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Towards the colloidal Laves phase from binary
hard-sphere mixtures via sedimentation

Tonnishtha Dasgupta and Marjolein Dijkstra*

Colloidal photonic crystals, which show a complete band gap in the visible region, have numerous

applications in fibre optics, energy storage and conversion, and optical wave guides. Intriguingly, two of

the best examples of photonic crystals, the diamond and pyrochlore structure, can be self-assembled

into the colloidal MgCu2 Laves phase crystal from a simple binary hard-sphere mixture. For these

colloidal length scales thermal and gravitational energies are often comparable and therefore it is

worthwhile to study the sedimentation phase behavior of these systems. For a multicomponent system

this is possible through a theoretical construct known as a stacking diagram, which constitutes a set of

all possible stacking sequences of phases in a sedimentation column, and uses as input the bulk phase

diagram of the system in the chemical potential plane. We determine the stable phases for binary

hard-sphere systems with varying diameter ratios using Monte Carlo simulations and analytical equations of

state available in literature and calculate the corresponding stacking diagrams. We also discuss observations

from event-driven Brownian dynamics simulations in relation to our theoretical stacking diagrams.

1 Introduction

Colloidal particles can serve as physical models for atomic
systems in that they can crystallize into periodic, ordered
phases which are analogous to atomic crystals. The best known
example of this, first reported by simulations1 and followed up
later by experiments,2 is the formation of the face-centered-
cubic (fcc) crystal phase, which crystallizes from a colloidal
hard-sphere fluid. As the length and time scales of colloidal
systems are easier to study experimentally than their atomic
counterparts, these systems can provide valuable fundamental
insights into physical processes such as crystallization and
phase transitions.3,4

A significant application of colloidal particles is to serve as
building blocks for photonic crystals. Photonic crystals can
control the propagation of light by virtue of their periodically
varying refractive index or dielectric contrast. With lattice
constants of the same order as the wavelength of light, these
materials show a photonic band gap for certain light frequencies.
Photonic bandgap materials have a broad range of applications
such as optical wave guides,5 sensors6 and in energy storage7

/conversion8 among others. A complete photonic bandgap may
be shown by a three-dimensional photonic crystal which prevents
the propagation of specific wavelengths of light in all directions.
With colloids as building blocks, photonic crystals can open up a

band gap in the visible range of frequencies,9 depending on their
refractive index, packing geometry and density. In particular, the
diamond10 and pyrochlore11 structures have been known to open
up a wide photonic band gap even at low refractive indices,
thereby making their photonic properties robust to defects.12 The
colloidal diamond and pyrochlore crystals are open structures
with a low packing fraction rendering them entropically
unfavourable and mechanically unstable. This problem is
circumvented by the fact that these two structures make up
the large (Mg) and small (Cu) species counterparts of the
colloidal MgCu2 Laves phase, respectively, which is the thermo-
dynamically stable phase for a simple binary hard-sphere
colloidal mixture in the diameter ratio range of 0.76 to 0.84.13

By removing the particles on one of the sublattices the photonic
open structures can subsequently be retrieved.

In order for the MgCu2 Laves phase to possess an optical
band gap for one of its sublattices, the spheres must be on the
colloidal length scale, which corresponds to a regime where the
thermal and gravitational energies of the particles are comparable.
Therefore it is important to account for gravity while studying the
self-assembly of the stable colloidal Laves phase. The competition
between thermal and gravitational forces leads to a sedimentation–
diffusion equilibrium, which we study in this work. For a one-
component colloidal system under gravity, it is fairly straightforward
to obtain information about the bulk thermodynamics of the system
from its sedimentation behavior.14,15 For this, one simply
needs to calculate the height-dependent density profile and
invert it to calculate the osmotic pressure at every point along the
sedimentation column. In this way, a single experiment/simulation
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can yield the entire equation of state, i.e. the pressure as a function
of density. However, for systems with more than one component,
correlating bulk thermodynamics to the sedimentation–diffusion
equilibria is not trivial. In this case, the bulk phase diagram (in
the absence of gravity) is converted to an alternate phase space
which accounts for gravity. This constructed phase space is
known as a stacking diagram.16,17

A stacking diagram (SD) is a set of all possible stacking
sequences of phases found in a sedimentation column. A
stacking sequence indicates the phases observed sequentially
from the bottom to the top of a sedimentation column. The
theory for calculating a SD takes as input a bulk phase diagram
calculated in the chemical potential plane. The method to convert
this into a stacking diagram involves a Legendre transformation
to an alternate plane.16 SDs can be used to predict various
unexpected phenomena in sedimenting systems. For example,
‘‘floating phases’’ were observed in colloid-polymer mixtures,
where a floating colloid-rich liquid slab was sandwiched
between two polymer-rich colloidal gas slabs,18 and ‘‘floating
hexagonal crystal phases’’ have been reported in simulations of
colloidal spheres with a soft corona.19 A reentrant percolating
network in a patchy colloidal mixture was both predicted and
observed in simulations.20 In another example, a floating
nematic phase suspended on an isotropic phase was observed
in an experimental system of colloidal platelets and spheres.21

This observation was backed up by a stacking diagram which
showed floating phases in certain stacking sequences. This
demonstrates the power of this simple but predictive theory in
bridging the gap between theory and experiments and asserts
the importance of constructing SDs.

