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ABSTRACT
Colloidal rod-like particles self-assemble into a variety of liquid crystal phases. In contrast to the for-
mation of the nematic and smectic phases for which it is well understood that it can be driven by
entropy, the stabilisation mechanism of a prolate columnar phase (Col+), observed for example in
fd-virus suspensions, is still unclear. Here, we investigate whether or not a Col+ phase can exist in
a purely entropy-driven single-component system. We perform computer simulations of hard par-
ticles with different shapes: spherocylinders, top-shaped rods, cuboidal particles, and crooked rods.
We show that the Col+ phases observed in previous simulation studies are mere artefacts due to
either finite-size effects or simulation boxes that are incommensurate with the stable thermody-
namic phase. In particular, we observe that the characteristic layering of the stable smectic or crystal
phase disappears when the dimension of the simulation box along the direction of the layers is too
small. Such a system-size effect depends both on particle shape and the competing phases, and
appears to be more pronounced for less anisotropic particles.
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1. Introduction

Moderately dense suspensions of anisotropic colloids can
self-assemble into liquid crystal phases, exhibiting long-
range orientational order but no, or only partial, posi-
tional order [1]. Examples range from organic rods, such
as tobacco mosaic viruses, fd-viruses, DNA, to inorganic
materials, such as ferric oxyhydroxide rods, boehmite
rods, vanadium pentoxide rods and silica rods [2–12].
The different phases can be distinguished on the basis
of the microscopic arrangement of the particles. Nematic
phases (N) display only long-range orientational order,
i.e. the particles are on average aligned along a common

CONTACT Simone Dussi simone.dussi@wur.nl
∗∗ m.dijkstra@uu.nl

direction; smectic (Sm) phases have an additional 1D
positional order, i.e. the particles are arranged in smec-
tic layers; and finally, columnar (Col) phases feature a
2D positional order, i.e. particles form columns that are
arranged on a 2D lattice. In the case of biaxial particles,
LC phases can be further divided into (i) prolate uniaxial
(often denoted with a subscript +), (ii) oblate uniax-
ial (subscript −) and (iii) biaxial phases (subscript b),
depending onwhether the long-range orientational order
of the system is associated to (i) the long, (ii) short or (iii)
both particle axes. Further classification is possible based
on the symmetry of the positional order.
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In 1949, Onsager showed in his seminal work that
a system of infinitely thin hard rods exhibits a purely
entropy-driven phase transition from an isotropic to a
nematic phase at sufficiently high densities [13]. Upon
increasing the density of the system, the alignment of
the rods along a common director becomes favourable
at the expense of orientational entropy, but this loss
is more than compensated by a gain in translational
entropy.

In the 1980s, Frenkel et al. employed computer sim-
ulations on various hard-particle systems, such as ellip-
soids, spherocylinders and disks, to provide evidence for
the entropy-driven formation of not only the nematic
phase [14] but also the smectic [15] and the colum-
nar phases [16]. Quoting Daan Frenkel from his 1999
review paper: ‘the idea of entropy-driven phase transi-
tions is an old one. However, it has only become clear
during the past few years that such phase transformations
may not be interesting exceptions, but the rule!’ [17].
Indeed, the number of theoretical and simulation stud-
ies on entropy-dominated systems has steadily increased
since then [18–27], not only because of their funda-
mental interest but also due to the concurrent develop-
ments in synthesis routes to produce colloidal particles
and nanoparticles [28–30]. A large library of differently
shaped particles is nowadays available for self-assembly
experiments, and in many cases the role of entropy is
predominant. For example, silica rods can be consid-
ered as a (nearly) perfect experimental realisation of hard
spherocylinders, since at sufficiently high salt concentra-
tions the phase behaviour can be mapped onto that of
a corresponding hard-particle system, both for a single-
component and a binary system [11,12,31]. Suspensions
of fd-viruses are another fascinating and widely studied
example of colloidal systems composed of rod-like par-
ticles [3–5,32–34]. The many competing interactions at
different length scales make these systems challenging
for theorists. For instance, the microscopic origin of the
chiral order in the nematic phase of fd-viruses is still
unresolved [32]. However, a recent study showed that in
some cases the phase behaviour of fd-virus suspensions
can be mapped onto that of hard rods [33], suggesting
a dominant role of entropy in their self-assembly. Pecu-
liar of these hard-rod-like suspensions is the formation
of a columnar phase at high densities, whose stabilisation
mechanism remains unclear. It is therefore interesting to
investigate whether or not a columnar phase can be sta-
bilised in a suspension of rod-like particles by entropy
alone.

We term the columnar phase observed in rod-like
particle systems as prolate columnar Col+ to be distin-
guished from its oblate counterpart Col− observed in
systems of disk-like particles [16,35,36]. In both cases, the

orientation of the columns formed by the particles is par-
allel to the nematic director. However, in the case of the
Col− phase, the nematic director corresponds to the ori-
entational order of the shortest particle axis, whereas for
Col+ the nematic director is related to the longest particle
axis.

