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Free-energy calculations

The bulk phase diagram is determined by using the common tangent construction in the

Gibbs free energy g – composition x representation. We remind the reader that the dimen-

sionless Gibbs free energy per particle is defined as g = βG/N = f + Z, where f = βF/N

is the dimensionless Helmholtz free energy per particle and Z = βP/ρ = γβP/η is the

compressibility factor.

Thus, in order to compute the Gibbs free energy g, one must first calculate the f , and

thermodynamic integration is the method of choice for this task.1 Starting from a reference

point, f is obtained by integrating the EOS to the point of interest, assuming no phase
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transition is crossed along the integration path

f(η) = f(η0) +
γ

kBT

∫ η

η0

dη′
P (η′)

η′2
(1)

The main problem is now shifted to the computation of f at the reference point. For

the fluid phase we choose this point to be an ideal gas mixture. For the crystal phases we

use the Frenkel-Ladd method extended to account for the anisotropic particle shape.1–4 In

this method, one connects an Einstein crystal, where particles are tied to their ideal lattice

positions and orientations by harmonic springs, to the system of interest by slowly removing

the harmonic springs. More details can be found in Ref. 4 and references therein. The

Helmholtz free-energy per particle f of a crystal reads:3,4

f(η0) = fEinst(λmax) −
1

N

∫ λmax

0

dλ′
〈
∂UEinst(λ

′)

∂λ′

〉
NVT

(2)

where fEinst, which stands for the free energy per particle of an ideal Einstein crystal, is given

by:

fEinst(λmax) = −3(N − 1)

2N
ln

(
π

λmax

)
+ ln

(
Λ3
tΛr

σ3
L

)
+

1

N
log

(
σ3
L

V N1/2

)
+ (1 − x)for(λmax)

In Eq. 2, the function UEinst(λ) denotes the harmonic potential that couples the particles

positions and orientations to the corresponding Einstein lattice values and reads:

βUEinst(λ) = λ

N∑
i=1

(ri − ri,0)
2 /σ2

L + λ

Nt∑
i=1

(
sin2 ψia + sin2 ψib

)
(3)

where (ri − ri,0) represents the displacement of particle i from its position in the ideal

Einstein crystal, and where the angles ψia and ψib are the minimum angles formed by the

vector pointing to any of the beads in the tetramer and the rest position of two arbitrarily

chosen beads a and b, respectively. Note that all the spheres and tetramers are connected
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with springs to their respective lattice positions in the Einstein crystal, whereas an aligning

potential is acting only on the tetramers. The term for(λmax) in Eq. takes into account the

orientational free energy of the ideal Einstein crystal and reads:

for(λmax) = − ln

{
1

8π2

∫
dφdθdχ sin(θ) exp

[
−λmax

(
sin2 ψia + sin2 ψib

)]}
(4)

where φ, θ and χ are the Euler angles. This integral depends only on the maximum value

chosen for the coupling constant λ and, of course, on the form of the Hamiltonian chosen for

the orientational springs. In simple cases, it can be evaluated exactly or in an approximated

analytic form. However, when the orientational Hamiltonian is more complex as in the

current case, it must be calculated numerically, e.g. through MC integration.

Once the Helmholtz free energy is known, the Gibbs free energy per particle for fixed

composition and varying pressure is calculated as

g(P, x) = f(η0, x) + γ

∫ η

η0

dη′
βP (η′, x)

η′2
+ Z(P, x) (5)

With the outlined procedure, we calculate the Gibbs free energy g(P, x) for the fluid

phase at different compositions with a grid spacing of 0.1, as well as the Gibbs free energy

g(P, x) for the solid phases. We then use the common tangent construction in the (g, x)-plane

to draw the phase diagram. A representative calculation of g(P, x) is given in Fig. 1, where

we also show the results of the common tangent construction. By collecting the information

about g(P, x) at several pressure values, we eventually map out the phase diagram of the

binary mixture in the pressure βPσ3
L – sphere composition x representation.
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Figure 1: Gibbs free energy per particle g = βG(P, x)/N as function of composition x = Ns/N for
a fixed pressure βPσ3L = 13.6. The green, magenta and cyan dots represent the SC phase of pure
tetramers (at x = 0), the LP1 crystal (at x = 2/3), and the FCC of pure large spheres (at x = 1),
respectively. The blue dashed line shows the Gibbs free energy g(P, x) of the fluid as function of
composition x. The orange dots represent the coexistence points between the fluid and the LP1
crystal (2 points), and between the fluid and the FCC crystal of pure large spheres, as calculated
by the common tangent construction. The thick lines show the path of minimal Gibbs free-energy.
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