In a recent work, the MgCu2 Laves phase was reported to be
thermodynamically stable for a hard sphere–hard tetramer
mixture.22 This was based on the idea that the pyrochlore
structure can be grouped into tetrahedral clusters of spheres.
Following a similar logic of building blocks, an experimental
system of DNA-coated spheres and preassembled tetrahedral
clusters was used in a recent work to obtain the MgCu2 Laves
phase.23 However, this system used DNA-mediated short-ranged
attractions between the unlike species to promote self-assembly
and the MgCu2 Laves structure was not observed for tetrahedral
clusters made of non-overlapping adjacent spheres. As hard-
sphere colloids are notably experimentally realizable and the
tunability of their length scales is well within control to suit
various photonic applications, it is worthwhile to study the
sedimentation phase behavior of this system.

In this work we study the sedimentation–diffusion equilibria
of binary colloidal hard-sphere mixtures, where the spheres
interact only through hard-core interactions, by constructing
stacking diagrams. We calculate SDs for a diameter ratio of
0.85, for which the Laves phase is not stable, and 0.82, which
shows an entrant stable binary Laves phase. We first calculate
the bulk phase diagrams in the pressure–composition (most
common), packing fraction (experimentally significant) and
chemical potential (for constructing SDs) representations. We note
that these phase diagrams have already been reported but solely in
the pressure–composition and packing fraction representation.13,24

In order to construct the stacking diagrams, we need the phase
diagrams in the chemical potential plane. We therefore repeat these
calculations in order to determine the phase diagrams in the
chemical potential plane. We then determine the SDs which show
the different stacking sequences of phases (as seen in the bulk
phase diagrams) under a gravitational field for a range of gravita-
tional lengths, bulk compositions and bulk concentrations. We
then perform event-driven Brownian dynamics simulations for
selected state points in the SD corresponding to a size ratio of
0.82 and discuss the sedimentation behavior observed in relation
to our theoretical predictions.

2 Methodology
2.1 Bulk phase behaviour of binary hard-sphere systems

The first step towards studying the sedimentation–diffusion
equilibrium of a binary mixture of large hard spheres with
diameter sL and small hard spheres with diameter sS is to
ascertain the bulk thermodynamics of the system, i.e., the
phase behavior in the absence of gravity. Therefore we first
calculate the bulk phase diagram for a specific diameter ratio
q = sS/sL, which describes the coexistence between different
phases for this system. Coexistence between phase a and b is
calculated using the mechanical equilibrium condition, Pa = Pb,
with P the pressure, and employing the chemical or diffusive
equilibrium condition for both the large and small species,
maL = mbL and maS = mbS, respectively, with mL (mS) the chemical
potential of the large (small) species. The chemical potential
equivalence criteria dictate that we construct common tangents
on the Gibbs free energy G – composition x plane at a fixed
pressure P. Here, we define xS = NS/N with N = NS + NL and NS

(NL) the number of small (large) hard spheres. From this
technique, we can directly obtain the coexistence species com-
positions at each pressure and calculate other coexistence
properties on the packing fraction (ZL = psL

3NL/6V � ZS =
psS

3Ns/6V) representation with V the volume of the system, or
on the chemical potential (mL–mS) plane. In order to obtain the
Gibbs free energy G = F + PV, we first calculate the Helmholtz
free energies F of the different fluid and solid phases. The solid
phases that we consider are the face-centered-cubic (fcc) crystals
formed of purely large or small hard-sphere species and the Laves
phase, and ignore hereby the substitutional solid solutions of the
fcc and Laves phases. We employ analytical expressions from
literature for the Helmholtz free energy of a binary hard-sphere
fluid,25 and we employ the Speedy equation of state26 for the
pure fcc phases.

In order to obtain the Helmholtz free energy as a function of
density r = N/V, we integrate the equation of state from a
reference density r0

bFðrÞ
N
¼ bF r0ð Þ

N
þ
ðr
r0

dr0
bPðr0Þ
r02

; (1)

where b = 1/kBT, kB denotes the Boltzmann constant, and T the
temperature. To determine the equation of state of the Laves
phases, we perform Monte Carlo simulations in the NPT ensemble.

Paper Soft Matter



This journal is©The Royal Society of Chemistry 2018 Soft Matter, 2018, 14, 2465--2475 | 2467

The Helmholtz free energy F(r0) of the fcc and Laves phases at a
reference density r0 is calculated using the Frenkel–Ladd method
in Monte Carlo simulations in the NVT ensemble, which involves
an Einstein integration of a system of non-interacting particles that
are connected to the lattice positions of an ideal crystal phase via
harmonic springs

bUl rN
� �

¼ bU rN
� �

þ l
XN
i¼1

ri � r0;i
� �2.sL2: (2)

Here U(rN) is the potential energy of the system due to the hard-
sphere interactions, r0,i denotes the ideal lattice position of
particle i in the crystal of interest, and l is a dimensionless
coupling parameter, which goes from 0, corresponding to the
interacting system of interest for which we want to compute the
free energy, to lmax, which corresponds to an Einstein crystal,
where the spring constant is chosen sufficiently large that the
particles do not interact with each other.

The Helmholtz free energy is obtained from27,28

bFðN;V;TÞ
N

¼
bU rN0
� �
N

þ 3ðN � 1Þ
2N

ln
L2lmax

psL2

� �

þ 1

N
ln

NL3

V

� �
� 3

2N
lnðNÞ

� 1

N

ðln lmaxþcð Þ

ln c

lþ cð Þ
XN
i¼1

ri � r0;i
� �2

sL2

* +CM

l

� d ln lþ cð Þ½ �;

(3)

where Ul(r
N
0 ) is the potential energy when all particles are at

their ideal lattice positions, L is the thermal wavelength, h� � �i
CM
l denotes that the ensemble average is sampled for a solid
with a fixed center of mass using the Boltzmann factor
exp(�bUl), and

c ¼ 1

PN
i¼1

ri � r0;i
� �2.sL2

� �CM

0

: (4)

The integral is calculated numerically using a 20-point Gauss–
Legendre quadrature.