In 1987, a Col+ phase was observed in pioneering
simulation studies on hard parallel spherocylinders by
Frenkel et al. [37]. However, a subsequent study by
the Frenkel group [38] showed that this phase becomes
mechanically unstable for sufficiently large system sizes.
Similarly, the Col+ phase was observed in small systems
of freely rotating hard spherocylinders [39,40], but was
argued to be thermodynamically unstable for larger sys-
tems [22,39]. In Section 3.1, we confirm that the Col+
phase is indeed unstable for a system of freely rotating
hard spherocylinders even at length-to-diameter ratios as
extreme as L/D = 100. More intriguingly, perhaps, three
independent simulation studies appeared in recent liter-
ature that reported the observation of a Col+ phase in
various systems of hard particles. In Ref. [41], a Col+
phase was observed in the phase diagram of bent sphe-
rocylinders in a very narrow range of bending angles
close to 180◦, whereas Ref. [42] reported a Col+ phase
in systems of top-shaped rods, which consist of a hard
spherocylinder with a larger hard sphere embedded in its
centre. Finally, a stableCol+ phase was reported in a large
region of the phase diagram of hard cuboidal particles in
Ref. [43].

Inspired by the experimental observation of the Col+
phase in suspensions of fd-viruses, intrigued by the sim-
ulation results of Refs. [41–43], and with the knowledge
of the finite-size effects reported by Veerman and Frenkel
in Ref. [38], we investigate whether or not theCol+ phase
can be stabilised by entropy alone. This paper is organ-
ised as follows. The simulation methods are described
in Section 2. We investigate the stability of the colum-
nar phase in systems of (freely rotating) hard sphero-
cylinders in Section 3.1, top-shaped rods in Section 3.2,
cuboids in Section 3.3 and crooked rods in Section 3.4.
Clearly, the systems investigated here do not represent
an attempt to model suspensions of fd-viruses but they
rather provide a useful playground for our search of
an entropy-driven stabilisation mechanism for the Col+
phase. Furthermore, these particle shapes can be directly
linked to other experimental systems, as synthesis pro-
tocols exist to modulate the diameter of silica rods [44]
or to bend them [45]. However, as it will be evident
from our results, the Col+ phase reported for these sys-
tems were due to simulations artefacts: the Col+ phase
becomes mechanically unstable when a sufficiently large
system size is simulated. In Section 4, we conclude our
study by speculating about other possible stabilisation
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mechanisms for theCol+ phase thatmight be relevant for
fd-virus suspensions.

2. Simulationmethods and order parameters

We perform standard Monte Carlo (MC) simulations in
the NPT ensemble [46] of single-component systems of
colloids with different shapes. The particles interact via a
hard-core potential:

U(xi, xj) =
{

∞, ξ(xi, xj) < σ(xi, xj),
0, ξ(xi, xj) ≥ σ(xi, xj),

(1)

where x indicates the generalised coordinates (positions
and orientations), ξ(xi, xj) the centre-to-centre distance
between particles i and j and σ(xi, xj) the ‘thickness’
of the two hard bodies in that particular configuration.
In the case of uniaxial particles, the particle orienta-
tion is described by a unit vector u, whereas in the
case of biaxial shapes either a 3 × 3 rotation matrix or
a quaternion is employed, from which the orientation
of the main axis u is retrieved. For spherocylinders,
top-shaped and crooked rods, the overlap algorithm is
based on the explicit calculation of the minimum dis-
tance between two particles (using the efficient algorithm
of Ref. [47]). For cuboids, we employ an intersection-
detection algorithm based on the RAPID library [48].
To minimise the number of overlap checks in the case
of strongly anisotropic particles, we divide the particle
shape into smaller parts by fully covering the particles
with a set of (overlapping) spheres with a diameter larger
than the particle diameter. We then use these smaller
parts to construct a cubic cell list as in the case of sim-
ple spheres [46,49]. These bounding spheres are used
to identify the neighbours, whose overlaps are explicitly
checked. By keeping track of the already checked particle
pairs, this simple procedure speeds up substantially the
simulations.

We employ a cuboidal simulation box with periodic
boundary conditions to simulate N particles, typically
arranged in n layers, at fixed (reduced) pressure βPv0,
where v0 is the particle volume, β = 1/kBT, kB the Boltz-
mann constant, and T the temperature. One MC cycle
consists of N attempts to either translate or rotate a
randomly selected particle, and one attempt to either
isotropically scale the system or scale just one (randomly
selected) side of the simulation box. In the case of top-
shaped and crooked rods, we also employ the ‘floppy-box’
method [50] to obtain the closest-packed configurations
and the NPT-MC simulations are performed by using a
variable box shape, for which also shear moves are per-
formed to change the simulation box in addition to the
scaling moves. We highlight that for anisotropic convex

particles, overlap checks must be performed both after
compression and after an anisotropic expansion of the
simulation box. For nonconvex particles, overlaps need
to be checked also after isotropic expansions.

