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1. Introduction

Quasicrystals are materials that exhibit long-range orienta-
tional order but no translational periodicity. They were first 
reported by Shechtman et al in a rapidly cooled Al–Mn alloy 
[1]. Since then, the world of quasicrystals has been blooming. 
Although, quasicrystals were initially found mostly in inter-
metallic systems, they have now also been reported in several 
soft-matter systems ranging from spherical dendrite micelles 
[2, 3], block copolymers [4–7] to binary mixtures of nanopar-
ticles [8, 9]. Furthermore, there have been reports of colloidal 
quasicrystals obtained using external fields such as holog-
raphy [10] or laser beams [11].

One of the most fascinating properties of quasicrystals is 
the formation of photonic band gaps which is relevant for 
applications in optical devices. Photonic quasicrystals were 
first described for a one-dimensional quasicrystal by Kohmoto 
et al and have been extensively studied since then in two- and 
three-dimensional systems [12–14]. In general, soft-matter 
photonic quasicrystals have potential interesting applications 
in the telecommunications sector which require materials 
with a photonic band gap in the visible region of light [15]. 
This is due to the larger size of the constituent particles than 
their atomic counterparts and the relative ease of formation by 
self-assembly [16, 17]. Correspondingly, a complete photonic 
bandgap was observed in a 12-fold symmetric quasicrystal 
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obtained by etching air holes through a planar wave guide 
[18]. However, to the best of our knowledge, a quasicrystal 
self-assembled from colloidal particles with a full photonic 
bandgap has not yet been realized experimentally. Thus, in 
order to facilitate the synthesis and self-assembly of these 
two-dimensional soft-matter quasicrystals, we investigate 
here extensively their formation and stability by computer 
simulations.

It is now widely accepted that the formation of quasicrys-
tals in soft-matter systems is aided by the presence of two 
competing length scales [19–24]. This could either be the 
size of the two particle species in binary systems or an effec-
tive pair interaction that favours two length scales in a one-
comp onent system. Evidences have been found for both these 
classes using computer simulations. The former has been 
observed in particles interacting with Lennard–Jones [25, 26] 
and square-well [27] potentials, and the latter in systems with 
Lennard–Jones–Gauss [28], square-shoulder [29], square-
well [30], linear ramp [31], flat-well [32] and three-well oscil-
lating [33] pair interactions.

Computational studies of soft-matter quasicrystals using 
systems with core-corona architecture gained attention by the 
work of Dotera et al in which they studied the formation of 
quasicrystals of various symmetries using Monte Carlo simu-
lations [29]. They reported six quasicrystals at different sizes 
of the corona with respect to the hard core. More recently, 
Schoberth et al studied the formation of quasicrystals using a 
more realistic model for core-shell micelles [34]. They used a 
repulsive-shoulder potential to account for the entropic inter-
actions of the overlapping polymer brushes. They provide a 
comparison with the system used by Dotera et al. The focus 
of these two works has been to identify the regions of quasic-
rystal formation in density-corona diameter parameter space. 
One of the more appealing quasicrystals reported in both these 
studies is the high-density dodecagonal quasicrystal, which is 
more commonly observed in experimental soft-matter sys-
tems. Though there has been studies reported on the forma-
tion of a low-density dodecagonal quasicrystal [23, 24], we 
did not find any reports regarding the nature of formation of 
the high-density dodecagonal quasicrystal. Our present work 
is a step in this direction.

In this work, we study various aspects of the formation of a 
dodecagonal quasicrystal reported by Dotera et al in a system 
of particles interacting with a hard core and a square-shoulder 
potential with a shoulder range equal to 1.4 times the hard-
core diameter [29]. We divide this study into three parts. In the 
first part, we qualitatively and quantitatively follow the forma-
tion of a dodecagonal quasicrystal in a core-corona system 
using bond orientational order parameters, correlation func-
tions and tiling distributions. In the second and third parts, 
we analyse the robustness of the formation of the quasicrystal 
by respectively studying the effect of shoulder width and the 
shape of the interaction potential. The paper is organised as 
follows. We describe the details concerning our model, simu-
lations and analysis methods in section 2. We present and dis-
cuss the results in section 3, and we end with conclusions in 
section 4.

2. Methods

2.1. Model and simulations

In the first two parts of this study, we use a hard-core square 
shoulder (HCSS) model to represent the core-corona architec-
ture. This model consists of a two-dimensional system of par-
ticles interacting with a pair potential consisting of a hard core 
of diameter σ and a repulsive square shoulder of diameter δ. 
This hard-core square shoulder (HCSS) pair potential, which 
was earlier used to model interparticle interactions in Cesium 
and Cerium [35], reads

σ
σ δ
δ

=
∞

<
>

⎧
⎨
⎪
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εV r

r
r

r

,
,
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where r is the distance between the centre-of-masses of two 
particles, and >ε 0 is the shoulder height. We show a sche-
matic representation of this pair potential in figure 1, where 
we represent the hard core and square shoulder by the dark 
and light circles. This step potential introduces two character-
istic length scales in the system, respectively, at the hard core 
diameter σ and the square shoulder diameter δ. We consider 
the shoulder width in units of the hard core diameter. This 
ultimately results in a single tunable parameter in the system, 
i.e. the shoulder width δ.