2.2 Accounting for gravity

Once we have ascertained the bulk thermodynamics, we study
this binary system sedimenting under gravity. To this end, we
construct a stacking diagram, which is the set of all possible
sequences of phases stacked in a sedimentation column.

The theory behind the construction of a stacking diagram16

is based on the chemical potentials of the two species. Once
gravity is ‘‘switched on’’, a non-trivial density and composition
profile is obtained along the direction of gravity z of the
sedimentation column. We define a local chemical potential
mi(z) of species i, which varies linearly with height z along the
sedimentation column

mi(z) = m0
i � migz (5)

where m0
i is the chemical potential of species i in the absence of

gravity, mi is the buoyant mass of particle species i, and g is the
gravitational acceleration. Eliminating the z-dependence, we
obtain a linear relation between the local chemical potentials of
the large (mL) and small spheres (mS).

mS(mL) = a + smL, (6)

where the slope s of the sedimentation path is given by the ratio
of the buoyant masses

s ¼ mS

mL
; (7)

and a denotes the composition variable, which is a function of
the initial composition and concentration of the system16,29

a = m0
S � sm0

L. (8)

For low Peclet numbers, i.e., in the case of slowly varying
inhomogeneities, we assume that the local density approxi-
mation (LDA) is valid. This approximation implies that the local
chemical potential mi(z) of species i is equal to the chemical
potential mi of a corresponding equilibrium bulk reservoir. The
significance of the LDA is that the correlation between gravitational
variable s and composition variable a now appears as a straight line
(eqn (6)) on the bulk phase diagram in the plane of chemical
potentials mL–mS. This straight line is called a ‘‘sedimentation path’’
and the set of all such paths constitutes a stacking diagram. The
point at which a sedimentation path intersects with a bulk binodal
represents a phase transition. Therefore, each sedimentation
path corresponds to a specific stacking sequence of phases in
the corresponding stacking diagram.

2.3 Event-driven Brownian dynamics simulations

Once we have mapped out the stacking diagrams of a binary
mixture of hard spheres, we perform event-driven Brownian
dynamics (EDBD) simulations30,31 at selected state points for
such a mixture sedimenting under gravity on a hard wall. We
carry out simulations on a binary system of N hard-sphere
colloids with a diameter ratio q = 0.82 in a volume V in the NVT
ensemble. The gravitational field is directed along the z-axis
and each colloid i is subjected to an external potential U(zi) =
migzi where g is the acceleration due to gravity, mi is the buoyant
mass of particle i, and zi is the vertical coordinate of colloid i.
Two hard walls are placed at z = 0 and z = H � sL. The
simulation method considers particle collisions (with the wall
and each other) as discrete events and progresses through a
sequence of collision time intervals to the nearest event calculated
through the Newtonian equations of motion. During the
simulation, particle velocities are stochastically and periodically
adjusted at a regular interval of Dt to account for the Brownian
‘‘kicks’’ from the surrounding solvent

v(t + Dt) = atv(t) + btvR(t), (9)

where v(t + Dt), v(t) are the particle velocities before and after
the Brownian adjustment, vR(t) is a variable calculated from a
3D Gaussian distribution with mean 0 and variance kBT/mi. We
set at ¼ 1=

ffiffiffi
2
p

with a probability nDt and 1 otherwise. We employ
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bt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� at2

p
in order to keep the temperature constant.

Following ref. 31, we set n = 10t�1 and Dt = 0.01t in all our

simulations and use t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL=kBT

p
sL as the time unit of our

simulations. We remark that t is different from the Brownian
time unit tB used in ref. 31. The details of the EDBD simulations
are elaborately described in ref. 31 and 32.

The parameter that describes the effect of gravity on
sedimenting colloids is the gravitational length given as
li
g = kBT/mig, which corresponds to the height difference over

which the gravitational energy of colloid i is comparable to the
thermal energy.15 The dimensionless parameter of interest is
the gravitational Peclet number which is given by Pei = si/l

i
g. In

this work, we show simulation results for a binary mixture of
hard spheres with a diameter ratio q = 0.82, and three different
gravitational length ratios (lL

g/lS
g) = 0.4, 0.68 and 1.0, corres-

ponding to specific points in the stacking diagram.

3 Results and discussion

We first calculate the bulk phase diagrams for two diameter
ratios, q = 0.85, for which the Laves phase is not stable, and
q = 0.82, for which the phase diagram exhibits a stable Laves
phase as shown in ref. 24. Subsequently, we determine the
bulk phase diagrams in the large-sphere chemical potential
mL–small-sphere chemical potential mS representation in order
to determine the stacking diagrams of these systems that
represent the different stacking sequences of phases in a
sedimentation–diffusion equilibrium. We will first present
our results for q = 0.85 and, subsequently, we will describe
our findings for q = 0.82.

