
Nanoscale

PAPER

Cite this: Nanoscale, 2016, 8, 292

Received 8th October 2015,
Accepted 18th November 2015

DOI: 10.1039/c5nr06962a

www.rsc.org/nanoscale

Quantitative 3D analysis of huge nanoparticle
assemblies†

Daniele Zanaga,a Folkert Bleichrodt,b Thomas Altantzis,a Naomi Winckelmans,a

Willem Jan Palenstijn,b Jan Sijbers,c Bart de Nijs,d Marijn A. van Huis,d

Ana Sánchez-Iglesias,e Luis M. Liz-Marzán,e Alfons van Blaaderen,d

K. Joost Batenburg,b Sara Bals*a and Gustaaf Van Tendelooa

Nanoparticle assemblies can be investigated in 3 dimensions using electron tomography. However, it is

not straightforward to obtain quantitative information such as the number of particles or their relative

position. This becomes particularly difficult when the number of particles increases. We propose a novel

approach in which prior information on the shape of the individual particles is exploited. It improves the

quality of the reconstruction of these complex assemblies significantly. Moreover, this quantitative Sparse

Sphere Reconstruction approach yields directly the number of particles and their position as an output of

the reconstruction technique, enabling a detailed 3D analysis of assemblies with as many as 10 000 par-

ticles. The approach can also be used to reconstruct objects based on a very limited number of projec-

tions, which opens up possibilities to investigate beam sensitive assemblies where previous

reconstructions with the available electron tomography techniques failed.

Introduction

Nanoparticle assemblies attract increasing interest because of
the possibility of tuning their properties by adjusting the
overall size and shape, the stacking of the individual nano-
particles, and the distances between them.1–5 However, as the
synthetized systems become more complex, an accurate
characterization of the structure becomes more demanding.

Transmission electron microscopy is an important tech-
nique to characterize materials at the nanometer scale and
below.6–10 However, it conventionally only allows for the acqui-
sition of two-dimensional (2D) projections of three-dimen-
sional (3D) objects, which is not sufficient for a quantitative
characterization of complex 3D nanostructures. Electron

tomography has therefore been developed to overcome this
strict limitation, acquiring 2D projections over a large tilt
range and combining them through a mathematical recon-
struction algorithm.11

Electron tomography is a versatile and powerful tool that
has been increasingly used in the field of materials science.12

It can be used to investigate the morphology and structure of a
broad variety of nanomaterials.13,14 Tomography has further-
more been combined with spectroscopic techniques such as
Electron Energy Loss Spectroscopy (EELS) and Energy Disper-
sive X-Ray spectroscopy (EDX) for the 3D investigation of
chemical composition,15–18 bonding nature19 and surface plas-
mons20 of nanomaterials. Great effort has also been made in
the development of advanced reconstruction algorithms,21

enabling quantification of the 3D results22–24 and pushing the
resolution of the technique to the atomic scale.25–27

Also for the characterization of nano-assemblies, electron
tomography is nowadays a standard technique,28–32 yielding a
3D description of the morphology and inner structure. In com-
parison to diffraction techniques such as Small Angle X-ray
Scattering,33,34 one of the main advantages of electron tomog-
raphy is that the technique also enables a detailed description
of non-periodic features such as defects and surface mor-
phology. A quantitative description of the position of the indi-
vidual nanoparticles furthermore allows a comparison with
theoretical models and a better understanding of the mecha-
nisms which rule the self-assembling process.35–37
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Despite the valuable information that can be obtained by
electron tomography, 3D reconstructions based on classical
algorithms, such as Weighted Back-projection (WBP)38 and the
Simultaneous Iterative Reconstruction Technique (SIRT),39

suffer from a number of restrictions. The narrow space
between the objective lens pole pieces restricts the tilt range of
the sample to typically −80° to +80°. This causes “missing
wedge artifacts”, which can be observed as an elongation
along the beam direction in the final reconstruction.40 Fur-
thermore, degradation of the sample due to the electron dose
often occurs. As a consequence, the projections are mostly
acquired with tilt increments of 1°–5°, yielding an under-
sampling of the higher frequencies and a consequent degra-
dation of the resolution with a blurring of the sharper
features.11

For relatively small assemblies of closed-packed nano-
particles (consisting of 100 particles or less), the number of
particles can be determined and their coordinates can be esti-
mated manually.41 However, if the number of particles
increases and the distance between them is less than the 3D
resolution of the tomography experiment,42 manual segmenta-
tion becomes subjective and quantification of the data is
impossible.

