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Colloids dispersed in a binary solvent mixture experience long-ranged solvent-mediated interactions
(critical Casimir forces) upon approaching the critical demixing point of the solvent mixture. The
range of the interaction is set by the bulk correlation length of the solvent mixture, which diverges
upon approaching the critical point. This presents a great opportunity to realize the reversible self-
assembly of colloids by tuning the proximity to the critical point of the solvent. Here, we develop a
rejection-free geometric cluster algorithm to study the full ternary mixture of colloidal hard spheres
suspended in an explicit three-dimensional lattice model for the solvent mixture using extensive Monte
Carlo simulations. The phase diagram displays stable colloidal gas, liquid, and crystal phases, as well
as broad gas-liquid and gas-crystal phase coexistence, and pronounced fractionation of the solvent
in the coexisting colloid phases. The topology of the phase diagram in our three-dimensional study
shows striking resemblance to that of our previous studies carried out in two dimensions. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4979518]

I. INTRODUCTION

Upon approaching the critical “demixing” point of a
binary solvent mixture, the local composition of the mix-
ture fluctuates with a bulk correlation length that diverges as
ξ ∼ |T − TC |

−ν , where ξ is the correlation length, T is the
temperature, TC is the critical temperature, and ν is the “crit-
ical exponent.” Fisher and de Gennes showed in 1978,1 in a
very important theoretical study, that two plates immersed in
a binary solvent mixture at a separation L ∼ ξ and preferen-
tially adsorbing one of the solvent species feel a long-ranged
solvent-mediated (SM) interaction due to the critical fluctu-
ations. At the critical point, the SM interaction between the
plates is “universal” (it does not depend on the microscopic
details, rather on the adsorption preference and the dimension
of the system) and diverges algebraically. For plates with a
preference for the same solvent species, the SM interaction is
attractive, and in the case that the plates preferentially adsorb
different solvent species, the SM interaction is repulsive. This
type of fluctuation-induced interaction is not unique to binary
solvent mixtures, but manifests itself for any fluid in the prox-
imity of its critical point, and has come to be known as “critical
Casimir” interaction.2–4 The critical Casimir interaction owes
its name to the similarities that it is believed to share with
the quantum-mechanical Casimir5 effect which arises between
two conducting plates as a result of the confinement of the
vacuum fluctuations of the electromagnetic field.

The critical Casimir interaction has been thoroughly stud-
ied, especially in the context of solvent mixtures. For instance,
the critical Casimir interaction between two static planar walls
has been the subject of numerous theoretical studies2–4,6,7 and
has been extended to a pair of spherical particles using the
Derjaguin approximation8 which approximates the spherical
surface with a number of planar walls. Experimentally, the

critical Casimir force between polystyrene particles and
a chemically treated silica wall, in a near-critical water-
lutidine mixture, was measured using total internal reflec-
tion microscopy in 20089 and showed quantitative agreement
with theoretical predictions. As the critical Casimir interac-
tions depend directly on the bulk correlation length, these
are very sensitive to the temperature and composition of the
mixture, and this raises prospects to tune the self-assembly
process of, e.g., suspended colloids, reversibly and in an
in situ fashion. In this context, Beysens and Estève studied
already in 1985 the thickness of the adsorbed films at the
surface of silica spheres immersed in a binary liquid mix-
ture as a function of temperature and solvent composition,
and they determined the locus of points in the temperature-
solvent composition plane where colloidal spheres aggregate
reversibly.10 In 2008, charge-stabilized polystyrene particles
in a binary solvent mixture were studied using x-ray scatter-
ing, and reversible phase transitions between gas and solid,
and gas and liquid phases were observed.11 Subsequently, col-
loidal aggregation in near-critical solvents was studied in real
space using confocal microscopy. Aggregation was observed
in a remarkably wide temperature range of as much as 15 ◦C.12

More recently, colloidal phase transitions were studied as a
function of temperature using confocal microscopy.13

