contributions to the total pressure P z P z P zN swim= +( ) ( ) ( ), where P zswim( ) is the swimpressure
obtained from equation (17), and P z P z P zN N N,idl ,vir= +( ) ( ) ( ) is the normal pressure with the ideal pressure
P zN ,idl ( ) and the virial contribution to the normal pressure P zN ,vir ( ) as obtained from equation (16). Similarly
we plot the contributions to the chemical potential z z V zint swimm m= +( ) ( ) ( ) infigure 3(d), where the intrinsic

Figure 2.Height-dependence of (a) density zr ( ), (b)polarization m z zz r( ) ( ), (c)swimpotential V zswim ( ), and (d)chemical
potential zm ( ) (with an offset for clarity), all for an active LJfluid in an external gravitational potential V z Mgze =( ) for various values
of Mgb s , and Péclet number Pe= 0 (blue), 10 (green), 20 (red) as obtained fromBD simulations. The height z is scaledwith respect to
l, where l v Dr0= is the persistence length for Pe= 10 and 20, and l s= is the particle diameter forPe= 0. The compressibility
factor P Pe,N r r( ) in (e) and the intrinsic chemical potential Pe,intm r( ) shownwith an offset in (f) show a proper collapse in the
dilute limit for different Mgb s but not for Pe.
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chemical potential z k T z zlnint B exm r m= +( ) ( ) ( ) represents the sumof ideal and excess chemical potential.
The swimpotential V zswim( ) is calculated from themeasured polarization profiles using equation (12).

In order to investigate if we can predict phase coexistence solely frombulk quantities, we performBD
simulations of bulk states of ABPs at several temperatures k TB  and Péclet number Pe= 2.67.Wemeasure the
bulk pressure P as a function of density ρ in a simulation box small enough to prevent phase separation and plot
the equations of state P r( ) for several subcritical temperatures infigure 4(a). Now,within a LDA,we apply the
Gibbs–Duhem relation equation (21) and obtain Pm ( ) by integrating the equation of state P r( ) for severalTʼs as
shown infigure 4(b).We emphasize here that we refer to m r( ) as theμ obtained by applying equation (21)which
is not to be confusedwith zm ( ). The intersection of the curve Pm ( ) gives the coexistence g lm m= and Pg= Pl. In

the inset offigure 4(b)we compare the binodals in the (scaled) temperature–density plane as obtained from the
density profiles fromdirect coexistence simulations ( zgr ( ) and zlr ( )) and from the bulk Pm ( ) intersections ( gr
and lr ).We find good agreement between the two results and thus conclude that the corresponding coexistence
densities gr and lr could, in this (lowPe) case at least, be determined from the bulk equations of state. Note that

the activity has a huge effect on the gas–liquid binodals (shown in the inset offigure 4(b)) as the critical
temperature shifts from k T 1.15B  » in the passive case to k T 0.54B  » in the active case for Pe= 2.67 (see
[17] for full comparison).

Figure 3. (a)A typical configuration of a three-dimensional gas–liquid coexistence of an active LJfluid atPe= 3, and temperature
k T 0.43B  = , alongwith (b) the corresponding density profile zr ( ) and polarization profile m z zz r( ) ( ), (c) total pressure
P z P z P zN swim= +( ) ( ) ( ) and the individual contributions, and (d) total chemical potential zm ( ) obtained from equation (13), and
individual contributions, alongwith an inset showing amagnified view of zm ( ). BothP(z) and zm ( ) are spatially constant within
numerical accuracy, demonstratingmechanical and diffusive equilibriumof the coexisting gas and liquid phase.

Figure 4. (a) Scaled pressure–density P–ρ, and (b) chemical potential-pressureμ–P relations of an active LJfluid at several
temperatures k TB  and Péclet Pe v D 2.67r0 s= = . The inset shows the temperature–density gas–liquid binodals as obtained
fromdirect coexistence simulations ( ) and from equatingμ andP in the coexisting phases ( ) of an active LJfluid.
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3.4.Motility induced phase separation
In this sectionwe discuss the swimpotential and the chemical potential in a two-dimensional systemof strongly
active particles exhibitingmotility induced phase separation at highPe.We choose our planar geometry in the yz
plane and assumehomogeneity in the y direction to be consistent with previous definitions. The particles
interact with theWCApotential given byV r V rWCA LJ = +( ) ( ) , with a cut-off beyond r r 2c

1 6 s= tomake
the particles purely repulsive. The particle orientations can be described in terms of a single angle iq as
e cos , sini i iq q=ˆ ( ). The translational equation ofmotion in 2D is similar to equation (1) and the rotational
diffusion follows D2i r i

rq = X˙ , with i
rX a zero-mean unit-varianceGaussian randomvariable.