The basis of this study is a dodecagonal quasicrystal at 
δ σ= 1.40  initially reported in a simulation study by Dotera 
et al [29] and recently re-established by Schoberth et al [34]. 
In both works, bond orientational order parameters and bond 
orientation correlation functions were used to identify and 
characterise the resultant phase. However, the characterisa-
tion during the formation of this quasicrystal and details on its 
thermodynamic stability are absent. We had previously studied 
the thermodynamic stability of this dodecagonal quasicrystal 
with emphasis on its relative stability over approximants with 
various periodic square-triangle tilings [36]. We found that the 
quasicrystal is thermodynamically stable with respect to the 
considered tilings over the range of temperatures and densi-
ties that were studied. Therefore, we only consider this quasi-
crystal in the present work. Here, we critically evaluate the 
formation of this quasicrystal in terms of a number of order 

Figure 1. Schematic representation of the hard-core square 
shoulder (HCSS) potential, ( )V rHCSS , as a function of the 
interparticle distance r. σ and δ are, respectively, the diameter  
of the hard core and the square shoulder of the particle.
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parameters. This also acts as a summary of various methods 
that can be utilised to identify the quasicrystal. Further, we 
analyse the scope for formation of this quasicrystal in a three-
dimensional parameter space consisting of the shoulder width, 
temperature and density.

In the last part of this study, we make use of the following 
three interaction potentials, which exhibit two characteristic 
length scales:

 • Hard-core linear ramp (HCLR) potential, which is written 
as

( )
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  This model has previously been shown to demonstrate a 
density anomaly during cooling and also formed a decag-
onal quasicrystal [31]. In this study, we take the width of 
the ramp to be equal to that of the square shoulder in the 
HCSS model, i.e. δ σ= 1.40 .

 • Hard-core modified exponential (HCME) potential rep-
resents a modified form of an exponential potential to fit 
inside the square shoulder. The pair potential ( )V rHCME  
reads
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  The values of m  =  5 and λ σ= 0.31  are used in this study.
 • Hard-core Buckingham or exp-6 (HCE6) potential is a 

classical potential used to model the soft-interactions that 
describe the anomalous behaviour of atomic substances 
at high pressures resulting from core-softening [37, 38], 
and reads
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  where the parameter α controls the steepness of the 

potential and is taken to be 15 in the present simulations.

In figure 2, we show a comparison between all four interac-
tion potentials. The HCLR is a linear ramp along the diagonal 
between the core and the corona diameters. The HCME is a 
short-ranged exponential potential that fits within the square 
shoulder. It initially follows the shape of the square shoulder 
and then decreases exponentially. On the other hand, the 
HCE6 is a long-ranged exponential potential which initially 
follows the shape of the linear ramp and then extends beyond 
the square shoulder. The parameters of each potential are 
chosen such that the shape of the potential largely fits inside 
the square shoulder at δ σ= 1.40 .

We perform Monte Carlo (MC) simulations in the canon-
ical (NVT) and isothermal-isobaric (NPT) ensembles. We 

use a rectangular box of area A with periodic boundary con-
ditions. The hard-core diameter σ and the shoulder height ε 
are, respectively, taken to be the units of length and energy. 
We define the following dimensionless (reduced) quantities: 
temperature /=∗ εT k TB , pressure β σ=∗P P 2, and density 

/ρ σ=∗ N A2 , where /β = k T1 B  is the inverse temperature with 
kB the Boltzmann constant.

2.2. Structural analysis

We perform an array of analyses to study the local structure of 
the system and to differentiate between the phases. This com-
prises of constructing the polygonal tiling of the structure, cal-
culating the m-fold bond orientational order parameter (BOO) 

of a particle j, χm
j , the average BOO of the system, χm, the m-

fold bond orientational correlation function, gm(r), the radial 
distribution function, g(r), and the static structure factor, S(k). 
These parameters are explained below.