Theoretical and simulation studies on the phase behavior
and structure of the full ternary mixture of colloidal particles
moving around in an explicit solvent mixture are hampered
by the huge differences in length and time scales between the
colloids, solvent species, and the diverging bulk correlation
length of the solvent mixture. As such, in most theoretical
and simulation approaches, such as the works of Mohry et
al.,14–16 Nguyen et al.,13,17 and Dang et al.,18 the binary sol-
vent mixture is taken to be a structureless implicit background.
This approach fails to capture important elements such as
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the fractionation of the solvent in the coexisting colloidal
phases. In a series of recent studies,19–21 we were able to
capture the above-mentioned important elements by using a
simple lattice-gas binary solvent model with embedded col-
loids interacting through first neighbor and excluded volume
interactions with the solvent. The model, although simple, con-
tains all the necessary physics to describe the SM interactions
between colloids. Since an explicit solvent is used, fraction-
ation and many-body effects arise naturally. Due to the large
difference in length scales between the colloid and solvent,
and the critical slowing down as the ternary mixture criti-
cal point is approached, studying a three-dimensional system
using Monte Carlo simulations was deemed computationally
unfeasible, and in Refs. 19 and 21 we presented results for
a two-dimensional system only. We suggested that the over-
all topology of the phase diagram should be similar in three
dimensions.

In the current work, we study the phase behavior of pref-
erentially adsorbing colloidal spheres embedded in a binary
solvent mixture in three dimensions, using Monte Carlo sim-
ulations. We use the same model, generalized to 3D, as in
Refs. 19 and 21, which we describe in Section II A. The
study was made possible by the development of a cluster algo-
rithm which we describe in Section II B. Cluster algorithms
are known to alleviate problems of critical slowing down and
of low acceptance when performing Monte Carlo moves on
constituents of very different sizes.22–24 We mention that a
geometric cluster algorithm was also developed recently by
Hobrecht and Hucht25 for a similar lattice model. We focus
on the supercritical, τ > 0, region of the pure solvent mix-
ture reservoir, where we note that the lattice-gas model has an
upper critical solution temperature. Here, τ = (T − TC)/TC

is the reduced temperature of the system—it is important to
recognize that TC , here, refers to the critical temperature of
the solvent in the absence of colloids. The motivation behind
this choice is to avoid the added complexity of having to deal
with subcritical effects such as capillary bridging. Of course,
the model can be used in any scenario.

This communication is organized as follows. In Section II,
we introduce our model of a ternary solvent-solvent-colloid
mixture and describe the cluster algorithm which made this
study possible. In Section III, we present the phase diagram
in the solvent chemical potential difference, ∆µS , and colloid
packing fraction, η, representations, for varying temperatures.
In Section IV, we make some conclusions.

II. MODEL AND METHODS
A. Model

The underlying incompressible binary AB solvent in our
system is described by a simple lattice-gas model, which is
completely isomorphic to the Ising model. To drive AB demix-
ing, an energy penalty ε/2 > 0 is assigned to every nearest-
neighbor AB pair. Colloids C of radius R are embedded on
center-of-mass positions p, as a collection of lattice sites n,
for which |n − p|2 ≤ R2. Additionally, excluded volume rules
are imposed on each lattice site, and an energy gain of −αε/2,
with α ≥ 0, is introduced for each nearest-neighbor BC pair,
to mimic preferential adsorption of species B onto the colloids,

C. The Hamiltonian of the system is thus given by

H = HC +
ε

4

∑
〈i,j〉

(1 − sisj)(1 − ni)(1 − nj)

−
αε

4

∑
〈i,j〉

ni(1 − nj)(1 + sj), (1)

where si = �1, if site i is occupied by species A, si = 1, if site i
is occupied by species B, and si = 0 otherwise. ni is the colloid
occupancy which is equal to 1 if site i is occupied by a colloid
C, and 0 otherwise. The Hamiltonian HC is infinite if any pair
of colloids overlaps, otherwise it is zero.