As before, wefix rotational and translation diffusion coefficients to correspond to the particle interaction
length scale D D3 t rs = and change the self-propulsion speed v0 to vary Pe. At highPe, wefind that the
systemphase separates into a gas phase and a dense phase, both of well-defined densities, separated by a planar
interface in an elongated simulation box [16]. ForPe= 50 the typical density and polarization profiles are shown
infigure 5(a). Notably, the polarization profiles are now reversedwith respect tofigure 3(b) as the particles at the
interfaces are nowpointing towards the dense phase.Wemeasure the normal component of the total pressure P
(z) and the chemical potential zm ( ) by summing the individual contributions, and plot them infigures 5(c) and
(d), respectively.We clearly observe that both the quantities P(z) and zm ( ) are spatially constant, demonstrating
mechanical and diffusive equilibriumof the coexisting phases.With the polarization profiles reversed, P zswim( )
andV zswim( ) are nowhigher in the gas phase as compared to the denser phase.

Further,weperformaMaxwell equal-area constructionon the equationof state.The P r– curves shown in
figure 5(b) areobtained againusing a small systemsize forwhich there is noglobal phase separation at intermediate
densities.Weconfirmthe results of thehomogeneous stateswith larger systemsizes andfind that the agreement is
satisfactory for our analysis. Performing aMaxwell constructiononP as a functionof1 r gives the equal-areapressure
PMaxwell shownas thedashedhorizontal line infigure5(b). In the samefigure,we also show the coexistencepressure
Pcoex obtained fromthedirect coexistence simulationof thephases coexisting at the corresponding set of parameters.
Fromthe twocurves it is evident that the coexistencedensities predictedby theMaxwell construction and thedirect-
coexistence simulationsdonot agree.Weperformthe sameprocedureona set ofPe in the range30–60andplot the
corresponding coexistencedensities and thedensitiespredictedby theMaxwell construction in the inset offigure5(b).
Fromthedisagreementbetween the twobinodalswe conclude that theMaxwell equal-area constructiondoesnot
correspond to the coexisting states as obtained fromthedirect coexistence simulations, notedpreviously aswell in
[9, 26].Wehave checked that usingour P r( ) datawith thedefinitionof the chemical potential introduced in [12]
yields the samebinodals as predictedheredespite thedifferenceof the factor concerning the solvent volume fraction.

4.Discussion

The results from the previous section show that theMaxwell equal-area construction, and hence theGibbs–
Duhem equation (20), cannot be used in general to predict the coexisting densities gr and lr [9, 26] in systems of

Figure 5. (a)Density z 2r s( ) and polarization m z zz r( ) ( ) profiles of an activefluidwithWCA interactions exhibitingMIPS at
Pe 50= , and temperature k T 0.1B  = . (b)Pressure P 2b r s( ) versus density 2rs curve obtained frombulk simulations of small
systems (solid circles) and large systems (open circles), together withMaxwell equal-area pressure (dashed line) and coexistence
pressure P P zcoex = ( ) (dotted line) asmeasured in (c). The inset shows a comparison of bulk densities fromdirect coexistence
simulations ( ) and theMaxwell equal-area construction ( ) for variousPe. (c)Total pressure P z P z P zN swim= +( ) ( ) ( ) profile,
with the ideal, virial and swim contributions, and (d)total chemical potential zm ( ) profile with individual contributions, for z 0> ,
corresponding to the systemdescribed in (a). The inset shows the ideal contribution z zlnid

2bm r s=( ) ( ) and that zm ( ) is constant
within an accuracy of k T3 B .
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ABPs. In other words, even though z zg lm m=( ) ( ) in a phase-separated system (where zg and zl are locations far
from interfaces such that the local densities are gr and lr , respectively) , the chemical potentials obtained from
theGibbs–Duhem equation (21)maynot be equal, i.e. g lm r m r¹( ) ( ). The non-zero difference between gm r( )
and lm r( ) is caused by the failure of the LDA assumed in the derivation of equation (21), as wewill showbelow.
In particular, the values ofV zswim( ) and zexm ( ) in a bulk state at position z and density br do not only depend on

br (and other systemparameters such asPe) but also on the interface between the bulk state and the reference
state at z0. This implies that neitherVswim nor exm as expressed in equations (12) and (14), respectively, are state
functions of the density. Belowwe show an example forV zswim( )which demonstrates this breakdown of the LDA
in the case of a 2D active ideal gas (for which z 0exm º( ) ) in a particular external potential.

