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Using computer simulations, we study the dynamics and interactions of interstitial particles in hard-
sphere interstitial solid solutions. We calculate the free-energy barriers associated with their diffusion
for a range of size ratios and densities. By applying classical transition state theory to these free-energy
barriers, we predict the diffusion coefficients, which we find to be in good agreement with diffusion
coefficients as measured using event-driven molecular dynamics simulations. These results highlight
that transition state theory can capture the interstitial dynamics in the hard-sphere model system.
Additionally, we quantify the interactions between the interstitials. We find that, apart from excluded
volume interactions, the interstitial-interstitial interactions are almost ideal in our system. Lastly,
we show that the interstitial diffusivity can be inferred from the large-particle fluctuations alone,
thus providing an empirical relationship between the large-particle fluctuations and the interstitial
diffusivity. Published by AIP Publishing. https://doi.org/10.1063/1.5003905

I. INTRODUCTION

Solid solutions occur when one species is dissolved within
the host crystal of another species. The Hume-Rothery rules
state that whether or not a solid solution may form, and in
which way the two components mix, is largely controlled by
the ratio q = σa/σb of the diameters σa,b of the two species.1

In particular, we expect two distinct types of solid solutions
to occur depending on the size ratio. More specifically, for
q & 0.85, solid solutions occur where the solute is incorporated
into the solvent crystal lattice via substitution, i.e., by replac-
ing a particle in the host lattice, while at smaller size ratios
q . 0.4, small solutes are fitted interstitially within the voids
of the host crystal lattice.1 Examples of such solid solutions can
be found in the atomic realm but also in colloidal systems.2–12

Over the last decades, colloidal “hard spheres” have pro-
vided an excellent model system to investigate a variety of
problems in condensed matter physics, such as glass transi-
tions,13–15 crystal nucleation,16–21 and optimal packings.22–25

Likewise, binary mixtures of hard spheres provide a sim-
ple model system to study solid solutions. More specifically,
theory and simulations reveal a thermodynamically stable sub-
stitutionally disordered crystal phase in hard-sphere systems
with size ratios q ≥ 0.85, thus highlighting the validity of
the Hume-Rothery rules.2–7 Moreover, recent colloidal real-
izations of interstitial solid solutions have opened the door for
the direct observation of these mixtures in real space and real
time using microscopy.8–10 For hard spheres, both experiments
and simulations demonstrate the stability of interstitial solid
solutions for binary mixtures with a size ratio of q = 0.30.8 This
interstitial solid solution is obtained by filling the octahedral
holes of a face-centered cubic crystal of large particles with
small particles. It was shown that the diffusion of the small

particles occurs through hopping between neighbouring octa-
hedral holes via an intermediate tetrahedral hole. Surprisingly,
in this system, the interstitial diffusion increased with increas-
ing interstitial concentration, due to a lowering of the free-
energy barrier associated with interstitial diffusion.8 More
recently, Tauber et al. found that in body-centered cubic crys-
tals of soft particles, the interstitial dynamics deviate substan-
tially from predictions based on classical transition state theory
in which the base crystal was considered to be static.9 Such
classical theories attempt to predict the interstitial dynamics
from the activation barrier associated with an interstitial par-
ticle hopping between adjacent interstitial sites.26 The break-
down of transition state theory in Ref. 9 was attributed to the
importance of thermal excitations of the host crystal lattice and
to the presence of strong interstitial-interstitial interactions.
It remains to be seen whether or not transition state theory
can capture the interstitial dynamics in the binary hard-sphere
model system.