When α = 0, colloids have no preference for either of
the two solvent species, and we call these neutrally adsorbing
colloids. The AB solvent mixture, in the absence of colloids,
has a critical temperature given by kBTC/ε ≈ 1.127 88.26

The ternary AB-solvent-colloid mixture is studied using
Monte Carlo simulations. In our implementation, a Monte
Carlo cycle consists of the following moves:

• N s attempts to flip the spin variable si at a random lattice
site i. Note that we reject the move if ni = 1, i.e., if the
random site, i, is occupied by a colloid.
• NC attempts to translate a random colloid by one lattice

spacing.
• A cluster move.

Here N s = NA + NB denotes the number of solvent sites with
NA the number of A species and NB the number of B species
sites. NC refers to the number of colloids. Solvent moves are
accepted using the standard Metropolis criterion,

a(NB → NB ± 1) = min
[
1, e−β(∆H∓ε∆µs)

]
, (2)

where ∆µs = (µB − µA)/ε is the reduced chemical potential
difference of the solvent and ∆H is the difference in potential
energy as given by Equation (1). Colloidal particle translations
are performed by choosing a random direction, ±x̂, ±ŷ, or ±ẑ
and point reflecting sites for which ni has changed after the
translation. The move is again accepted using the Metropolis
criterion, a = min(1, e−β∆H ). For a more detailed description,
see our previous publication.21

B. Cluster algorithm

The model we presented above involves species of signif-
icantly different sizes, known to cause difficulties when per-
forming Monte Carlo moves, such as translations.24,27,28 This,
coupled with the fact that solvent species B can adsorb strongly
to the colloid surface and that critical slowing-down upon
approaching the ternary mixture critical point is encountered,
leads to extremely low acceptance rates, and exponentially
longer equilibration times as a function of temperature.29 It
should be noted that in the two-dimensional model of Refs. 19
and 21, colloid translations have a much higher acceptance
rate than in our current three-dimensional model; colloids
in 2D have significantly fewer surface sites with which they
can interact with solvent species, than colloids of the same
radius in 3D. This makes displacements of colloids much
more difficult in higher dimensions and with increasing colloid
radius.
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To overcome the low acceptance of colloid translations
and the critical slowing down, we developed a geometric clus-
ter algorithm based on the works by Heringa and Blöte22,23

and Ashton et al.24 Geometric cluster algorithms employ a
symmetry operation in order to transform a cluster. Provided
this symmetry operation is a global symmetry of the Hamil-
tonian, the cluster algorithm can be shown to obey a detailed
balance.23 Our algorithm exploits the fact that the Hamilto-
nian is symmetric under the reflection of the lattice about an
arbitrary pivot point. In the implementation of our model, a
lattice site at index i is represented by the variable ti which
takes the values ti ∈ [0, NC + 2] corresponding to the species
that occupies lattice site i, with A ≡ 0, B ≡ 1, and colloid
n, Cn ≡ n + 2. It is also easy to see that si = ti � 1, ni = 0
when ti < 2, and ni = 1 when ti ≥ 2. In the same spirit as
Ref. 22, we use primed identifiers, i.e., i′, to denote identifiers
that are mapped from the original by a symmetry transforma-
tion, in this case a point reflection about a random pivot point.
As is the case with most cluster algorithm implementations,
since the algorithm is rejection free, we can point-reflect lat-
tice sites as they are added to the cluster instead of reflecting
the whole cluster at the end of the algorithm. To this end, we
keep track of the lattice sites that are added to the cluster by
marking them as added to the cluster. The geometric cluster
algorithm, modified for our model, consists of the following
steps:

1. Choose a random colloid and lattice pivot point, r, about
which point reflection is to be performed. The site at the
center of the colloid is denoted as i, and the site reflected
about the pivot point r, i′. Figure 1 presents a schematic
picture.

FIG. 1. When performing a cluster move, a random colloid and a random
pivot point, r (red circle at (11, 10)), are chosen. Starting with its central site
at lattice index i (blue circle at (7, 7)), and the site reflected about the pivot
point, i′ (yellow circle at (15, 13)), neighboring sites are added to the cluster
according to the cluster move rules described in the text.