3.1 Bulk phase diagram for q = 0.85

Using the method described in Section 2.1, we calculate the
bulk phase diagram for q = 0.85. In Fig. 1, we present the bulk
phase diagram in the pressure bPsL

3–composition xS representation,
where xS refers to the number fraction of small spheres. We
observe three thermodynamically stable phases, the pure fcc of

large spheres (fccL), pure fcc of small spheres (fccS), and the
binary fluid mixture. The phase diagram exhibits a fluid–fccL, a
fluid–fccS, and a fccS–fccL coexistence region. The Laves phase
is unstable at all pressures. At pressures bPsL

3 r 11.5, the fluid
phase is stable. In the range 11.5 r bPsL

3 r 24.65, we observe
two coexistence regimes. For composition xS 4 0.7, the fcc
of small spheres (fccS) coexists with the fluid phase and for
xS o 0.7, coexistence is found between the fcc of large spheres
(fccL) and the fluid phase. Interestingly, at pressures bPsL

3
Z

24.65, we observe that the binary system demixes into two pure
component fcc phases, which is to be expected as the phase-
separated fcc phase yields the best packing for a binary mixture
at this diameter ratio. A triple point between the three phases is
observed at bPsL

3 = 24.65, at which all the three phases are in
thermodynamic equilibrium. For experimentalists, a more
appealing representation of the phase diagram is the plane of
packing fractions of the individual species. We therefore also
present the phase diagram in an ZL–ZS representation. This is
shown in Fig. 2. One can observe that the triple point, which is
a point in the bPsL

3–xS plane where three coexistence binodals
meet, appears as a triangular region in the ZL–ZS plane.

3.2 Stacking diagram for q = 0.85

In the previous subsection, we calculated the bulk phase
diagram of a binary hard-sphere mixture with a diameter ratio
of q = 0.85. We now consider this system in a gravitational field.
Following the formulation described in Section 2.2, we calculate the
corresponding stacking diagram to describe the sedimentation–
diffusion equilibria of this system. To calculate the stacking
diagram, we first convert Fig. 1 to the chemical potential (mL–mS)
plane as shown in Fig. 3. Subsequently, the bulk phase diagram
in the chemical potential plane can be converted to a stacking
diagram in the a–s plane, which describes the different stacking
sequences that can be observed in a sedimentation–diffusion
equilibrium. The sedimentation paths, as described by a = mS� smL,
are drawn as colored dashed lines in the mL–mS phase diagram in
Fig. 3. Each of these sedimentation paths corresponds to an

Fig. 1 Bulk phase diagram of a binary mixture of hard spheres with a
diameter ratio q = 0.85 in the pressure bPsL

3–composition xS representation.

Fig. 2 Bulk phase diagram of a binary mixture of hard spheres with
a diameter ratio q = 0.85 in the large-sphere packing fraction ZL–small-
sphere packing fraction ZS representation.
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unique stacking sequence and an unique point in the stacking
diagram as shown in Fig. 4. Each region in the stacking diagram
represents a collection of points with identical stacking
sequences and the color of these regions corresponds to the
color of the sedimentation paths drawn in the phase diagram in
the chemical potential plane (Fig. 3). It is important to mention
here that these sedimentation paths are considered infinite,
therefore a pure component crystal will always be present at the
bottom. In case we consider sedimentation paths that are
bounded by a pressure at the bottom and at the top of the
sample cell, the stacking diagram will be much richer.33

The stacking diagram as shown in Fig. 4 is divided into
different regions which are delimited from each other through
the following boundaries or features.

(1) Sedimentation binodal: this is the locus of all sedimentation
paths which are tangential to a bulk binodal. In this case, we have
three bulk binodals, a fluid–fccL, fluid–fccS, and fccS–fccL binodal,
and therefore three corresponding sedimentation binodals.

(2) Terminal lines: these lines represent sedimentation paths
passing through any terminal point of a binodal. A terminal
point may be a critical point, a triple point or indeed any point
at which a binodal terminates. There is one triple point
observed in the bulk phase diagram for this system – where
the solid fccL phase, solid fccS phase and the binary fluid phase
coexist. This triple point translates into a terminal line in the
stacking diagram.

(3) Asymptotic terminal lines: the difference between terminal
lines and asymptotic terminal lines is that the former appears
when a binodal ends at finite chemical potentials and the
latter corresponds to infinite chemical potentials of one or
both of the species. For example, when the phase transition
involves a pure component phase, the chemical potential of the
absent species becomes �N. Therefore the fccS–fluid binodal

tends to a horizontal asymptote in the mS–mL plane as the chemical
potential of the absent large sphere species mL -�N. We remind
the reader that the parameter s represents the slope of the tangent
to the bulk binodal (eqn (6)) which in the above case corresponds
to s - 0. Therefore all sedimentation paths parallel to the
horizontal asymptote on the mS–mL plane yield a vertical line at
s = 0 in the corresponding stacking diagram as shown in Fig. 4.
Similarly, a binodal that involves the pure phase of small spheres
corresponds to a vertical asymptote in the mS–mL plane as the
chemical potential mS- �N, and hence s = �N. The vertical line
s = �N for 8a is clearly beyond the scale of Fig. 4. In the limit of
infinite pressure, P - N, the binary mixture demixes into a pure
large-sphere close-packed fcc phase with mL - N and a pure
small-sphere close-packed fcc phase with mS - N. However, as
can be seen from Fig. 3, the slope of this asymptote in the mL�mS

representation approaches a constant corresponding to a vertical
line at s C 0.65 in the SD of Fig. 4.

3.3 Bulk phase diagram for q = 0.82

Next, we map out the phase diagram for a binary hard-sphere
mixture with a slightly smaller diameter ratio, i.e., q = 0.82
instead of q = 0.85. We present the resulting phase diagram in
the bPsL

3–xS representation in Fig. 5, which displays a stable
Laves phase. In particular, we observe a large fccL–Laves phase
coexistence region for a composition xS o 0.667 as well as an
fccS–Laves phase coexistence region for x 4 0.667 in the
pressure range 23.08 r bPsL

3 r 56.5, which lies in between
the fluid–fccL, fluid–fccS, and the fccL–fccS phase coexistence
regions. Similar to q = 0.85, we find a stable fluid phase for
bPsL

3 r 11.5 as expected as this transition point is solely
determined by a system of pure hard spheres at xS = 0. For a
pressure range 11.5 r bPsL

3 r 23.08, we observe phase coexistence
between a fluid and an fcc phase of only large spheres for xS o
0.6608. Correspondingly, for 21.25 r bPsL

3 r 24.35 and xS 4 0.835,

Fig. 3 Bulk phase diagram of a binary mixture of hard spheres with a
diameter ratio q = 0.85 in the chemical potential of large spheres
mL–chemical potential of small spheres mS representation. The solid lines
represent the bulk binodals – each point on a binodal represents two
phases in equilibrium with each other. The phase transition to the pure fcc
of small and large spheres are shown by the horizontal and vertical
asymptotic extensions of the respective binodals. The colored dashed
lines represent typical sedimentation paths.