We obtain the polygonal tiling of a structure by drawing 
bonds between the neighbouring particles of each particle j, 
which are identified as particles that are at a centre-of-mass 
distance smaller than the square shoulder diameter δ from par-
ticle j. This is done to correlate the structures formed in our 
system with dodecagonal quasicrystals which are described 
in terms of tilings consisting of squares and equilateral trian-
gles [39–43]. Analysis of the tiling allows us to distinguish 
between the various phases formed in the system and thus, the 
phase behaviour of the system. It is good to mention that such 
tilings have previously been used to study other phenomena 
in condensed matter systems like melting and condensation 
[44] and entropic demixing [45]. In our analysis of the tilings, 
we exclusively identify the triangle and the square tiles. We 
note that most of the defects in a hexagonal lattice result in 
a rhombic tile. Given the resemblance between the rhombus 
and square tiles, we also mark the rhombus tiles separately 
in order to prevent any effect of these tiles on the relative 
square-triangle tile calculations. Finally, the remainder of the 
tiles are grouped together and termed as ‘defect’ tiles. In the 

0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

r/σ

βV
(r

)

 

 

HCSS
HCLR
HCME
HCE6

Figure 2. Comparison of the various two length scale interaction 
potentials used in this study shown as a function of the interparticle 
distance r. The pair potentials are the hard-core square shoulder 
(HCSS) potential, hard-core linear ramp (HCLR) potential, hard-
core modified exponential (HCME) potential and the hard-core 
Buckingham or exp-6 (HCE6) potential.
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tiling under study, we colour the triangles in green, squares in 
yellow, rhombi in orange and defects in grey.

The m-fold BOO of a particle j is defined as

( )
( )

( )

∑χ θ=
=N j

m
1

exp i ,m
j

B k

N j

r
1

2
B

jk (5)

where m is the symmetry of interest, rjk is the centre-of-
mass distance vector between two neighbours j and k, θrjk is 
the angle between rjk and an arbitrary axis, and NB( j ) is the 
number of neighbours of particle j. For each particle j, we 

calculate χ j
4 representing square symmetry, χ j

6 representing 
hexagonal symmetry and χ j

12 representing dodecagonal sym-
metry. We use the method given in table 1 to classify particles 
based on their BOO. We consider a particle to be fluid-like 

if each of the three χm
j  is less than 0.5. On the other hand, if 

each of χm
j  is greater than 0.5, then a particle is said to have 

symmetry m1 if χm
j

1 is greater than the other two, namely χm
j

2 
and χm

j
3. Further, we identify and colour particles according to 

the following scheme: particles of square symmetry in purple, 
those of hexagonal in green, dodecagonal in red and fluid-like 
in orange as shown in figure 3.

The average BOO of the system is then written as [46]

∑χ χ=
=N

1
.m

j

N

m
j

1
 (6)

Ultimately, the m-fold bond orientation correlation function 
gm(r) with = | − |′r r r  is calculated as

( ) ( ) ( )χ χ= ′∗g r r r. .m m
j

m
k

 (7)

The radial distribution function g(r) of a system calculated 
at a density ρ gives the probability of finding a pair of particles 
at a distance = | − |′r r r , and reads as

( ) ( ) ( )∑∑ρ
δ δ= − −′
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g r r r r r
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,
j

N

k j

N
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1

 (8)

where rj and rk are the positions of particles j and k, respec-
tively. The static structure factor of the system is obtained by 
a Fourier transformation of the g(r). It is represented in two-
dimensional space as a diffraction pattern.

There are previous accounts of identifying quasicrystals 
using BOO, BOO correlation functions and radial distribu-
tion functions [29, 34]. In this work, we apprehend all these 
methods along with tiling calculations to provide a compre-
hensive overview of the various methods that can be used. We 
aim to verify the consistency achieved by using these methods 
in addition to studying the nature of quasicrystal formation.

3. Results and discussion

As indicated in the previous sections, this section will be pre-
sented in three parts. In the first part (section 3.1), we take 
a meticulous look at the process of formation of the dode-
cagonal quasicrystal in the HCSS system. In the second part 
(section 3.2), we study the influence of the shoulder width of 
the HCSS potential on the quasicrystal formation. And finally 
in the third part (section 3.3), we study the response of the 
system when the shape of the interaction potential is modified.

3.1. Formation of dodecagonal quasicrystal

By now, the presence of a random-tiling high-density dode-
cagonal quasicrystal in the HCSS system is well reported 
[29, 34, 36]. However, the process of its formation is seldom 
studied. It is formed either by cooling a hexagonal structure 
from a high to a low temperature at a constant density or by 
compressing an isotropic fluid phase to a higher density at a 
constant temperature. In this work, we delve into the former 
method where we cool a hexagonal lattice of (reduced) den-
sity ρ =∗ 0.98 from (reduced) temperature T*  =  1.0 to 0.10.

Table 1. Method of classification of particle j according to its bond 
orientational order (BOO) χm

j .

Symmetry BOO conditions Colour scheme

Fluid/Other (OT) χ χ χ <, , 0.5j j j
4 6 12

Orange

Crystal χ χ χ >, , 0.5j j j
4 6 12

- Square (SQ) χ χ χ> ,j j j
4 6 12

Purple

- Hexagonal (HX) χ χ χ> ,j j j
6 4 12

Green

- Dodecagonal (QC) χ χ χ> ,j j j
12 4 6

Red

Figure 3. Colour scheme for classes of particles based on the BOO 
classification described in table 1.