Here, we present a novel approach that enables us to deter-
mine the coordinates of each nanoparticle in an assembly,
even when the assembly consists of up to 10 000 (spherical)
particles. This technique will have a major impact as it enables
a straightforward quantification of inter-particle distances and
3D symmetry of the stacking. Furthermore, the outcome of
these measurements can be used as an input for modeling
studies that predict the final 3D structure as a function of the
parameters used during the synthesis.35

Results and discussion
Reconstruction algorithms principles

In a tomography reconstruction problem, the unknown object
is discretized on a grid of pixels, of width u and height h. Every
pixel value is labeled as an unknown xi for i = 1,2,…, u × h.
Probe rays travelling through the object give rise to a projection
bj that equals the sum of the intensities of the probed pixels,
each weighted by a coefficient wij given by the area covered by

the ray traversing that pixel (Fig. 1), such that bj ¼
XN

i¼1

wijxi.

The system of linear equations representing the tomographic
problem can be written in matrix notation, obtaining eqn (1):

Wx ¼ b ð1Þ
This system of equations is usually underdetermined due

to the limited number of projections, leading to an ill-posed
inverse problem. To deal with noise in the projection data, the
system is typically solved in a least squares sense, minimizing
kWx − bk2. The addition of prior information,43,44 or penalty
functions23,24,45 can be used as strategies to obtain a less-
underdetermined reconstruction problem. However, there are

a number of samples for which none of the current advanced
approaches work well since blurring always occurs11 and the
missing wedge leads to a superposition of the particle bound-
aries, hampering to distinguish them. This is particularly the
case for large assemblies of spherical (or nearly spherical) par-
ticles or when only a limited number of projections are avail-
able. It must be noted that during the 3D investigation of an
assembly of nanoparticles, the exact shape of the individual
particles is often not of crucial interest and we can assume
that they correspond to perfect spheres. If the size of the par-
ticles can be estimated, we can use discrete spheres as basis
elements and the problem is reduced to the reconstruction of
the center coordinates of these spheres. Now we can use the
following image transformation:

x ¼ Cy ð2Þ
where yi = 1 if a sphere center is located at pixel xi. C corre-
sponds to a matrix that transforms the centers into pixelized
images of spheres. Our tomography problem (eqn (1)) then
becomes:

WCy ¼ b ð3Þ
Since even for large assemblies, the number of particles is

small compared to the number of voxels, the coefficient vector
y will be very sparse. To incorporate this sparsity assumption
in the reconstruction, we solve the following problem:

min
y

jjyjj1subject tojjWCy� bjj2 � σ ð4Þ

where σ is the noise level. While the tomography problem of
eqn (1) typically does not have a unique solution, computing a

Fig. 1 Schematic representation of the formulation of an algebraic
reconstruction problem.
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solution of eqn (4) instead leads to a solution that contains
relatively few nonzero pixel values, corresponding to a sparse
assembly of spheres. This concept is mathematically explained
in the ESI† and the implementation is presented in the Experi-
mental section. In the remainder, we will refer to this
approach as Sparse Sphere Reconstruction (SSR).

Quantitative electron tomography of nanoparticle assemblies

To demonstrate the power of SSR, two examples are presented.
In the first example, close-packed assemblies of cobalt iron
oxide nanoparticles with a diameter of about 9 nm are pre-
sented. The spherical assemblies have a diameter up to
300 nm and can contain more than 9000 particles. Typically,
3D characterization of such an assembly is highly challenging.