In this paper, we study the dynamics and interactions
of interstitials in hard-sphere interstitial solid solutions. We
calculate the free-energy barriers associated with interstitial
diffusion for a wide range of size ratios and densities. For
very small interstitials q = 0.1, we find that the barrier height
depends only on the density of the large particles and not
on the stoichiometry. For interstitials of intermediate size
ratios 0.2 ≤ q ≤ 0.35, we observe that for increasing stoi-
chiometry, the barrier height decreases. For large interstitials
q > 0.35, we observe a more intricate dependence of the bar-
rier height on the stoichiometry, where the barrier transitions
from decreasing to increasing height with stoichiometry, as
the large-sphere density is increased. Next, we apply classical
transition state theory to these free-energy barriers in order
to predict the diffusion coefficients of interstitials and obtain
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good agreement with diffusion coefficients as measured using
event-driven molecular dynamics simulations. These results
highlight that transition state theory can capture the intersti-
tial dynamics in the hard-sphere model system. Additionally,
we quantify the interactions between interstitials in our sys-
tem and find that, apart from excluded volume interactions, the
interstitial-interstitial interactions are almost ideal. Finally, we
show that the interstitial diffusivity can be inferred from the
large-particle fluctuations alone, thus providing an empirical
relationship between the two.

II. METHODS

Using computer simulations, we investigate interstitial
solid solutions consisting of N l large particles and N s small
particles with a size ratio q = σs/σl, where σl and σs are
the large and small particle diameters, respectively. The stoi-
chiometry is defined as n = N s/N l. The interstitial solid solu-
tions are initialized by creating a face-centered cubic crystal
of large particle and distributing the small interstitials ran-
domly among the octahedral holes. The dynamics of these
systems are investigated using event-driven molecular dynam-
ics (EDMD) simulations.27,28 We define the EDMD unit time

as τ =
√
βmlσ

2
l , where ml is the mass of a large particle

and β = 1/kBT with kB being Boltzmann’s constant and T
being the temperature. For the small particle mass, we used
ms = mlσ

3
s /σ

3
l .

For the calculations of the free-energy barrier associ-
ated with interstitial diffusion and the calculations of the
interstitial-interstitial interactions, we employ Monte Carlo
(MC) simulations. In these MC simulations, the incorpora-
tion of “hopping” moves allows for more efficient sampling.
More specifically, apart from regular translational moves of
particles, we also allow the small particles to move an integer
number of lattice spacings, which greatly enhances the prob-
ability that an interstitial will jump into another octahedral
hole.

In our simulations, we typically fix the packing fraction
of the large spheres ηl = πNlσ

3
l /6V , where V is the volume

of the system, and vary the stoichiometry. Note that for all
analyses, we corrected for drift in the center of mass of the
host lattice.

III. RESULTS
A. Diffusion of interstitial particles
1. Free-energy barriers

It has been previously observed in Ref. 8 that in hard-
sphere interstitial solid solutions, the small particles reside
mainly in the octahedral holes in the host lattice [Fig. 1(a)]
and diffuse by hopping through a neighbouring tetrahedral
hole [Fig. 1(b)]. It should be noted that each octahedral hole
is connected to eight adjacent tetrahedral holes, while each
tetrahedral is connected to four octahedral holes. We start off
by examining the free-energy barriers associated with the tran-
sitions between octahedral and tetrahedral holes, for a range
of large-sphere packing fractions ηl, stoichiometries n, and
size ratios q. To this end, we project the positions of the

FIG. 1. Interstitial particle (blue) located at (a) an octahedral hole x = 0 and
(b) a tetrahedral hole x = 1. (c) Schematic representation of the volume (red)
projected onto the line between a specific octahedral hole (green) and a specific
tetrahedral hole (blue). Large particles are indicated in gray. The black arrow
indicates the path along which x is measured. (d) The projected volume 3(x)
along the coordinate x.

interstitial particles onto the line that connects the neighbour-
ing octahedral and tetrahedral holes. We obtain a free-energy
barrier using βF(x) = −ln(P(x)σ3

l /v(x)) with P(x) being the
probability distribution function of the projected particle coor-
dinate x and 3(x) being the projected volume, as shown in
Figs. 1(c) and 1(d). Hence we normalize this free-energy bar-
rier to the probability distribution function of an ideal gas.
Here x = 0 corresponds to the particle being located at the
octahedral hole, and x = 1 corresponds to the tetrahedral
hole.

