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Van’t Hoff’s law for active suspensions: the role of
the solvent chemical potential†

Jeroen Rodenburg, a Marjolein Dijkstrab and René van Roija

We extend Van’t Hoff’s law for the osmotic pressure to a suspension of active Brownian particles. The

propelled particles exert a net reaction force on the solvent, and thereby either drive a measurable

solvent flow from the connecting solvent reservoir through the semipermeable membrane, or increase

the osmotic pressure and cause the suspension to rise to heights as large as micrometers for

experimentally realized microswimmers described in the literature. The increase in osmotic pressure is

caused by the background solvent being, in contrast to passive suspensions, no longer at the chemical

potential of the solvent reservoir. The difference in solvent chemical potentials depends on the colloid–

membrane interaction potential, which implies that the osmotic pressure is a state function of a state

that itself is influenced by the membrane potential.

Introduction

In 1887, Van’t Hoff formulated his famous law stating that the
osmotic pressure P of a dilute suspension equals the pressure
rkBT of a dilute gas of the same concentration r and tempera-
ture T, with kB the Boltzmann constant.1–3 In Van’t Hoff’s
interpretation, the total pressure of the suspension Ptot(r,ms) =
rkBT + Ps(ms) decomposes into the sum of the effective colloid-
only pressure rkBT and a ‘background’ pressure Ps(ms) of the
solvent at chemical potential ms. In the typical experimental
setup to measure osmotic pressure (Fig. 1), ms is set by a solvent
reservoir that connects to the suspension via a membrane
permeable to solvent only. The net force per unit area exerted
on the membrane defines the osmotic pressure, and results
from the difference in suspension pressure Ptot(r,ms) and reservoir
pressure Ps(ms). As this pressure difference induces a height
difference H between the two menisci, the osmotic pressure
P B H can be directly inferred.

Van’t Hoff’s law does not apply to non-equilibrium suspen-
sions of active particles that constantly convert energy into
directed motion, such as swimming bacteria4,5 or artificial
microswimmers.6 Not only are these systems promising for appli-
cations in e.g. self-assembly7,8 and targeted cargo transport,9,10

they also display remarkable phase behaviour11–20 that calls for
an underpinning thermodynamic framework.21–32 An essential

prerequisite for such a framework is that thermodynamic
properties can be expressed as functions of variables that
characterize the system state, a seemingly trivial condition that
was nonetheless questioned for the osmotic pressure.33

Previous studies of the pressure33–54 mostly addressed self-
propelled particles on a substrate, or equivalently, an effective
colloid-only system without an explicit solvent. The solvent was
explicitly modelled in ref. 55, but only as a passive species
unaffected by the propulsion force. However, as the propulsion
force is internal,56 the solvent – and in particular its pressure –
is affected by the opposite reaction force.41

In this work, we apply this insight to extend Van’t Hoff’s
law to active suspensions. We show the osmotic pressure to
increase with activity due to a difference in solvent pressure that

Fig. 1 Schematic setup to measure osmotic pressure P from the height
difference H = H0 + DH between the two menisci. (a) For a passive system,
the solvent chemical potential of the suspension equals the reservoir
chemical potential ms, such that P = rkBT and H = H0BrkBT. (b) For an
active system, colloids tend to ‘propel into’ the membrane (green arrows),
thereby exerting the opposite reaction force on the solvent (red arrows).
As a result, the solvent pressure and solvent chemical potential in the bulk
suspension increase by DPs and Dms, respectively, indicated by the darker
blue background, such that P and H increase by DPs and DH B DPs,
respectively.
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develops between the suspension and the reservoir. The effect
of this solvent pressure difference is predicted to be experi-
mentally measurable, either as an additional meniscus rise DH
(Fig. 1), or as a solvent flow through a semipermeable
membrane towards the active particles in an open system
(Fig. 2). The solvent pressure difference implies also a differ-
ence in solvent chemical potential, that, remarkably, depends
on the details of the colloid–membrane interactions. We will
conclude that the osmotic pressure is a state function of a state that
itself, however, is affected by the colloid–membrane interaction
potential.