The second example shows how SSR can be used for an
accurate reconstruction of assemblies even with a minimum
number of projections, enabling the investigation of beam sen-
sitive assemblies.

In the first study, the investigated assemblies (Fig. 2) have
an increasing diameter and number of particles. The assem-

blies diameters are approximately 50 nm, 100 nm, 150 nm and
300 nm and contain 70, 574, 1305 and 9301 particles respec-
tively. The reconstructions obtained through the proposed
approach (SSR) are presented in Fig. 2. For comparison, the
SIRT equivalent (same magnification, same point of view) of
the figure is presented in the ESI (Fig. S1†).

Fig. 3a presents the SIRT reconstruction of the larger
assembly of Co–Fe–O particles and provides a reasonable
qualitative description of the shape and size of the assembly,
however any quantitative analysis is hampered by the (missing
wedge) artifacts and the poor resolution. Indeed, the infor-
mation along the direction most affected by the missing wedge
(red rectangle Fig. 3c) is insufficient to enable a manual seg-
mentation. Fig. 3d presents an orthoslice through the SSR
reconstruction at the same position as in Fig. 3c. It is clear
that information, lost because of the missing wedge, is re-
covered by using the SSR reconstruction. This can be better
observed for the smaller assemblies, for which projections
were acquired over smaller tilt ranges (relative to the larger
assembly – details in the Experimental section) causing more
severe missing wedge artifacts.

Another major advantage of our approach is that the
number of particles and the coordinates are a direct output of
the reconstruction without the need for segmentation. From
our reconstruction, it can be deduced that the outer mor-

Fig. 2 SSR reconstructions of Fe–Co–O nanoparticles assemblies with
different size: (a) 50 nm diameter containing 70 particles. (b) 100 nm
diameter containing 574 particles. (c) 150 nm diameter containing 1305
particles. The icosahedral symmetry of the particle is clear from this
view. (d) 300 nm diameter containing 9301 particles.

Fig. 3 (a) 3D visualization of the SIRT reconstruction of an assembly of
about 9000 Co–Fe–O particles. (c) Orthoslice acquired through the
SIRT reconstruction, missing wedge artifacts are highlighted by the red
rectangle. (b, d) 3D visualization and orthoslice of the corresponding
SSR reconstruction.
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phology of the assembly corresponds to a rhombicosidodeca-
hedron (Fig. 4a). To investigate the crystallographic nature of
the stacking of the nanoparticles, local bond order parameters
were calculated46,47 and clustered through a k-means algor-
ithm.48 A careful analysis reveals that the assembly core corre-
sponds to an icosahedron consisting of 20 tetrahedra (Fig. 4b).
The particles in the tetrahedra are arranged according to a
local fcc stacking and form a Mackay icosahedron.49 The tetra-
hedra are separated from each other and are arranged with
five-fold symmetry (Fig. 4b and d). Twinning planes are also
found between the tetrahedra and the outer shell of the assem-
bly which yields an hcp stacking. Fig. 4f presents an orthoslice
through the reconstruction showing areas with hcp stacking,
whereas Fig. 4c shows an orthoslice through areas with fcc
stacked particles. The outer shell is mostly composed by par-
ticles in an fcc arrangement (Fig. 4e) forming a surface with
anti-Mackay icosahedral termination. Interestingly, Fig. 4d
shows all the particles arranged in an icosahedral packing. It
can be seen that they extend along the tetrahedral edges high-
lighting the icosahedral core structure. The five-fold icosa-
hedral symmetry has been shown to be the most favorable
geometry in short-range ordered clusters composed of par-
ticles with attractive interactions and is found in many
systems.50,51 It is a relatively new finding that icosahedral
ordering is the equilibrium structure also for hard particles,

