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Using event-driven Brownian dynamics simulations, we investigate the epitaxial growth of hard-
sphere crystals with a face-centered-cubic (fcc) structure on the three densest cross-sectional planes
of the fcc: (i) fcc (100), (ii) fcc (111), and (iii) fcc (110). We observe that for high settling velocities,
large fcc crystals with very few extended defects grow on the fcc (100) template. Our results show
good agreement with the experiments of Jensen et al. [Soft Matter 9, 320 (2013)], who observed such
large fcc crystals upon centrifugation on an fcc (100) template. We also compare the quality of the fcc
crystal formed on the fcc (111) and fcc (110) templates with that of the fcc (100) template and conclude
that the latter yields the best crystal. We also briefly discuss the dynamical behavior of stacking faults
that occur in the sediments. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4976307]

I. INTRODUCTION

Template assisted sedimentation, more commonly known
as colloidal epitaxy, is a simple and robust approach to grow
single crystals of colloidal particles, a key component of next
generation optoelectronic devices.1 The ability to study the
structure and dynamics of such systems in real space using
confocal microscopy lends valuable information to understand
the growth and defect dynamics at the atomic scale in the
growth of atomic semiconductor materials.2–4 For the above
stated reasons, sedimentation of colloidal hard-sphere fluids
has been extensively investigated by both experiments and
simulations. As is well known, the hard-sphere model cap-
tures several equilibrium and non-equilibrium phenomena of
condensed matter systems. Computer simulations established
that the stable crystal phase of hard spheres exhibits the face-
centered cubic (fcc) structure.5–8 However, this structure is
only slightly more stable than the hexagonal close-packed
(hcp) crystal structure with a free-energy difference on the
order of 10�3kBT per particle at the melting transition point (kB

is Boltzmann’s constant and T is the temperature). This small
free-energy difference leads to the formation of the random-
hexagonal-close-packed (rhcp) structure instead of a perfect
single fcc crystal. Even though an rhcp structure restructures
into the fcc crystal over long periods of time,9–11 methods
to rapidly grow large colloidal crystals are highly desirable.
Fabricating large defect-free single crystals, which are tech-
nologically significant, has posed severe challenges even in
the simple case of hard spheres. A complete understanding of
the sedimentation behavior of hard sphere-like systems would
further provide clues on how to selectively grow a chosen crys-
tal structure from a set of competing polymorphs with similar
values of free-energy.
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Here we briefly discuss a few experimental studies on
the sedimentation of such colloidal hard spheres on flat
walls. Experimental realizations of the hard-sphere model are
achieved by index matching a suspension of colloidal parti-
cles.12,13 The key factors that affect the quality of the crys-
talline sediment are (i) the initial volume fraction ηi of the
suspension and (ii) Peclet number Pe = mgσ/kBT , where g
is the gravitational acceleration, σ the particle diameter, and
m the buoyant mass of the particles. Typically in experiments,
ηi is kept low to ensure that crystal growth is nucleated and
directed by the wall. Hoogenboom et al. experimentally stud-
ied the sedimentation of hard-sphere-like silica colloids on
a flat wall.14,15 For sufficiently low ηi,14 they observed the
formation of a predominantly fcc crystal. They showed that
the sedimentation flux given by J = ηiPe is the key variable
that determines the fraction of fcc stacked layers in the sedi-
ment. In the regime of very low particle flux, the crystallizing
layers have sufficient time to equilibrate and the fraction of
fcc stacked layers is large, whereas predominantly randomly
stacked hexagonal layers are found if J is high.7,14,16,17 In den-
sity matched hard-sphere suspensions or under microgravity
conditions,18,19 typically the rhcp structure is observed. There-
fore the predominant presence of fcc domains in the slowly
grown samples of the sediment is surprising. As noted ear-
lier, the difference in free energies between the fcc and hcp
structures is very small; however, fcc is the stable structure.
Pronk and Frenkel9 calculated the fcc-hcp interfacial free-
energy and used it to estimate the time that it takes to form
a pure fcc crystal from the randomly stacked phase. They esti-
mated that the healing of stacking faults in micrometer sized
hard-sphere crystallites occurs on the time scale of days. The
slow growth rates together with the slightly low free-energy
of the fcc structure might have tipped the balance towards fcc
in the experiments of Hoogenboom et al.14 It is also possible
that in the presence of a gravity field, the fcc structure is more
stable than in bulk, or that the dynamic pathways of crystalliza-
tion under gravity could lead predominantly to the formation

0021-9606/2017/146(7)/074903/12/$30.00 146, 074903-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4976307
http://dx.doi.org/10.1063/1.4976307
mailto:m.dijkstra@uu.nl
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4976307&domain=pdf&date_stamp=2017-02-21


074903-2 Dasgupta, Edison, and Dijkstra J. Chem. Phys. 146, 074903 (2017)

of fcc domains. Another explanation for this observation was
provided by Hillhorst et al.20 Using confocal microscopy,
they showed that these fcc domains often contained slanted
stacking faults, which are two subsequent hcp stacked layers
that run along the (1̄11), (11̄1), or (111̄) planes. They specu-
lated that these faults direct the formation of the fcc crystal
domains.

Using computer simulations, Marechal et al.21 studied
the crystallization dynamics of hard spheres sedimenting on a
flat wall. Note that in these simulations and in our work, the
role of the solvent is taken into account through the Brown-
ian noise, and hydrodynamic effects are not treated rigorously.
Nevertheless, their simulations showed that slow sedimenta-
tion favors the growth of fcc crystals over rhcp crystals, for low
initial volume fractions, similar to the experimental findings of
Hoogenboom et al.14 Furthermore, they showed that the qual-
ity of the formed fcc crystal depends on the combined effect
of initial volume fraction and Peclet number just as shown
by Hoogenboom et al. A good quality fcc crystal is a single
crystal which is not divided into different crystallite domains
and contains very few defects. They attributed the formation
of predominantly fcc-like domains to the free-energy differ-
ence between fcc and hcp and not to the slanted stacking faults
found in the fcc regions.

