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I. MAGGS’S METHOD

According to Maggs’s method [1, 2], in a Monte Carlo
simulation, the electrostatics can be simulated by gen-
erating configurations with a probability proportional to
the Boltzmann distribution with the following Hamilto-
nian for the electrostatic energy,

HD =
1

2

∫
dr

D2(r)

ε(r)
, (S1)

where ε(r) is the spatially varying dielectric, and D(r) is
the electric displacement field, which obeys Gauss’s law,

∇ ·D(r)− ρ(r) = 0, (S2)

with ρ(r) the charge density field. For brevity’s sake
we shall drop the explicit dependence on the variable
r. We can then write the partition function by taking
the path integral over all configurations of the electric
displacement and charge density fields.

Z =

∫
Dρ
∫
DDδ [∇ ·D − ρ] e−

β
2

∫
drD2

ε . (S3)

The general solution to Gauss’s law eq. (S3), is given by
D = D‖ + D⊥, with D‖ = −ε∇φ and D⊥ = ∇ × Q
being the longitudinal and transverse parts, respectively.
By doing so, the partition function factorizes,

Z =

∫
Dρe− β2

∫
drε(∇φ)2

×
∫
DD⊥δ [∇ ·D⊥] e−

β
2

∫
dr

D2
⊥
ε

= ZCoulomb ×Z⊥.

(S4)

Here, Z⊥ is independent of the charge positions and de-
pends only on the solvent sites through the local dielec-
tric constant, since it contains only integrations over the
transverse field degrees of freedom. Therefore, Z⊥ is re-
sponsible for the shift in the phase diagram of the solvent
mixture when the polar nature of the solvents is included.
In Eq. (S4), ZCoulomb gives the Coulomb interactions be-
tween the charged particles. From the above, it is evi-
dent that only the transverse degrees of freedom need to
be integrated out, along with the charge positions with
the restriction that Gauss’s law is preserved. The sys-
tem is subsequently discretized by defining a lattice of
N = NxNyNz sites with periodic boundary conditions.

The electric field is discretized on the links between the
lattice sites. This discretization scheme is often also used
when solving Poisson’s equation using finite difference
methods [3] (see also figure S1). We denote the field on
the link between sites i and j as Dij .

II. DIELECTRIC INTERPOLATION AT
LATTICE LINKS

To make the species in our model polar, we assign a
dielectric permittivity εµ to each lattice site. For Maggs’s
method, however, knowledge of the value of the dielectric
constant at the positions of the lattice links is required.
We choose to interpolate the dielectric permittivity on
the link between sites i and j by taking the harmonic
mean of the permittivities of the two sites as follows [4],

1

εij
=

1

2

(
1

εi
+

1

εj

)
, (S5)

where εi =
∑
µ εµoiµ is the dielectric permittivity of the

species occupying site i. This is similar to Yee’s finite-
difference time-domain scheme, where effective permit-
tivities are used to account for offsets of dielectric inter-
faces from grid nodes [5]. Note that we can also write
1/εi =

∑
µ(1/εµ)oiµ, which leads to the following ex-

pression for the dielectric permittivity of link {i, j},

1

εij
=
∑
µ

1

2εµ
(oiµ + ojµ) . (S6)

III. SIMULATION DETAILS

The solvent and ions in our lattice model are simu-
lated in the canonical ensemble using the following Monte
Carlo moves:

1. Attempt to translate a solvent site by swapping it
with a nearest-neighbour solvent site of the oppo-
site species.

2. Attempt to swap an ion site with a nearest-
neighbour solvent site.

3. Attempt to modify the circulation of the displace-
ment field D in a closed directed loop.
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FIG. S1. Schematic representation of the lattice model of
an ion-solvent mixture with the grid representing the lattice
sites. The different colors represent the different species of
the model, with white and blue representing A and B solvent
species, respectively, and yellow and red representing nega-
tive and positive ions. The arrows represent the discretized
electric field of Maggs’s method – the magnitude of the field is
not shown here. The dotted square encloses a field plaquette.
In the lower left corner, a positive ion is drawn. To move the
ion to the lattice site to the right, the reduced D field on the
link between the two sites needs to be modified by −1, such
that Gauss’s law is satisfied.

4. Attempt to modify the global field Dg to impose
metallic boundary conditions [6].

These moves are accepted/rejected using the
standard Metropolis acceptance criterion, a =
min [1, exp(−β∆H)], where the energy difference,
∆H, is calculated from Eq. (1) of the main text. Sites in
move 1 are chosen randomly from the lattice, and moves
which end up picking a non-solvent site are immediately
rejected. For the ion translations in move 2, we keep
a list of their positions, so we can randomly pick an
ion straightforwardly. In each Monte Carlo cycle, we
perform moves 1 and 3 N times, move 2 N± times, and
move 4 once.

To simulate the solvent grand-canonically, step 1 is re-
placed by an attempt to ‘flip’ the species of a solvent site,
and is accepted by the Metropolis criterion,

a(NB → NB ± 1) = min
[
1, e−β(∆H∓ε∆µs)

]
, (S7)

where ∆µs = (µB − µA)/ε is the chemical potential dif-
ference between the solvent species.