for which entropy is the only deciding contribution to the free
energy, that are made to self-assemble in a spherical confine-
ment.37 Assemblies up to 700 particles are expected to carry an
icosahedral structure, which changes to a rhombicosidodeca-
hedral symmetry between 700 and 70 000 particles and finally
pure bulk fcc for more than 70 000 particles.37 Here, with 9300
particles, the structure observed is a rhombicosidodecahedron
presenting an inner distorted Mackay icosahedron, in perfect
agreement with de Nijs et al.37 The distortion of the icosa-
hedron is caused by defects in some of the tetrahedra. This
can be observed in Fig. 4c where, an orthoslice through the struc-
ture shows two of the tetrahedra (red triangle) affected by
defects that alter the perfect tetrahedral shape, causing
general inhomogeneity in the size of all the other tetrahedra
(this can be better observed in the online interactive visualiza-
tion available at http://ematweb.uantwerpen.be/colouratoms/
jsc3D/demos/FeCoO_Assembly_300nm.html).

The second example is a less complex structure consisting
of an assembly of gold particles embedded in a polystyrene
matrix. We will demonstrate the power of using SSR when
reconstructing beam sensitive assemblies. Long acquisition
times form a main drawback of tomography, limiting the tech-
nique to beam resistant samples. Reducing the angular
sampling frequency reduces the electron dose, but also
deteriorates the quality of the final reconstruction. Fig. 5a

Fig. 4 (a) 3D visualization of the rhombicosidodecahedral outer structure. (b) Icosahedral core consisting of 20 tetrahedra with particles in an fcc
stacking (different colors are used to highlight separated tetrahedra and improve the visualization of the 3D structure). (c) Orthoslice through the
reconstruction showing only the particles in an fcc stacking. The red triangle highlights a defect in two tetrahedra, which causes a deformation of
the Mackay icosahedral core. (d) Particles with icosahedral packing, the tetrahedra visualized by the blue particles are arranged in five-fold symmetry.
(e) fcc stacked particles composing part of the outer shell (different colors are used to highlight separated fcc clusters on the surface and improve
the visualization of the 3D structure). (f ) Orthoslice through a 3D visualization of the particles forming the twin planes (hcp stacking).
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shows a 3D visualization of a SIRT reconstruction of an assem-
bly of gold quasi-spherical particles embedded in a polystyrene
matrix.41 The reconstruction is based on a series of 75 projec-
tions (−70° to +78°, 2° tilt increment). Segmentation with
different colors is performed to enable a better visualization.
Fig. 5b and c show the SIRT and SSR reconstructions based on
the same series, but using only 8 projections (−70° to +70°,
20° tilt increment). Although the details about the shape of
every individual particle are lost, valuable information con-
cerning the structure (such as inter-particle distances and
local symmetries or 3D stacking) is retrieved. The fact that we
can reduce the number of projection images by a factor of ten
opens up the route to obtain 3D quantitative information for
beam sensitive systems.

The approach presented here, is currently limited to
assemblies of monodispersed spherical particles. A logical
next step is to apply the method to assemblies in which two
or more different particle diameters are considered. This can
be done by expanding the matrix C to contain spheres of
various diameters. We are currently working to implement
this possibility.

Furthermore, assemblies consisting of anisotropic particles
have recently obtained increasing attention as well.31,32

However, in the case of particles with more complex shapes
(rods, cubes, etc.) a different approach has to be adopted. We
envisage that a quantitative 3D characterization of such assem-
blies will become possible by combining the presented
method with the possibility of using a pre-defined “dictionary”
of particle features (e.g. edges, corners, etc.). Obviously, as the
dictionary grows in size, more projections will be needed. The
potential of such a methodology for electron tomography was
recently demonstrated albeit for simulated images.52

Experimental
Implementation of the SSR algorithm

The use of GPUs has become a widespread approach to tackle
heavy computational problems.53 The recent release of the
ASTRA toolbox,54–56 an open source, GPU-accelerated library
for 3D image reconstruction in tomography, enables the devel-
opment of custom algorithms and methods in Matlab. We
developed the new approach described here, following the
method proposed by Bleichrodt et al.57 by combining the
ASTRA and the SPOT toolboxes58 to generate the problem in
matrix notation (in Matlab) and then use a general sparse
solver SPGL159 for the SSR problem. Technical details of the
implementation are presented in the following paragraph.