The introduction of patterned templates in place of a flat
wall, together with a slow deposition rate, has been shown
to direct layer by layer growth of the crystal with very few
defects.22–27 The template can often drastically reduce the
metastability of the crystallizing fluid.28 One of the first note-
worthy studies on colloidal epitaxy is that of Van Blaaderen
et al.22 They demonstrated experimentally that under slow sed-
imentation, templates can be used effectively to grow large
defect free crystals and control the lattice spacing and ori-
entation of the resulting crystals. They also found that sedi-
menting hard spheres on an isotropically deformed hcp (1100)
template resulted in the epitaxial growth of a perfect hcp
crystal.25,26

In the case of flat walls, slow sedimentation rates are
preferred to avoid amorphization of the sediment,29 but how
the scenario changes when the crystal is grown epitaxially
remained unexplored until recently. Jensen et al. looked at the
sedimentation of hard-sphere-like fluids for a wide range of
sedimentation velocities on flat walls, fcc (100), fcc (111), and
the fcc (110) template.27 They showed that large defect-free
fcc colloidal crystals can be grown by centrifuging at surpris-
ingly high speeds of up to 3000g onto a (100) oriented fcc
(square) template. These findings are particularly attractive as
they describe a way to rapidly grow fcc crystals with only a few
extended defects, as large time scales of slow sedimentation are
undesirable. Their findings also raise interesting questions on
the growth mechanism and the dynamics of defects, if any, that
occur in crystals grown at very large sedimentation velocities.
They observed that this was unique to the fcc (100) template
and noted that the absence of stacking degeneracy might be
the cause.

Motivated by these experiments, we present in this paper
a computer simulation study of the crystallization dynamics
of hard-sphere fluids under an applied gravitational field in
the presence of three different crystalline templates. Using a

series of order parameters as described by Marechal et al.,21 we
characterize the sediment and identify optimal conditions for
the growth of large defect-free fcc crystals. This paper is
organized as follows. In Section II, we describe the simula-
tion methods, including the Event-Driven Brownian Dynamics
(EDBD) simulations and the order parameters that we use. We
present our results in Section III. We first discuss our simula-
tion results for an fcc (100) template, which gives by far the
best quality fcc crystals even at high sedimentation velocities.
We then discuss sedimentation on different templates and end
with some conclusions in Section IV.

II. SIMULATION METHODS
A. Systems studied

We use EDBD simulations30,31 in the NVT ensemble to
simulate a system of N hard spheres with a diameter σ in a
volume V subject to a gravitational field. The method consists
of computing a sequence of collision events that involves only
two particles at any instant. During the simulation, stochastic
adjustments of the particle velocities are periodically made at
an interval of ∆t according to

vf (t = s∆t) = αtv0(t) + βtvR(t), (1)

where v0(t) (vf (t)) is the velocity of the particle before (after)
the stochastic adjustment or thermalization, s is any integer,
vR(t) a 3D Gaussian variable with mean 0 and variance kBT /m
with m the mass of the particle, kB the Boltzmann constant, and
T the temperature. We set αt = 1/

√
2 with a probability ν∆t

and 1 otherwise. We set βt =

√
1 − α2

t in order to keep the tem-

perature constant. Following Ref. 21, we set ν = 10τ−1
MD and

∆t = 0.01 τMD in all our simulations, where τMD =
√

m/kBTσ
is the time unit of an event-driven MD simulation. The details
of the EDBD simulations are elaborately described in Refs. 21
and 31.

The spheres are confined between a template (or a smooth
wall) at z = 0 and another smooth wall at z = H. The height H
of the column is chosen such that the density of the colloids
at the top of the sedimentation column is almost negligible
when the sedimentation-diffusion equilibrium is reached. The
template particles are not fixed but carry a reduced weight
1000 times that of the sedimenting particles. Therefore, their
positions remain unaltered and the structure of the template
remains fixed during the course of the simulation. We per-
form simulations for a system size of N = 100 000 particles
with the cross-sectional area of the simulation box fixed at
'50σ × 50σ. The simulation box is periodic in the x and
y directions. The gravitational field is oriented along the
z-direction, and the colloids experience an external potential
φ(z) = mgz with g the gravitational acceleration and z the ver-
tical coordinate of the colloid. The parameter that describes the
effect of the gravity field on the particles is the “gravitational
length,” given as lg = kBT /mg. It is a measure of the length
scale over which the effect of gravity manifests.32 Another
dimensionless parameter of interest is the gravitational Peclet
number, Pe = mgσ/kBT . As we keep σ fixed in our simu-
lations, a change in the value of Pe changes the gravitational
length.
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In this work, we simulate sedimentation on three differ-
ent templates for Pe = 0.5, 1, 2, 3, 4, 5, and 10. The higher
the Peclet number, the faster is the sedimentation and the
shorter the time available for the particles to rearrange and
equilibrate. As already mentioned in the Introduction, another
relevant parameter for sedimentation is the initial volume frac-
tion ηi of the suspension. We perform simulations with an
initial volume fraction ηi = 0.01, 0.02, and 0.104. The fig-
ures that we present below correspond to simulations using an
initial volume fraction ηi = 0.02, unless otherwise stated. The
initial configurations of our simulations are homogeneous fluid
phases of non-overlapping hard spheres which fill the entire
sedimentation column.

B. Order parameters

In this section we briefly describe the order parameters,
as described by Marechal et al.,21 that we use to identify the
differently oriented fcc and hcp structures in the sediment.
The fcc and hcp crystal structures differ from each other by
the stacking sequence of the hexagonal layers formed by the
particles. To determine if a particle is solid-like, we estimate its
local symmetry by using bond orientational order parameters.
The un-normalized 3D bond order parameter for particle i is
defined as

q(u)
l,m(i) =

1
Nnb(i)

Nnb(i)∑
j=1

Yl,m

(
θi,j, φi,j

)
, (2)

where Nnb(i) denotes the number of neighbors of particle i,
θi,j and φi,j are the polar and azimuthal angles, respectively,
of the center-of-mass distance vector rij = rj � ri with ri the
position of particle i. Yl,m(θ, φ) are the spherical harmonics for
m ranging from [�l, l]. The summation runs over all neigh-
boring particles j, which we define as the particles that lie
within a center-of-mass distance of 1.3σ with respect to i. The
normalized bond order parameter is defined as

ql,m(i) =
q(u)

l,m(i)(∑l
m=−l |q

(u)
l,m(i)|2

)1/2
. (3)

A neighbor j of particle i forms a solid-like bond with i if
dl(i, j) > dc with

dl(i, j) =
l∑

m=−l

ql,m(i)q∗l,m( j). (4)

Solid-like or crystalline particles are defined as particles for
which the number of solid-like bonds ncon(i) is greater than a
critical value nc.33 The symmetry index in the above equations
is chosen as l = 6. Following Marechal et al.,21 we set the
cut-off values defined above as nc = 4 and dc = 0.7.