0.2 0.4 0.6 0.8 1.0
2.4

2.5
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2.7
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2.9

3.0
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E
ne

rg
y 

<
U

>

HX

HX+QC

QC+SQ

QC

HX+FL

Figure 4. Potential energy per particle U as a function of (reduced) 
temperature ( /=∗ εT k TB ) for the HCSS system with shoulder width 
δ σ= 1.40  at a constant (reduced) density /ρ σ= =∗ N A 0.982 . 
The phases marked are fluid (FL), hexagonal (HX), dodecagonal 
quasicrystal (QC) and square (SQ) phases.
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To start, we inspect the change in the average potential 
energy of the system as a function of temperature. This is pre-
sented in figure 4. We note six different branches in the plot 
indicating distinct phase behaviors. We have marked these 
individual regions after studying various structural properties 
of the obtained configurations, for example, its tiling, BOO 
and corresponding diffraction patterns. In order to obtain a 
better understanding of these phase transformations, we study 
the energy plot in figure 4 in conjunction with typical con-
figurations at a fixed temperature at each of these branches 
as shown in figure  5. These configurations as presented in 
figure 5 are composed of four features: (1) the positions of 
the hard cores of the particles are displayed at the top, (2) the 
polygonal tiling is presented at the bottom, (3) the calculated 
diffraction pattern is shown in the inset at the centre, and (4) 
the labels indicate the different phases. The colouring schemes 
used for the hard core of the particles in the top region and the 
tiles in the bottom region are explained in section 2.2.

Let us first take a qualitative look at the phase behaviour 
shown in figures 4 and 5 starting from high temperatures. At 
high temperature (T*  >  0.80), the potential energy decreases 
very slowly with decreasing temperature and is close to 3.0. 
The potential energy per particle of an ideal hexagonal lattice 
in the HCSS system with δ σ= 1.40  is 3.0. Thus, the structure 
at these temperatures should be hexagonal in nature. However, 
the potential energy at these temperatures is not exactly equal 
to that of the perfect hexagonal lattice. This indicates the 
presence of defects, which are seen as the orange rhombi and 
other grey shapes in figure 5(a). Upon decreasing the temper-
ature further, these individual defects accumulate and form a 
nucleus of the fluid phase as noticed in figure 5(b). A further 
decrease in temperature from T*  =  0.72 to 0.43 is character-
ised by a continuous decrease in potential energy. This refers 

to the growth of the fluid nucleus (figure 5(c)). Towards the 
end of this growth regime, we observe a hexagonal-fluid phase 
coexistence (figure 5(d)). At T*  =  0.45 shown in figure 5(d), 
each of these phases occupy almost half of the simulation box 
and this allows us to calculate the diffraction pattern of the 
fluid and the hexagonal phase, separately. This is displayed 
in the inset of figure 5(d). When the temperature is decreased 
even further, we notice a sudden drop in the potential energy 
at ∼∗T 0.41. This drop coincides with the formation of a dode-
cagonal quasicrystal from the fluid, which results in the for-
mation of a two-phase coexistence region between hexagonal 
and quasicrystal phases (figure 5(e)). It is affirmative to note 
that the diffraction pattern calculated at T*  =  0.39, shown in 
the inset of figure 5(e), clearly displays characteristics of both 
the quasicrystal and hexagonal structures. Comparing this 
transformation with the previous formation of the fluid phase 
from hexagonal, we note the absence of a single nucleus of 
the quasicrystal. However, the sudden change in the potential 
energy hints towards a first-order phase transition. With fur-
ther lowering the temperature (and further decrease in energy), 
we observe a concurrent growth of the quasicrystal region and 
decline of the hexagonal region; the outcome of which is a 
dodecagonal quasicrystal spanning the entire simulation box 
(figure 5(f)). We remark that the energy in the quasi crystal 
regime is not constant, but decreases with decreasing temper-
ature. This implies the formation of more squares at lower 
temperatures. Thus, the following energy drop is associated 
with the formation of a two-phase coexistence region between 
the square and quasicrystal phase.

Let us now quantitatively analyse the phase transformation 
with the help of order parameters as explained in section 2.2. 
In figures  6(a) and (b), we investigate the behaviour of the 
bond orientational order parameters. In figure  6(a), we plot 

Figure 5. Phases formed at various temperatures ( /=∗ εT k TB ) during cooling of a hexagonal phase at a (reduced) density 
/ρ σ= =∗ N A 0.982  interacting with a HCSS pair potential with a shoulder width δ σ= 1.40 . The phases marked are hexagonal (HX), 

fluid (FL) and dodecagonal quasicrystal (QC). Each panel consists of (top) positions of the hard cores of the particles, (bottom) polygonal 
tiling, (inset) calculated diffraction pattern of the structure. The particles and the tiles are, respectively, coloured according to the schemes 
explained in section 2.2.
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the fraction of different types of particles as obtained from 
the BOO classification in table 1 as a function of temper ature. 
The particle types X that we distinguish are square (SQ), 
hexagonal (HX), dodecagonal quasicrystal (QC), and others 
(OT). We notice that the fraction of hexagonal ( f p

