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ABSTRACT

Identifying crystalline structures is a common challenge in many types of research. Here, we focus
on binary mixtures of hard spheres of various size ratios, which stabilise a range of crystal structures
with varying complexity. We train feed-forward neural networks to distinguish different crystalline
and fluid environments on a single-particle basis, by analysing vectors composed of several averaged
local bond order parameters. For all size ratios considered, we achieve a classification accuracy above
98% for all phases, meaning that our method is completely general and able to capture structural

differences of a wide range of binary crystals.
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1. Introduction

The study of many structural and dynamic phenomena
involving crystalline phases, including nucleation and
growth, melting and grain boundary dynamics, relies on
our ability to determine whether or not a particle is part
of a crystalline cluster or domain. In bulk, crystalline
solids can be straightforwardly distinguished from fluids
as they exhibit both translational and bond-orientational
order. Moreover, the difference between various crystal
structures is readily accessible by determining their unit
cell. However, on a single-particle level, the distinction
between a fluid and a crystal is much less clear: in a small
crystalline cluster, as might exist during nucleation or

in a polycrystalline material, long-range translational or
bond-orientational order is not present.

One of the more common methods for identify-
ing crystalline particles is based on local bond order
and finds its origins in a 1982 paper by Steinhardt,
Nelson, and Ronchetti [1]. They introduced bond-
orientational order parameters suitable for studying
bond-orientational order in liquids and glasses. As a
starting point, they defined for each particle a set of
bonds to its nearby neighbours. They then expanded
the distribution of bonds in the system in terms of the
spherical harmonics of order /, and used this expansion
to construct quadratic and cubic rotationally invariant
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quantities that measure specific bond-order symmetries
in the system, generally referred to as g; and wj, respec-
tively. This idea was inspired by the Landau expansion
of the free-energy difference between a bond-oriented
(crystalline) and a fluid phase in terms of the same spher-
ical harmonic functions (see e.g. [2]). Subsequently, this
concept was extended to analyse structure on a single-
particle level by Ten Wolde, Ruiz-Montero, and Frenkel
[3,4]. The resulting local bond-order parameters allow
for both the identification of particles in environments
corresponding to a specific crystal structure, and to iden-
tify clusters of particles belonging to the same crystalline
domain. In a later extension by Lechner and Dellago [5],
it was shown that the reliability of these order parameters
in the presence of thermal fluctuations could be signifi-
cantly improved by averaging the bond order parameter
of each particle with that of its nearby neighbours. Bond
order parameters have played a significant role in our
understanding of single-component phase behaviour,
and have been a particularly valuable tool in the study
of hard spheres, arguably the simplest model system for-
crystallisation. In this context, bond order parameters
have been instrumental in developing new insights into,
e.g. the nucleation rate [6], the shape of pre-critical nuclei
[7], nucleation from a glass [8] and the role of confine-
ment [9]. However, in most of these studies, the focus
lies primarily on single-component systems, where all
relevant crystal structures are easy to predict and have rel-
atively simple unit cells. In contrast, bond order param-
eters for binary phases, which can be significantly more
complex, have received much less attention.

The equilibrium phase behaviour of binary hard-
sphere mixtures has been well characterised in the litera-
ture. One of the first observations of binary colloidal crys-
tals was made by Murray and Sanders in naturally occur-
ring Brazilian gem opals [10,11]. They observed the for-
mation of a range of binary crystals, including NaCl, AlB,
and NaZn;3 (ico-AB;3), all of which were later confirmed
to be stable in binary hard-sphere mixtures [12-16].
Since then, our understanding of the phase behaviour
of binary hard spheres has come a long way, and we
now have theoretical phase diagrams for a wide range
of size ratios, largely backed up by experimental obser-
vations [15,17,18]. These studies have found regions of
stability for binary liquids, monodisperse face-centred-
cubic (fcc) crystals, binary crystal phases NaCl, NaZn;3,
AlB,, the Laves phases (MgCu,, MgZn;, MgNi,), an ABg
phase with no atomic analogue, as well as substitutional
and interstitial solid solutions. However, in compari-
son to single-component hard spheres, our knowledge
of the crystallisation dynamics of binary crystals is still
severely limited. One of the puzzle pieces currently miss-
ingin the literature are well-performing order parameters

that identify, on a single particle level, the complex local
environments associated with binary hard-sphere crystal
phases.