We show these free-energy barriers for a range of size
ratios and stoichiometries in Figs. 2 and 3, for host crystal
packing fractions of ηl = 0.60 and ηl = 0.64, respectively.
We observe these free-energy barriers to exhibit a clear single
peak around x = 0.66. This can be understood from the fact
that the channel between the octahedral and tetrahedral holes
is narrowest at x = 2/3. Hence, intuitively the small particles
are least likely to be found at this position. We identify three
behaviours of the free-energy barrier as the stoichiometry n is
increased, depending on the size ratio q.

For very small interstitials q = 0.1, we find that the free-
energy barriers are independent of the interstitial concentration
[Figs. 2(a) and 3(a)]. Here, the diffusion of small particles is
governed entirely by the packing fraction of the host crys-
tal. In other words, the interstitials in these systems behave
almost ideally. We therefore expect that these systems provide
an excellent starting point for more theoretical investigations
of diffusion in such systems.
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FIG. 2. Free-energy barriers associated
with the diffusion of interstitials at a
large-sphere packing fraction ηl = 0.60
for various size ratios: (a) q = 0.10, (b)
q = 0.20, (c) q = 0.25, (d) q = 0.30, (e)
q = 0.35, and (f) q = 0.40.

FIG. 3. Free-energy barriers associated
with the diffusion of interstitials at a
large-sphere packing fraction ηl = 0.64
for various size ratios: (a) q = 0.10, (b)
q = 0.20, (c) q = 0.25, (d) q = 0.30, and
(e) q = 0.35.

For interstitials of intermediate size ratio 0.2 . q . 0.35,
we observe that for increasing stoichiometry n, the free-
energy barriers decrease, meaning that diffusion will increase
[Figs. 2(b)–2(e) and 3(b)–3(d)]. This is in agreement with
Ref. 8, where for a size ratio of q = 0.30, the interstitial dif-
fusion was found to increase with increasing stoichiometry.
Here we thus show that this feature of increased interstitial
diffusivity occurs for a broad range of size ratios.

For large interstitials q & 0.35, we observe a more intri-
cate dependence of the barrier height on the stoichiometry n.
Namely, here we find that the large-sphere density starts to
play an important role as well. More specifically, we find that

the barrier transitions from decreasing to increasing height
with stoichiometry n, as the large-sphere density is increased.
To illustrate this transition, we plot the free-energy barriers
for q = 0.38 at different large-sphere packing fractions and
stoichiometries in Fig. 4. Here, for a large-sphere packing frac-
tion of ηl = 0.60, we observe that the free-energy barrier goes
down with increasing stoichiometry, while at the crossover ηl

= 0.61, the free-energy barriers remain constant, and at ηl

= 0.62, the free-energy barriers increase by increasing the
stoichiometry. Note that for very large interstitials q = 0.40,
the free-energy barriers always increase with increasing stoi-
chiometry n; see, for example, Fig. 2(f). Interestingly, for these

FIG. 4. Free-energy barriers associated
with the diffusion of interstitials for a
size ratio q = 0.38: (a) ηl = 0.60, (b) ηl
= 0.61, and (c) ηl = 0.62.
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FIG. 5. System-size dependence of the free-energy barriers associated with
the diffusion of interstitials for a size ratio q = 0.30 at a large-sphere packing
fraction ηl = 0.60 and stoichiometry of n = 0.10. The perfect agreement
between the two system sizes, N l = 864 and N l = 4000, shows that there are
no significant finite-size effects on the free-energy barrier.

large interstitials, we also observe a shift in the peak of the bar-
rier to lower x as the concentration of small particles increases.
This effect is stronger at higher packing fraction. This is likely
a result of the small particles disturbing the crystal structure
of the large particles.

Lastly, we have checked that these free-energy barriers
remain constant upon changing the system size. More specif-
ically, we have calculated the free-energy barrier for two
different system sizes, namely, N l = 864 and N l = 4000. In
Fig. 5, we plot the free-energy barriers at these two differ-
ent system sizes and find them to agree very well. Clearly,
we observe no significant finite-size effects on the free-energy
barrier.