HX) particles 
decrease and that of the quasicrystal ( f p

QC) particles increase 
with decreasing temperature indicating the formation of the 
quasicrystal from the hexagonal phase. However, the fraction 
of square particles ( f p

SQ) remains almost constant throughout 
the entire temperature range except at very low temperatures. 
This indicates that no square phase is formed during the initial 
quasicrystal formation, but there is a small indication of its 
formation at very low temperatures. Another interesting fea-
ture is the fraction of ‘fluid-like’ particles ( f p

OT). We observe a 
very low, but non-zero, value at high temperatures indicating 
defects in the hexagonal lattice. With decreasing temperature, 
we observe a significant increase in f p

OT through the two-
phase coexistence region of the hexagonal and fluid phase. 
This complies with the formation of larger amounts of fluid 
phase. This increase, however, ceases with the formation of 
the quasicrystal and the f p

OT remains at a constant value. We 
further confirm the first-order nature of the fluid to the quasi-
crystal transformation from the sudden drop in f p

HX and the 
simultaneous increase in f p

QC.

Let us now pay attention to figure  6(b), where we plot 
the average m-fold bond orientational order as a function of 
temper ature. On the one hand, we notice that the behaviour 
of χ6 and χ12, respectively, follow that of the fraction of hex-
agonal ( f p

HX) and quasicrystal ( f p
QC) particles in figure 6(a) i.e. 

χ6 decreases and χ12 increases with decreasing temperature. 
However, on the other hand, unlike the constant behaviour of 
f p

SQ, we find an increase in values of χ4 at temperatures close 
to the quasicrystal formation. This further reinforces the fact 
that the formation of the quasicrystal is aided by the replace-
ment of particles of hexagonal symmetry by ones with square 
symmetry. The increase in χ4 values at even lower temper-
atures ∼∗T 0.18 indicates the formation of the square phase.

Next, we correlate the behaviour of the particles with that 
of the tilings obtained from connecting the nearest neighbours 
of particles. To do so, we plot the behaviour of the fraction 
of tiles during cooling of the system in figures 6(c) and (d). 
Figure  6(c) shows the fraction of triangle tiles f t

TR, square 

tiles f t
SQ, rhombus tiles f t

RH, and defect tiles f t
DE as a func-

tion of temperature. The fraction of triangle tiles f t
TR is almost 

constant in the temperature range where the hexagonal phase 
and fluid-hexagonal phase coexistence are observed. The dif-
ference between these two regions is brought about by the 
relative fractions of the rhombus tiles f t

RH and defect tiles 

Figure 6. Various order parameters as a function of temperature ( /=∗ εT k TB ) describing the quasicrystal formation for the HCSS system 
with shoulder width δ σ= 1.40  at a constant (reduced) density /ρ σ= =∗ N A 0.982 : (a) Fraction of different types of particles based on its 
BOO classification, f X

p . The particle types X that we distinguish are square (SQ), hexagonal (HX), dodecagonal quasicrystal (QC), and 
others (OT). (b) m-fold bond orientational order (BOO) of the system, χm, with m  =  4, 6, and 12. (c) Fraction of different tile types, f X

t . 
The tile types X that are considered are triangle (TR), square (SQ), rhombus (RH) and defects (DE). (d) Number and area ratio of square 
and triangle tiles. For convenience, the curves in (a)–(c) are coloured according to the same schemes as in figure 5.
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f t
DE. In the temperature range where the hexagonal phase is 

found, we observe a larger fraction of rhombus tiles f t
RH rep-

resenting the defects in the hexagonal lattice. Upon lowering 
the temper ature, we find an increase in the fraction of defect 
tiles f t

DE signalling the formation of the fluid phase. At lower 
temper atures, closer to the quasicrystal formation, we observe 
a simultaneous decrease in the fraction of rhombus tiles f t

RH 
and defect tiles f t

DE and an increase in the fraction of square 
tiles f t

SQ. We note the almost constant values of f t
TR and f t

SQ in 

the quasicrystal region. In the low temperature regime of the 

quasi crystal region, we note a further increase in f t
SQ denoting 

the formation of the square phase. These observations are 
concur rent with those of the particle fractions in figure 6(a).