We determine the equation of state of the system, i.e.
reduced pressure βPv0 as a function of packing fraction
η = Nv0/V with V being the volume of the simula-
tion box, by averaging η over equilibrated configurations.
In addition, we employ several order parameters to dis-
tinguish the different liquid crystal phases. We focus on
the order associated with the main particle axis, also in
the case of biaxial particles. In particular, we calculate the
(scalar) nematic order parameter Su by diagonalising
the tensor

Qu
αβ = 1

N

N∑
i=1

[
3
2
uiαuiβ − δαβ

2

]
, (2)

where α,β ∈ {x, y, z}, i = 1, . . . ,N, and δαβ is the Kro-
necker delta. The largest eigenvalue of Q is Su and the
corresponding eigenvector is the nematic director nu. In
order to check the mechanical stability of the Col+ phase
with respect to the smectic and crystal phase, it is crucial
to detect the formation of smectic layers. To this end, we
employ the smectic order parameter τu to quantify the
degree of layering

τu = max
l

∣∣∣∣∣∣
N∑
j=1

exp
(
2π
l
irj · n̂u

)∣∣∣∣∣∣ , (3)

where l ∈ R is a real number and rj denotes the position
of particle j. A large τu indicates layering in a direc-
tion parallel to the nematic director nu. The value of
l that maximises τu corresponds to the smectic layer
spacing d, which is the characteristic length scale of
the one-dimensional positional order in that direction.
For the biaxial particles in Section 3.3, Equations (2)
and (3) are straightforwardly modified to also quantify
the order associated to the short particle axis (see also
Ref. [27]). When the layering does not occur along nu,
as in Section 3.2, we consider a very large number of
directions ni, equispaced on half of the unit sphere, and
calculate τi as in Equation (3) for each of these direc-
tions. Analogously, a large τi indicates positional order
along direction ni with a characteristic spacing di. In this
way, the direction of the most pronounced layering can
be identified. More than one layering direction is found
in systems that exhibit 2 or 3 degrees of positional order
(e.g. columnar or crystal phases). In addition, we also cal-
culate the tilt angle θ of the layering direction ni with the
nematic director nu. Finally, we confirm the identifica-
tion of the different liquid crystal phases by calculating
the diffraction patterns as obtained by projecting the
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particle positions on a predefined plane and calculating
the Fourier transform of a two-dimensional histogram of
the projected positions.

3. The quest of a prolate columnar phase

3.1. Hard spherocylinders: the exemplary case of
colloidal liquid crystals

We first study a system of hard spherocylinders, con-
sisting of a cylindrical part of length L and diameter D
capped by two hemispheres with the same diameter at
both ends (see inset of Figure 1). This particle system
was employed by Frenkel et al. to demonstrate, for the
first time in computer simulations, that a smectic phase
can be stabilised by entropy alone [15]. Since then, a
significant number of theoretical and simulation studies
have been carried out investigating the structure, ther-
modynamics and dynamics of hard spherocylinders, and
the phase diagram of this system is now, largely due to
a detailed study based on free-energy calculations by
Bolhuis and Frenkel [39], well established [22,39,40]. In
Figure 1, we present the phase diagram of Ref. [39] in
the packing fraction η-aspect ratio L/D representation.
We note that we converted the reduced density scale of
the original phase diagram to packing fractions here to
facilitate comparisons with experiments and other sim-
ulation studies. Apart from the plastic crystal phase (P)
occurring at low aspect ratio, the thermodynamically sta-
ble positionally ordered phases are the smectic (Sm) and
the crystal (X) phase, consisting of particles arranged in
layers. Based on the in-plane order in each layer and the
correlations between the layers, a further classification
can be made: spherocylinders form a stable Sm-A phase
when the particles display a liquid-like structure within
each plane, and a stable crystalX phasewhen the particles

show long-range hexagonal positional order with either
AAA or ABC stacking of the hexagonal layers. In the
AAA-X phase, the hexagonal layers are exactly on top of
each other, whereas in the ABC-X phase the layers are
shifted with respect to each other, equivalently to a face-
centred-cubic crystal that is stretched in the direction
perpendicular to the hexagonal planes to accommodate
the spherocylinders. The relative thermodynamic stabil-
ity between the two types of stackings depends both on
the aspect ratio L/D and the packing fraction η. The
ABC-X phase is stable at all η for L/D < 7. For longer
rods, the AAA-X phase is stable at low η and transforms
into the ABC-X phase at sufficiently high η, see Ref.
[39]. In the case the hexagonal positional order persists,
but the layers are uncorrelated, the phase is identified
as a smectic-B phase. The latter has been observed in
experiments on suspensions of silica rods [12].

In this work, we aim to study whether or not a Col+
phase can be stabilised in a system of hard rods. As
mentioned in Section 1, the Col+ phase has first been
observed in small systems of parallel hard spherocylin-
ders [37], but was later on proven to be mechanically
unstable in larger systems [38]. There is no reason to
expect that spherocylinders with rotational degrees of
freedom would stabilise a Col+ phase, which is also con-
jectured in Ref. [22] and is consistent with the phase
diagram of Ref. [39]. In order to verify this for once and
for all, we perform simulations on freely rotating sphero-
cylinders with an aspect ratio of L/D = 5, 10 and 100.We
arrange the particles in hexagonal layers with either AAA
or ABC stacking, and use either n=3 or n=6 layers. The
number of particles is N=300 in the case of n=3, and
we double the number of particles in the case of n=6.
We use these four structures as initial configurations for
the MC simulations in the NPT ensemble. We fix the
pressure βPv0 and number of particles N, and monitor