Model

We model the effective one-component system of suspended
particles as overdamped active Brownian particles (ABPs).12,57

Every particle is characterized by a three-dimensional position r
and an orientation ê. It is well known that the probability
density c(r,ê,t) satisfies the Smoluchowski equation (see Section 1
of the ESI†)

qtc(r,ê,t) = �r�j(r,ê,t) � rê�jê(r,ê,t), (1)

and that the translational flux j and rotational flux jê follow
from the force and torque balance,

0 ¼ �gtj� crVðr; êÞ þ gtv0cê� kBTrc and

0 ¼ �grjê � crêVðr; êÞ � kBTrêc;
(2)

respectively, between (i) the frictional force and torque, with
friction coefficients gt and gr, (ii) an external force and torque
generated by the external potential V(r,ê) acting on every
particle, (iii) a constant self-propulsion force, corresponding
to propulsion speed v0, acting along each particle’s orientation ê,
and (iv) Brownian forces and torques giving rise to translational
and rotational diffusion. In order to focus on the essential physics,
we follow Van’t Hoff and consider the dilute limit, where effective
colloid–colloid interactions can be ignored, and where also
hydrodynamic interactions are expected to be nonessential.
Furthermore, we assume a steady state, i.e. qtc = 0. We analyse
the force balance by taking the zeroth moment of eqn (2), which
upon defining the density rðrÞ �

Ð
dêcðr; êÞ, the polarization

mðrÞ �
Ð
dêcðr; êÞê, and the colloid flux JðrÞ �

Ð
dêjðr; êÞ, yields

the balance

0 ¼ � gtJðrÞ �
ð
dêcrVðr; êÞ þ gtv0mðrÞ � kBTrrðrÞ

� ffðrÞ þ feðrÞ þ fpðrÞ � rPðrÞ
(3)

between the frictional body force f f, the external body force fe,
the propulsion body force f p, and the pressure gradient force
�rP. The form of the propulsion body force,

f p(r) � gtv0m(r), (4)

is easily understood as the sum of propulsion forces gtv0ê acting
on individual colloids. Just like the frictional force f f, the
propulsion force f p is an internal force.

We now turn our attention to the solvent, that we assume to
be incompressible and at small Reynolds number. On a scale
coarse-grained over the colloids – i.e. the same scale eqn (3)
applies to – the local solvent velocity u(r) is governed by the
Stokes equation

f s
e(r) � f f(r) � f p(r) � rPs(r) + Zr2u(r) = 0, (5)

as derived in Section 2 of the ESI.† Eqn (5) is simply the solvent
force balance equipped with a possible external body force fe

s(r),
and the opposite internal body forces �f f(r) and �fp(r) as reaction
forces, in accordance with Newton’s third law. Furthermore, Ps(r) is
the solvent pressure, and Z the dynamic viscosity.

Osmotic pressure

To represent the setting of Fig. 1, we assume an external
potential due to a semipermeable membrane that is planar
and normal to the Cartesian unit vector ẑ, i.e. V(r,ê) = V(z,y),
with cos y � ê�ẑ. This implies c(r,ê) = c(z,y), J(r) = Jz(z)ẑ etc. The
potential V(z,y) is assumed to decay from N in an infinitely
large reservoir, located at z o 0 and containing z-coordinate
zres { 0 in bulk, to 0 in the suspension, located at z 4 0 and
containing zb c 0 in bulk. The zeroth moment of eqn (1),
qzJz(z) = 0, together with a no-flux boundary condition, then
implies Jz(z) = 0, and hence the frictional body force f f(z) = 0. For
a state without any solvent flow (u = 0), and for a membrane
perfectly invisible to the solvent (fe

s = 0), eqn (5) then simplifies
to �f p

z (z) � qzPs(z) = 0.
For a passive system, where the propulsion body force f p

z (z) =
0, this solvent force balance guarantees equal solvent pressures
in the bulk suspension and solvent reservoir, i.e. DPs � Ps(zb) �
Ps(zres) = 0. In an active system, however, the existence of a
nonzero propulsion force f p

z (z) results in a difference in these
solvent pressures, derived in Section 4 of the ESI† to be

DPs ¼ �
ðzb
zres

dzf pz ðzÞ

¼ gtgrv0
2

6kBT
r� gtv0

2kBT

ðzb
zres

dz

ð
dêcðz; yÞ sinðyÞ@yVðz; yÞ:

(6)