Upon identifying solid-like particles, we then iden-
tify its crystal structure. The fcc (111) and hcp crystals
are composed of stacked hexagonal layers. Therefore, we
use two-dimensional bond order parameters to quantify the
hexagonal symmetry of the layers. For a particle i, this is
given by

ψS
m(i) =

1
Ns(i)

Ns(i)∑
j=1

exp(miϕij), (5)

where the sum over j runs over the N s(i) neighbors in envi-
ronment S of particle i and ϕij denotes the angle between
the projection of rij on the x-y plane and the x-axis. The x-y
plane is defined as the plane parallel to the template (perpen-
dicular to gravity). Because of the in-plane hexagonal order
of these two crystals, we chose the symmetry index to be
m = 6.

The difference between the fcc (111) and hcp crystal
structures is the stacking sequence of hexagonal layers. While
fcc (111) shows ABC· · ·ABC stacking of layers, the stack-
ing sequence in a hcp structure is ABA· · ·BAB. Thus, after
confirming the hexagonal symmetry of the layers, the next
step is to calculate a “stacking parameter” α that distinguishes
the two different kinds of stacking. To determine the stacking
parameter αi for a given particle i, we look at three different
environments of a particle i.

The environment S = 1 corresponds to the neighbors j
in the layer above particle i as defined by 0.55σ <

(
zj − zi

)
< 1.2σ and rij = |rij | ≤ 0.95σ. The environment S = �1
comprises particles that are the neighbors j in the layer
below particle i for which −1.2σ <

(
zj − zi

)
< −0.55σ and rij

≤ 0.95σ, and for environment S = 0 the neighbors lie in the
same layer defined by |zj − zi | < 0.5σ and rij ≤ 1.3σ. The
environment of a solid-like particle i is hexagonally ordered
in the same layer if |ψ0

6(i)| > 0.7. The stacking can only be
defined if the layers above and below particle i are also hexag-
onally ordered and are a part of the same crystalline domain,
i.e., ψsurr

6 (i) ≡ |ψ1
6(i) + ψ−1

6 (i)| > 0.5.
Once the hexagonal order of the domain is ascertained,

the stacking can be determined using the trigonal bond
order parameter, which for a perfect fcc is ψfcc

3 (i) = 1
2 |ψ

1
3(i)

− ψ−1
3 (i)| = 1, while for a perfect hcp, ψhcp

3 (i) = 1
2 |ψ

1
3(i)

+ψ−1
3 (i)| = 1. The stacking parameter α is then defined as the

fraction of fcc stacked particles, i.e., α = ψfcc
3 /(ψfcc

3 + ψ
hcp
3 ).

Note that when the averaged value of α over all hexago-
nally ordered particles is 0.5, it signifies perfectly random
packing.

The other crystal structure that we characterize in this
paper is the cubic fcc (100). In this case the layers that
are stacked parallel to the x-y plane exhibit square symme-
try. Therefore, to characterize the order within each layer in
the z-direction, we compute the two dimensional bond order
parameterψ0

4(i) given by Equation (5) with the symmetry index
m = 4.

We list the bond order parameters that we used and the
respective threshold values to distinguish the various crys-
tal structures in Table I. Particles which are crystalline in
nature and are not identified as fcc (100), fcc (111), and hcp

TABLE I. Bond order parameters and corresponding threshold values for
identifying fcc and hcp structures.

Type of structure Conditions on particle i

Crystalline ncon(i) > 4
fcc (100) ncon(i) > 4, ψ0

6 (i) < 0.7, ψ4(i) > 0.5
fcc (111) ncon(i) > 4, ψ0

6 (i) > 0.7, ψsurr
6 (i) > 0.5, α(i) > 0.5

hcp ncon(i) > 4, ψ0
6 (i) > 0.7, ψsurr

6 (i) > 0.5, α(i) < 0.5
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crystal structures also appear in the sediment as discussed in
Section III. These are observed to either belong to a stack-
ing fault or some other crystal structure which has not
been analyzed in this study. Such particles are termed as
defects in Secs. III and IV and colored in lilac. In addi-
tion, to assess the quality of a crystalline sediment, we
estimate the fraction of fcc particles φfcc = Nfcc/Ncr with
N fcc being the number of particles that are fcc-like and
Ncr being the number of particles that are identified as
solid-like.

III. RESULTS AND DISCUSSION

As mentioned in the Introduction, we study the epitax-
ial growth of the hard-sphere fcc crystal on three differ-
ent templates. The (100), (111), and (110) cross-sectional
planes of the fcc structure are the obvious choices for simple
patterning because they represent the three densest cross-
sectional planes of the fcc crystal. The hexagonal template
in Fig. 1(a) is the densest possible packing of particles on
the template and is the (111) cross section of the fcc crys-
tal. There are two ways in which the next layer of spheres
can sit on this pattern (labelled as B and C in Fig. 1(a)), both
of which are energetically degenerate. Therefore, the stack-
ing sequence of the hexagonal layers is likely to be random.
The (110) fcc template shown in Fig. 1(c) does not show this
stacking degeneracy but is the least dense of all three templates.
Being the closest packed template which does not show stack-
ing degeneracy, the square (100) fcc template in Fig. 1(b) is
therefore the most promising template for growing large fcc
crystals.