Figure 1. Phase diagram of hard spherocylinders in the packing fraction η-aspect ratio L/D representation, data adapted from Bolhuis
and Frenkel [39]. The different stable phases indicated in the phase diagram are: isotropic (I), plastic crystal (P), nematic (N), smectic (Sm)
and crystal (X) phase. Representative snapshots of isotropic, nematic, smectic (metastable), prolate columnar (Col+) phase and crystal
phase (X) with the AAA stacking are also shown. For the last three phases, both top and side views are shown. For Sm and Col+ phases,
the diffraction patterns obtained by projecting the particle positions onto the respective plane (top and side view) are also shown.
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Figure 2. (a) Equation of state (reduced pressure βPv0 as a function of packing fraction η) for hard spherocylinders with aspect ratio
L/D = 5 obtained via NPT-MC simulations starting from different initial configurations (AAA or ABC stacking) with a different number of
particle layers n, as indicated in the legend. (b) Smectic order parameter τu as a function of η for spherocylinders with L/D = 5 starting
from different initial configurations. The keys of the legend are the same as in (a). For n= 3 a metastable Col+ appears. Inset: nematic
order parameter Su as a function of packing fraction η. (c,d) The same as (b) for aspect ratio L/D = 10 and L/D = 100.

the structural properties after equilibration using the
nematic and smectic order parameters. In Figure 2(a), we
plot the equation of state of hard spherocylinders with
L/D = 5.We observe a difference in the equation of state
for a system of n=3 and n=6 layers, indicating a size
dependence of the phase behaviour. The nematic order
parameter Su (inset) and the smectic order parameter τu
are plotted in Figure 2(b). The former is basically insensi-
tive to the system size. The latter, however, shows a large
increase at the N−Sm transition, but drops drastically
for the system of n=3 layers, signalling the absence of
particle layering and the formation of a Col+ phase, as
can also be appreciated from the snapshots in Figure 1.
The range of packing fractions η, for which we observe
the Col+ phase, is smaller when we use a system with an
ABC stacking. This might be related to the fact that the
AAA stacking transforms more easily into a Col+ phase
since the particles are already arranged in columns, and
to the fact that the ABC crystal is stable for L/D = 5.
If we employ a system of n=6 layers, the drop in τu
that signifies the transition to the Col+ phase is absent,

irrespective of the initial stacking. Similar simulations
are performed for larger aspect ratios. In Figure 2(c),
we present the smectic order parameter τu for L/D =
10, and in Figure 2(d) for L/D = 100. We remark here
that L/D = 100 corresponds to the range of aspect ratios
of fd-viruses. For L/D = 10, we again observe a dras-
tic decrease of τu for systems with n=3 irrespective of
the stacking, but we find no drop in the case of a larger
system with n=6 layers. This drop occurs at higher η if
the initial configuration is ABC-stacked, consistent with
the fact that the formation of columns in this configura-
tion is hindered by the type of stacking and the layering
can survive for a larger range of η. For L/D = 100, the
decrease in τu, although still present for n=3, appears
smaller, suggesting that the finite-size effectsmight be less
severe in this case. We conclude that in the case of hard
spherocylinders the Col+ phase is mechanically unstable
irrespective of the aspect ratio of the particles. In the next
sections, wemodify the particlemodels to search for pos-
sible shape features which may favour the stabilisation of
a Col+ phase.
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3.2. Modulating the diameter: top-shaped rods

Wemodify the particle shape by considering top-shaped
rods [42], a minimal model for mimicking rods with a
larger diameter in the middle. The particles consist of a
hard spherocylinder with an aspect ratio L/D and a hard
sphere with a sphere-to-rod-diameter ratio σ/D embed-
ded in its centre. Since the top-shaped rods are uniaxial,
the orientation is fully described by the unit vector u, see
Figure 3(a). In Ref. [42], a density functional theory was
employed to determine the liquid crystal behaviour of
parallel top-shaped rods using various approximations.
Irrespective of the aspect ratio, a region of stability of
the Col+ was predicted for intermediate values of σ/D at
sufficiently high packing fractions η. For small σ/D the
phase behaviour of spherocylinders was recovered, while
for large σ/D a tilted smectic-C was predicted. Addition-
ally, simulation results obtained by compressing small
systems,N=256, of parallel top-shaped rodswith L/D =
9 were presented in Ref. [42] for very small σ/D ≤ 1.06
and for σ/D = 1.80, 1.85, 1.90. In the first case, a drop in

the smectic order parameter τu, signifying the formation
of a Col+ phase, was observed upon increasing η, remi-
niscent of the spherocylinder behaviour. For large σ/D,
the jump in the order parameter τi at η � 0.45 (in our
notation), corresponding to a layering along a direction
ni 	= nu (see Section 2), signalled the onset of a tilted
phase.

In this section, we carry out simulations on systems
of freely rotating top-shaped rods with the same aspect
ratio as in Ref. [42], i.e. L/D = 9. We first focus on the
case of σ/D = 1.1, for which we expect a behaviour sim-
ilar to that of spherocylinders. We observe that a Col+
phase is formed in systems with n=4 layers but this
phase disappears if the number of layers n is doubled,
as shown schematically in Figure 3(b). To be more spe-
cific, we initiate our simulations fromconfigurations con-
sisting of n=4 hexagonal layers with an AAA stacking
and arranged along the z-direction in a cuboidal sim-
ulation box. We subsequently perform standard NPT-
MC simulations at different pressures until the system