Fig. 4 The stacking diagram for a binary mixture of hard spheres with a
diameter ratio q = 0.85. The colored regions represent the different
stacking sequences of phases observed in a sedimentation column. The
regions correspond to the similarly colored sedimentation paths shown in
Fig. 3. For visualisation purposes, the a axis was linearly scaled with respect
to s by a constant c. The new scaled ascaled = a � c � s where c = �27.
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the fluid phase coexists with an fcc phase of small spheres.
Additionally, there is a coexistence region between the Laves phase
and a fluid phase with a composition 0.667 o xS o 0.835 for
23.0783r bPsL

3 r 24.35, as well as an extremely narrow coexistence
region between the Laves phase and fluid phase with 0.6608 o xS o
0.667 for 23.0783 r bPsL

3 r 23.0796. The inset of Fig. 5 shows a
zoom in of this part of the phase diagram. The latter coexistence
region was missed in ref. 24. At pressures bPsL

3
Z 56.35, we observe

complete demixing of the two species into two pure fcc phases, fccL

and fccS, since this corresponds to the best packing with a
packing fraction of ZL = ZS C 0.74 at infinite pressures. It is
worth noting that the Laves phase with a maximum packing
fraction of Z C 0.71 is not the best-packed binary crystal
structure at q = 0.82 as the aIrV, gCuTi, AuTe2, and Ag2Se phases
have a higher maximum packing fraction than the Laves phase,
but lower than the close-packed fcc phase.13,24,34 Thus, for finite
pressures, the stable crystal structures are not determined by
maximum packing, but Gibbs free-energy calculations are
required to determine the stable crystal phases.

To summarize, the presence of an additional thermodynamically
stable Laves phase in the phase diagram of q = 0.82 in comparison
to that of q = 0.85 results into 3 additional two-phase regions,
i.e., Laves–fluid, fccL–Laves, and fccS–Laves phase coexistences,
as well as 3 triple points with either Laves–fccL–fccS, Laves–fccS–
fluid, and Laves–fccL–fluid three-phase coexistence. For
completeness, we also present the phase diagram in the ZL–ZS

plane in Fig. 6 to facilitate comparison with experiments. The
three triple points that are seen in Fig. 5 show up as triangular
regions in Fig. 6.

3.4 Stacking diagram for q = 0.82

The appearance of an extra phase in the bulk phase diagram
leads to a considerably more complicated stacking diagram. In
order to determine the stacking diagram, we first convert the
bulk phase diagram to the chemical potential mS–mL plane as
shown in Fig. 7. We present the stacking diagram in the a–s
representation in (Fig. 8). The stacking diagram is divided into

different regions that are delimited from each other through
the following boundaries or features.

(1) Sedimentation binodal: in this case, we have six bulk
binodals corresponding to the six two-phase regions as shown in
Fig. 5 and 7, and as discussed above. The six bulk binodals translate
into six sedimentation binodals in the stacking diagram in Fig. 8.

(2) Terminal lines: we have three terminal points of a
binodal in the bulk phase diagram of this system:
� A triple point with Laves–fccL–fccS phase coexistence.
� A triple point with Laves–fccS–fluid phase coexistence.
� A triple point with Laves–fccL–fluid phase coexistence.
The three terminal points appear as three terminal lines in

the stacking diagram.
(3) Asymptotic terminal lines: similar to the q = 0.85 case,

there are two binodals that involve a pure-component phase in

Fig. 5 Bulk phase diagram of a binary hard-sphere mixture with diameter
ratio q = 0.82 in the pressure bPsL

3–composition xS representation. The
inset shows a zoom-in of the Laves–fccL–fluid triple point.

Fig. 6 Bulk phase diagram of a binary mixture of hard spheres with a
diameter ratio q = 0.82 in the large-sphere packing fraction ZL–small-
sphere packing fraction ZS representation.

Fig. 7 Bulk phase diagram of a binary mixture of hard spheres with a
diameter ratio q = 0.82 in the chemical potential of large spheres
mL–chemical potential of small spheres mS representation. The solid lines
represent the bulk binodals. The phase transition to the pure fcc of small
and large spheres are shown by the horizontal and vertical asymptotic
extensions of the respective binodals. The inset shows a zoom-in of the
two triple points.
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the bulk phase diagram. These correspond to vertical asymptotic
terminal lines at s = 0 in the case that the pure phase consists of
large spheres and at s =�N if the pure phase contains only small
spheres. The latter does not appear in the stacking diagram as it
is beyond the scale of Fig. 8. For infinite pressures, the binary
mixture demixes into two pure fcc phases with a finite slope of
this asymptote in the mL–mS representation corresponding to a
vertical line at s C 0.57 in the SD of Fig. 8.

We note that the stacking diagram in Fig. 8 includes a region
of negative s, which signifies that one species sediments while
the other floats upward due to a negative buoyant mass. In this
work, we assume that the large spheres always sediment
signifying that its buoyant mass mL is always positive. If the
identity of the settling species for the case of negative s is
reversed, then the phases in the stacking sequences in this
region are simply reversed. Fig. 8 is primarily divided into four
broad regions with respect to the value of gravitational variable s.