A. Sedimentation on the fcc (100) template

Therefore, we first present the results on the sedimen-
tation of hard spheres on the (100) plane of a close-packed
fcc crystal, for varying Peclet numbers (Pe) and initial
volume fraction (ηi). First, we show visualizations of the
final configurations of the sediment for (i) ηi = 0.02, Pe = 2
(Fig. 2(a)) and (ii) ηi = 0.02, Pe = 10 (Fig. 2(d)). The time
taken for the sediment to crystallize and equilibrate is inversely
related to the Peclet number. The snapshots of the final configu-
rations presented in Figs. 2, 6, and 8 are taken at a time which
is well after φfcc has equilibrated with respect to simulation
time. The color of a particle in Fig. 2 indicates if it belongs to
an fcc or a hcp crystalline domain, based on the criteria listed
in Section II. Lilac-colored particles in the snapshots indicate
defects and we observe from the snapshots (Figs. 2(a) and
2(d)) that the crystalline sediment is less defective for higher
settling speeds, i.e., higher Pe. This observation, which agrees
very well with experiments,27 is surprising because at high Pe
there is less time available for the particles to equilibrate. At
the growth front, the particles of the layer that crystallizes
appear to precisely sit on the holes (possible lattice posi-
tions) left by the previous layer of particles even under rapid
sedimentation.

Next, we take a closer look at the dynamics of the sedimen-
tation process. In Figs. 2(b), 2(c), 2(e), and 2(f), we show the
time evolution of each layer of the sediment for both Pe = 2 and
Pe = 10. The horizontal axis denotes the time scale t/τMD and
the vertical axis indicates a layer l of the sediment. We color the
plots according to the values of φl

fcc or φl
def , which we define

as follows. φl
fcc(l, t/τMD) is the fraction of similarly oriented

FIG. 1. Stacking degeneracy on different fcc templates.
(a) Hexagonal fcc (111) template, (b) square fcc (100)
template, (c) fcc (110) template. “A” (drawn as filled cir-
cles) represents the first layer of particles. “B” and “C,”
shown as black and red dashed hollow circles, respec-
tively, in (a), are the two degenerate stacking positions
for the second layer of particles. For (b) and (c), “B”
shown as black dashed circles represents the second layer
of particles on top of layer A. a is the lattice spacing of
the square template.
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FIG. 2. ((a) and (d)) Side view of the final configurations at t/τMD = 6000 of hard spheres sedimenting on an fcc (100) template with lattice spacing a = 1.004σ
for Pe = 2 and 10, respectively. The spheres in the snapshots are colored as follows: red: fcc (111), yellow: hcp, blue: fcc (100), lilac stacking fault, or another
crystal structure, green: disordered. ((b) and (e)) Fraction of fcc particles φl

fcc as denoted by the color bar, calculated over the total number of crystalline particles

in each layer, showing the crystallization of each layer with time. ((c) and (f)) Fraction of particles belonging to a fault/defect φl
def as denoted by the color bar,

calculated over the total number of crystalline particles in each layer, plotted for each layer over time. The dark red region to the left of the four plots represents
the absence of crystalline particles in the layer, i.e., a fluid layer. The initial packing fraction ηi = 0.02.

fcc particles over the total number of crystalline particles in
each layer of the sediment. Similarly, φl

def (l, t/τMD) denotes
the number of solid-like particles that are neither strictly fcc-
nor hcp-like divided by the total number of crystalline particles
in each layer. One can read the evolution of the crystallinity
of a layer in time from such a plot by following the horizontal
time axis for that layer. Similarly, one may also examine the
crystalline nature of the entire sediment at a fixed instant of
time by following the positive vertical axis from the bottom of
the sediment to the top.

Based on Figs. 2(b) and 2(e), we make the following
observations. The dark red regions to the top left of the plots
correspond to disordered or fluid-like particles in the sedi-
ment. We clearly observe that the dark red region at the top
shrinks with time as progressively more layers crystallize in
the sediment. A deep blue region indicates a high fraction of
fcc particles. Clearly, the crystal grown at Pe = 10 has a much
higher fcc composition than the one for Pe = 2. The fraction
of fcc in each layer increases as we go down the sediment for
Pe = 10.

Moreover from Figs. 2(c) and 2(f), we observe that the
sediment for Pe = 10 has far fewer defects than the one
for Pe = 2. The nearly uniform light red color in Fig. 2(c)
across the layers for the Pe = 2 case indicates the presence
of a number of extended defects across layers, which do not
anneal out in the simulation times studied. In contrast in
Fig. 2(f), the deepening red color (indicating a decrease in
φl

def ) from the top to the bottom layer for Pe = 10 represents

few extended defects and progressively fewer stacking faults
as we go down the sediment. If we follow the evolution of each
layer in time, we can observe that there are further rearrange-
ments of defects in the layers to form similarly oriented fcc
particles.

For the Pe = 10 case, from the very beginning, the lay-
ers crystallize rapidly into fcc particles, with the result that
in a short amount of time a high fraction of fcc particles is
formed. The crystalline sediment shows a linear growth front
in time indicating that crystallization proceeds in a layer-
wise manner. As described earlier by Heni and Löwen,34

the mechanism behind the layer-by-layer growth of a crys-
tal on a patterned template15,17,35–37 originates from the fact
that the crystallised (n � 1)th layer serves as a template for
the nth layer leading to its subsequent crystallisation. As the
settling particles crystallize in a layer, some particles are
stacked a little differently, at slightly higher positions than
their neighbors in that layer. This may lead to a local stacking
fault.