In this paper, we use machine learning to develop
order parameters, based on the bond order parameters,
to distinguish crystalline environments in binary mix-
tures of hard spheres. Recently, machine learning has
been shown to be an extremely promising approach in
the study of phase behaviour, both for predicting phase
transitions as well as for developing new order param-
eters [19-26]. Research on the uses of machine learning
for designing order parameters can be loosely broken into
two categories: supervised and unsupervised machine
learning. In the context of supervised machine learning,
it has recently been demonstrated that neural networks
could be used as order parameters for recognising various
crystalline order in single-component systems, includ-
ing Lennard Jones, Yukawa and water potentials [23,24].
These examples are very similar to the situation exam-
ined in this paper: assuming that we know a priori which
crystalline phase we want to be able to distinguish, neu-
ral networks are trained to recognise that local order.
These examples used different types of ‘local” environ-
ment characterisations, including bond order parameters
[24] and symmetry functions [23]. The unsupervised
learning algorithms function quite differently and are
designed to identify the distinctive groups of local envi-
ronments that are present in the system — without a pri-
ori knowledge of the possibilities. This has been applied
to, e.g. single component systems [25], and 2d binary
systems [26].

Here, we train single-layer neural networks to recog-
nise different particle environments, corresponding to
fluid or crystalline phases, in simulations of binary hard-
sphere mixtures. In particular, we perform Monte Carlo
simulations of binary hard-sphere mixtures at three dif-
ferent size ratios « = og/op = 0.45,0.54 and 0.82, with
os) the diameter of the small (large) species. These size
ratios were chosen because they cover a number of dis-
tinct stable binary crystal structures. For each phase, we
considered different packing fractions, 1, defined as

n= %pof [(1—x)+oz3x], (1)

where x = N;/N is the stoichiometry and p = N/V is
the number density. We then characterise the environ-
ments of particles in different phases using the averaged
bond order parameters introduced by Lechner and Del-
lago [5], and train neural networks to identify distinct
local environments that occur in the different crystal
structures. Finally, we test these networks on separate
simulations and quantify their accuracy.



The remainder of this paper is organised as follows.
In Section 2, we describe the bond order parameters in
detail. In Section 3, we outline the setup of the neu-
ral networks used in this paper. In Section 4, for each
size ratio, we examine the investigated crystal structures
and their local environments, and describe the associated
neural network. Finally, in Section 5, we discuss the per-
formance of the trained neural networks. A summary and
discussion follows in Section 6.

2. Bond order parameters

To characterise the local environment of each particle, we
use the averaged bond order parameters introduced by
Lechner and Dellago [5]. First, we define for any given
particle i the complex quantities

jEN (1)

1

QIm( i) = Ny ( )
where Y}" (rj;) are the spherical harmonics of order [, with
m an integer that runs from m=—I to m=+I. Addi-
tionally, r;; is the vector from particle i to particle j, and
N (i) is the set of nearest neighbours of particle i, which
contains Ny (i) particles. Then, the averaged g, (i) are
defined as

Gim (i) = Y amb), (3)

N G ) 1 ke{i Ny (D)

where the sum runs over all nearest neighbours of parti-
cle i as well as particle 7 itself. Averaging over the nearest
neighbour values of gy, results effectively in also tak-
ing next-nearest neighbours into account. Finally, we
define rotationally invariant quadratic and cubic order
parameters as

qi(i) = 21 - Z |Gm ()12, (4)

wi(i) =
11

m1+m2+m30<ml my

(S m2)

Iy,
m3> Qimy (l)qlmz (I)tﬂm3 (1)

, (5

where the term in parentheses in Equation (5) is the
Wigner 3j symbol. The quantities in Equations (4) and (5)
are real, translationally and rotationally invariant, and,
depending on the choice of /, are sensitive to different
crystal symmetries. Our description of the local environ-
ment of particle i consists of a vector of 24 such bond
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Figure 1. Radial distribution functions of large particles of ico-
AB13 (n = 0.55), AlB; (n = 0.60) and FCC (n = 0.55) hard spheres
crystals.

order parameters arranged in the following order:

QG) = U@} (wr ) AZ " D) W T G (6)

for large (small) particles, with I € [1,8] and /' consisting
of only even values of I. Here g; and w; represent the aver-
aged bond order parameters calculated considering all

the nearest neighbours of the particles, while qLL(SS) nd
ZLL(SS) are calculated considering only the large (small)

nearest neighbours of large (small) particles.