When we move an ion from site i to its neighbour site
j, in the case of move 2, the field on the link connecting
sites i and j, Dij , needs to be modified by −(oi+ − oi−)
to satisfy Gauss’s law, see Fig. S1. The move is then
accepted with the standard Metropolis criterion, based
on the change in electrostatic energy, given by the second
part in Eq. (1) of the main text. Additionally, to increase
the acceptance rate, we use temporary charge spreading,

as described in Ref. [7], and later generalized by Maggs
et al. [4]. The concept of temporary charge spreading
is simple; the charge of the ion is temporarily spread to
neighbouring sites according to some rule that maximizes
the overall acceptance, they are subsequently translated,
and pulled back in. The benefit of temporary spreading
is that the modification of the electric field is also spread
out, leading to an overall higher acceptance based on the
spreading range.

To generate configurations of the displacement field D
with the correct statistical weight, an additional Monte
Carlo move is introduced (move 3 above), which inte-
grates over the transverse degrees of freedom, D⊥, by
modifying the field circulation. This can be achieved by
modifying the field along a closed directed path, by some
random value, and again, accepted based on the energy
change in Eq. (1) of the main text. The simplest path
satisfying the above requirements is shown in Fig. S1,
and is commonly referred to as a plaquette. As described
in Refs. [2, 6], under periodic boundary conditions, the
displacement field decomposes into

D = −ε∇φ+∇×Q + Dg , (S8)

where the global displacement field Dg = const, and φ is
the electrostatic potential. Tinfoil boundary conditions
set the dielectric constant at infinite distance to ε∞ =∞,
while the vacuum boundary conditions set it to ε∞ = 1.
If we wish to simulate tinfoil, instead of vacuum bound-
ary conditions, Dg also needs to be relaxed via a Monte
Carlo move (move 4 above).

Before the start of the simulation, the electric field
should be initialized, such that it is consistent with
Gauss’s law. A simple procedure is to initialize the
electric field to zero, and then take a Hamiltonian path
through the lattice, e.g., a path that visits each site ex-
actly once, and solve Gauss’s law for each site visited by
modifying the link to the next site in the path. On ar-
riving at site pi, i.e., the i-th step of the path p, holding
a charge qpi = opi+ − opi−, we have already solved the
Gauss constraint for sites {p1, ..., pi−1}. The incoming
link to the site, {pi − 1, pi}, thus bears the initialized

field Dpi−1,pi =
∑j=i−1
j=1 qpj . The outgoing field Dpi,pi+1

is then set to
∑j=i
j=1 qpj , so that Dpi,pi−1

+Dpi,pi+1
= qpi .

Gausss law is now fulfilled on site pi, and we proceed to
site pi+1. At the end of the path, we reach site pN with

DpN−1,pN =
∑j=N−1
j=1 qpj . Imposing periodic boundary

conditions in charged systems is only possible if the total
charge Q is zero (otherwise the total energy is divergent).
Thus, DpN−1,pN = Q − qpN = −qpN , and Gausss law is
satisfied everywhere on the lattice.

IV. MEAN FIELD THEORY

From our observations in Fig. 4(a), we can build a sim-
ple mean-field model. As a first approximation, we as-
sume that both ionic species and the solvent species, par-
tition completely between the two lamella regions, and



3

that their densities are position independent within the
regions. We denote the salt concentration, c = N±/N ,
the dimensionless surface area of an AB lamella as A, and
the dimensionless thickness as δ, with the thickness of the
A-rich lamellae being xAδ, and that of B-rich lamellae,
xBδ. The number of AB lamellae k in a box of reduced
length L is given by k = L/δ. Note that N = LA. With
these assumptions and definitions, we can write an ex-
pression for the free energy of the ions in the system,

Flam

εN
=
xAc

A
+

β
ln cA+ +

xBc
B
−

β
ln cB−

− 3c(1− c)
2xB

JB+ +
2kγA

N

+
ΓAk

2N

[∫ δxA/2

−δxA/2
dsD2

A(r) +

∫ δxB/2

−δxB/2
ds
D2
B(r)

ε∗B

]
.

(S9)

The first two terms in Eq. (S9) correspond to the entropy
of the ions, with β = ε/(kBT ). Here, the concentration
of positive ions in the A-rich phase is cA+ = N+/NA =
(N±/2)/(xAN) = c/2xA, and that of the negative ions
in the B-rich phase is cB− = c/2xB . The third term in
Eq. (S9) is the solvation energy of the ions. An energy
penalty is paid for the formation of the 2k interfaces,
which is seen in the fourth term, where γ is the dimen-
sionless surface tension. The last term in Eq. (S9) is the
electrostatic energy, with the integration performed in
the lamella-normal direction s. The displacement field
inside the A/B lamella can be calculated from symme-
try considerations: DA/B(r) = cs/2xA/B . Using this in
Eq. (S9), we arrive at

Flam

εN
=
c

β
ln c− c

2β
ln [4xB(1− xB)]− 3(1− c)c

2xB
JB+

+
2γ

δ
+

Γc2δ2

192

[
(1− xB) +

xB
ε∗B

]
.