Next, we discuss the birth of these local stacking faults
in the crystallizing layers and how they behave over time. In
Figs. 3(a)–3(d), we present different snapshots in time of the
first layer that is formed on top of the template for Peclet num-
ber Pe = 10. In the initial stages of crystallization, we observe
numerous stacking faults as colored in lilac in Fig. 3. The stack-
ing faults are formed when a crystalline domain, in which the
particles are four-fold hollow-site stacked, is next to a domain
where the particles are bridge-site stacked on the template. A
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FIG. 3. Typical configurations of the top view of the first layer of the crystalline sediment for different times as labeled for hard spheres sedimenting on a
close-packed fcc (100) template at Pe = 10. The color code is the same as in Fig. 2.

hollow-site refers to a hole left by the particles of a layer and is
therefore a lattice site for a particle in the next layer to sit. For
a square template, the hollow-sites would have four-fold sym-
metry. A hollow-site stacked particle is therefore a perfectly
stacked particle with regards to forming a perfect fcc crys-
tal. A bridge-site is located anywhere on the line connecting
the two in-plane particles (lattice sites) of a layer. Therefore,
bridge-site stacked particles have to be slightly out of plane
with respect to the particles in a layer but not exactly in the
layer above. The bridge-site stacked particles are therefore
at a higher height than the hollow-site stacked particles as
shown in Figs. 4(a) and 4(b). In the course of sedimentation,
the bridge-site stacked particles will be pushed towards the
hollow-site positions by the weight of the particles that set-
tle upon these particles, in order to minimize the gravitational
potential energy. Here, it is important to note that in the case
of flat walls, typically slow sedimentation rates are preferred
to grow good crystals because there is more equilibration time
available for particles to diffuse in-plane and therefore for
defects to rearrange.29 However, for the close-packed fcc (100)
template at high Pe (=10), there is negligible time for in-plane
diffusion of particles and the annealing of defects in the layer
is mainly governed by the gravitational pressure acting on the
particles from the layers above. In this way the stacking faults
anneal out fairly quickly, thereby leaving behind point vacan-
cies in the crystalline layers. These point vacancies appear to
be very persistent as they are in-plane with the layer and hard
to anneal out when the next crystalline layer is already formed.
It is worth noting that the confocal images of the crystalline
layers in the colloidal crystals grown by centrifugation onto
a (100) template at 3000g also show numerous point vacan-
cies, which is remarkably consistent with our observations

FIG. 4. Side view (a) and tilted side view (b) of layer 1 at t/τMD = 1600 to
show more clearly the stacking faults. The color code is the same as in Fig. 2.

here.27 The simulation time that corresponds to the images
in Figs. 3(a)–3(d) is marked in Figs. 2(e) and 2(f) by white
triangles. We also looked at the evolution of layers 4 and 10
(not shown here) in our sediment and the behavior of the stack-
ing faults is qualitatively similar to the dynamics of those in
the first layer. As expected, there are more faults in the tenth
layer which is higher up in the sediment because the lower
the pressure these defects feel from the layers above the more
difficult it is for these defects to rearrange. To illustrate this,
we plot in Fig. 5 the fraction of crystalline defects φl

def in a

layer l as a function of the gravitational pressure (βPσ3(l))
on that layer for a well-equilibrated sediment at t/τMD

= 6000. We determine βPσ3(l) by integrating the density
profile of the hard spheres along the sedimentation column.38

We clearly observe that φl
def decreases monotonically with the

pressure.
Our results for the fcc (100) template show very good

agreement with Jensen et al.27 who obtained single fcc crys-
tals up to the top of the sediment by applying fields between
15g and 3000g via centrifugation. These single crystals are not
broken up into smaller crystallites and contain few extended
defects. Our simulation results also show that for the fcc
(100) template, the higher the Peclet number, i.e., the faster
the particles settle, the less defective the crystal (to com-
pare Figs. 2(a) and 2(d)). This is surprising as it contrasts
the results of sedimentation on a flat wall, where predomi-
nantly fcc-stacked crystals are observed only at sufficiently

FIG. 5. The fraction of crystalline defects in each layer φl
def as a function

of the gravitational pressure at that layer for a well-equilibrated sediment at
t/τMD = 6000 on a 1.004σ fcc (100) template and Pe = 10.
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slow sedimentation rates14,21 and where disorder sets in at
high Pe.

B. Comparison with the flat wall, fcc (111),
and fcc (110) templates

Next we investigate the structure of the crystalline sed-
iment using different cross-sectional planes of the close-
packed fcc crystal as a template, i.e., the (i) fcc (111),
(ii) fcc (110) crystal planes, as well as a (iii) flat wall for
comparison.

The hexagonal fcc (111) template is the densest plane of
the fcc crystal and one can expect that this might help direct
the settling particles to the right lattice positions. However,
for this template, there are two lattice sites on which the next
layer of particles can sit, as shown in Fig. 1(a), giving rise
to stacking degeneracy. We focus first on slow sedimentation
rates, or the near-equilibrium growth regime (Pe = 1), where
the crystallizing particles get sufficient time to rearrange within
the crystallizing layer to form a hexagonal layer with little or
no defects. As mentioned earlier in the Introduction, stacking
degeneracy for this template must result in a random stacking
of hexagonal layers (rhcp) and this is what we observe. In
Fig. 6(a) we show a snapshot of the sediment in the long time
limit. Our observation is similar to experimental studies where
it was observed that under microgravity conditions, the rhcp
structure is formed.18

A more quantitative description of the dynamics is shown
in Figs. 6(b) and 6(c). Note that in these graphs, the color bars

represent the overall fraction of fcc (φl
fcc) and hcp (φl

hcp) par-

ticles in each layer, respectively. The colors in the two figures
are complementary, i.e., for the deep blue layer in Fig. 6(b)
we see a corresponding deep red layer in Fig. 6(c) and vice-
versa, showing that each layer is either fcc- or hcp-stacked. We
also observe in certain layers that a smaller crystalline domain
merges into and aligns itself with the largest growing planar
2D domain. This is shown in Figure 7. The deepening of color
in time for certain layers in Figs. 6(b) and 6(c) is indicative
of this process. Eventually this results in a fully hcp- or fcc-
stacked layer. From Fig. 6(b), it is evident that the quality of
the fcc crystal is quite poor.

As discussed earlier, fcc and hcp crystals have a free-
energy difference of the order of 10�3kBT per particle in favor
of fcc. In addition to the free-energy argument, Pronk et al.
calculated the interfacial free-energy between fcc and hcp to
be very low '26± 6.10−5kBT/σ2, which favors the formation
of a single fcc crystal.9 Therefore, we can expect the randomly
stacked crystal to evolve into the fcc crystal over long periods
of time.10,11 We do not see this transformation within the sim-
ulation times that we studied and expect it to occur at much
longer time scales in the presence of a gravitational field than
in bulk.