(1) s o 0: as mentioned above, a negative s implies that
the large spheres sediment while the small spheres cream up.

As a result the large species crystallize at the bottom of the
column and the small spheres crystallize towards the top as
their density and chemical potential increase in the direction
opposite to gravity. At intermediate heights, the system forms a
binary fluid phase, which crystallizes into a binary Laves phase
at sufficiently high chemical potentials, i.e., sufficiently high a.

(2) 0 o s o 0.57: both species sediment in this regime.
However the mass of the large species is higher and hence the
large spheres sediment faster. As expected, at sufficiently high
bulk chemical potentials (i.e. high concentrations), the large
species crystallizes and forms an fcc phase at the base of the
column. For low values of a, the fccL crystal phase is followed by
the fluid phase whereas for higher a values, crystalline phases
such as the Laves or fccS phase can form.

(3) 0.57 o s o 1: this region may seem counterintuitive as
the pure component phase formed at the bottom of the
sedimentation column is that of the small species, whereas
the large species is still the heavier species. However, the bulk
chemical potentials, m0

S and m0
L, are chosen such that it corre-

sponds to the fccS phase at the bottom of the column.
(4) s 4 1: in this region, the smaller species is heavier and

consequently, an fccS forms at the bottom of the column.

3.5 Event-driven Brownian dynamics

In order to verify our theoretical predictions, we perform
simulations at specific state points in the stacking diagram of
Fig. 8. We perform EDBD simulations using the method as
described in Section 2.3 on a binary mixture of 100 000 hard
spheres with a diameter ratio q = 0.82 and number fraction
xS = 0.667. The cross-sectional area of the simulation box is
C50sL � 50sL. We set the gravitational length of the large
spheres lL

g to unity and test the gravitational length ratios
s = lL

g/lS
g = 0.4, 0.68 and 1.0. We assume that for these gravitational

lengths the sedimentation is slow enough that the local density
approximation is valid. We set the composition variable a as
defined in eqn (8) by calculating the chemical potentials m0

L and m
0
S in a bulk mixture without gravity using the Widom particle
insertion method,35 for the overall mixture composition and over-
all packing fraction of the sedimentation box as used in our
simulations. The simulation state points (s,a) are marked with
purple crosses in Fig. 8.

We first discuss our results for s = 0.4 and s = 1.0 (marked in
Fig. 8(a)). The initial packing fraction in the column is 0.01. In
Fig. 9, we present typical configurations of the sedimentation–
diffusion equilibria observed. In Fig. 9(a) and (b), we color the
larger spheres red and the smaller species green. We clearly
observe that the crystal formed at the bottom of the sedimenta-
tion column consists predominately of large spheres at s = 0.4
and of small spheres at s = 1.0. This is further illustrated by
Fig. 9(c) and (f) where we have plotted the species density
profiles, rL(z) and rS(z), as a function of height z. The density
profiles show discrete peaks at z r 10sL which indicates
layering. To analyze the crystallinity of the sediment, we use
the q6 bond order parameter31,36 to determine whether a particle
is solid-like or fluid-like. In Fig. 9(d) and (e), we color the solid-like
particles with a darker shade than the fluid-like particles,

Fig. 8 (a) The stacking diagram for a binary mixture of hard spheres with a
diameter ratio q = 0.82. The colored regions represent the different
stacking sequences of phases observed in a sedimentation column.
(b) Zoom-in of a rich section of the stacking diagram marked by a black
dashed line in (a), where the a axis was linearly scaled with respect to s by a
constant c for visualisation purposes. The new scaled ascaled = a � c � s
where c = �26. The purple crosses denote state points for EDBD
simulations.
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which shows that the sediment at the bottom of the sample is
crystalline. Then, using a 2D bond order analysis on the layers
of the sediment32 we identify that the crystalline sediment for
s = 0.4 is a predominantly fcc-like crystal of large spheres in
magenta with a few hexagonal-close-packed (hcp)-stacked
particles colored in yellow (Fig. 9(g)), and an fcc crystal of
small spheres with again a few hcp-stacked particles for s = 1.0
(Fig. 9(h)). The SD as presented in Fig. 8 shows that the fcc
crystal formed at the bottom of the sedimentation column
consists of large spheres, fccL, for s o 0.57, and of small
spheres, fccS, for s 4 0.57. Hence, our simulations are in
excellent agreement with the theoretical predictions for
q = 0.82. Interestingly, for s = 1.0, which signifies that both
species sediment at the same rate, the smaller species forms an
fcc crystal at the bottom of the column. Additionally, we calculate
the pressure along the column by integrating the density profile
along the direction of gravity. Fig. 9(i) shows the pressure profile

in the column from which we find that the pressure bP(z = 0)
sL

3 E 60 for s = 0.4 and E90 for s = 1.0. The pressure at the
bottom of the column bP(z = 0)sL

3, where the gravitational
potential equals 0, directly relates to the bulk phase diagram of
Fig. 5. These values for the pressure correspond to the fccL–fccS

coexistence region in Fig. 5, and one might naively expect to
find a phase-separated fcc phase at the bottom of the sediment.
However, from Fig. 7 it becomes evident that the crystal at this
specific pressure value at the bottom of the sediment corre-
sponds most probably to one of the pure fcc phases since only
one unique combination (mL(xS,P,T),mS(xS,P,T)) corresponds to a
point exactly on the binodal.