Now, we turn our attention to figure 6(d), where we study 
the composition of the tiling in terms of the constituent square 
and triangle tiles. This is done because the dodecagonal quasi-
crystals described by a square-triangle tiling have a triangle-
to-square number ratio of / �4 3 2.309 [43]. At this ratio, 
both the square and triangle occupy equal areas, thereby 
giving a triangle-to-square area ratio of 1. Thus, in figure 6(d), 
we show the ratio of (1) the areas of square and triangle tiles, 
and (2) the number of triangles and squares as a function of 
temperature. We have also marked the ideal triangle-to-square 
area and number ratios using dashed lines. The prominent 
observation that results from this plot is that both the area 
and the number ratios are close to their ideal values in the 
range of temperatures pertaining to the quasicrystal region. 
Furthermore, the increase in the area ratio towards the end of 
the temperature spectrum coincides with the formation of the 
SQ phase.

Finally, we examine the long-range orientational order of 
the system by means of the radial distribution function g(r) 
and the 6- and 12- fold bond orientational correlation func-
tions g6(r) and g12(r). These quantities are shown in figure 7 
as a function of temperature. The curves corresponding to dif-
ferent phases are separately marked. In figure 7(a), we see the 
evolution of the g(r) from the hexagonal (HX) to the quasic-
rystal (QC) phase upon decreasing the temperature. The initial 
peaks of the g(r) of the HX phase lies at σ1.0  and σ∼3 1.732  
denoting the hard-core diameter and a sequence of consecutive 
equilateral triangles, respectively. The formation of quasicrys-
tals is indicated by the appearance of a peak at σ1.4  (marked by 
an arrow in figure 7(a)) corresponding to a sequence of squares. 
In figure 7(b), we present the 6-fold and 12-fold bond orienta-
tional correlation functions g6(r) and g12(r), respectively. Both 
the g6(r) and g12(r) reach a constant value for the hexagonal 
and quasicrystal phases and do not decline to zero at larger r. 
This confirms the presence of long-range orientational order in 
the system. As can be expected, the g6(r) of the HX phase is 
higher than that of the QC phase; while the inverse holds for 
g12(r). This confirms the dominant orientational order in these 
phases. Also, the decaying nature of both the g6(r) and g12(r) 
curves at temperatures T*  =  0.4 and 0.5 indicates the absence 
of long-range orientational order in the system, i.e. the pres-
ence of a fluid (FL) phase. The value of g12(r) decreases from 
T*  =  0.30 to 0.10 indicating the ‘loss’ of fraction of QC phase, 

i.e the formation of another phase in the system. From our pre-
vious discussions, we know this to be the square (SQ) phase.

To summarise this section, we have investigated the for-
mation of the QC phase by cooling a hexagonal phase at a 
constant density. Upon lowering the temperature, we first find 
the formation of a fluid phase via a nucleation and growth 
mechanism, resulting into a phase coexistence of the fluid and 
hexagonal phase. By further cooling the system, we find that a 
QC phase forms within the fluid phase, and continues to grow 
until the whole system is quasicrystalline.

Figure 7. Structural properties as a function of temperature during 
quasicrystal formation: (a) radial distribution function g(r), (b) 
6-fold bond orientation correlation function g6(r), and (b) 12-fold 
bond orientation correlation function g12(r). The phases indicated 
are hexagonal (HX), fluid (FL), dodecagonal quasicrystal (QC). For 
clarity, we shifted the g(r) in (a) in the vertical direction by ∆ =y 2.
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3.2. Effect of shoulder width

The calculations discussed in the above section  were per-
formed at a single value of the width of the square shoulder. 
Here, we assess the effect of the shoulder width on the forma-
tion of the dodecagonal quasicrystal by performing simula-
tions in the NVT ensemble at shoulder widths δ from σ1.26  to 
σ1.50 , densities ρ∗ between 0.96 and 0.99, and temperatures 

T* between 0.10 and 0.30. We analyse the resulting configura-
tions with the help of their polygonal tiling, diffraction pattern 
and average bond orientational order (BOO) of the system, 
χm.

We observe the formation of the dodecagonal quasic-
rystal (QC) in a range of densities, temperatures and shoulder 
widths. This three-dimensional phase space is given in 
figure 8. The coloured volume shown represents the limits of 
the quasicrystal formation and the box displays the range of 
data points simulated. We also plot the countours in the den-
sity-temperature plane for a few shoulder widths. It is evident 
from these plots that the quasicrystal forms over a range of all 
three parameters. For clarity, we perform further analysis at 
constant temperature T*  =  0.28.

We plot the state diagram in the shoulder width-density 
(δ ρ− ∗) plane at T*  =  0.28 in figure  9. At shoulder widths 

⩾δ σ1.46 , we find that the system behaves similar to the hard-
disk model. Even though we only observe a HX  +  FL phase 
coexistence at the densities shown here, it is apparent that this 
region will be bordered by FL at lower densities and HX at 
higher densities. Further, we recognise the formation of the 
dodecagonal quasicrystal QC over a range of shoulder widths 

⩽ ⩽σ δ σ1.30 1.44 . Lastly, we note that at even lower shoulder 
widths ⩽δ σ1.30 , we find a 18-fold symmetric quasicrystal 
(QC18), which was previously reported by Dotera et  al at 
δ σ= 1.27 .

