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A binary solvent mixture close to critical demixing experiences fluctuations whose correlation length,
ξ, diverges as the critical point is approached. The solvent-mediated (SM) interaction that arises
between a pair of colloids immersed in such a near-critical solvent can be long-ranged and this
so-called critical Casimir interaction is well-studied. How a (dense) suspension of colloids will
self-assemble under these conditions is poorly understood. Using a two-dimensional lattice model for
the solvent and hard disks to represent the colloids, we perform extensive Monte Carlo simulations
to investigate the phase behaviour of this model colloidal suspension as a function of colloid size
and wettability under conditions where the solvent reservoir is supercritical. Unlike most other
approaches, where the solvent is modelled as an implicit background, our model employs an explicit
solvent and treats the suspension as a ternary mixture. This enables us to capture important features,
including the pronounced fractionation of the solvent in the coexisting colloidal phases, of this
complex system. We also present results for the partial structure factors; these shed light on the
critical behaviour in the ternary mixture. The degree to which an effective two-body pair potential
description can describe the phase behaviour and structure of the colloidal suspension is discussed
briefly. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4961437]

I. INTRODUCTION

Colloidal particles suspended in a solvent can display a
rich variety of effective interactions. Well-known examples
include depletion, arising from the presence of additional,
smaller components (depletants), and the Derjaguin-Landau-
Verwey-Overbeek (DLVO) interaction arising from screening
by counterions in the case of a charge-stabilised colloidal
suspension. Theoretical treatments of effective interactions
between colloids usually proceed by tracing out the degrees of
freedom of the smaller components, i.e., depletants and ions,
assuming that the underlying molecular solvent is merely an
“inert” structureless background. However, there are several
situations where the thermodynamic state of the solvent
plays a key role leading to characteristic solvent-mediated
(SM) interactions between colloids. In particular, for certain
colloidal suspensions, long-ranged SM interactions can arise
due to the local fluctuations of the solvent composition. An
important situation occurs when the solvent is close to its
(demixing) critical point. Then the SM interaction between
two colloidal particles becomes long-ranged; the range is set
by the (diverging) correlation length, ξ, of the solvent mixture.
This is the situation we consider in the present paper where
we investigate the properties of a model of a ternary mixture
that mimics colloidal particles suspended in an explicit binary
solvent near its critical point. The model and some preliminary

a)Electronic mail: m.dijkstra@uu.nl

results for the colloidal phase behaviour were introduced in
Ref. 1. Here we describe the Monte Carlo (MC) simulation
methods and present a comprehensive set of results for the
phase behaviour and structural properties of the same (lattice)
model.

We motivate our study by recalling first the properties
of a binary AB solvent mixture near its demixing critical
point. Figure 1 shows a schematic phase diagram of such a
mixture in the reduced temperature, τ = (T − Tc)/Tc, versus
composition, xr = NB/(NA + NB), representation, with T the
temperature, Tc the critical temperature, and NA(B) the number
of particles of solvent A(B). The solvent has an upper
critical solution temperature, denoted by the red circle. The
critical point occurs at τ = 0 and at critical composition,
xr,c = 1/2. For τ < 0 the phase diagram exhibits a two-phase
region, where the solvent mixture demixes into an A-rich
and a B-rich phase. The binodal in Fig. 1 is symmetric about
xr = 1/2 as the solvent model employed here has Ising or
lattice gas symmetry. The approach to criticality is signalled
by the presence of fluctuations in the order parameter, in this
case composition, occurring on increasing length scales, up to
the bulk correlation length of the solvent, ξ. Sufficiently close
to the critical point, ξ ∼ |τ |−ν, where ν is a critical exponent
characteristic of the particular universality class of the system.

Suppose now the solvent comes into contact with a
substrate (plate), or a large colloidal particle, that prefers one
of the solvent species, say B. The local composition of the
solvent close to the surface will be enriched with that species.