Thus far, we have not discussed the definition of
a nearest neighbour, as used in the definition of the
bond order parameters. There are a number of different
avenues for identifying nearest neighbours. The simplest
method, and one we use in this paper, relies on using a
fixed cutoff radius r., such that all particle closer than this
distance are considered nearest neighbours. Ideally, this
cutoff radius is chosen as the distance at which the radial
distribution function has its first minimum. When con-
sidering different crystal structures, however, the minima
often occur at different distances, so that no choice of
rc works perfectly for all crystals (see Figure 1). In this
paper, we choose r, by trying to maximise the number of
included first neighbours and to minimise the number of
included second neighbours for all crystals. This method
has the advantage that it is computationally very cheap
and it is symmetric, i.e. i is a neighbour of j if and only
if j is a neighbour of i. However, r, is system and density
dependent, so that it has to be tuned for every particu-
lar case requiring prior knowledge of the system(s) under
study. Additionally, the cutoff is defined for the entire sys-
tem and, as such, is not an optimal choice for systems with
large density gradients or interfaces, such as can occur in
nucleation studies.
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Another standard method for determining nearest
neighbours is the Voronoi construction [27], which has
the advantage that it is parameter free. However, it is also
relatively computationally expensive, and in this paper we
have instead opted to make use of a recently introduced
alternative parameter-free nearest-neighbour criterion,
called SANN (solid angle nearest neighbour) [28]. In this
approach, an effective individual cutoft is found for every
particle in the system based on its local environment. The
algorithm can briefly be described as follows.

First, the particles {j} surrounding i are ordered such
that r; J = Tijt1 Then, starting with the particle clos-
est to i, a solid angle 6;; is associated to every potential
neighbour j. Finally, SANN defines the neighbourhood
of particle i as consisting of the nearest (i.e. closest) m
particles {j} such that the sum of their solid angles equals
at least 4. For a complete description of the algorithm,
see Ref. [28].

This method is not inherently symmetric, i.e. j might
be a neighbour of i while 7 is not a neighbour of j. How-
ever, symmetry can be enforced by either adding j to the
neighbours of i or removing i from the neighbours of j. In
this study, we applied the latter solution. The computa-
tional cost of SANN only slightly exceeds that of a cutoft
distance, making it suitable for on-the-fly use in simu-
lations. Moreover, since it is a parameter free method,
it is suitable for systems with inhomogeneous densities.
The only inconvenience we encountered with SANN is
that, in some cases, some second shell neighbours are also
included in the nearest-neighbour lists.

3. Neural networks for the classification of
binary hard spheres crystals

Our goal is to develop algorithms which are able to distin-
guish different crystalline environments for binary hard-
sphere systems on a single-particle basis. To this end, we
employ feed-forward neural networks, which are general
purpose algorithms that ‘learn’ the properties of a specific
classification problem from labelled data. In particular,
we consider single-layer neural networks (SLNN) with
a Softmax activation function and cross-entropy error
function. For a detailed description of how such a net-
work is implemented, see the Supplemental Information.
SLNNs are one of the simplest forms of feed-forward
neural networks and are able to efficiently find linear sep-
arations of data in high dimensional spaces, provided
that the data are indeed linearly separable. Using such
a simple structure instead of more complex ones has
some important advantages. The training is easy - in
the sense that it does not require advanced techniques
for function minimisation — and computationally cheap,
and the risk of overfitting! is low. The only limitation

is that they fail on problems which are inherently non-
linear, but as we will show, this is not a problem in
this work.

We examine binary hard-sphere mixtures of three dif-
ferent size ratios (o = 0.45, 0.54 and 0.82). For each size
ratio, we train an SLNN to distinguish the different local
environments that occur in the stable phases. The net-
work takes as its input the vector Q(i) in Equation (6),
namely our description of the local environment of one
particle. As its output, it produces a number for each
potential local environment, indicative of the likelihood
the particle is in this environment. The determined par-
ticle environment is then considered to be the one with
the highest likelihood.