As the fcc phases crystallize in accordance with our theoretical
predictions, we next attempt to self-assemble the Laves phase.
This is a significant challenge when one considers that sponta-
neous self-assembly of the Laves phase has never been observed
in bulk simulations of binary hard-sphere mixtures. We perform

Fig. 9 Typical configurations of a sedimentation–diffusion equilibrium as obtained from EDBD simulations of a binary mixture of hard spheres with a
diameter ratio q = 0.82 and a gravitational length ratio s = lLg/lSg = 0.4 (left) and 1.0 (right) with lLg = 1 at t/t = 50 000. The state points of these simulations
are shown as purple crosses in Fig. 8(a). (a and b) The particles are colored according to their size. Red denotes the large spheres and green represents the
small spheres. (d and e) The particles are colored according to a q6 bond order parameter analysis to distinguish the solid-like particles from the fluid-like
particles. The solid-like particles are denoted by a darker shade of cyan than the fluid-like particles. (g and h) The particles are colored according to the
crystal type. Magenta denotes fcc-stacked particles, yellow denotes hcp-stacked particles, cyan denotes the fluid-like particles. (c and f) Density profiles
rL/S(z) of the two species as a function of the height z. (i) Pressure bP(z)sL

3 as a function of z.
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simulations as before on a binary hard-sphere mixture for the
following simulation parameters: q = 0.82, xS = 0.667, s = lL

g/lS
g =

0.68. The initial overall packing fraction of the column is 0.1.
This simulation state point is shown in Fig. 8 as a purple cross
representing a specific point (s,a) = (0.68,0.0537). The expected
stacking sequence for this state point from bottom to top of the
sedimentation column is fccS–Laves–fluid. We suspect that
the formation of a binary crystal phase on top of a single-
component fcc phase may be hampered by kinetic constraints.
For example, the particles may get arrested in the holes of the
fcc phase and may not have sufficient time to equilibrate to the
Laves phase. Additionally there may be energetic constraints as
the formation of an interface between two crystal phases can be
energetically unfavorable. Therefore we truncate the stacking
sequence and set the pressure to a lower value bP(z = 0)sL

3 C 30
such that the phase at the bottom of the column corresponds to
the Laves phase. Also keeping in mind that the interfacial
tension between the smooth wall and the hexagonal geometry
is the lowest among known geometries,37 it is probable that the
first layer in contact with the wall attempts to partially order
into hexagonal order as the composition in the layer would be
xS 4 0.667. In order to eliminate this possibility, we template
the bottom wall with the (110) crosssection of the MgCu2 crystal
in accordance with the study by Hynninen et al.13 The density
that we choose for our template needs to be high enough to

(i) restrain the incoming particles in-plane32,38 and (ii) minimize
substitutional ordering of species. However it should not be so
high that there is a density mismatch between the first crystal-
line layer and the template32 at bP(z = 0)sL

3 C 30. Keeping these
factors in mind the packing fraction of the MgCu2(110) template
(shown in Fig. 10(a)–(c)) that we use is 0.656. In Fig. 10(d) we
show the first layer of particles that sediment on the template. If
we look closely at this layer, and zoom-in to the section enclosed
within the black box (shown in Fig. 10(e)), we observe that the
particles sit at the lattice positions in direct comparison with the
template below. Interestingly, we observe that the first layer
displays the characteristic ‘‘six-bead’’ ordering of the small
species which is also typical of the MgCu2(110) template
(Fig. 10(f)). We have highlighted these ‘‘six-bead’’ sequences
formed by the small species by black lines. For exact comparison,
we first draw these connecting black lines on the template,
reproduce them unaltered in scale and orientation on Fig. 10(e),
and subsequently shift them so that they approximately run
through the center of the first layer particles. As a result of this,
some order mismatches (i.e. tips of the black lines do not meet)
are evident in the first layer. On closer inspection, these mis-
matches appear when there is substitutional ordering in the
local environment. Substitutional ordering refers to spheres
that sit at lattice positions irrespective of their identity, i.e.,
a small sphere may be positioned on a large sphere lattice

Fig. 10 Typical configuration of the first layer of a binary mixture of hard spheres with a diameter ratio q = 0.82 sedimenting on a MgCu2(110) template
as obtained from EDBD simulations using a gravitational length ratio s = lLg/lSg = 0.68 with lLg = 1 at t/t = 45 000. (a–c) Blue and yellow denote the large and
small hard spheres of the template, respectively. (d and e) Red denotes the large spheres and green represent the small spheres of the sedimenting
mixture (f) shows the ordering of the two species on the template. Black lines are used to highlight the patterning/ordering. (g) To indicate the
substitutional ordering, the on-lattice species are colored in purple and the substitutionally ordered species are highlighted in fluorescent green.
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location and vice versa. Also worth noting is that these six-bead
small species arrangements stack on the larger species of the
template, which is also commensurate with how the two species
stack on a perfect MgCu2(110) template. This kind of stacking is
particularly interesting when one considers that there are no
interactions between the species and that the two species are
very comparable in size (q = 0.82). We depict substitutional
ordering in Fig. 10(g) by coloring the particles that sit at the
right lattice positions in purple and those that are positioned at
the wrong lattice positions in fluorescent green. From this
figure, it is also clear that substitutional defects also result in
an increase in the number of defects in their local environments,
which hampers the formation of the Laves phase. We therefore
suspect that short-ranged repulsive or attractive potentials may be
required to better direct the self-assembly of the Laves phase on
the template. We surmise that attractive interactions between
unlike species23 and/or repulsive interactions between like species
may assist the ordering of the Laves phase during sedimentation
on a template. We leave this for a future study.