The first term on the right-hand side of eqn (6) corresponds
to what is known as the swim pressure,34,36,42 which we thus

Fig. 2 Schematic setup to measure how active colloids confined to one
side of a semipermeable membrane in an open pipe affect the solvent,
viewed in the lab frame. As the colloids tend to ‘propel into’ the membrane
(green arrows), they exert the opposite reaction force on the solvent (red
arrows). Under boundary conditions of equal solvent pressure Ps on either
side of the pipe, the reaction force drives a parabolic solvent flow profile of
mean velocity %u, as indicated by the blue arrows.
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actually identify as a difference in solvent pressure. The second
term on the right-hand side of eqn (6), present for particles
experiencing a torque �qyV(z,y), is of special interest because it
leads to the conclusion that DPs depends on the potential V(z,y).
This issue will be discussed later.

The force balance of the total suspension simply follows as
the sum of the colloid force balance (3) and the solvent force
balance (5), yielding in the planar and flow-free geometry of
interest

f e
z(z) � qzPtot(z) = 0, (7)

where Ptot(z) � P(z) + Ps(z). From the total force balance (7), the
osmotic pressure P �

Ð zb
zres

dzf ez ðzÞ, defined as the magnitude of
the force per unit area exerted on the membrane, follows as
Ptot(zb) � Ps(zres). As the total bulk pressure decomposes into
colloid and solvent contributions as Ptot(zb) = rkBT + Ps(zb), the
osmotic pressure reads

P = rkBT + DPs. (8)

In equilibrium, eqn (8) reduces to Van’t Hoff’s result P = rkBT
on account of DPs = 0. Activity increases the osmotic pressure by
increasing the solvent pressure with respect to the reservoir by
DPs, which is the key result of this work. Together, eqn (8) and
(6) generalize Van’t Hoff’s law to active suspensions.

To clarify these concepts further, we have solved the
Smoluchowski eqn (1) numerically for a system of spheres
subject to a propulsion force, characterized by Peclet number

Pe � gtgrð Þ1=2v0=kBT , in the planar geometry modelling the
setting of Fig. 1. The membrane, felt by the colloids only, is
modelled by the soft potential V(z) = lkBT(z/c)2 for z o 0 and
V(z) = 0 for z Z 0 (Fig. 3(a)), i.e. there is no torque. Here l = 1 is

the strength of the potential, and ‘ � gr=gtð Þ1=2 is the appro-
priate unit of length, which is of the order of the (effective)
particle size upon using Stokes relations for gt and gr. Fig. 3(b)
shows the profile of the propulsion body force f p

z (z). Whereas
f p

z (z) = 0 for a passive system (Pe = 0), an active system displays a
nonzero polarization mz(z), and thus by eqn (4) a propulsion
body force f p

z (z), in the vicinity of the membrane directed
towards the membrane. This well-known effect58–63 is in this
case caused by colloids persistently propelling ‘into’ the repulsive
membrane. Fig. 3(c), for Pe = 0, shows the pressure profiles P(z) of
the passive colloids, Ps(z) of the solvent, and Ptot(z) of the total
passive suspension. Here the reaction body force �f p

z (z) = 0, and
hence the solvent pressure Ps(z) is constant, as argued before. It is
only due to the bulk colloid pressure P(zb) = rkBT that the total
bulk pressure Ptot(zb) is higher than the total reservoir pressure
Ptot(zres). The osmotic pressure P = Ptot(zb) � Ptot(zres) is therefore
equal to rkBT. The profiles for an active system (Pe = 3), displayed
in Fig. 3(d), show that the solvent bulk pressure Ps(zb) exceeds the
solvent reservoir pressure Ps(zres). This is caused by the reaction
body force �f p

z(z), that pushes solvent towards the bulk, as
pictured in Fig. 1(b). As a result, both the total bulk pressure
Ptot(zb) and the osmotic pressure P exceed their passive counter-
parts by DPs = gtgrv0

2r/6kBT on account of eqn (6) for the torque-
free potential of interest here.