Next we present results on crystal growth at higher sed-
imentation speeds, i.e., Pe = 10 in Figs. 6(d)–6(f). Looking
at the snapshot, it is clear that the number of slanted stacking
faults observed is very high. A slanted stacking fault is formed
when two differently stacked domains grow on a horizontal

FIG. 6. ((a) and (d)) Side view of the final configurations at t/τMD = 5300 of hard spheres sedimenting on an fcc (111) template with lattice spacing a = 1.004σ
for Pe = 1 and 10 as labeled. The color code is the same as that in Fig. 2. ((b) and (e)) Fraction of fcc particles φl

fcc represented by a colorbar showing the

fcc-crystallization of each layer with time. (c) Fraction of hcp particles φl
hcp represented by a colorbar showing the hcp-crystallization of each layer with time.

(f) Fraction of particles belonging to a fault/defect φl
def as indicated by a colorbar, for Pe = 10, plotted for each layer over time. The metrics of (b) and (c) are

intentionally chosen differently from (e) and (f) to demonstrate random stacking of hexagonal layers at low Pe. The dark red region to the left of the four plots
discussed above represents the absence of crystalline particles in the layer, i.e., a fluid layer. The initial packing fraction ηi = 0.02.
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FIG. 7. Typical configurations of the top view of the fourth layer of the crystalline sediment for different times as labeled for hard spheres sedimenting on a
close-packed fcc (111) template at Pe = 1. The color code is the same as in Fig. 2.

hexagonal layer,39 resulting in a line defect. Hilhorst et al.20

argued that the persistence of these line defects across layers
and the stacking of subsequent layers of particles lead to two
fcc-stacked crystallites which are displaced from each other by
a hcp-stacked layer of particles and result in a planar defect.
When such a planar defect shifts perpendicular to the defect-
plane so that the gap on either side of the defect closes, a
slanted stacking fault forms. A more detailed description of
these defects can be found in the works of Hilhorst et al. and
Marechal et al.21 The nature of the sediment is still primarily
fcc-like (Fig. 6(e)). We do not observe the formation of the rhcp
structure in this case, and we therefore plot φl

def in Fig. 6(f)

instead of φl
hcp as we did for Pe = 1. The increased number of

slanted stacking faults is apparent from the lighter red shade of
Fig. 6(f). In the limit of high Pe, the fcc (100) template clearly
gives a much better crystal than the fcc (111) (to compare
Figs. 2(e) and 6(e)).

Next we move on to the flat wall case. We do not show
any of our results for sedimentation on flat walls and only
discuss a few observations we made by comparing it to the
sedimentation on the fcc (111) template presented above. The
interfacial tension between a featureless smooth wall and the
fcc (111) hexagonal plane is the lowest among all fcc ori-
entations.40 Therefore, when hard spheres sediment on a flat
wall, the layer formed at the wall is of hexagonal symme-
try. We observe from our simulation snapshots, taken at time
intervals of t/τMD = 100, that the first two layers crystallize
simultaneously, and once they form, the ensuing crystalliza-
tion which occurs at the growth front is layer-wise.17,38,41 This
is then in principle equivalent to the sedimentation on the fcc
(111) template and therefore it is interesting to observe how
these two cases compare in the low Pe regime. Our simula-
tions of the sedimentation on the flat wall showed a random
stacking of hexagonal layers, as observed with the fcc (111)
template, at Pe = 0.5 with a higher fraction of fcc particles. At
Pe = 1 we did not observe a random stacking but a primarily
fcc-like sediment, in agreement with Marechal et al. In addi-
tion to Ref. 21 where only a low Pe was investigated, we looked
at a range of Pe for the flat wall case and observed that the frac-
tion of fcc particles φfcc steadily decreases with increasing Pe
from φfcc ' 0.7 at Pe = 1 to '0.5 at Pe = 10. At higher Pe for
the flat wall case, we see disorder setting in from the bottom
layers and propagating to the top.

Interestingly for high Pe, unlike the flat wall, the fcc
(111) template appears to restrict the onset of a crystalline
to disordered transition in the bottom layers as a result
of which the fraction of the orientationally aligned fcc re-
mains largely constant at φfcc ' 0.7 for the entire range of Pe
investigated.

We round off the template comparison with a look at sed-
imentation on the least dense of all the three templates, i.e.,
the fcc (110) template, for a low and high Peclet number, Pe
= 1 and 10, respectively. The corresponding snapshots of our
EDBD simulations are shown in Figs. 8(a) and 8(d). From
Fig. 8(b), we observe that at low Pe = 1, the crystalline sed-
iment is fcc-like with φfcc ' 0.75. However, a large number
of stacking faults are already seen to appear in the sediment,
plotted as defects in Fig. 8(c). However, it is important to note
here that the particles form the (111)-oriented fcc, which is of
a different orientation than that of the (110) template. This is
highly surprising as the sedimenting particles seem to com-
pletely ignore the (110) template. Van Blaaderen et al.22 and
Jensen et al.27 both reported that at low Pe, a crystalline sed-
iment can grow on an fcc (110) template, but they did not
study the quality or orientation of the crystal. Similar to the
rearrangements of smaller domains observed in the sediment
on the fcc (111) template as discussed above, certain layers
in this crystalline sediment also show the annealing out of
smaller hcp domains into larger fcc domains as shown in Fig. 9.
However the realignment process takes longer, presumably
due to the presence of extended slanted stacking faults in the
sediment.

When the sedimentation is faster, i.e., at Pe = 10, we
observe that (i) disorder sets in at the bottom of the sediment
because the template is not sufficiently close-packed to con-
strain the particles to a layer and (ii) the bottom-most layers are
composed of both fcc (100) and (111) like particles, with no
clear preference for either. The presence of fcc (100) is likely
because it has a lower density mismatch with the template in
comparison to fcc (111). Jensen et al.27 also discussed high
speed centrifugation on the fcc (110) template. They reported
that for high sedimentation flux (short time for equilibration
and diffusion of particles in-plane), the fcc (110) template is
not dense enough to sufficiently constrain the incoming parti-
cles in-plane therefore resulting in an eventually crystalline to
amorphous crossover. From our simulations, we also observe,
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FIG. 8. ((a) and (d)) Side view of the final configurations at t/τMD = 6000 of hard spheres sedimenting on an fcc (110) template with lattice spacing a = 1.004σ
for Pe = 1 and 10 as labeled. The color code is the same as that in Figs. 2(b) and 2(e). Fraction of fcc particles φl

fcc represented by a colorbar showing the

crystallization of each layer with time. ((c) and (f)) Fraction of particles φl
def , again indicated by a colorbar, belonging to a fault/defect plotted for each layer

over time. The dark red region to the left of the four plots discussed above represents the absence of crystalline particles in the layer, i.e., a fluid layer. The initial
packing fraction ηi = 0.02.