To train the network, its internal parameters are opti-
mised based on information contained in a so-called
‘training set’. The training set is constructed by determin-
ing a representative sample of Q(i) of particles in config-
urations in each known phase. In particular, we perform
Monte Carlo simulations in the canonical ensemble (con-
stant number of particles N, composition x, volume V
and temperature T), for each of the stable phases under
consideration. From each simulation, we save 100 inde-
pendent snapshots, and calculate Q(7) for each particle.
Note that since diffusion in the crystal phases is essen-
tially absent, we know the correct environment for each
particle. This knowledge, combined with the set of Q(i),
forms our training set. The number of distinct local envi-
ronments depends on the specific size ratio, as we will
discuss in the following section.

We calculate bond order parameters both using a fixed
cutoft distance and the SANN algorithm, resulting in two
training sets and hence two distinct SLNNs. When exam-
ining their performance, we will refer to these networks
as the ‘cutoff networks’ and ‘SANN networks’, respec-
tively. The chosen cutoft distances for the cutoff networks
are listed in Table 1, where r, is the cutoft used to identify
all the nearest neighbours of the particles, r'* to identify
only the large nearest neighbours of large particles, and
rZ to identify the small nearest neighbours of small par-
ticles. These cutoff distances are chosen as described in
Section 2 by looking at the first minimum of the radial
distribution functions of both species (large and small
particles), of only large particles, and only small particles,
respectively.

Table 1. Cutoff distances used for different size ratios.

o re(or) rt(or) r¥(o1)
0.45 13 13 13
0.54 13 1.45 0.83
0.82 13 1.3 1.1




4. Crystal structures

In this section, for each size ratio we describe the stable
crystal structures, their associated local environments,
and the details of the SLNNs we trained.

4.1. Size ratioa = 0.45

We first consider binary hard spheres with size ratio o« =
0.45. As shown in Ref. [29], stable phases with this size
ratio are NaCl and AlB; binary crystals, FCC crystals of
large or small particles, and the binary fluid. Unit cells for
these phases are shown in Figure 2. For the crystal phases,
we distinguish four local environments: one for the FCC
phase (which isidentical for the large and small particles),
one for NaCl (where both species are on identical FCC
sublattices), and two for AIB, corresponding to the large
and small particle environments.

Hence, we set up an SLNN with 24 inputs and 5 out-
puts. The 24 inputs correspond to the length of the vector
Q(i), while the output corresponds to the following 5
environments:

e Label 0: particles of NaCl;
e Label 1: large particles of AlB;;
e Label 2: small particles of AlB;;

a) I b)
d) | I
f) ‘ g)

c)
e) 3'
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e Label 3: particles of the binary fluid;
e Label 4: particles of FCC.

We train the network using sets of Q(i) from MC simula-
tions of all four phases. For the NaCl, AlB, and FCC crys-
tals, the simulations were performed at packing fractions
n = 0.63, n = 0.60 and n = 0.55, respectively, while for
the binary fluid we used a packing fraction of n = 0.45
and a stoichiometric ratio x = 1/2.

4.2. Sizeratiooa = 0.54

We now consider binary hard spheres with size ratio o =
0.54. As shown in Ref. [30], stable phases with this size
ratio are ico-AB;3 and AlB, binary crystals, FCC crys-
tals of large or small particles, and the binary fluid (see
Figure 2). As discussed in the previous section, there are
a total of three local environments in FCC and AlB,. In
ico-ABjy3, there is a single environment for the large par-
ticles, but multiple environments for the small particles.
However, it turns out that grouping all small ico-AB;3
particles under one label results in excellent identification
of the particle environments.

Hence, for this size ratio the SLNN has six outputs,
corresponding to the following environments:

Figure 2. Unit cells for (a) FCC, (b) NaCl, (c) AIB;, (d) ico-AB+3, (e) MgCuy, (f) MgZn;, (g) MgN:ij.
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Label 0: large particles of ico-ABy3;
Label 1: small particles of ico-ABy3;
Label 2: large particles of AlB;;
Label 3: small particles of AlB;;
Label 4: particles of FCC;

Label 5: particles of the binary fluid.

To obtain the training data, the MC simulations for
ico-AB;3, AlB, and FCC crystals were performed at
packing fractions of n = 0.55, n = 0.60 and n = 0.55,
respectively, while for the binary fluid we used a pack-
ing fraction of n =0.45 and a stoichiometric ratio
x=2/3.