Experimental predictions

The experiments that have addressed the pressure of active
systems38,47,53 are few in number. In particular, the osmotic
pressure has never been measured directly. Despite the simpli-
city of the ABP model, that neglects e.g. hydrodynamic interac-
tions, our expression for the osmotic pressure does allow
to estimate the order of magnitude of the meniscus height
difference H = P/(rm

s g) that is to be expected in the experiment
sketched in Fig. 1. Here we focus on an aqueous dispersion
(mass density rm

s = 1 kg dm�3) of active hard spheres of radius
a, with friction coefficients given by the Stokes relations
gt = 6pZa and gr = 8pZa3, subject to Earth’s gravitational
acceleration g, at room temperature, and at packing fraction
0.01 that should mimic the ideal (non-interaction) conditions.
The predicted height differences H are shown in Fig. 4(a).
Whereas the passive osmotic pressure rkBT induces a passive
rise H0 B a�3 too small to measure for colloidal particles,
activity induces an additional rise DH B DPs B av0

2 that brings
H = H0 + DH up to the regime of micrometers65,70,71 or even
millimeters64 for the larger values of propulsion speed v0 and
particle size a of experimentally realized microswimmers.

To determine experimentally that the activity-induced
increase in osmotic pressure results from the increase in
solvent pressure DPs, we propose to confine active particles by

Fig. 3 (a) External potential V(z) modelling the planar membrane of Fig. 1
that separates the reservoir at zres = � 4c from the bulk suspension at
zb = 3c. (b) The steady state propulsion body force fp

z(z), at activity Pe.
Passive (c) and active (d) pressure profiles of the colloids P(z), the solvent
Ps(z), and the total suspension Ptot(z) = P(z) + Ps(z). For the passive system
(Pe = 0), Ps(z) is constant, such that the osmotic pressure P = Ptot(zb) �
Ptot(zres) equals the bulk colloid pressure P(zb) = rkBT. For the active
system (Pe = 3), the reaction body force �fp

z(z) increases the bulk solvent
pressure Ps(zb), as well as Ptot(zb) and P, by DPs.
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a membrane to one half of an open, horizontal pipe, for which
gravity plays no role, as illustrated in Fig. 2. Applying equal
solvent pressures to either side of the pipe, rather than the
no-flux boundary condition before, results in a steady state
where the reaction body force near the membrane �f p drives a
steady solvent flow u(r) through the pipe (as seen in the lab
frame), according to eqn (5). In the limit |u(r)| { v0, and for a
cylindrical pipe, this flow velocity is identical to the Poiseuille
flow that would be generated in a pipe filled with only solvent
upon applying the solvent pressure difference DPs of eqn (6)
between either end of the pipe. For a derivation see Section 6 of
the ESI.† The predicted mean solvent velocity %u B a2v0

2 is
shown in Fig. 4(b) as a function of the propulsion speed v0 and
colloid radius a, for a pipe of radius 5a and length 100a. For the
larger values of v0 and a of experimentally realized
swimmers,64,65,70,71 the solvent velocity %u (although not satisfying
%u { v0 in all cases) is predicted to be on the order of micrometers
per second, and hence easily detectable, e.g. by using tracer
particles.

The solvent chemical potential

We now return to the original setting of Fig. 1 to interpret the
solvent pressure difference DPs between the suspension and the
reservoir. Even though the active suspension is out of equili-
brium, the solvent pressure Ps(z) can still be used to define a
meaningful intrinsic solvent chemical potential mint

s (z) by the
(Gibbs–Duhem like) relation rs(z)qzm

int
s (z) = qzPs(z), with rs(z) the

number density of the solvent (see Section 3 of the ESI†
for details). Hence, the solvent pressure difference DPs is
accompanied by a difference in the intrinsic solvent chemical
potential

Dms � mints zbð Þ � mints zresð Þ ¼
ðzb
zres

dz
@zPsðzÞ
rsðzÞ

: (9)

We can thus rephrase our findings as follows. Activity increases
the solvent chemical potential of the bulk suspension from the

reservoir value ms to ms + Dms. The total bulk pressure Ptot(r,ms +
Dms) = rkBT + Ps(ms + Dms) increases accordingly, such that the
osmotic pressure P = Ptot(r,ms + Dms) � Ps(ms), which is the
difference between the total bulk pressure and the reservoir
pressure, now equals P = rkBT + DPs, where DPs = Ps(ms + Dms) �
Ps(ms) is the difference in solvent pressures accompanying the
difference in solvent chemical potentials.