commensurate with their findings, a local onset of disorder at
high Pe. We observe from the plot shown in Fig. 8(f) that the
sediment is highly defective with approximately 50% defects
from the fifth layer upwards. There are distorted crystalline
domains making up this defective crystal when there is rapid
sedimentation on the fcc (110) template. These domains are
not strictly parallel to the template and are colored in lilac in
Figure 8(d). We calculated the 3D bond orientational order
parameters for these domains and found that they are fcc-like
in nature.

To summarize our findings, we estimated the crystallinity
of the final sediment for all the cases discussed above by
calculating φfcc, defined as the fraction of similarly oriented
fcc particles over the crystalline particles in the whole sedi-
ment. A quantitative comparison of the flat wall and the three

templates is shown in Fig. 10 from which it is apparent that
the best fcc crystals with φfcc ' 90% are found for the fcc
(100) template at high Peclet numbers (Pe = 10). This met-
ric has been averaged over three independent simulation runs.
The dependence of φfcc on Pe is most evident for the fcc
(100) template where the percentage of fcc increases with
sedimentation rate and the flat wall for which the reverse
trend is observed, i.e., the lower the Pe, the better the fcc
crystal.

C. Effect of lattice spacing of the fcc (100) template

Having established the fcc (100) template as the best
template for forming large fcc crystals, we study the effect of

FIG. 9. Typical configurations of the top view of the fourth layer of the crystalline sediment for different times as labeled for hard spheres sedimenting on a
close-packed fcc (110) template at Pe = 1. The color code is the same as in Fig. 2.
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FIG. 10. Fraction of fcc particles φfcc in the crystalline sediment as obtained
from simulations of sedimenting hard spheres on a smooth wall, an fcc (111),
fcc (100), and an fcc (110) template and varying Peclet numbers. The values are
averaged over three independent simulations. All simulations are performed
for templates with a lattice spacing a = 1.004σ and initial packing fraction
ηi = 0.02.

lattice spacing of this template on the sediment formed. All
the results presented in Sections III A and III B correspond to
a lattice spacing of a = 1.004σ. Van Blaaderen et al.22 exper-
imented with different lattice spacings of the square template
and observed that larger spacings lead to a higher number of
defects, thus affecting the quality of the crystal significantly.22

Therefore, we simulate sedimentation on a fcc (100) template
with a lattice spacing a = 1.1σ which corresponds roughly to
the density of the bulk crystal at coexistence. The first layer
that forms on this template has also square symmetry. The
effect of the template is prominent in that the lattice spac-
ing of this layer is also 1.1σ. Therefore, there is no density
mismatch between the template and the crystal formed. The
particles in each layer sit on the holes left by the previous layer
similar to the close-packed a = 1.004σ case. However, there
are numerous defects in the layer because of the lower density.
This is true for the subsequent layers, which do not rearrange
over time. In the case of the close-packed template, the weight
of the sediment causes the layer defects to anneal out. In the
case of the less dense template (a = 1.1σ), this effect is coun-
teracted by the fact that the bridge-site (defect) particles span
across the entire cross-sectional area and form a network of
closed connected circuits, thus adversely affecting the layer to
restructure. Therefore, we see the drop in the overall fraction
of fcc particles (φfcc) in the final crystal. In Fig. 11, we plot
the fraction of fcc particles φfcc as a function of Peclet number
for a fcc (100) template with lattice spacing a = 1.004σ and
a = 1.1σ. While we find for the template with a = 1.1σ that
φfcc is largest at low Peclet number, i.e., Pe = 1, the opposite
trend is observed for the close-packed template, which gives
the highest φfcc for high Peclet number. We explored further
the source of lattice mismatch by calculating the pressure at
the bottom and the bulk density of an fcc crystal at this pres-
sure. The pressure at the bottom of the sample (z = 0) is given
by the weight of the sediment per unit area,38

βP(z = 0)σ3 = g∗ρ∗A

with ρ∗A = Nσ2/A and g∗ = mgσ/kBT . In our simulations, the
cross-sectional area of the column is A ' 50σ × 50σ and the

FIG. 11. Fraction of fcc particles φfcc = Nfcc/Ncr in the crystalline sediment
of hard spheres settling on a square fcc (100) template with lattice spacing
a = 1.004σ and 1.1σ as a function of Peclet number Pe. The values are
averaged over three independent simulations. The lines are guides to the eye.
The initial packing fraction ηi = 0.02.

number of particles is N = 100 000. With these parameters,
βP(z = 0)σ3 ' 400 for Pe = 10. We determined the density
of the fcc crystal at this pressure using the Speedy equation of
state, corresponding to a volume fraction and lattice spacing of
0.732 and 1.0036σ, respectively. This may explain the supe-
rior quality of the fcc crystals formed on the 1.004σ fcc (100)
template at Pe = 10. Similarly, for Pe = 1, we find βP(z = 0)σ3

' 40. The fcc crystal at this pressure corresponds to a lattice
spacing of '1.05σ (and volume fraction of 0.634), which dif-
fers significantly from that of the template. This may explain
the poor quality of the fcc crystal. It would be interesting to
look at several values of the lattice spacing and identify if the
optimal value of a, which yields the best sediment for a given
Pe, is the one with the least mismatch. In the case of the tem-
plate with the wider lattice spacing, φfcc ' 0.70 remains rather
constant as a function of Pe, whereas the close-packed template
shows a steady increase of φfcc from ∼0.5 at Pe = 1 to ∼0.9
for Pe = 10. To summarize, the best fcc crystal is obtained
by sedimentation on a close-packed square template at
Pe = 10.