4 Conclusions

To summarize, we have studied the sedimentation behavior of
a binary mixture of hard spheres with a size ratio q for which
the Laves phase is thermodynamically stable. We first construct
the stacking diagram (SD) that describes the possible stacking
sequences of stable phases in a sedimentation–diffusion equilibrium
using the bulk phase diagram of the system in the chemical
potential plane as input. We discuss in detail the features of the
SD which delimit the regions representing unique phase stacking
sequences, in relation to the corresponding bulk phase diagram. We
calculate the SD for q = 0.85 for which the Laves phase is not stable,
and for q = 0.82 for which the Laves phase is thermodynamically
stable. We observe that the SD increases considerably in complexity
with the entry of an extra stable phase in the bulk phase diagram.
More specifically, the SD for q = 0.85 shows 7 unique stacking
sequences in Fig. 4, whereas the SD for q = 0.82 shows 18 (+2, not
shown) stacking sequences in Fig. 8. We also observe for both size
ratios q stacking sequences that contain floating crystalline phases.

We then select specific state points in the SD for q = 0.82,
and employ event-driven Brownian dynamics (EDBD) simulations
to investigate the sedimentation behavior for a binary hard-sphere
mixture in relation to our theoretical predictions. The first two
simulation state points that we select for the purposes of
comparison are (the ratio of buoyant masses s, the composition
variable a) = (0.4,0.033) and (s,a) = (1.0, �0.025), in order to
observe the reversal of the fcc phase that forms at the bottom of
the sedimentation column. Our EDBD simulations indeed
demonstrate that the large spheres crystallize at the bottom of
the sediment into an fccL phase for s = 0.4, whereas the smaller
spheres form the fccS phase at the bottom of the column for
s = 1 in agreement with our stacking diagram.

As the ‘‘reversal’’ of the single-component fcc phase agrees
with our theoretical predictions, we then attempt to self-assemble
the Laves phase using EDBD simulations. We select the simulation

parameters from a third state point in our SD which corresponds
to the fccS–Laves–fluid phase stacking sequence from bottom to
top in a sediment–diffusion equilibrium. In order to bypass the
kinetic and energetic constraints in the formation of a binary
crystal on top of a single-component fcc phase, we truncate the
sedimentation path by setting the maximum pressure to
bP(z = 0)sL

3 C 30 so that the pressure at the bottom of the
sediment corresponds to the desired Laves phase. Mindful of
the fact that the interfacial tension of a hexagonal symmetry
is the lowest with a smooth wall, we also template the bottom of
the sedimentation column with the (110) plane of a MgCu2

phase.13 A closer inspection of the first layer that sediments on
the template reveals the characteristic ‘‘six-bead’’ sequences of
small spheres that are predominately stacked on top of the
large species in the template. This is particularly interesting if
one considers that there is no energetic interactions between
the two species and the stacking arrangement is driven by
entropy alone. Furthermore, the first layer of particles also
displays substitutional ordering of species on the template
i.e. spheres are positioned at lattice positions of the template
irrespective of their identity. The occurrence of such a ‘‘sub-
stitutional defect’’ is seen to lead to an increase in local defects.
From an entropic point of view, we expect that the Laves phase
possesses a finite equilibrium concentration of substitutional
defects. We leave the explicit calculations of the free energy as a
function of the equilibrium defect concentration for future
investigations. The presence of substitutional defects hinders
further growth of the Laves phase. We postulate that short-
ranged repulsive or attractive interactions may be required to
direct the self-assembly of the Laves phase on the template.
This will be studied in more detail in our next study.
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Review E, 2016, 93, 030601.
21 D. De Las Heras, N. Doshi, T. Cosgrove, J. Phipps, D. I. Gittins,

J. S. Van Duijneveldt and M. Schmidt, Sci. Rep., 2012, 2,
789.

22 G. Avvisati, T. Dasgupta and M. Dijkstra, ACS Nano, 2017,
11, 7702–7709.

23 É. Ducrot, M. He, G.-R. Yi and D. J. Pine, Nat. Mater., 2017,
16, 652–657.

24 A.-P. Hynninen, L. Filion and M. Dijkstra, J. Chem. Phys.,
2009, 131, 064902.

25 G. Mansoori, N. Carnahan, K. Starling and T. Leland Jr,
J. Chem. Phys., 1971, 54, 1523–1525.

26 R. J. Speedy, J. Phys.: Condens. Matter, 1997, 9, 8591.
27 J. M. Polson, E. Trizac, S. Pronk and D. Frenkel, J. Chem.

Phys., 2000, 112, 5339.
28 C. Vega, E. Sanz, J. Abascal and E. Noya, J. Phys.: Condens.

Matter, 2008, 20, 153101.
29 T. Drwenski, P. Hooijer and R. van Roij, Soft Matter, 2016,

12, 5684–5692.
30 A. Scala, T. Voigtmann and C. De Michele, J. Chem. Phys.,

2007, 126, 134109.
31 M. Marechal, M. Hermes and M. Dijkstra, J. Chem. Phys.,

2011, 135, 034510.
32 T. Dasgupta, J. R. Edison and M. Dijkstra, J. Chem. Phys.,

2017, 146, 074903.
33 T. Geigenfeind and D. de las Heras, J. Phys.: Condens.

Matter, 2016, 29, 064006.
34 L. Filion and M. Dijkstra, Phys. Rev. E: Stat., Nonlinear, Soft

Matter Phys., 2009, 79, 046714.
35 D. Frenkel and B. Smit, Understanding molecular simulation:

from algorithms to applications, Elsevier, 2001, vol. 1.
36 P. J. Steinhardt, D. R. Nelson and M. Ronchetti, Phys. Rev. B:

Condens. Matter Mater. Phys., 1983, 28, 784.
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