In this light, we address the second term of eqn (6), present
for anisotropic colloids experiencing a torque �qyV(z,y).
To investigate the implications of this term, we have solved
the Smoluchowski eqn (1) for active dumbells, consisting of

two point particles with separation ‘ ¼ gr=gtð Þ1=2. Both point
particles are subject to the same membrane potential
V(z) = lkBT(z/c)2 for z o 0 as before, where the strength
parameter l can now be varied. The resulting potential acting

on a dumbell, Vðz; yÞ ¼ V zþ ‘
2
cos y

� �
þ V z� ‘

2
cos y

� �
,

exerts a nonzero torque �qyV(z,y), that tends to align dumbells
parallel to the wall. Fig. 5 shows the resulting increase in
solvent pressure DPs, calculated from eqn (6), for different
activities Pe as a function of the strength l of the colloid–
membrane interaction potential. For Pe 4 0, DPs decreases
with l. The reason for this decrease is that the torque generated
by the potential rotates the particles that propel ‘into’ the
membrane, and thereby influences the shape of the polariza-
tion profile mz(z). As it turns out, the torque reduces the total
polarization near the membrane �

Ð zb
zres

dzmzðzÞ, and by that also

the integrated reaction body force �
Ð zb
zres

dzf pz ðzÞ that pushes

solvent towards the suspension, see eqn (4). Consequently, the
increase in solvent pressure decreases as the strength of the
colloid–membrane interaction potential increases. The same
dependence was found in ref. 33 for ellipsoidal particles under
the assumptions that the distribution attains its bulk value
already at z = 0, and that the effect of ellipses that only feel the
potential partially is negligible. We thus confirm the conclusion
of ref. 33 that the second term of eqn (6) depends on the precise
form of the colloid–membrane interaction potential V(z,y), by a
numerical solution c(z,y) that does not require any further
assumptions.

Whereas in ref. 33 this finding was reason to question
whether the osmotic pressure is a state function, we emphasize
it is the bulk state of the suspension itself that depends on the

Fig. 4 (a) Predicted rise H = H0 + DH in Fig. 1, for spherical particles of
radius a at propulsion speed v0 at packing fraction 0.01 in water.
(b) Predicted mean solvent velocity %u in Fig. 2, for a cylindrical pipe of
radius 5a and length 100a. Symbols denote literature values of (v0,a)
combinations of experimentally realized self-propelled colloids +,64 �,65

B,66 J,67 n,68 &;69 and motile bacteria K,70 m.71

Fig. 5 Increase in bulk solvent pressure DPs as a function of the strength l
of the soft colloid–membrane interaction potential in the setting of Fig. 1
for active dumbells at varying activity Pe. For active systems (Pe 4 0), DPs

depends on l.
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colloid–membrane potential. To appreciate its consequences,
we note that in equilibrium the ensemble of reservoir and
suspension is specified by the state variables (ms,r,T), since
the solvent chemical potential of the reservoir sets the same
chemical potential in the suspension. The fact that for an active
system the solvent pressure difference DPs – and thereby also
the chemical potential difference Dms – generally depends on
the colloid–membrane interaction potential, implies that a
complete specification of the ensemble requires an additional
state variable, e.g. the bulk solvent chemical potential mb

s � ms +
Dms. In fact, upon including effective colloid–colloid interac-
tions, the activity is also required as a state variable, e.g. in
terms of v0 (see Section 3 of the ESI†). A complete set of
(intensive) state variables therefore reads (ms,m

b
s ,r,T,v0). All the

mentioned pressures, including the osmotic pressure, are state
functions of these variables.

Conclusions

We have generalized Van’t Hoff’s law to active suspensions. We
have shown that the active particles exert a net reaction force on
the solvent, an effect that we predict to be experimentally
measurable either as a solvent flow through a semipermeable
membrane confining the active suspension to one side of an
open pipe, or as a macroscopic rise of the suspension meniscus
in a U-pipe experiment. In the latter case, the reaction force
increases the solvent pressure of the suspension, and thereby
the solvent chemical potential. Remarkably, this increase, and
thereby the bulk state of the suspension itself, depends on the
details of the colloid–membrane interactions. The osmotic
pressure is a state function of (amongst others) the solvent
chemical potential; it does depend on the details of the colloid–
membrane interactions, but only via the solvent chemical
potential.