Figure 3. (a)Model of a top-shaped rod. (b) Snapshots representing how a Col+ phase transforms into a layered smectic phasewhen the
number of layers is doubled for top-shaped rodswith L/D = 9 andσ/D = 1.1. (c) Equation of state of top-shaped rodswith L/D = 9 and
σ/D = 1.1 obtained via NPT-MC simulations starting from different initial configurations with different numbers of layers n as indicated
in the legend (seemain text). Inset: equation of state obtained from initial configurations with ABC stacking. (d) Smectic order parameter
τu as a functionofη obtainedviaNPT-MC simulations for different initial configurations. The keys are the sameas in (c). Inset: starting from
ABC stacking. The appearance of themetastable Col+ is indicated. (e) Evolution of the smectic order parameter τu inNPT-MC simulations
at different pressureβPv0 when the number of layers of the (previously equilibrated) initial configuration, that is a Col+ phase, is doubled
(from n= 4 to n= 8). All the systems equilibrate to a layered configuration in a number of steps that has no clear dependence on the
pressure and the system size in the x- and y-directions (perpendicular to the layering).
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forms a Col+ phase and is well equilibrated. From the
final configurations (at each pressure), we generate a new
configuration by either (i) duplicating the system in the
direction of the layers (z-direction), i.e. doubling n, or (ii)
duplicating the system in the x- and y-directions orthog-
onal to the layering, thereby keeping n fixed. New runs
of NPT-MC simulations are then performed starting
from the new configurations until equilibration. The final
configurations of type (ii) are then replicated along the
z-direction thereby doubling n, and again equilibrated
using NPT-MC simulations. Using this simulation pro-
cedure, we can not only verify if the Col+ phase becomes
mechanically unstable when the number of layers n is
doubled, but can also check if doubling the system size
perpendicularly to the layering direction affects the sta-
bility of the Col+ phase. In Figure 3(c), we report the
equation of state for all the simulations carried out and
we observe a clear finite-size effect. Figure 3(d) clearly
shows that the Col+ phase is only observed for a system
of n=4 layers, as evident from the drop of τu at η � 0.57.
In Figure 3(e), we report the evolution of τu as a function
of MC steps for the runs in which the initial Col+ config-
uration has been doubled in the z-direction. Figure 3(e)
shows clearly that initially the systemwith a low τu � 0.2
corresponds to the Col+ phase, but τu increases steadily
with MC steps as the system transforms into a smectic
phase. We find no clear dependence on the pressure and
on the system size in the x- and y-directions (perpen-
dicular to the layering). We conclude that the number of
layers n is the key parameter in the formation of the Col+
phase, and that other factors only play a marginal role.
Finally, the insets of Figure 3(c,d) show the simulation
results starting from an ABC stacking with either n=3

or n=9 layers, corroborating the conclusion that Col+
is obtained only for small n, irrespective of the stacking
configuration.

We now consider top-shaped rods with a larger sphere
diameter σ/D = 1.3, 1.5, 1.7, 1.9, and perform similar
sets of simulation runs. The equations of state obtained
starting from an AAA stacking with n=4 layers and
the smectic order parameter τu as a function of η are
shown in Figure 4(a). We immediately note that in the
case of large σ/D no discontinuity is observed in den-
sity (or only at extremely large pressures), suggesting the
absence of any phase transformation. This might be due
to the fact that the AAA-stacked configuration is not
the close-packed structure and imposing a high pres-
sure might lead to jamming. In Figure 4(b–e), we show
typical configurations of the larger systems at high pres-
sure. Visual inspection of these configurations, together
with the trends of τu (inset of Figure 4(a)), suggests
that the Col+ phase is stable for σ/D = 1.3, the smectic
phase is observed for σ/D = 1.5, distorted/tilted order
is observed for σ/D = 1.7, and no positionally ordered
phase is obtained for σ/D = 1.9. In order to check if
these simulation results were affected by the cuboidal
simulation box that might be incommensurate with the
equilibrium structure of these rods, we resort to the
floppy-box MC method [50] to determine the closest-
packed structures with two particles in the unit cell as
shown in Figure 5. These structures consist of interca-
lated hexagonal layers of particles tilted with respect to
the nematic director. We use these crystal structures as
starting configurations in ourNPT-MC simulations with
a variable box shape. In Figure 6(a), we show the result-
ing equations of state. We observe a strong first-order

Figure 4. (a) Equations of state for top-shaped rods with L/D = 9 and different sphere-to-rod diameter ratios σ/D obtained viaNPT-MC
simulations using a cuboidal simulation box. The inset shows the smectic order parameter τu as a function of packing fraction η. (b–e)
Snapshots of the final configurations obtained for larger systems using a cuboidal simulation box at βPv0 = 12 for (b) σ/D = 1.3, (c)
σ/D = 1.5, (d) σ/D = 1.7 and (e) σ/D = 1.9.
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Figure 5. Snapshots of the close-packed configurations for top-shaped rods obtained via the floppy-boxMCmethod with two particles
in the unit cell. For σ/D = 1.3 different orientations of the configuration with only the spherocylinder component or only the central
sphere of the top-shaped rods are shown.

Figure 6. (a) Equation of state for freely rotating top-shaped rods obtained via NPT-MC simulations using a variable box shape and
starting from the close-packed configurations of Figure 5. (b) The three largest layering order parameters τi and the associated spacing
di (in units of D, inset) as a function of packing fraction η for top-shaped rods with σ/D = 1.3. (c) Same as in (b) for σ/D = 1.5. (d) The
layer spacing di associated to the three largest layering order parameters as a function of η for all the four values of σ/D (colours in the
online version are indicating σ/Dwhereas symbols are indicating ranking). The small graph shows the tilt angle θ between the nematic
director and the layering direction with the largest di as a function of η.