0021-9606/2016/145(8)/084902/15/$30.00 145, 084902-1 Published by AIP Publishing.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  79.7.147.103 On: Sun, 04 Sep

2016 22:52:07

http://dx.doi.org/10.1063/1.4961437
http://dx.doi.org/10.1063/1.4961437
http://dx.doi.org/10.1063/1.4961437
http://dx.doi.org/10.1063/1.4961437
http://dx.doi.org/10.1063/1.4961437
http://dx.doi.org/10.1063/1.4961437
http://dx.doi.org/10.1063/1.4961437
http://dx.doi.org/10.1063/1.4961437
http://dx.doi.org/10.1063/1.4961437
http://dx.doi.org/10.1063/1.4961437
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
mailto:m.dijkstra@uu.nl
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4961437&domain=pdf&date_stamp=2016-08-22


084902-2 Tasios et al. J. Chem. Phys. 145, 084902 (2016)

FIG. 1. Phase diagram of a binary AB solvent mixture in the reduced
temperature, τ = (T −Tc)/Tc, versus composition, xr , representation. The
grey area denotes the two-phase region, where the solvent mixture demixes in
an A-rich and a B-rich phase. The phases coexist on the binodal (solid line)
and the critical point is indicated by the red circle. The hatched box indicates
the (supercritical, A-rich) region investigated in this study.

If the solvent is close to its critical point, the red circle in
Fig. 1, the length scale over which the composition profile
approaches the bulk composition is set by the correlation
length, ξ. This is the well-known phenomenon of critical
adsorption, see e.g., Ref. 2. When the near-critical fluid
is confined between two plates, or two large colloids, one
expects that the critical adsorption at each surface will lead
to interesting SM interactions. Indeed Fisher and de Gennes
showed in 19783 that when two plates, at a separation L ∼ ξ,
are immersed in such a solvent mixture these will experience
a long-ranged SM interaction. Exactly at the critical point,
the SM force between plates decays algebraically, i.e., as
L−D,where D is the bulk spatial dimension. The interaction
is attractive if the two plates are identical or preferentially
adsorb the same solvent species, but can be repulsive if
they adsorb opposite species. In recent times this effect
has been termed the critical Casimir effect,4–6 due to the
similarities it shares with the celebrated Casimir effect. In the
latter, an algebraically decaying force is induced between two
conducting macroscopic bodies as a consequence of confining
quantum fluctuations of the electromagnetic field.7 Theoretical
and simulation studies of critical Casimir interactions in planar
wall confinement are numerous; see, for example, Refs. 4–6,
8, and 9. The scaling behaviour of the SM force, i.e., how it
depends on L/ξ, has been determined for various universality
classes and various choices of boundary conditions. Results
for two parallel plates can be extended to a sphere near a plate
and to a pair of large spherical colloids using the Derjaguin
approximation.10 Accepting concepts of universality, and that
real fluid mixtures lie in the 3D Ising universality class, we
can argue that from theory and simulation we now have
a rather good description of the effective pair interaction,
at large inter-particle separations, between an isolated pair
of identical colloidal particles suspended in a solvent at its
critical composition xr,c. For off-critical compositions the
scaling behaviour of the critical Casimir interaction is more
complicated but there has been recent progress in ascertaining
this; see Refs. 11–13 and references therein. Moreover, the
results of direct experimental measurements of the critical
Casimir force between a colloid and a planar substrate, using
total internal refection microscopy,14,15 confirm the form of the

predicted scaling functions. A forthcoming review16 provides
a comprehensive account of this subject.