4.3. Sizeratio 0.82

Finally, we consider binary hard spheres with size ratio
o = 0.82. As shown in Refs. [31,32], stable phases for
this size ratio are the MgZn, Laves phase, the binary
fluid, and the FCC crystals of only large or small particles.
Interestingly, as shown in Ref. [32], there are two other
Laves phases competing with MgZn, for stability: MgCu,
and MgNi,. These structures are very similar to MgZnj,
but correspond to different stackings of the same crys-
talline planes. In particular, the arrangement of planes in
MgNij, is a combination of the arrangements in MgCu,
and MgZn;. The free-energy difference between these
phases is only on the order of 0.001kgT per particle, and
hence it is likely that mixtures of these phases would show
up in, e.g. nucleation studies. Hence, in addition to the

Large and Small

MgCu2

tully stable phases, we include MgCu, and MgNi, in our
analysis. Unit cells of the investigated phases are shown
in Figure 2.

A closer analysis of the local environments in the Laves
phases reveals a complication in the unique identification
of the MgNi, environments when only first shell neigh-
bours are taken into account. In particular, by computing
the vectors Q(i) for the perfect crystal configurations of
the three Laves phases, we found that most of the envi-
ronments in MgNi, are also present in either MgZn, or
MgCu, - where by ‘same environment” we mean that
the vectors Q(i) are essentially equal. This is shown in
Figure 3, where particles of the Laves phases are coloured
according to their environment, as described by Q(i).
There are two possible solutions to this. First, one can
systematically take into account an additional shell of
neighbours when calculating Q(7). When second-nearest
neighbours are systematically taken into account, bond
order parameters are able to capture the different stack-
ings and the local environments in the different Laves
phases are distinguishable. Training a neural network
with such a set indeed results in an excellent identifica-
tion of all three Laves phases. The second approach is to
simply identify which local environment (as represented
in Figure 3) each particle is in, regardless of crystal struc-
ture. The environments of neighbouring particles can
subsequently be used to determine the underlying lattice.
As we would like to base particle identification purely on
the immediate environment of the particle, we here focus
on the second solution.

Large

Figure 3. Perfect crystal configurations of the three Laves phases. Colours represent the distinct local environments we identify from
bond order parameters calculations, considering only first shell neighbours.



Hence, for this size ratio, our SLNN has eight out-
puts, corresponding to the following local environments,
as labeled in Figure 3:

e Label 0: large particles of MgCu, and half of the large

particles of MﬁNiz (particles in Figure 3);
e Label 1: small particles of MgCu, and some of the

small particles of MgNi, (particles in Figure 3);

e Label 2: large particles of MgZn; and half of the large
particles of MgNi, (particles in Figure 3);

e Label 3: some small particles of MgZn, (particles in
Figure 3);

e Label 4: some small particles of MgZn, and small
particles of MgNi, (particles in Figure 3);

e Label 5: some small particles of MgNi, (particles in
Figure 3);

e Label 6: particles of the binary fluid;

e Label 7: particles of FCC.

As shown in Figure 3, the individual Laves phases can
then be easily distinguished by looking at the labels of the
large particles. For MgCuy, all large particles have label 0
(red), for MgZnj, they have label 1 (blue), and in MgNi,
the two labels are evenly mixed.

MC simulations to train the network were performed
using a packing fraction of n = 0.6 for the Laves phases,
n = 0.55 for the FCC crystal, and n = 0.45 and stoi-
chiometry x = 2/3 for the binary fluid.

5. Results

To train our SLNNs and assess their performance, we
make use of a cross-validation procedure. The averaged
overall accuracies of the cutoff and SANN networks
at each size ratio, as well as the accuracies related to
each specific label, are shown in Table 2. In all cases
we reach an overall accuracy above 99%, meaning that
our method is completely general and able to capture
structural differences of a wide range of binary crystals.

MOLECULAR PHYSICS 7

Looking closer at the specific phases, we find that in
general, the fixed cutoft preforms slightly better than
SANN, and postulate that this arises due to the ten-
dency of SANN to occasionally include one or more
neighbours from the second neighbour shell. As these
additional particles are located at positions different from
those normally associated with the first-shell neighbours,
this impacts the bond order parameters for the central
particle in an unpredictable fashion, leading to a mis-
classification.? Nonetheless, we find that all individual
phases are recognised correctly more than 98% of the
time, even with SANN, which we consider to be excellent
performance.