Sparse sphere reconstruction (SSR)

Nanoassemblies of spherical particles do not have a sparse
representation on a voxel grid, which is used in the linear
model in eqn (1). However, we can still employ sparsity pro-
moting linear solvers by using a sparse image representation.
If we assume that all particles are perfect spheres (no inhomo-
geneity on the boundaries) and if the size of the particles can
be estimated, we can use discretized spheres as basis elements
and encode an image of spheres by the center coordinates of
these spheres. This is done by applying the image transform-
ation of eqn (2). (More technical details can be found in the
ESI.†)

Note that the matrix C could be seen as a convolution oper-
ator, but forming the matrix explicitly is not practical due to
its size. We can use image convolution of the sphere centers y
with a discretized sphere of size 2r × 2r × 2r by using one of
Matlab’s convolution routines such as imfilter (or implement-

Fig. 5 (a, d) 3D visualization of a SIRT reconstruction of an assembly of Au spheres (75 projections) and an orthoslice acquired through the recon-
struction. (b, e) 3D visualization and orthoslice through the SIRT reconstruction of the same assembly where only 8 projections were used. (c, f ) 3D
visualization and orthoslice through the SSR reconstruction of the same assembly where only 8 projections were used.
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ing a convolution in the Fourier domain with fftn). The Spot
operator is an object that can be used with Matlab’s matrix
syntax (e.g. to compute x = C × y), but internally it calls the
imfilter routine to actually perform this matrix operation.
This allows easy implementation of eqn (4) which is simply
reduced to:

y ¼ spgl1ðW*C; bÞ;
Solving eqn (4) represents the first step in obtaining the

final reconstruction. This solution should be the sparse rep-
resentation y, but as can be observed from column 2 of Fig. 7,
it is still not a perfect grid of ones and zeros representing the
centers of the disks. Blurring and striking artifacts due to
under-sampling of higher frequencies and missing *wedge
also occur. Nevertheless, the sparse representation can be
easily recovered and the artifacts eliminated by applying a
local maximum extraction routine. To do that, each pixel is
compared with its neighbors and selected as a local maximum
if the neighbors are indeed smaller than the current pixel
value. The neighbors are defined by a neighborhood, which is
a small mask of zeros and ones, indicating whether a pixel is
in the neighborhood or not. The mask will be the same basis
shape used in defining C. The second step of the reconstruc-
tion will be then carried out through the application of the
local maximum extraction in order to remove the artifacts and
recover the expected sparse representation y. Finally, the oper-
ator C (eqn (2)) is applied to y, in order to obtain the final
reconstruction of the object.

A two-dimensional example of the method is presented.
The phantom in Fig. 6c is reconstructed with SIRT and then
SSR for different tilt ranges and frequencies (Fig. 7).

Acquisition and alignment of tomography tilt series

All series were acquired in Scanning Transmission Electron
Microscopy (STEM) mode with the use of a High Angle
Annular Dark Field detector (HAADF) STEM. For the assembly
of Au particles, an FEI Tecnai G2 electron microscope operated
at 200 keV was used and for the Co–Fe–O nanoparticles assem-
blies, the tilt series were acquired using an aberration cor-
rected cubed FEI Titan 60–300 electron microscope, operated
at 300 keV. A Fischione 2020 single tilt tomo-holder was used
for all the experiments, with the following tilt ranges: −48° to

+62° with an increment of 2° for the 50 nm Co–Fe–O assembly,
−58° to +76° with an increment of 2° for the 100 nm Co–Fe–O
assembly, −32° to +76° with an increment of 2° for the 150 nm
Co–Fe–O assembly, −71° to +76° with an increment of 1° for
the 300 nm Co–Fe–O assembly and −70° to +78° with an incre-
ment of 2° for the Au sample. Projection images from each
series are presented in the ESI (Fig. S2 to S6†). Alignment of
the tilt series was performed through Matlab routines based
on cross-correlation, a centroid alignment method and manu-
ally with IMOD.60 The series were corrected for cupping arti-
fact as described by Van den Broek et al.61 and in case of the
Co–Fe–O sample, denoising of the series was performed
through the application of a Gaussian filter. We observed that
noise reduction at the expense of a loss of resolution in the
starting series resulted in a better quality of the final
reconstruction.