Suppose now we move up in complexity and enquire what
is the phase behaviour and structure of a dense suspension
of identical colloids in the same near-critical solvent. The
critical Casimir effect might well be expected to play an
important role in colloidal aggregation and phase behaviour;
long-ranged SM interactions should be present close to the
critical point of the solvent. The history is interesting. Probably
the first experimental observation of colloidal aggregation in
a near-critical solvent goes back to the work of Beysens
and Estève17 in 1985. In this experiment, silica spheres,
with diameter 160 nm, preferentially adsorbing lutidine,
were suspended in a water-lutidine mixture. Beysens and
Estève measured the temperature at which the silica particles
began to form aggregates upon heating the ternary mixture,
which allowed them to determine an “aggregation line” in
the composition-temperature diagram. This aggregation line
resided on the water-rich side of the phase diagram and
the authors first associated this with the prewetting line that
might be linked with preferential adsorption of lutidine at
a single macroscopic substrate. However, the line extended
to temperatures in the one-phase region below the demixing
critical point, which is not found for prewetting lines at a
planar substrate. Note that the water-lutidine mixture exhibits
a demixing phase transition above a lower critical temperature
rather than demixing below an upper critical temperature, as
shown in Figure 1. Transcribing to our present model, the
observed aggregation line extended to the region τ > 0, on
the A-rich side of the phase diagram supposing species B to
be preferentially adsorbed on the colloids, indicated by the
hatched region in Figure 1. Several other experimental studies
followed, using different solvents and colloids.18–24 In addition
the effect of adding salt was investigated25 and it was found
that adding sufficient Mg2+ ions resulted in the aggregation
line flipping from the lutidine-rich phase to the water-rich
phase. The phenomenon of reversible colloidal aggregation
in near-critical solvents appears to be quite general. A brief
review26 summarizes the state of play up to 1999. Although the
precise location of the aggregation line depends on a complex
interplay of van der Waals (dispersion), screened Coulomb,
and adsorption-induced long-ranged effective interactions,
reversible aggregation appears to occur generally in near-
critical binary solvents at compositions, near the binodal, that
are poor in the species preferentially adsorbed by the colloidal
particle. Note that this is the region of the solvent phase
diagram where the critical Casimir attraction between two
identical colloids is expected to be strongest.11,27,28

Pertinent to our present study is the experimental work
of Kaler et al.21,22 who argued that the system of colloids in
a binary solvent mixture should be viewed as a true ternary
mixture including full fractionation of the components of the
solvent. On the theoretical side, Sluckin29 had argued already
in 1990 that colloidal aggregation should be regarded as phase
separation in a ternary system. Löwen,30 Netz31 and Gil et al.32

followed this line, but focused on the subcritical, τ < 0, region
of the pure solvent reservoir, where capillary bridging between
colloids brought about by wetting is likely to be the dominant
mechanism in driving the colloidal aggregation. The view that
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reversible aggregation is a manifestation of colloidal phase
transitions was reinforced strongly by experimental studies
in 2008 by Guo et al.33 who carried out small-angle X-ray
scattering (SAXS) studies on density-matched polystyrene
particles in a solvent of water, heavy-water and picoline.
The measured structure factors revealed colloidal gas, liquid,
and fcc crystalline phases as the temperature was increased
towards the solvent binodal at an off-critical composition.
Maciolek and Dietrich16 provide a valuable overview of early
experimental and theoretical work.

The same article reviews recent studies, e.g., Refs. 11–13,
which construct an effective pair potential between the
colloids, incorporating the long-ranged critical Casimir
attraction and some empirically determined short-ranged
repulsion, that is then used to investigate the properties of
a dense near-critical suspension. Specifically, by extracting
the attractive part of the effective pair potential from MC
simulations and using liquid state theories, Mohry et al.
investigated the phase behaviour, structure, and aggregation
of an effective one-component model of a colloid-solvent
mixture near the solvent’s critical point. The papers of Nguyen
et al. and Dang et al. adopt a similar philosophy to Mohry
et al. but use instead an effective pair potential extracted
from experimental measurements of the colloid-colloid pair
correlation function.34,35 The results are summarized in
another topical review,36 more experimentally focussed, which
outlines important and exciting possibilities for reversible
colloidal particle assembly brought about by tuning the
temperature and composition of an appropriate host solvent.
The title of this review “Critical Casimir Forces for Colloidal
Assembly” is revealing. Indeed the authors argue strongly
that an effective pair potential description, which incorporates
critical Casimir attraction, should be sufficient to capture most
of the physics relevant for colloidal phase behaviour.