2. Mean square displacement of interstitials

Let us now quantify the interstitial diffusivity, in order to
be able to compare to predictions based on classical transi-
tion state theory in Sec. III A 3. Using EDMD simulations,
we study the dynamics of the interstitials by calculating the
mean square displacement 〈∆r2

s (t)〉. While the mean square
displacement may exhibit more complex scaling at short and
intermediate time scales, we can always safely extract the dif-
fusion coefficient Ds using the long-term diffusive behaviour
of the mean square displacement 〈∆r2

s (t)〉, i.e.,

Ds = lim
t→∞

〈∆r2
s (t)〉

6t
. (1)

To illustrate this, we show several mean square dis-
placement curves for different size ratios in Fig. 6. At short
time scales, the interstitial particles move ballistically with
〈∆r2

s (t)〉 ∼ t2, while at intermediate time scales, the particle
dynamics enter a sub-diffusive regime 〈∆r2

s (t)〉 ∼ tβ , with
0 ≤ β < 1. These sub-diffusive dynamics originate from the
interstitial particle being “caged” inside an interstitial hole.
Yet, at long time scales, the interstitial particles manage to
hop between neighbouring interstitial holes, giving rise to dif-
fusive dynamics, as characterized by 〈∆r2

s (t)〉 ∼ t. Using mean
square displacements like these, we can extract the interstitial
diffusivity for a wide range of large-sphere packing fractions
ηl and stoichiometries n.

FIG. 6. Mean square displacements of interstitials 〈∆r2
s (t)〉 for different size

ratios q at a large-sphere packing fraction ηl = 0.60 and a stoichiometry
n = 0.10.

3. Transition state theory

We now investigate in more detail the relationship
between the interstitial diffusivity and the associated free-
energy barriers. To this end, we employ transition state theory
to calculate the rate associated with an interstitial hopping
between octahedral holes. Note that in a face-centered cubic
lattice, the octahedral holes are also on a face-centered cubic
lattice and that all hopping processes involve an intermediate
tetrahedral hole.

In this framework, the diffusion constant of the interstitials
DTST

s is given by

DTST
s =

1
12

kTST
oo a2, (2)

with kTST
oo being the rate of hopping between octahedral holes

and a being the lattice spacing.29 Following Ref. 30, we cal-
culate the escape rate associated with interstitial hopping from
an octahedral hole into a tetrahedral hole using

kTST
ot =

D0

c

∫
a

dx exp(−βV (x))
d

∫
b

dy exp(βV (y))

, (3)

with D0 being the short-time diffusion coefficient of the inter-
stitial, βV (x) = �ln(P(x)) being the bare free-energy barrier,
which in contrast to βF(x) has not been normalized to an
ideal gas, and the integration limits as indicated in Fig. 7(a).
Once an interstitial has jumped into the tetrahedral hole, it
can jump to any of four neighbouring octahedral holes, one
of which corresponds to its previous position. If we assume
this choice to be random, we expect that three out of four
hopping events will result in the particle ending up in a dif-
ferent octahedral hole. Note that as the free-energy barriers
associated with the first octahedral-to-tetrahedral hopping pro-
cess are much higher than those associated with the subse-
quent tetrahedral-to-octahedral hopping process, we expect
the rate to be dominated by the first process and make the
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FIG. 7. Predicted and observed diffusion coefficients for interstitials. (a)
Sketch of the free-energy barrier βV (x) and probability distribution func-
tion P(x) as a function of the coordinate x along a transition path. The wells at
x = b and x = d correspond to the octahedral and tetrahedral hole, respectively,
while x = c corresponds to the transition state. (b) The ratio of the predicted
diffusion constant and the short-time diffusion coefficient DTST

s /D0 versus
the measured diffusion coefficient Ds. Black lines correspond to linear fits.
(c) The short-time diffusion coefficient as calculated using Eq. (6) (solid mark-
ers), and as obtained from the first-order Enskog expression (open markers).
(d) The predicted diffusion coefficient DTST

s versus the measured diffusion
coefficient Ds. All data collapse unto the black line DTST

s = Ds, showing that
the diffusion coefficients can be accurately predicted. (e) Same as in (d) but
now on log-log scale. Markers with different colors in (b)–(e) correspond to
different size ratios as labeled in (d). Markers with different shapes in (b)–(e)
correspond to different stoichiometries as labeled in (e). Diffusion constants
were rendered dimensionless using D∗ = Dτσ−2

l .