2. Interchange the species variables ti and ti′ of sites i and
i′ and mark them as added to the cluster.

3. For all neighboring sites, k and k ′, of site i and corre-
sponding reflected site i′, that have not been added to the
cluster, do the following:
3.1. If ti ≥ 2, i.e., it belongs to a colloid, and tk′ = ti,

i.e., sites i and k ′ belong to the same colloid, or if
site ti′ ≥ 2 and site tk = ti′ , interchange the species
variables tk and tk′ and mark sites k and k ′ as added
to the cluster.

3.2. Else, calculate the energy difference, ∆H , asso-
ciated with interchanging tk and tk′ . If ∆H > 0,
interchange the species variables tk and tk′ and
mark sites k and k ′ as added to the cluster with
probability 1 − e−β∆H .

4. For each site that was added to the cluster in step 3, denote
these as i, and repeat steps 3 and 4, or terminate if no sites
were added.

Step 3.1 is the equivalent of saying that nearest-neighbor pairs
belonging to the same colloid are bonded infinitely strongly,
such that ∆H = ∞. This ensures that entire colloids are added
to the cluster if at least one of their sites is added. The geomet-
ric cluster algorithm described above significantly reduces the
relaxation time of the system and renders translations rejection
free. When a cluster becomes percolating, the cluster move
may leave the system unchanged. For this reason, we also
attempt standard colloid translations. In our implementation,
we found it to be more effective to restrict the random pivot
point to a small window centred around the colloid.

III. RESULTS

The focus of this communication is to show that large-
scale simulations of a ternary AB-solvent-colloid mixture in
3D and in near-critical solvent conditions are possible using a
cluster algorithm. We do this by assessing the phase behav-
ior and compare the overall topology of the resulting 3D
phase diagram with that of a two-dimensional system.19,21

This comparison is achieved by calculating the solvent chem-
ical potential difference, ∆µs, vs colloid packing fraction, η,
phase diagrams of the ternary mixture at different reduced
temperatures, τ.

To calculate the phase diagrams, we employ the direct
coexistence method21 in which an elongated box is used to
facilitate the formation of an interface between two phases.
This allows us to calculate density profiles along the direction
normal to the interface, from which the colloid coexistence
packing fractions η can be “read off” for a fixed solvent
chemical potential, ∆µs. We thus treat the colloids in the
canonical ensemble, whereas the solvent is treated grand-
canonically; see Ref. 21. Throughout this work, a simula-
tion box with dimensions of 128 × 128 × 256 lattice sites
is used; this is large enough to avoid significant finite-size
effects.

By calculating the density profiles at different chemical
potentials, ∆µs, we determined the phase diagrams for three
different temperatures, τ = 0.025, 0.05, and 0.075, as shown
in Figure 2, and for a colloid radius R = 6, and a fixed value of
the adsorption strength used previously in 2D in Refs. 19 and
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FIG. 2. Phase diagram of the ABC ternary mixture, computed using the direct
coexistence method, for three fixed temperatures τ = 0.025 (green), τ = 0.05
(orange), and τ = 0.075 (blue) with colloid radius R = 6 and colloid-solvent
adsorption strengthα = 0.6. In this solvent chemical potential,∆µs, vs colloid
packing fraction, η, representation, the tie lines are horizontal. The red circles
and black lines in the inset are the critical points and binodals, respectively,
obtained by least-squares fitting of Equation (3). Note that the vertical dashed
lines denote fluid-solid coexistence for our lattice representation of the pure
hard-sphere system; see text.

21, α = 0.6—we focus on the supercritical, B-rich, ∆µs < 0
region, where capillary effects are absent. We observe colloidal
gas (G), liquid (L), and crystal (X) phases, as well as phase
coexistence between colloidal gas and liquid phases, and col-
loidal gas and crystal phases, with pronounced fractionation
of the solvent. In Figure 3 we show examples of G-L (b) and
G-X (c) coexistence, along with a supercritical configuration
(a). In the inset of the phase diagram in Figure 2, we present a
close-up of coexistence in the near critical region. We also plot
estimates of the critical points, obtained by a least-squares fit
to the equation30–33