The extent to which a one-component description,
incorporating only pairwise effective interactions between
the colloids, might be accurate for a dense suspension is not at
all obvious. Very close to solvent criticality, where the solvent
correlation length ξ can be several times the colloid radius,
the inter-particle forces are long-ranged, and one must expect
that many-body effects are important. Consequently, in this
regime, an effective pair potential description should break
down — perhaps not in the qualitative description of colloidal
phase behaviour but certainly in a quantitative description. At
off-critical compositions, further from criticality, where ξ is
considerably smaller than the colloid radius, one might hope
that the effective pair potential description is better founded
and this is the viewpoint taken in both recent reviews.16,36

In order to address such issues it is necessary to investigate
in detail the phase behaviour of a ternary colloid-AB solvent
mixture. We employ the same 2D lattice model of such a
system as used in our preliminary study1 where we focused
on the supercritical region of the solvent phase diagram
and found rich colloidal phase behaviour, including a broad
gas-solid coexistence and a pronounced shift of the critical
point of the ternary mixture with respect to that of the pure
AB solvent. Our present study is also motivated partly by
work of Edison et al. who developed a mean-field theory,
based on free-volume arguments,37 that describes the phase

behaviour of the same model; we shall allude to this later. Here
we describe an extensive MC simulation study of the phase
behaviour and partial structure factors of the lattice model
that extends substantially the results presented in Ref. 1.
Specifically, we provide results for the effects of colloid size
and wettability (strength of the preferential adsorption) on the
phase behaviour of the ternary mixture and, in addition, we
present some new results for the effective pair interactions
between colloids under different conditions of the solvent
reservoir, that is in diffusive (osmotic) equilibrium with the
suspension. Moreover, details on the computational methods
are provided; these were not given in Ref. 1. We continue to
focus on the supercritical, τ > 0, region of the pure solvent
mixture phase diagram, where wetting-induced interactions
such as capillary bridging are absent. The latter can be very
strong and could potentially mask the subtle effects of the
critical Casimir interactions. Our paper is organized as follows:
We describe our lattice model in Sec. II. Sec. III provides
information about the simulation and analysis methods. This
section is aimed at readers who are interested in the important
but more technical details of our MC study and might be
skipped by those readers interested only in the results, which
we present in Sec. IV. Finally, in Sec. V, we summarize and
make some concluding remarks.

II. MODEL

The aim of this paper is to investigate, by means
of computer simulations, the phase behaviour of colloids
immersed in a near-critical binary solvent. However,
simulations of colloids in a molecular solvent with a
bulk correlation length that diverges upon approaching the
critical point pose major challenges from a computational
point of view, as very different length- and time-scales are
involved. Moreover two steps precede our investigations of
the colloid-solvent model, (i) determining the phase diagram
(binodal) and the critical point of the pure solvent and (ii)
obtaining a good understanding of the behaviour of the solvent
adsorbed on the surface of a single model colloidal particle
(interfacial properties). It is therefore highly advantageous
to choose a model for which the bulk phase diagram and
interfacial properties have been established already or can be
carefully investigated. To describe the solvent, we choose an
incompressible nearest-neighbour AB lattice model which is
isomorphic to the well known lattice-gas model of fluids. From
a computational standpoint, lattice-based models are highly
favourable since they are easy to parallelize and are computa-
tionally highly efficient. The lattice-gas model has been used
extensively to study wetting and capillary phenomena, and the
effects of confinement between planar walls.38,39 By drawing
analogies directly between a binary solvent mixture and a
one-component gas-liquid system with regard to phenomena
such as complete wetting, capillary condensation, and critical
adsorption.40 we are provided with a wealth of information on
interfacial properties pertinent to our solvent mixture.