(S10)

The free energy of the ions in the phase separated
state, assuming again that the ions partition completely,
is given by

FAB/εN =
c

β
ln
c

2
+

2γ

L
− 3(1− c)c/xB , (S11)

which leads to the following free-energy difference be-
tween the two phases,

∆Flam

εN
=
Flam − FAB

ε3N
=
c

β
ln 2− c

2β
ln [4xB(1− xB)]

− 3(1− c)c
2xB

(JB+ − 1)

+ 2γ

(
1

δ
− 1

L

)
+

Γc2δ2

192

[
1− xB
εA

+
xB
εB

]
.

(S12)

Minimizing ∆Flam with respect to the lamella thickness
δ, we arrive at Eq. (2) of the main text.

To evaluate Eq. (2) of the main text, we need to cal-
culate the surface tension. This is done using the results
for the probability density P (xB), from the TMMC sim-
ulations of the pure solvent mixture as [8],

γ =
1

2L2β
∆P , (S13)

where

∆P =
1

2

(
max

xB<xmin
B

lnP (xB) + max
xB>xmin

B

lnP (xB)

)
− lnP (xmin

B ) ,

(S14)

and xmin
B is the position at which the probability distri-

bution P (xB) is minimized. The first term amounts to
an average over the two maxima of lnP (xB).

V. STRUCTURE FACTORS

The static partial structure factors Sµν(k) for a multi-
component system are defined [9] as

Sµν(k) =

〈
1

N
ρµ(k)ρν(−k)

〉
, (S15)

via the Fourier components of the species densities. For
a lattice, this can be written as

ρµ(k) =

N∑
i=0

oiµe
−ik·ri (S16)

which is the discrete Fourier transform of the occupancy
of species µ. With this definition it is easy to calculate
Sµν(k) efficiently, directly from Eq. (S15), with the aid
of the fast Fourier transform [10].

In Fig. S2 and Fig. S3, we plot the partial structure
factors for solvent B, SBB(k), as a function of the dimen-
sionless wavevector k. In Fig. S2 the structure factors are
plotted for a temperature τ = −0.2. We find a peak in
the structure factor, which shifts to lower values of k as
xB is increased, see also Fig. 4(b) of the main text. This
corresponds to increasingly longer-ranged correlations,
leading up to the lamellar phase, where solvent species
between lamellae are highly correlated. Some correla-
tions appear also at larger wavevectors, corresponding
to correlations also between “second-neighbour” lamel-
lae. With the exception of the lamellar phase, we find it
hard to distinguish between the different phases from the
structure factor plots alone. In Fig. S3, we plot SBB(k)
for τ ∈ [−0.3, 0.1] at xB = 0.5. Here, we find that the
position of the small k peak changes significantly only
for the highest temperature. Moreover, the layers in the
bicontinuous disordered phase (labeled D, see represen-
tative images in Fig. S4) have a size almost equal to that
of the lamellae in the lamellar phase. These results un-
derline the possibility that in the experimental set-ups
used thus far [11], one would be unable to detect the
rich mesophase behavior we find by examining scattering
experiments results.
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FIG. S2. Radially averaged partial structure factor, SBB(k),
as a function of the dimensionless wavevector, k, for xB ∈
[0.05, 0.5] and at τ = −0.2. The labels in the legend denote
the corresponding phase at the different xB . The colors are
based on the colors given for the different phases in the phase
diagram in Fig. 2 of the main text.
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FIG. S3. SBB(k) for τ ∈ [−0.3, 0.1] at xB = 0.5. Here
also, the colors are based on the colors scheme of Fig. 2 of the
main text, with the exception of the black, which denotes the
bicontinuous disordered phase.

FIG. S4. Representative xB iso-composition surfaces of the
bicontinuous disordered phase at high temperature. The or-
ange/green surface represents the side of the B/A (minor-
ity/majority) phase. Here, xB = 0.5 and τ = 0 in (a), while
τ = 0.1 in (b). The smaller domain size and the effect of
thermal noise are clearly observed at the higher temperature.

FIG. S5. Representative xB iso-composition surfaces of two
observed mesophases at ε∗B = 9. The orange/green surface
represents the side of the B/A (minority/majority) phase.
We show a hexagonally ordered tubular phase in (a), and a
gyroid phase in (b).

VI. PRELIMINARY RESULTS FOR LARGE
DIELECTRIC CONTRAST

Given the large parameter space of our model, we ex-
plored only a small fraction here. Preliminary results
using, e.g., a higher dielectric contrast ε∗B = 9, seem to
confirm the existence of additional phases, also seen in
diblock copolymer systems, such as the gyroid phase, and
hexagonally ordered droplet and tubular phases. Repre-
sentative isosurfaces of a gyroid phase and a hexagonally
ordered tubular phase are shown in S5.
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