This state diagram is substantiated by the calculation of 
4-, 6-, 12-, and 18- fold BOO at each condition of density and 
shoulder width. This is plotted as four separate surface plots 
in figure 10. In the χ4 plot given in figure 10(a), we notice 
higher values of the order parameter at lower densities and 
moderate shoulder widths indicating the presence of the SQ 
phase. Looking at figure 10(b), we confirm higher χ6 values at 
higher densities and shoulder widths showing the presence of 
the HX phase. It is interesting to note that at these conditions 
of densities and shoulder widths where the HX phase is found, 
the values of χ6, along with χ12 and χ18 shown respectively in 
figures 10(c) and (d) are in the order χ χ χ> >6 12 18. This is 
because the χ12 and χ18 are respectively the 2nd and 3rd order 
terms of χ6. Thus, when χ6 is non-zero, the χ12 and χ18 param-
eters will also have a non-zero value which decreases with 
increasing order of symmetry. Lastly, the dominant phase in  
the lower right quadrant is recognised to be the QC18; while the 
dodecagonal quasicrystal QC is formed at all densities in the  
middle range of the shoulder widths considered. In summary, 
we recognise that the calculations shown here validates the 
state diagram in figure 9 and shows that the QC is formed over 
a range of shoulder widths, temperatures and densities.

3.3. Effect of shape of interaction potential

The HCSS system is a minimalistic approach to model the 
core-corona architecture of colloidal particles. However, the 
assumption of a constant repulsion through the entire width 
of the shoulder is not experimentally realisable owing to the 
non-uniformity in the shape and size of the polymer brushes 
that surround the solid core. Thus, to account for this non-
uniformity, we examine the effect of shape of the interaction 

Figure 8. Three-dimensional phase space of (reduced) density 
ρ∗, temperature T* and shoulder width δ where the dodecagonal 
quasicrystal (QC) is observed as denoted by the coloured volume 
for the HCSS system. The reduced quantities are defined as 

/=∗ εT k TB  and /ρ σ=∗ N A2 . The box represents the range of data 
points that were considered. The contours in the ρ −∗ ∗T  plane for a 
few shoulder widths are also given.

Figure 9. State diagram in the shoulder width δ-(reduced) density 
ρ∗ plane for the two-dimensional HCSS system at (reduced) 
temperature T*  =  0.28. All quantities are represented in reduced 
units as /=∗ εT k TB  and /ρ σ=∗ N A2 . The phases represented are 
fluid (FL), hexagon (HX), square (SQ), dodecagonal quasicrystal 
(QC) and octadecagonal quasicrystal (QC18).
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potential without effectively altering the characteristic length 
scales in this work. In other words, we modify the shape of the 
interaction potential while keeping the core size, the corona 
size, and the repulsive strength at the core intact.

We wish to point out to the readers that a similar study 
was recently reported by Schoberth et  al [34] wherein they 
accounted for an increasing repulsive force in the corona mim-
icking the entropic interactions of spherical polymer brushes 
in core-shell micelles. Their assumption, in turn, results in (1) 
smoothening of both characteristic length scales, viz. the core 
and corona diameter, and (2) increased repulsive forces near 
the core. In our present study, we maintain the bounds of the 
two length scales and the maximum interaction strength near 
the core at the same values as the HCSS system; i.e. we only 
modify the shape of the curve in the corona region.

For this study, we make use of three other potentials in 
addition to the hard-core square-shoulder (HCSS) poten-
tial; namely hard-core linear-ramp (HCLR) potential, hard-
core modified-exponential (HCME) potential, and hard-core 
Buckingham or exp-6 (HCE6) potential. The details regarding 
these potentials are given in section 2. We compare the phases 
formed in systems with each of these potentials at a range of 
densities and temperatures. For the HCSS and HCLR poten-
tials, we calculate the respective equilibrium phase diagrams 
using free-energy calculations; while for the other two poten-
tials namely HCME and HCE6, we plot the state diagrams 
resulting from simulations in the NVT ensemble at each den-
sity and temperature. The process of mapping out the phase 

diagram for the HCSS system is explained in our previous 
publication [36] and we follow a similar procedure for the 
HCLR system. In the aforementioned publication, we also 
present an account of the HCSS phase diagram. For compar-
ison purposes, the HCSS phase diagram is replotted here.