The tests of our SLNNs reported in Table 2 are all per-
formed at exactly the same packing fraction as the one
that was used for training the networks. As a result, it
is not a priori clear whether the trained networks are
an appropriate order parameter for crystals at different
packing fractions. In order to test this, for each size
ratio, we examine the performance of the network over
a wide range in packing fractions and report the results
in Figure 4. Note that here we limit our attention to the
order parameter using SANN, in order to avoid having to
recalculate the cutoff range for each packing fraction. In
all cases, the accuracy of the network is found to be higher
than 98%, confirming that SLNNs are robust to changes
in density.

To further test the SANN networks, and in particular
their performance in systems with interfaces, we applied
them to snapshots from additional MC simulations of
systems with a coexistence of two phases. In particular,
we examined coexistences of the following: (i) NaCl and
FCC for size ratio o« = 0.45 (Figure 5a), (ii) AlB; and fluid
for size ratio o« = 0.54 (Figure 5b), and finally MgCu, and
FCC for size ratio « = 0.82 (Figure 5c). Note that the net-
works have not been trained to recognise particles at the
interface and, furthermore, we do not have a reference
output in order to compute the accuracy of the networks

Table 2. Average accuracies of the networks computed with the cross-validation procedure.

o =045 Labels

Network Overall 0 1 2 3 4

Cutoff 100% 100% 100% 100% 99.99% 100%

SANN 99.99% 100% 100% 99.97% 99.98% 100%

o =0.54 Labels

Network Overall 0 1 2 3 4 5

Cutoff 99.99% 100% 100% 100% 99.99% 100% 99.96%

SANN 99.22% 100% 98.41% 100% 100% 100% 98.35%

o =0.82 Labels

Network Overall 0 1 2 3 4 5 6 7
Cutoff 99.99% 100% 99.98% 100% 99.89% 100% 99.90% 99.99% 100%
SANN 99.76% 99.10% 99.97% 99.05% 99.50% 99.96% 99.45% 99.98% 100%
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Figure 4. Performance of the order parameters as a function of density, for binary hard sphere mixtures with size ratio 0.45 (a), 0.54 (b)
and 0.82 (c), using the SANN networks.

(a) NaCl + FCC (b) AlBy + fluid

(c) MgCuz + FCC

Figure 5. Particle classification for configurations of binary hard sphere mixtures with size ratio 0.45 (a), 0.54 (b) and 0.82 (c), using the
SANN networks. In each configuration, two phases coexist as indicated. Particles identified as being in the fluid phase are white.

for such simulations. Nonetheless, in all cases the bulk The final trained networks using the SANN nearest-
phases are correctly classified, while, as expected, some neighbour criterion are included as a Python code in the
disordered particles at the interface are classified asbeing ~ Supporting Information (SI). The detailed parameters of
fluid (white). the trained network are included in the SI as well.



6. Conclusion

In this study, we trained feed-forward neural networks to
function as order parameters that ‘learn’ to distinguish
different crystalline and fluid environments for binary
mixtures of hard spheres on a single-particle basis, by
analysing vectors composed of 24 averaged local bond
order parameters. We found that for each size ratio, a
simple, single-layer neural network was sufficient to dis-
tinguish all phases we explored.

We compared the behaviour of the neural networks
with two different methods for determining nearest
neighbours, namely a fixed cutoff, and the SANN. We
found that both methods performed well, with the fixed
cutoff slightly outperforming SANN. Nonetheless, the
‘parameter-free’ nature of SANN makes it much more
flexible and suitable for use in systems containing vari-
ations in density. Our results demonstrate that the net-
works using SANN perform well over the entire range of
stability of the explored phases and are capable of locat-
ing the interface between two coexisting phases. This
makes them ideal for the analysis of both experimental
and simulation data in fields ranging from crystal growth
to interfacial phenomena. Moreover, once trained, the
order parameter calculations are rapid, making such a
network suitable, not only for post processing of data
but also for on the fly calculations in, e.g. computational
nucleation studies. The largest computational cost is by
far in evaluating the bond order parameters.

Our results demonstrate the wide applicability of feed-
forward neural networks for recognising the complex
particle environments associated with multicomponent
crystals, for which effective order parameters are not
always known. The training of the networks used here
takes mere seconds on a modern desktop computer and
hence can easily be repeated for systems with different
interactions and/or size ratios.

Notes

1. Overfitting refers to modelling a particular set of data
too well. In machine learning, overfitting happens when a
model learns the details and noise in the training data to
the extent that it negatively impacts the performance of the
model on new data.

2. This should be contrasted with intentionally and systemat-
ically training the network on data that takes into account
the second-shell neighbours.
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