Synthesis and TEM preparation of the Fe–Co–O assemblies

The assemblies were synthesized using the emulsion based
bottom-up self-organization method.62 First, the core–shell
FeO/CoFe2O4 nanocrystals (NCs) were synthesized according to
the procedure of Kovalenko et al.63 These pre-synthesized NCs
are redispersed in cyclohexane. This oil phase containing the
NCs is mixed with an aqueous solution containing multiple
surfactants (sodium dodecylsulfate, dextrane (mol wt
1 500 000–2 800 000) and distillated water) through vigorous
stirring. To make sure that the clusters are monodispersed,
the pre-mixed emulsion is pumped into a couette shear
mixer.64 Next, cyclohexane is evaporated from the sheared
emulsion by heating it to 68 °C. Evaporation of cyclohexane

Fig. 6 A hexagonal lattice of pixels (a) is convolved with (b) to generate
the phantom (c). In the sparse formulation of eqn (2), (c) represents x,
(b) represents the prior knowledge implemented through the matrix C
and (a) is the exact solution y.

Fig. 7 SIRT reconstructions (a, d, g) of the phantom in Fig. 6c for
different angular intervals and sampling frequencies. Solution retrieved
minimizing kWcy − bk2 (b, e, h). Finally in (c, f, i) are shown the recon-
structions obtained extracting the local maxima from (b, e, h) and con-
volving them for the prior knowledge shape (Fig. S3b†).
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from the oil micro-emulsion droplets cause them to shrink,
and the rising of NCs concentration promotes their self-assem-
bly into 3D colloidal spheres.

In order to study the assemblies in the electron microscope,
TEM grids need to be prepared. However, depositing a solution
drop onto the grid and letting it dry at room temperature
would cause the assemblies to deform because of the capillary
forces between the assemblies and the carbon coated grid.
Therefore, the solution is deposited on the TEM grid, immedi-
ately vitrified at liquid nitrogen temperature and then subli-
mated in an Environmental Scanning Electron Microscope
(ESEM) at a controlled temperature and pressure. This avoids
contact between the colloidal particles composed of the NCs
and a drying liquid that is on the outside of the supraparticles,
preventing the deformation of the assemblies.

Synthesis and TEM preparation of the Au assemblies

Colloidal gold superspheres were prepared using a recently
reported procedure.32 Briefly, gold nanoparticle building
blocks (20 nm diameter) were stabilized with a hydrophobic
polymer (thiolated polystyrene, molecular weight = 53 000 g mol−1).
The length of the polymer chain was determined by dynamic
light scattering to be 39 nm. The polystyrene-stabilized
particles spontaneously self-assembled upon slow addition of
water to a dispersion in tetrahydrofuran, and the formed
assemblies were subsequently stabilized within polymeric
micelles of a di-block copolymer (polystyrene-block-poly acrylic
acid). The final size of the assemblies in solution was
160 ± 4 nm.41 TEM samples were prepared by drop casting the
aqueous solution of the assemblies on holey, carbon-coated
copper grids.

Conclusions

We present a new approach for the 3D reconstruction of
assemblies of spherical nanoparticles, based on a sparse refor-
mulation of the tomographic problem derived from prior
knowledge of the homogenous nature of the objects compos-
ing the structure. It is clear that SSR is able to deliver an accu-
rate reconstruction of complex nanoparticle assemblies
consisting of up to several thousands of particles. For electron
beam sensitive materials, where no extended *tilt series can
be obtained, the SSR method still allows one to reconstruct the
3D assembly with a limited number of projections. This
methodology opens up the route to a better understanding of
the formation of these assemblies as the outcome of these
experiments can be used as accurate input models for
simulation studies.
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