D. Effect of initial volume fraction

Finally, we investigate the dependence of the overall frac-
tion of fcc particles φfcc on the initial volume fraction ηi in the
case of sedimentation on a close-packed fcc (100) template.
Hoogenboom et al. showed from experiments and Marechal
et al.21 by simulations that the fraction of fcc particles φfcc in a
sediment deposited on a smooth wall depends strongly on the
dimensionless sedimentation flux J = ηi × Pe, which sets the
time available for the particles to crystallize at the growth front.
The dimensionless sedimentation flux was also used by Jensen
et al.27 to characterize their sedimentation experiments on dif-
ferent templates and further compare their results on the flat
wall with Hoogenboom et al.14 and Davis et al.29 In Fig. 12, we
plot the overall fraction of fcc particles (φfcc) of a crystalline
sediment on a square fcc (100) template as a function of Pe for
three different initial volume fractions, ηi = 0.01, 0.02, and
0.104. We find a strong dependence of φfcc on Pe at least for
ηi 6 0.1. In the inset of Figure 12, we plot φfcc as a function of
the dimensionless sedimentation flux J, which clearly shows
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FIG. 12. Fraction of fcc particles φfcc = Nfcc/Ncr in the crystalline sediment
of hard spheres settling on the (100) plane of a close-packed fcc crystal as a
function of Peclet number Pe for varying initial volume fractionsηi as labeled.
The values are averaged over three independent simulations. The lines are
guides to the eye. The inset shows φfcc as a function of J = ηi × Pe.

no collapse of the data for varying ηi. This is different from the
case of a flat wall as Marechal et al.21 observed a collapse of
the average stacking parameter for different values of Pe and
ηi but the same value of J (sedimentation flux). In contrast, on
the fcc (100) template for Pe > 1, the fcc crystal quality shows
a strong dependence on Pe but not on ηi. For the case Pe = 1,
we do see an effect of increased packing fraction, indicating
that at very slow sedimentation rates, a higher initial packing
fraction results in a higher φfcc.

The reason for the different dependencies lies in the mech-
anistic differences in the way that the faults in the two crystals
rearrange. In the case of the fcc (100) template, the defects
are forced to anneal out by the weight of the sediment on
top, and this effect is more pronounced at higher Pe. The hard
spheres that Marechal et al. studied were sedimented on a
smooth wall at low Pe, i.e., the near-equilibrium regime.21 In
this case, planar defects that shift perpendicular to the plane
merge with each other and form slanted stacking faults across
layers. Therefore, the quality of the crystal formed is deter-
mined by the time available for the layer at the growth front
to restructure such that these planar defects can rearrange and
not propagate to form 3D crystal grain boundaries. The time
available for this restructuring is set by the value of flux J,
and this may explain the collapse of the curves shown in a
similar plot to the inset of Fig. 12 for the smooth wall case.21

In addition, we observe for the fcc (100) template that for
Pe = 1, the quality of the crystal improves drastically upon
increasing the initial packing fraction such that the stack-
ing faults, as observed in the initial stages of the crys-
talline sediment, anneal out. In summary, we do not see
a strong dependence of the fcc crystal quality on the ini-
tial volume fraction for the square fcc (100) template for
Pe ≥ 2.

IV. CONCLUSIONS

To summarize, we used event-driven Brownian dynamics
simulations to study the crystallization dynamics of hard-
sphere colloids sedimenting on three different templates, the

(100), (111), and (110) cross-sectional planes of the fcc crystal.
We make the following observations.

1. Crystalline sediments grown on the fcc (100) template
exhibited the fcc structure with very few defects (see
Figs. 2(a) and 2(d)). The fraction of similarly oriented
fcc particles (φfcc) increases with settling velocity and
is as high as '90% for high settling velocities, Pe
= 10. This surprising observation is in excellent agree-
ment with the experimental work of Jensen et al.27 As
noted by the authors, the primary reason for this obser-
vation is the absence of stacking degeneracy for the fcc
(100) template.

2. While the quality of the crystalline sediment formed on
a smooth flat wall is determined by the sedimentation
flux, which is a combination of the Peclet number and
the initial volume fraction, for the fcc (100) case the
Peclet number (Pe) alone determines the quality of the
sediment.

3. We also studied the effect of initial volume fraction ηi for
the fcc (100) template with lattice spacing a = 1.004σ.
For Pe > 1, we do not observe a significant effect of the
initial packing fraction ηi on the quality of the sediment.
However, at very slow sedimentation rates (Pe = 1), the
quality of the crystal improves with the initial packing
fraction ηi.

4. When we compare the crystal formed from the sedimen-
tation on two different lattice spacings (1.004σ and 1.1σ)
of the fcc (100) template, we observe that for lower Pe,
a better quality of fcc crystal is formed for the 1.1σ tem-
plate, whereas for higher Pe the close-packed or 1.004σ
template is clearly superior.

5. We also looked at the fcc (111) template which is the
densest one and observed that at low Pe, the layers in the
crystalline sediment are randomly “fcc- or hcp-stacked”
with only a very few stacking faults. As evidenced by pre-
vious simulation and experimental studies, a randomly
stacked crystal should eventually rearrange into an fcc
crystal over long periods of time,9–11 however our sim-
ulations are not long enough to make this observation.
Sedimentation at high Pe on the fcc (111) template still
results in an fcc-like sediment but with several stacking
faults.

6. The third template, fcc (110), also gives an fcc-like sedi-
ment but with a (111) orientation, which is of a different
orientation than that of the (100) template. The template
appears to play no role in directing the orientation of the
growing crystal. Already at low Pe, several slanted stack-
ing faults are seen in the sediment. Upon increasing the
settling velocity (Pe), disorder sets in rapidly.

In summary, we conclude that the best fcc crystals are
found in the case of sedimentation on a close-packed fcc (100)
template at high Pe, and on an fcc (111) template at low Pe. Our
simulations treat the solvent effects via the Brownian noise.
The agreement between our simulations and the experiments
of Jensen et al.27 indicates that hydrodynamic interactions do
not have a dominant effect on the crystal structures obtained via
sedimentation at high Pe on the fcc (100) template. It would
also be interesting to look at template assisted sedimentation
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of binary hard-sphere mixtures and we plan to work on these
issues in the future.
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