The calculated phase diagrams and state diagrams are 
given in figure  11. The potential corresponding to each of 
these plots along with the outlining square shoulder is shown 
in the respective insets. In general, we report that the same 
phases are formed in all these systems. The phases comprise 
of fluid (FL), square (SQ), low- and high-density hexagonal 
(LDH, HDH) and dodecagonal quasicrystal (QC). The forma-
tion of the hexagonal phase in two density ranges is driven by 
the presence of two-length scales in the interaction potentials 
such that the interparticle distances in LDH and HDH are at 
the core and corona diameters, respectively. We make the fol-
lowing observations regarding the QC phase. First, we find 
that the QC phase is found in all four cases; and second, the 
temperature of formation of the QC depends on the interac-
tion potential. The first observation regarding the QC phase 
in all these systems affirms that the presence of two length 
scales in the interaction potential is a prerequisite for the for-
mation of a quasicrystal in single component colloidal sys-
tems. The shape of the interaction potential inside the corona 
does not matter for the QC formation as long as the two 
length scales are uniquely defined. The second observation is 
related to the temperature range where the QC is formed. We 
find that the temperature range shifts to lower temperatures 

Figure 10. Average bond orientational order parameters representing square χ4, hexagonal χ6, dodecagonal χ12 and octadecagonal χ18 
symmetries as a function of density /ρ σ=∗ N A2  and shoulder width δ at (reduced) temperature /= =∗ εT k T 0.28B .
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when the interparticle potential becomes less repulsive going 
from the HCSS to the HCME and the HCLR potential, i.e. 
the energy penalty for the particles to be in the middle of 
the corona decreases. Thus, a higher interaction strength (or 
lower temperature) is required to compensate for this pen-
alty loss. This interaction strength can be tuned by varying 
the density of polymer brushes in experimental core-corona 
systems. Supplementary to this energy penalty loss, one also 
needs to account for the much larger corona size (∼2.5σ) in 
the HCE6 system. This large corona size is a result of the long 
exponential tail in the potential. This results in a much lower 
temper ature for the formation of the QC in the HCE6 system 
in comparison to the other three.

In summary, we find that the dodecagonal quasicrystal is 
formed irrespective of the shape of the interaction potential, 
as long as the two length scales are maintained. The shape of 
the potential does affect the temperature range in which the 
dodecagonal quasicrystal is stable.

4. Conclusions

We investigated the formation of a colloidal dodecagonal 
quasicrystal in a simple model of particles interacting with a 
potential consisting of a hard core of diameter σ and a repul-
sive square shoulder of diameter δ σ= 1.40 . We scrutinised 
the formation process using bond order parameters, correla-
tion functions and tiling fractions in the first part of this work. 
Upon cooling the hexagonal phase at a constant density, we 
find the nucleation and growth of a fluid phase, resulting in 
a two-phase coexistence of the fluid and hexagonal phase. 
Lowering the temperature further, we find that the quasi-
crystal forms from the fluid phase. Finally, it is worth noting 
that the different phase transformations encountered during 
the cooling process is consistent with the phase diagram as 
presented in figure 11.

In the second part of this work, we studied the formation of 
the dodecagonal quasicrystal for a range of shoulder widths, 

Figure 11. Effect of interaction potential on quasicrystal formation: phase diagram ((a) and (b)) and state diagram ((c) and (d)) in the 
(reduced) temperature-density plane obtained for systems interacting with (a) hard-core square shoulder potential (HCSS) taken from [36]
(b) hard-core linear ramp potential (HCLR) (c) hard-core modified exponential potential (HCME) (d) hard-core exp-6 potential (HCE6). 
Please note that the temperature axis in the figures are different. The reduced units are /=∗ εT k TB  and /ρ σ=∗ N A2 . The phases shown are 
fluid (FL), low-density hexagonal (LDH), square (SQ), dodecagonal quasicrystal (QC) and high-density hexagonal (HDH). The lines act as 
guides to the eye, and the open symbols in (c) and (d) denote the state points that were considered in the simulations. The red dashed line in 
(a) follows the cooling simulation performed in section 3.1.
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temperatures and densities. We found that the quasicrystal 
formation is robust with respect to all three parameters. For 
example, at a temperature T*  =  0.28, we find that the quasi-
crystal is formed at densities ρ∗ between 0.96 and 1.00 and 
shoulder widths δ between σ1.30  and σ1.44 .

In the last part we studied the effect of the shape of the inter-
action potential on the formation of the quasicrystal. We used 
four interaction potentials each of which have two inherent 
length scales, namely a hard-core potential supplemented with 
a square shoulder, a linear ramp, a modified exponential, or a 
Buckingham (exp-6) potential. We observed the formation of 
a dodecagonal quasicrystal in all these systems. However, the 
shape of the potential influences the temperature range of the 
stability regime of the quasicrystal formation.

Our studies provide a comprehensive summary of param-
eters that can be used to identify quasicrystals in soft matter 
systems including bond order parameters, bond correlation 
functions and tiling calculations. Furthermore, our invest-
igations provide insight to the robustness of the formation 
of the quasicrystal, which is of considerable importance for 
performing experimental studies on these systems. This could 
enable tailoring of experiments to synthesise more quasic-
rystal-forming systems.
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