Upon approaching the critical point of the solvent, it is
important to simulate sufficiently large systems to accommo-
date the diverging correlation length.41 A direct consequence
of the diverging correlation length is the critical slowing down
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of the dynamics. It thus becomes increasingly difficult to
simulate fluids as their critical point is approached, although
algorithms exist which try to alleviate these problems by
operating on correlated clusters.42,43 The size asymmetry (big
colloid versus small solvent molecule) in our system is also a
serious computational challenge. These complications forced
us to restrict the present study to two-dimensional systems.

Thus, in our model of the solvent-colloid mixture,
colloids are modelled as hard disks whose centres can
undergo translational motion restricted to an underlying
(solvent) lattice. The solvent and colloids also interact via
nearest-neighbour interactions. Essentially, our model is an
incompressible ABC mixture on a 2D square lattice, and
shares many similarities with the lattice model used by
Rabani et al., to simulate the drying-mediated self-assembly
of nanoparticles.44 Our model also derives inspiration from
the “finely discretized” lattice model of Panagiotopoulos.45,46

To elaborate, colloids C are discretized hard disks (HD) with
a radius R, measured in number of lattice sites, and occupy a
set of sites SC = {ri | d(ri,rC) ≤ R}, where rC are the lattice
coordinates of the disk, ri are the coordinates of lattice site
i, and the function d(a,b) calculates the absolute distance
between a and b using the minimum image convention. The
disks have only translational degrees of freedom, and their
Hamiltonian HC (in the absence of the solvent mixture) is zero
for non-overlapping configurations, and is infinite if any pair
of colloids overlap, or if a colloid and solvent site overlap. We
assign to every lattice site i an occupancy number ni ∈ {0,1}.
A lattice site i is occupied by a colloidal disk, and thus not
available for a solvent species A or B, in the case ni = 1.
For occupancy number ni = 0, lattice site i is not occupied
by a colloidal disk and we assign an occupancy number
si ∈ −1,1 which indicates if it is occupied by solvent species
A or B, respectively. We consider only nearest neighbour
interactions and assign an energy penalty ϵ/2 > 0 for every
nearest neighbour AB pair, to drive AB demixing at sufficiently
low temperatures, and an energy gain of −αϵ/2 with α ≥ 0
for every BC pair, to mimic preferential adsorption of solvent
B on the colloid surfaces. The parameter α measures the
wettability of the colloidal disk. Fig. 2 illustrates the model.

FIG. 2. A schematic representation of the colloid-solvent model with the grid
representing the lattice sites. White cells are occupied by solvent species A
and blue cells by solvent species B. The brown (interior) and black cells
belong to a single colloidal particle, C , of radius R = 6. Particles of species
B adjoining the black cells experience an attractive interaction of strength αϵ.

The total Hamiltonian reads

H = HC +
ϵ

4


⟨i, j⟩

(1 − sis j)(1 − ni)(1 − n j)

− αϵ

4


⟨i, j⟩

ni(1 + s j)(1 − n j), (1)

where the summation runs over the set of distinct nearest
neighbour pairs ⟨i, j⟩. In the absence of colloids, the ABC
model reduces to the simple lattice-gas, or AB model.

III. METHODS

In order to study the structure and phase behaviour of
the ABC model of a binary solvent-colloid mixture, just
described, we choose to use Monte Carlo simulations. To this
end, the following Monte Carlo moves are employed:

• An attempt to flip the solvent occupancy si of every
site, i.e., sites which have ni = 0.

• An attempt to translate every colloidal particle in the
system, along either the x or y axis.