MOLECULAR PHYSICS 9

phase transition at a pressure βPv0 � 8.0 with coexist-
ing packing fractions of η � 0.45 and η � 0.50. At low
pressures the system forms a nematic phase. To char-
acterise the structure at high pressures, we identify the
directions of the most pronounced layering as the (three)
directions ni associated to the largest value τi > 0.4 (see
also Section 2). We report the values of τi as well as
the layer spacing di along the respective direction ni in
Figure 6(b–d). The symbols in the figures are coloured
(in the online version) according to σ/D and their shape
represents the values of the associated τi (circle, square,
triangle for the largest, second, third τi, respectively).
Focusing on Figure 6(b), we observe that the system dis-
plays long-range positional order in three different direc-
tions in the entire range of η (except for the first value
of η). The corresponding spacings di are plotted in the
inset and summarised in Figure 6(d), from which it is
clear that in all cases the high-pressure states consist of
intercalated layers with a significant spacing di ∼ L/2D.
Furthermore, we find long-range positional order also
in two other directions with typical spacings di ≤ 2.2D.
We therefore conclude that the structure is crystalline.
Exceptions are the states corresponding to the lowest
value of η both in Figure 6(b ,c), where positional order
(τi > 0.4) is only detected in two directions with one of
the two directions corresponding to the intercalated lay-
ering of these rods. One explanation might be that the
columnar phase is different from Col+, or that the posi-
tional order is too weak to be detected as these states
are close to the melting transition to the nematic phase.
Finally, in Figure 6(e) we also plot the tilt angle θ between
the direction of the layers with spacing di ∼ L/2D and
the nematic director. The layers becomemore tilted upon
increasing packing fraction η. In addition, we note a sig-
nificant jump in the tilt angle for σ/D = 1.7 at η � 0.55
indicating a structural reorganisation of the layers, which
is also accompanied with a small discontinuity in the
equation of state. We remark that in Ref. [42] a larger tilt
angle and a much smaller spacing were reported. This
discrepancy is only noticeable, as the tilt angle here is
defined as the one associated to the largest layer spacing
di and not to the largest τi. If we use the same definitions
as in Ref. [42], the results are in reasonable agreement.
However, we stress once more that in Ref. [42] a sys-
temof parallel top-shaped rodswas considered, forwhich
no rotational entropy is present. Since for top-shaped
rods the rotational entropy in a smectic phase should be
larger than it is in a Col+ phase, and its difference should
increase by increasing σ/D, the stability of a Col+ might
bemore likely if the particles cannot freely rotate. For this
reason, we also perform NPT-MC simulations for large
systems of parallel top-shaped rods with L/D = 9 and
σ/D = 1.3 (N=3072), σ/D = 1.5 (N=3840), σ/D =

1.7 (N=2560) and σ/D = 1.9 (N=2304). In particular,
we expand close-packed configurations obtained via the
floppy-box method (imposing that the two particles in
the unit cell must have the same orientation) in the NPT
ensemble by setting the pressure βPv0 and run for 107

MC steps. The obtained equations of state together with
the layering analysis are reported in Figure 7.We observe
that the positional order sets in at similar packing frac-
tions and lower pressures than for freely rotating rods, as
expected. Also for parallel top-shaped rods, the majority
of the state points simulated correspond to crystal struc-
tures, i.e. there are three large τi. In all cases when posi-
tional order is observed, there is a layer spacing L/3D <
di < L/2D indicating that the intercalated layered struc-
ture is strongly tilted (see, for example, Figure 7(c)). As
before, for some cases close to the melting to the nematic
phase (see, for example, Figure 7(f)), positional order is
detected only in two directions, one being the layering
direction conventionally expected in a smectic phase of
prolate particles.

To summarise, our simulations lend support that the
Col+ phase is absent in large systems of (freely rotating
or parallel) hard top-shaped rods with L/D = 9 as the
layering remains intact for the entire stability range of
positionally ordered states, when a floppy simulation box
is used.

3.3. Being biaxial: cuboidal particles

We now investigate the effect of biaxiality on the stabil-
ity of the Col+ phase. To this end, we consider rod-like
particles with a cuboidal shape. We define L,M and S as
the long, medium and short particle length, as shown in
Figure 8(a). We expect that the particles form a colum-
nar phase with a rectangular in-plane order rather than
a hexagonal order, which might affect the stability of the
Col+ phase with respect to the smectic or crystal phase.

The phase diagram of cuboids with reduced length
L∗ = L/S = 9 and 12, and various M/S ≤ L∗ have been
studied in Ref. [43]. Surprisingly, a Col+ phase was
reported for shapes close to M= S in a quite large pack-
ing fraction range, abruptly invading the region where a
crystal phase is to be expected. The number of particles in
these simulations was quite large, ranging fromN=1100
to N=3500, but the Col+ was observed in systems
with only n=4 layers. Interestingly, for less anisotropic
cuboids, L∗ = 9, the range of values of M/S for which
Col+ was found is smaller than for more anisotropic
particles, i.e. L∗ = 12.