approximation

kTST
oo ≈

3
4

kTST
ot , (4)

where the prefactor accounts for the possibility of the inter-
stitial hopping back to its original octahedral hole. Hence, we
can predict the relative small-particle diffusion constant

DTST
s

D0
≈

3a2

48



c∫
a

dx exp(−βV (x))

d∫
b

dy exp(βV (y))



−1

, (5)

which can be calculated directly from the measured free-
energy barriers. In Fig. 7(b), we compare this quantity to
the diffusion constant Ds measured in EDMD simulations.
For each size ratio we find an approximately linear relation
between DTST

s /D0 and Ds, as one would expect if D0 is approx-
imately constant for each size ratio. Note that Fig. 7 includes

data for a wide range of host lattice packing fractions at distinct
size ratios (colors), and stoichiometries (symbol shapes).

In order to quantitatively predict the diffusion of the small
particles from Eq. (5), we require knowledge of D0. In our
EDMD simulations, the particles move ballistically at short
time scales, and hence D0 is not clearly defined. Nonetheless,
we expect Eq. (3) to hold with an effective D0, which is related
to the rate of escape attempts from the octahedral hole. Hence,
we estimate the effective D0 by calculating the collision rate of
the small particles kc and use the mean squared displacement
to estimate an approximate value for the short-time diffusion
coefficient

D0 ≈
〈∆r2

c 〉

6τc
, (6)

with 〈∆r2
c 〉 being the mean squared displacement between col-

lisions and τc = 1/kc the time scale between collisions. Note
that this corresponds to the diffusion coefficient associated
with a three-dimensional random walk with step size 〈∆r2

c 〉
1/2

and time step τc.
In Fig. 7(c), we plot D0 for different size ratios q as a func-

tion of the large-sphere packing fraction (solid markers). As
expected, D0 is primarily set by the size (mass) ratio. Addition-
ally, we find that D0 is mildly dependent on the large-sphere
packing fraction and the stoichiometry. These data agree well
with a first-order Enskog expression for the self-diffusion
coefficient (open markers) given by

DE ≈ kBT


16π
3
σ2

lsρlgls(σls)

√
kBT µls

2π



−1

, (7)

where σls = (σl + σs)/2 is the contact diameter, ρl is the
large-particle number density, gls(σls) is the value of the pair
distribution function at contact, and µls = (mlms)/(ml + ms) is
the reduced mass.31 This expression is expected to work for
a binary gas of ballistically moving particles. Nonetheless, it
here functions as a simple estimate for the short-time diffusion
within the octahedral cages.

Using the short-time diffusion coefficient D0 as calculated
from Eq. (6), we now plot the predicted diffusion coefficient
DTST

s versus the measured diffusion coefficient Ds in Figs. 7(d)
and 7(e). These data cover a wide range of packing fractions
of the host crystal and size ratios, allowing us to test our pre-
dicted diffusion constants over multiple orders of magnitude.
We find that the diffusion coefficients as predicted from the
free-energy barriers DTST

s are in excellent quantitative agree-
ment with the measured diffusion coefficients Ds. Namely, all
data largely collapse onto the black line DTST

s = Ds, highlight-
ing that the diffusion coefficients can be accurately predicted.
A mild deviation was only observed at very high diffusion con-
stants. This can likely be attributed to the finite time it takes
an interstitial to move back from a tetrahedral to an octahedral
hole, which is neglected due to our approximation in Eq. (4).
Nonetheless, the extremely good overall agreement validates
our approximations.