The setup consists of a ramp-like external potential V z zeb l s=( ) in the region z0 5s< < which
separates a bulk region at the left (where V z 0eb =( ) for z 0< ) from the bulk on the right (where V z 5eb l=( )
for z 5s> ). These external potential are plotted infigure 6(a) as dash–dot lines for 0, 0.5, 1l = , and 2. The
probability density z,y q( ) is obtained by solving equation (3) forV r 0=( ) numerically, atPe 1= with afixed
density boundary condition 1.02rs = for z 100 s= - andwith a hardwall placed at z 15s= . The density and
polarization profiles for increasingλ are plotted infigures 6(a) and (b), respectively.

In order to determineV zswim( ) for this non-interacting systemwithV r 0º( ) , equation (17) can be
rewritten as

V z V z
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D D
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TheV zswim( ) profiles, obtained equivalently from equation (22) or from equation (12), are plotted as solid lines
infigure 6(c)wherewe have taken z 100 s= - as the reference state whereV z 0swim 0 =( ) . If wewould
approximate the vicinity of any point z¢ as an isotropic bulkwith density zr ¢( ) in evaluating the swimpotential
V zswim ¢( ), i.e. assume in equation (22) z m z 0zz z ¢ » ¢ »( ) ( ) such that the term in square brackets vanishes for
every z¢, we obtain V z v D D z2 lnt rswim

LDA
0
2 2b r r s=( ( )) ( ) ( ) whichwe refer to as the LDAof equation (22). Note

that equation (22) follows from the Fokker–Planck formalism, and this LDAdoes not refer to an approximation
of a free-energy functional. ThisV zswim

LDA r( ( )), plotted as dotted lines infigure 6(c), is equal toVswim r( ) obtained
from the swim component of theGibbs–Duhem-like relation (21).We find thatV zswim( ) andV zswim

LDA r( ( )) start
to deviate at highλ and do not coincide in the right bulk.Hence, we can conclude that the values forVswim

LDA

obtained from theGibbs–Duhem equation are not correct in general. This is due to the failure of LDA, i.e. due to

Figure 6. (a)Density profiles zr ( ) and (b) polarization profiles m z zz r( ) ( ) of a non-interacting active fluid atPe= 1 in a ramp-
shaped external potential with slope 0, 0.5, 1, 2l = shown as broken lines in (a). (c)Comparison of V zswim ( ) obtained using
equation (12) and V z v D D z2 lnt rswim

LDA
0
2 2b r r s=( ( )) ( ) ( ) obtained using LDA.
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the anisotropy in the interface that renders the integral on the right-hand side in equation (22)non-negligible as
compared to thefirst term. Infigure 6(b)we see that the polarizationwithin the interface increases withλ,
consistent with this idea of increasing anistropy. For an interacting system the forces between particles would
add another contribution to m z zz r( ) ( ), which could also become a source of failure for the LDA. This will be
studied inmore detail in a future publication.

In section 3.3we observed that theMaxwell constructionwas able to predict the coexistence densities for the
active LJ case with reasonable accuracy, butwas in disagreement at higher activity in section 3.4 forMIPS.We
now assert that the errormade in the chemical potential by assuming the LDA translates into an error in the
predicted coexisting densities that is small for the active LJ particles, but significant forMIPS.We define the
error in predicted coexistence densities of the gas and the dense phase, respectively, as zg g g

errr r rD = -( ) and

zl l l
errr r rD = -( ) , where zgr ( ) and zlr ( ) are the bulk coexistence densities and gr and lr denote the estimates

obtained by performing aMaxwell construction. If we define the gas state as the reference state for the chemical
potential, i.e. z g0m m r=( ) ( ) in equation (13)with z zg0 = , then the errormade in determining the chemical

potential of the dense phase by using theGibbs–Duhem equation (21) is zl l l
errm m r mD = -( ) ( ), wherewe

recall that lm r( ) is the chemical potential of the dense phase obtained from theGibbs–Duhem relation, whereas
zlm ( ) is the true chemical potential determined in the coexistence simulation. From l

errmD the relative error in
the predicted density of the dense phase can be estimated as z z1 d dl l l l l

err errr r r m m rD » D( ) ( ) · ( ) . Similarly,
the error in the predicted density of the gas phase can be estimated by using the dense phase as the reference state
( z l0m m r=( ) ( )). The relative density error estimated in thismanner is less than 5% for the active LJ case,
whereas it is of the order of 100% for theMIPS case, which agrees with ourfindings infigures 4(b) and 5(b),
respectively.

Wewish tomake a note that the anisotropy terms identified here resemble the interfacial contributions
discussed in [26] for pairwise-interacting particles. Although it requires explicitmeasurement of these interfacial
contributions by performing phase-coexistence simulations, Solon et alwere able to suggest amodifiedMaxwell
construction for estimating the binodals in [26].