Discussion

The predictions of eqn (6) and of Fig. 4 are made for active
particles whose orientation changes only by rotational diffusion
with a rate that follows from the Stokes–Einstein relations for
spherical particles. The corresponding typical reorientation
time tr, equal to gr/kBT in this case, is shown by eqn (6) to be
proportional to the excess solvent pressure DPs. In fact, the
result DPs B tr is more general,36 because the typical time tr

that a particle spends propelling ‘into’ the membrane deter-
mines the magnitude of the time-averaged reaction force it
exerts on the solvent, and thus of the excess solvent pressure
DPs. In general, this reorientation time tr depends on more
factors, for instance on the details of the propulsion mechanism of
the active particle, and on its (hydrodynamic) interaction with the
membrane.59,72 An interesting example of the latter type occurs for
the square-shaped particles simulated in ref. 73. These particles
tend to form a crystal phase next to the membrane, with the
majority of particles facing the membrane.74 This effect increases
tr, and thereby the excess solvent pressure DPs, dramatically.

In the ESI,† we generalize the framework presented here to
include interactions. The active version of Van’t Hoff’s law (8)
then generalizes to P = P(r,mb

s ,v0) + DPs, where P(r,mb
s ,v0) now

denotes the full pressure (ideal gas plus virial contributions)
of the effective colloids-only system that is characterized by
(r,mb

s ,v0). Hence, the functional form of the osmotic pressure P
differs from its passive expression only by the excess solvent
pressure DPs. This excess pressure DPs again depends on the
membrane potential, except in the absence of any torque inter-
actions between either the particles and the membrane, or
between the particles themselves. In the absence of such torques,
DPs again reduces to the known swim pressure. While this swim
pressure is a linear function of r at low colloid densities, cf. eqn (6),
it typically becomes a decreasing function of r at high
densities.27,34,39,75 For general interactions, it remains true that
the difference in solvent pressure DPs is accompanied by a
difference in solvent chemical potential Dms, and that the osmotic
pressure is a state function of the variables (ms,m

b
s,r,T,v0).

Crucial in our approach is that activity enters the colloid force
balance (3) as the body force fp(r), cf. ref. 41, whereas the local
pressure P(r) = r(r)kBT is of the same form as in equilibrium. Our
approach follows Speck and Jack,46 who showed that the bulk
colloid pressure represents momentum flux of non-interacting
colloids. In the interacting case, the local pressure tensor genera-
lizes to a local pressure tensor, that consists of both momentum
flux and a term accounting for interaction forces (see Section 1 of
the ESI†), as the conventional local pressure tensor does.76

Representing activity by a body force contrasts the approach of
some authors who account for activity, in a colloid-only picture, by
modifying the local pressure.25,32,43,50 Whereas our approach is
valid for general particle–particle and particle–wall interactions,
this ‘activity-modified’ local pressure has only been defined for
isotropic particles, and indeed its derivation51,77 does not seem to
be extendable to systems with torque interactions.

The generalizations of the force balances (3), (5) and (7) to
an interacting suspension (see Section 3 of the ESI†) can readily
be applied to other typical phenomena exhibited by active
systems, such as the motility-induced phase separation (MIPS)
of purely repulsive particles.11,12,15,78,79 Strikingly, the interface
of the phase coexistence generated by MIPS was found to have a
negative interfacial tension, defined in the colloid-only picture in
terms of the activity-modified pressure tensor.43 This begs the
question what this negative interfacial tension – and its inter-
pretation43,80 – translates into in the picture presented here, both
in the colloid-only sense and upon taking the solvent into account.

We foresee the picture presented here to form a basis for
making headway in understanding this extraordinary world of
active matter physics, and express the hope that the predictions
of Fig. 4 will stimulate experimental efforts to actually measure
the osmotic pressure and the associated solvent pressure
difference DPs of active suspensions.
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16 T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet,

Phys. Rev. Lett., 1995, 75, 1226.
17 Y. Fily and M. C. Marchetti, Phys. Rev. Lett., 2012, 108,

235702.
18 G. S. Redner, A. Baskaran and M. F. Hagan, Phys. Rev. E:

Stat., Nonlinear, Soft Matter Phys., 2013, 88, 012305.
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