We have thus shown that the diffusion of interstitials in
the hard-sphere model system can be accurately described by
transition state theory. Interestingly, it was recently found that
in soft body-centered cubic crystals the interstitial dynam-
ics deviate substantially from predictions based on classical
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transition state theory in which the base crystal was con-
sidered to be static.9 This breakdown was attributed both to
the importance of thermal excitations of the host crystal lat-
tice and to the presence of strong interstitial-interstitial inter-
actions.9,11 As such, our data raise the interesting question
whether or not such interactions between interstitial particles
also play an important role in our system. Thus we will now
explore further the interstitial-interstitial interactions in our
system.

B. Interactions between interstitials

We evaluate the effective interstitial-interstitial interac-
tions using methods similar to those presented in Refs. 32 and
33. More specifically, we first assign all interstitials to their
nearest octahedral hole. Subsequently, for each interstitial pair,
we calculate the (discrete) separation distance between the two
occupied holes located at positions Ri and Rj, which is given
by r = |Ri � Rj |. Using this separation distance r, we define an
effective potential between interstitials as

βUeff (r) = − ln
Ppair(r)

h(r)
, (8)

where Ppair(r) is the probability to find two interstitials at
a separation distance r and h(r) is the number of octa-
hedral holes at a distance r from a reference octahedral
hole.

In Figs. 8(a)–8(d), we plot the effective interactions
between interstitials for a range of size ratios q at different
stoichiometries n and large-sphere packing fractions ηl. Sur-
prisingly, we find that the interstitials hardly interact with
each other. Namely, even for the first shell of neighbouring
octahedral sites, we find βUeff ≈ 0. These ideal interac-
tions are in stark contrast to the strong attractions between
self-interstitials in single-component hard spheres.34 Only
when the interstitials are assigned to the same octahedral site
we observe substantial repulsions between interstitials. This

repulsion arises from the hard-core excluded volume interac-
tions between the particles. Note that for the largest size ratio
q = 0.40, these excluded volume interactions become so
strongly repulsive that we were unable to sample the inter-
actions at r = 0.

In order to examine the possibility of interactions between
particles in adjacent octahedral and tetrahedral holes, we now
compare the spatial distribution of interstitials around an empty
octahedral hole to that around an octahedral hole containing an
interstitial. If there are attractions (repulsions) present between
the interstitials, the local density of interstitials around the
filled octahedral hole should be on average higher (lower) than
in the case of the empty octahedral hole. We quantify this using
a filling parameter defined as

f (r) =
〈Ns(r)〉

h(r)
, (9)

with 〈N s(r)〉 being the average number of interstitials in a octa-
hedral or tetrahedral hole at a distance r from the reference
octahedral hole. In Figs. 8(e)–8(h), we plot this filling param-
eter associated with the local density of interstitials around the
empty octahedral hole and around the filled octahedral hole,
using open and solid markers, respectively. Here, two distinct
filling fractions are visible, namely, the higher filling fraction
occurring at distances corresponding to octahedral holes and
a lower filling fraction at distances corresponding to tetrahe-
dral holes. Clearly, we observe that the spatial distribution
of interstitials around an empty octahedral hole and around a
filled octahedral hole collapses almost perfectly on top of each
other (open and solid markers). In both cases, we find the filling
fraction of the octahedral and tetrahedral holes to be constant
and equal to nf o and n(1 � f o), respectively, with f o being the
fraction of interstitials located in octahedral holes. Hence, this
further demonstrates that, apart from excluded volume inter-
actions, the interstitial-interstitial interactions are essentially
ideal in our system.

FIG. 8. [(a)–(d)] Effective potential between interstitials βUeff(r) for a range of size ratios q at different stoichiometries n and large-sphere packing fractions
ηl . Dashed lines are a guide to the eye. [(e)–(h)] Corresponding filling parameter f (r) around an occupied octahedral hole (solid markers) and around an empty
octahedral hole (open markers).
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C. Empirical relationship between the large-particle
fluctuations and interstitial diffusivity

In Ref. 8, the increase in interstitial diffusivity with
increasing stoichiometry n was found to coincide with the
increase in displacements of the large particles from their lat-
tice site. Here we quantify further the relationship between the
displacements of the particles of the host lattice and the diffu-
sivity of the interstitials. To this end, we define a large-particle
fluctuation parameter,