In this work, we consider cuboidal rods with M= S
and (reduced) lengths ranging from L∗ = 5 to L∗ = 12.
Cuboids with M= S and L∗ ≤ 5 were already studied in
Ref. [51]. In this study, a Col+ phase was also observed
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Figure 7. (a) Equation of state for parallel top-shaped rods obtained via NPT-MC simulations using a variable box shape and starting
from close-packed configurations. (b) The three largest layering order parameters τi and the associated spacing di (inset) as a function
of η for parallel top-shaped rods with σ/D = 1.3. (c) Representative snapshots for σ/D = 1.3 and βPv0 = 7. The same configuration is
shown with or without the spherocylindrical part of the rods. (d) The three largest layering order parameters τi and (e) the associated
layer spacing di as a function of η for all the four values of σ/D (colours in the online version are indicating σ/Dwhereas symbols are indi-
cating ranking). (f ) Representative snapshots for σ/D = 1.5 and βPv0 = 4. The same configuration is shown with a solid or transparent
spherocylindrical part of the rods.

Figure 8. (a) Model of hard cuboidal rods. The particle shape is defined via the lengths of the three main particle axis (L,M,S) and its
orientation is describedby using the vectorsu, v,w. In this study,we consider only particleswithM= S. (b) Representative snapshots (top
and side view) of a prolate columnar phase (Col+) obtained via NPT-MC simulations of N= 1936 cuboids (corresponding to a number
of layers n= 4) with L∗ = 5 (βPv0 = 8.0). The inset shows the corresponding diffraction pattern, obtained by projecting the particle
positions onto the plane containing themain two nematic directors (corresponding to the side view snapshot). By increasing the number
of layers n (and thereforeN) the Col+ phase is unstable with respect to either (c) a (prolate) smectic phase (Sm+) (L∗ = 5, βPv0 = 7.0) or
(d) a crystal phase (X) (L∗ = 5, βPv0 = 10.0), depending on the packing fraction (or equivalently the imposed pressure). Both side and
top view and the diffraction pattern associated to the side view are shown.
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Figure 9. (a) Smectic order parameter τu as a function of packing fraction η for cuboidal rods with different aspect ratios L∗ = L/S. The
system sizes studied are indicated in the legend using the number of layers n in the initial configurations (and the corresponding total
number of particles N). At η � 0.54 all the systems studied exhibit a Sm+ phase. For small system size, upon increasing η the smectic
order decreases more or less drastically depending on n. (b) Difference in the smectic order parameter τu as obtained from NPT-MC
simulations at high pressure (βPv0 = 10) of systems with n layers with respect to a larger system (n= 8) for different aspect ratios L∗.
The size effects are more pronounced for small L∗. (c,d) (Equilibrium) phase transition between the smectic phase Sm+ and the crystal
phase X for large systems of hard cuboidswith aspect ratio L∗ = 5 and L∗ = 12,monitored by the nematic and smectic order parameters
as indicated in the legend.

instead of an X phase in the case of small system sizes.
However, the authors mentioned that particular atten-
tion should be paid at high packing fractions because of
finite-size effects, which is consistent with observations
made in a previous simulation study [52]. Here, we inves-
tigatewhether or not theCol+ phase becomes stable upon
increasing the aspect ratio L∗ of the cuboids.

We perform NPT-MC simulations on systems of
cuboidal rods using different numbers of particle layers
n=4,5 and 8.Weobserve aCol+ phase forn=4 as shown
in Figure 8(b), whereas in the case of n=8, we find either
a (prolate) smectic phase Sm+, see Figure 8(c), or a crys-
tal phase X as shown in Figure 8(d), depending on the
pressure. To quantify the finite-size effects, we plot in
Figure 9(a) the smectic order parameter τu as a function
of η for different L∗ and n. At η � 0.54 all systems show
a Sm+ phase. For n=4, the order parameter τu drops
abruptly upon increasing η, corresponding to the forma-
tion of the Col+ phase. In the case of n=5, the decrease
is more gradual and shifted to larger η depending on L∗.

We find that τu never decreases below 0.9 for systems
with n=8 layers. In Figure 9(b), we report the differ-
ence in τu at pressure βPv0 = 10 between systems with
n=4,5 and with n=8. Assuming that the latter are the
equilibrium values of the smectic order parameter τu, we
find that the finite-size effects are less pronounced upon
increasing the aspect ratio of the rods, i.e. τu is closer to
the equilibrium values for larger L∗. Finally, by looking
at the order parameters associated to the short particle
axis w as shown in Figure 9(c,d) for L∗ = 5 and L∗ =
12, we (roughly) identify the packing fraction intervals
corresponding to the equilibrium Sm and X phases.

In conclusion, also cuboids exhibit a metastable
Col+ phase due to finite-size effects, irrespective of the
anisotropy of the rods.