Moreover, our elongated simulation box in sections 3.3 and 3.4 forces the system to phase separate with a
planar interface. Only for such a geometry J z 0z =( ) , allowing us towrite explicit expressions formechanical
and diffusive equilibrium. In other geometries the stationary state condition J 0 =· still allows for swirls that
correspond to non-zero J ´ , for which our expressions formechanical and diffusive equilibriumbreak
down and awhole new framework is needed. Furthermore, the regime of applicability of equation (13) is limited
by the underlying dynamicDFT relation, where a ρ-independent diffusion coefficientDt is assumed; an
extension to account for a ρ-dependent diffusion coefficient is left for a future study.

5. Conclusions

In conclusion, we have constructed expression (13) for the local chemical potential zm ( ) for active fluids in a
planar geometry, which includes the swimpotentialV zswim( ) defined by equation (12) in addition to ideal,
excess, and external contributions well-known from equilibrium.Our BD simulations confirm that zm ( ) is
spatially constant in steady states of several inhomogeneous ideal and interacting fluids of active particles, with
V zswim( ) an important contribution that counteracts either the external potentialVe(z) or the excess
contribution zexm ( ). In the low activity regime studied for active LJ fluid, the chemical potential provides a
method to predict the coexisting densities frombulk simulations. At high activity the anisotropy in the interface
causes theGibbs–Duhem relation to be invalid, which provides support to the conclusions of [26] that the details
of the interface are necessary to determine the coexisting bulk densities. Our formalismopens new avenues
towards a Fokker–Planck and dynamic density functional description (of stationary states) of active systems,
especially for planar geometries.
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Appendix. Simulation details

WeperformBD simulations for three-dimensional and two-dimensional geometries in sections 3.1–3.4,
respectively.We use the Euler–Maruyamamethod to integrate the equations ofmotion (1) and (2)with a time
step size td 10 5t= - where Dr3 1t = - is the unit of time.We keep the temperature of the bath fixed atT by
keeping the translational and rotational diffusion coefficients (Dt andDr respectively)fixed and vary v0 to change
Pe and interaction strength ò to change the temperature of the colloidal particles.We employ periodic boundary
conditions in only x- and y-direction in sections 3.1 and 3.2, in all three directions in section 3.3, and in both y-
and z- directions in section 3.4. The system sizes are about 2500 particles in 3D and about 6500 particles in 2D for
elongated box simulations.Wemeasure the density profile zr ( ) in the z-direction as z n z L z2r = á ñ D( ) ( ) by
measuring the average of the number of particles n zá ñ( ) in the slabs of volume L z2D ( z n z L zr = á ñ D( ) ( ) in
2D) arranged parallel to xy plane (y-direction in 2D), where L is the length of the system in the x and/or y-
direction, andwhere z 0.1sD = is thewidth of the slab. In a similarmannerwemeasure the polarization profile
mz(z) by summing the particle orientations in a slab at location z. The density profiles zr ( ) can befitted to a
hyperbolic tangent function given by:

z z z z z
z z

D

1

2

1

2
tanh

2
, A.1l g l g

0*r r r r r= + + -
-⎡

⎣⎢
⎤
⎦⎥( ) ( ( ) ( )) ( ( ) ( )) ( ) ( )

where zlr ( ) and zgr ( ) are the corresponding bulk liquid and vapor coexisting densities, z0* is the location of the
dividing plane andD represents the thickness of the interface. Subsequently, the swimpotential profileV zswim( )
is obtained as
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wherewe use zr ( ) andmz(z) asmeasured in the BD simulations, andwhereV zswim 0( ) is a suitably chosen
reference state. In addition, wemeasure the normal component of the stress tensor using

P z P z P z A.3N id vir= +( ) ( ) ( ) ( )

with the ideal gas pressure P zid ( ) and the virial pressure P zvir ( ) given by:
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where r r r rij ij j i= = -∣ ∣ ∣ ∣denotes the center-of-mass distance between particle i and j, z z zij j i= - where zi is
the zposition of particle i,Cij is the intersection of rij and the slab of width zD centered at z. The integral in
equation (A.5)denotes that the virial contribution to the pressure of particle pair i and j is due to the part of rij

that lies inside the respective slab at zwithin the coarse-grained Irving–Kirkwood approximation [34].We also
calculate the swimpressure
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and the chemical potential profile zm ( ) using
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with the excess chemical potential zexm ( ) defined as
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Here, the excess chemical potential at zwith respect to a reference at z0 is determined by integrating the averaged
force that a particle feels due to the particle interactions with all other particles in the systemover the distance z0
to z.
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Alternatively, ifV z 0e =( ) , zm ( ) can also be obtained using
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with P z P z P zN swim= +( ) ( ) ( ).
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