δl =

√
〈|R0 − ri |

2〉, (10)

with ri being the position of a large particle i and R0 being
the position of the lattice site it occupies. In Fig. 9, we plot
the large-particle fluctuation parameter δl versus the diffusion
constant of the small particles Ds as measured using EDMD
simulations. These data were obtained for a wide range of
host lattice packing fractions at distinct size ratios (colors)
and stoichiometries (symbol shapes). Interestingly, we find
that at a fixed size ratio q, these data collapse onto a sin-
gle curve for a wide range of stoichiometries n. Hence, we
conclude that the small particle diffusion in these systems is
primarily set by fluctuations of the large particles δl. Note
that δl is dependent not only on the packing fraction of the
large particles but also on the number of small particles in
the crystal. Hence, a larger concentration of small particles
increases the fluctuations of the large particles, which in turn
increases the small-particle diffusion. Interestingly, although
this is a collective dynamic effect between the small particles,

FIG. 9. (a) Relationship between the large-particle fluctuations δl and the
interstitial diffusivity Ds. (b) Same as in (a) but now on log-log scale. The
circle, diamond, triangle, and square markers correspond to stoichiometries
of n = 0.1, n = 0.1875, n = 0.375, and n = 0.75, respectively. Diffusion constants
were rendered dimensionless using D∗ = Dτσ−2

l .

their diffusion is still mainly determined by the large-particle
fluctuations.

We would like to highlight that the interstitial diffusiv-
ity can thus be inferred from the large-particle fluctuations,
assuming the curve has been mapped out for a single inter-
stitial concentration. This could be useful for experiments,
in which it is typically easier to track the (relatively static)
large particles than the highly diffusive interstitials. Curves
like those plotted in Fig. 9 show that the interstitial diffusivity
Ds can be estimated quite accurately via δl. As such, in experi-
ments, the interstitial diffusivity could be obtained at very low
stoichiometry, where it may be possible to track individual
interstitials and then may be easily extended to higher con-
centrations simply by examining the fluctuations of the larger
particles.

IV. DISCUSSION AND CONCLUSIONS

In conclusion, we have studied the diffusion and interac-
tions of interstitials in hard-sphere interstitial solid solutions.
We have calculated the free-energy barriers associated with
interstitial diffusion for a range of size ratios and densities.
For very small interstitials q . 0.1, we found that the bar-
rier height depends only on the density of the large particles
and does not depend on the stoichiometry n. For interstitials
of intermediate size ratio 0.2 . q . 0.35, we observed that
for increasing stoichiometry n, the barrier height decreases.
For large interstitials q & 0.35, we observe a more intri-
cate dependence of the barrier height on the stoichiometry
n, where the barrier transitions from decreasing to increas-
ing height with stoichiometry, as the large-sphere density is
increased. Next, we applied classical transition state theory to
these free-energy barriers to predict the diffusion coefficients
of interstitials and obtained good agreement with diffusion
coefficients as measured using EDMD simulations. Addition-
ally, we have quantified the interactions between interstitials.
Apart from excluded volume interactions when two intersti-
tials occupy the same hole, we found these interactions to
be almost ideal in our system. Lastly, we showed that the
interstitial diffusivity can be inferred from the large-particle
fluctuations alone, thus providing an empirical relationship
between the large-particle fluctuations and the interstitial
diffusivity.

Importantly, we have shown that transition state theory
can capture the interstitial dynamics in the hard-sphere model
system. The free-energy barriers we used for our calcula-
tions were measured in a system where the large particles
are fluctuating around their lattice sites. This is in contrast
to the predictions made in Ref. 9 in which the base crystal
was considered to be static, resulting in the interstitial dynam-
ics deviating substantially from predictions based on classical
transition state theory. Our results thus highlight the impor-
tance of taking these fluctuations into account in order to obtain
the relevant free-energy barrier associated with interstitial dif-
fusion. It would be interesting to see whether incorporating
these lattice fluctuations for soft systems can recover an accu-
rate description of the interstitial dynamics using transition
state theory.
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