η± − ηc = A ��∆µs − ∆µ
c
s
�� ±

1
2

B��∆µs − ∆µ
c
s
��β , (3)

where η± stands for the coexisting colloidal liquid/gas packing
fraction, with ηc its critical value, and A, B, are fit param-
eters. The critical exponent, β, was fixed to its value for the
three-dimensional Ising universality class, β = 0.3258.34 Note
that we have substituted temperature with the solvent chemical
potential, ∆µs, with ∆µc

s being the solvent chemical potential
at the critical point of the ternary mixture. We note that we use
Equation (3) as a fit to our result, only in order to guide the eye.
From the phase diagram in Figure 2, we observe broad G-X
coexistence for ∆µs < −0.1, and a L-X coexistence region for
−0.1 < ∆µs < −0.9, which becomes narrower upon decreas-
ing ∆µs. In addition, we expect to recover the fluid-crystal
transition of pure hard spheres at ∆µs = ±∞, corresponding to
hard spheres in either a pure A or a pure B solvent background.
We thus find that the G-L binodal ends in a G-L-X triple point
at lower ∆µs. Assuming that the colloidal spheres are suf-
ficiently large and that lattice effects are minimal, the system
of pure hard spheres should exhibit fluid-crystal coexistence
at packing fractions η = 0.4915 and η = 0.5428.35 From our
lattice simulations, we find that the actual coexistence pack-
ing fractions are η = 0.4611 and η = 0.5073, drawn as dashed
lines in Figure 2. This should come as no surprise; the spheres

FIG. 3. Representative configurations of our ternary colloid-solvent mixture
model at reduced temperature τ = 0.05, colloid radius R = 6, and for different
chemical potentials, (a) ∆µs = −0.002 (supercritical), (b) ∆µs = −0.008
(G-L coexistence), and (c) ∆µs = −0.3 (G-X coexistence). The pink-colored
particles represent the colloids, while the grey-colored ones, the solvent B
species. The configurations were visualized using a path tracing renderer.

in our model are rather small such that the lattice discretiza-
tion affects their packing and hence the coexistence packing
fractions.

From the phase diagram in Figure 2 it is clear that the
topology is similar to that of the two-dimensional system.19,21

The coexistence curves of the three-dimensional system are
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broader, mainly due to the fact that the particle surface is pro-
portional to R2 as opposed to R in 2D; the colloidal particles
in 3D are overall adsorbing more strongly for the same value
of α. The phase diagrams also exhibit the same trends when
decreasing the temperature, τ; the two-phase G-L(X) coex-
istence region broadens, and the critical point of the ternary
system shifts towards the critical point of the pure solvent
reservoir.

IV. CONCLUSION

Computer simulations of a suspension of colloidal par-
ticles in a near critical solvent mixture in three dimensions
were previously prohibited due to slow equilibration arising
from large differences in length and time scales between the
individual components, the strong adsorption of the solvent on
the colloids, and the critical slowing down. In this work, we
circumvented these problems by developing a rejection-free
geometric cluster algorithm which takes advantage of the point
reflection symmetry of the Hamiltonian of our lattice-based
model.

Using the direct coexistence method, we determined the
phase behavior of colloidal hard spheres in a near-critical
solvent mixture. We determined the gas-liquid and gas-solid
binodals for three different supercritical reduced temperatures,
τ = 0.025, 0.05, and 0.075, close to the solvent reservoir’s
critical point. We found the same qualitative features as in
the two-dimensional case: (i) we observe that the upper gas-
liquid critical point of the ternary colloid-solvent mixture shifts
towards lower solvent chemical potential differences ∆µS and
higher colloid packing fractions, η, upon adding colloids, and
(ii) we find broad gas-liquid phase and gas-solid phase coex-
istence, with a significant fractionation of the solvent species
favored by the colloids.

In conclusion, we have shown that our cluster algorithm
allows us to simulate efficiently the full ternary colloid-solvent
mixture in 3D. Moreover we also demonstrated that the key
features of our previous results on the phase behavior and
structure in two dimensions are present in three dimensions.
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