3.4. Bending the colloids: crooked rods

Finally, we consider crooked rods composed of two hard
spherocylinders of aspect ratio L/D, sharing one of the
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Figure 10. (a) Model of a hard crooked rodwith bending angleψ = 175◦ and L/D = 5. (b) Snapshots of themetastable prolate colum-
nar Col+ phase in two different orientations of the simulation box obtained for n= 4 layers of particles. (c) Smectic order parameter τu
as a function of packing fraction η for crooked rods withψ = 175◦ obtained by NPT-MC simulations with a variable box shape and with
an initial configuration of n= 4 or n= 8 particle layers. (d) Same as in (c) for bending angleψ = 178◦.

spherical end caps and merged together with a bending
angle ψ , see Figure 10(a). Crooked rods are biaxial and
polar, and these two properties can be transmitted to the
macroscopic scale giving rise to an interesting variety of
liquid crystal phases such as twist-bend and splay-bend
nematic phases. The phase behaviour of hard crooked
rods with L/D = 5 and bending angle ψ ∈ [90◦, 180◦]
was studied in Ref. [41] using simulations of N=400
particles arranged in n=4 layers. A Col+ phase was
reported close to the spherocylinder limit (ψ → 180◦),
even though the authors had some doubts about its ther-
modynamic stability. In this section, we study crooked
rods with L/D = 5 and ψ = 175◦ and ψ = 178◦. We
perform NPT-MC simulations with a variable box shape
starting from an anti-polar crystal phase as obtained
from the floppy-box MC method [50] with two parti-
cles in the unit cell. The initial configuration consists
of either N=1024 particles arranged in n=4 layers or
N=2048 arranged in n=8 layers. As before, we quantify
the layering along the main nematic director via τu. In
Figure 10(c,d), we plot τu as a function of η forψ = 175◦
and ψ = 178◦, respectively. In both cases, there is an
interval of η in which τu is small for n=4 but large for
n=8, corresponding to the formation of a Col+ phase
for only small system sizes as depicted in Figure 10(b).
The range of the Col+ is larger for ψ = 175◦, when the

aspect ratio of the rods, defined by the end-to-end dis-
tance divided by the particle width, is smaller. This obser-
vation provides again support that the finite-size effects
are stronger for less anisotropic particles. For crooked
rods, the metastable Col+ lies entirely inside the region
in which an Sm phase is expected, i.e. the observed
phase sequence in small systems is Sm − (Col+)− Sm −
X upon increasing η. Moreover, the packing fraction
range in which we observe Col+ is smaller than what
was found in Ref. [41]. This can be attributed to the use
of simulations with a variable box shape and to a larger
number of particles in each layer here, since both facil-
itate and speed-up equilibration. To conclude, we again
find that the formation of the Col+ phase in a system of
crooked rods is due to finite-size effects.

4. Discussion and conclusions

In conclusions, our simulation results show that finite-
size effects can be surprisingly significant in systems
of rod-like particles forming layered structures such as
smectic and crystal phases. In all the cases presented
here, a Col+ phase is formed at high pressures in sys-
tems with a small number of particle layers, but this
phase becomes mechanically unstable for systems with a
larger number of layers. These finite-size effects are quite
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general as we find the formation of the Col+ phase for
a wide variety of systems, such as spherocylinders, top-
shaped rods, cuboidal rods and crooked rods, and for
Col+ phases that are competing with a variety of thermo-
dynamic phases such as smectic and crystal phases. As a
consequence, it is difficult to predict the number of lay-
ers that is required to avoid these finite-size effects. For
instance, we observed that n=4 particle layers were not
always sufficient to circumvent these finite-size effects.
But as a rule of thumb, we notice that the larger the par-
ticle anisotropy, the less severe the simulation artefacts,
which is, perhaps, unexpected.

Our findings that all the simulated Col+ phases that
are reported in the literature so far in (freely rotating)
single-component hard-particle systems are mechani-
cally unstable, raises the question whether such a phase
can be entropically stabilised at all in such systems. The
answer to this question has interesting repercussions for
ourmicroscopic understanding of the phase behaviour of
fd-virus suspensions, which show such a Col+ phase. We
wish to make two remarks here. First of all, the idea that
only (oblate) disk-like particles can form (oblate) colum-
nar phases and that only (prolate) rod-like particles can
form (prolate) smectic phases is clearly wrong. Further-
more, the distinction between oblate versus prolate and
disk-like versus rod-like is not always straightforward,
as it is not always easy to predict if a particle behaves
more like a rod or a plate [22,27]. For instance, systems
of (biaxial) cuboids can show plate-like behaviour when
they are more rod-like and vice versa [27], and their
phase diagram can display prolate but also oblate smectic
Sm− phases [43]. It is therefore interesting to determine
what the particle shape requirements are for the stabil-
isation of a Col+ phase. It is well understood that poly-
disperse systems of rod-like particles can form a Col+
phase [22,53,54].Would it be possible tomodel the prop-
erties of length-polydisperse rods in a single-component
system? The Col+ phase was indeed observed in systems
of rod-like particles with patchy attractions between the
ends of the rods, i.e. sticky cylinders [55]. Such rods self-
assemble in linear aggregates, whose flexibility depends
on the binding energy. It is thus worthwhile to investi-
gate if flexibility of purely repulsive rods could be the key
factor for stabilising theCol+ phase, a hypothesis that has
been put forward for fd-virus suspensions [33,34]. How-
ever, recent simulations on semi-flexible rod-like parti-
cles [56], even though with aspect ratios much smaller
than the experimental fd-virus particles [34], did not
show any sign of a stable Col+ phase. Another possibility
might be that the Col+ phase is stabilised by the chirality
of the rods, but extensive simulation studies performed
on hard helices did not report any evidence of a columnar
phase [24,57]. In conclusion, the stabilisation of a Col+

phase by entropy alone remains a puzzle that is still unre-
solved. More simulations are definitely required to unveil
the microscopic origin of such a phase, but our results
in this paper show that finite-size effects should be taken
into account.
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