The occupancy flip moves are accepted using the standard
Metropolis criterion for changing the number, NB, of sites
occupied by B,

a(NB → NB ± 1) = min

1,e−β(∆E∓ϵ∆µs) , (2)

with ∆E the difference in potential energy (Hamiltonian
Eq. (1)) of the new and old configuration. The dimensionless
quantity ∆µs = (µB − µA)/ϵ denotes the chemical potential
difference of solvent species A and B, and β = 1/kBT
is the inverse temperature, with kB Boltzmann’s constant.
Note that the acceptance rule (2) depends on the chemical
potential difference ∆µs as the total number of solvent species
Ns = NA + NB is fixed, and thus NB → NB + 1 simultaneously
means that NA → NA − 1. Disk translations are handled using
symmetry operations42 to remove any disk-solvent overlaps.
An attempt is made to move a disk in a random direction x or
y by one lattice site. If no overlaps with other disks occur, the
disk is translated and the sites outlined with a green colour in
Figure 3 are reflected with respect to the new disk position.
The move is then accepted using the Metropolis algorithm.

FIG. 3. Illustration of the translation of a colloid. Here we attempt to move
the disk by one lattice site to the right. Any site that is occupied by solvent
species B (blue outlined with green colour) is reflected with respect to the
new disk position, resulting in the new configuration seen in the right figure.
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To determine the phase behaviour, we use the direct
interfacial or coexistence simulation method47 in combination
with the grand-canonical staged-insertion (GCSI) Monte Carlo
technique.48–50 In spite of the simplicity of our model,
a considerable amount of computational time is needed
to collect data with sufficiently high accuracy. Below, we
describe these techniques, tailored for the ABC model, in
more detail.

A. Direct coexistence simulations

In the direct coexistence method, simulations are
performed in the canonical ensemble at a thermodynamic
state point that lies well inside the two-phase coexistence
region of the ternary mixture. The system will therefore phase
separate according to the lever rule. To facilitate the formation
and subsequent stabilization of the interfaces between the two
phases, an elongated simulation box with a typical aspect ratio
of 2:1 is chosen. The densities of the coexisting phases can
then be computed from the density profiles of the system.
The direct interfacial simulation is computationally the least
expensive method for determining phase coexistence when
compared to alternative techniques. However, the method has
several disadvantages: for finite-sized systems a significant
fraction of particles are at or near the interface, and when
a critical point is approached, the interface becomes very
broad as the surface tension approaches zero. Therefore the
simulations become inaccurate close to the critical point of
the ternary ABC mixture.

For our ABC model, we utilize this technique to determine
gas-solid coexistence since alternative techniques that involve
particle insertions, e.g., grand canonical or Gibbs ensemble
Monte Carlo simulations, are not feasible in the case of
crystal phases. In our direct coexistence simulations we treat
the colloids canonically while the solvent is treated grand
canonically, i.e., we fix the number of colloids NC, the solvent
chemical potential difference ∆µs, the volume V (or area, in
the present case) of the system, and the temperature T . At
fixed ∆µs and reduced temperature τ, we run simulations at
a series of colloid packing fractions, η. If the value of η lies
between two bulk coexisting density values, phase coexistence
is observed directly in the simulations. We can then estimate
the densities of the coexisting phases from the average density
profiles of the system in the direction perpendicular to the
interface.

B. Grand canonical staged-insertion method

In order to get accurate estimates of the colloidal gas-
liquid coexistence region of the phase diagram we perform
grand canonical simulations, i.e., we fix ∆µs,V,T , and the
colloid chemical potential difference, ∆µc = (µc − µAvc)/ϵ ,
with µc the chemical potential of the colloids and vc
the number of lattice sites occupied by a single colloidal
particle. Simulations in the grand canonical ensemble involve
additional Monte Carlo moves which attempt to either insert
or remove colloidal hard disks from the system. Due to the
size asymmetry between the colloids (C) and the solvent
species, and the hard-core repulsion between the hard disks,

the acceptance of such moves becomes prohibitively low.
Recently, a technique which deals effectively with this issue
was introduced by Ashton and Wilding.48 This is based on the
expanded ensemble simulation technique, see Refs. 49 and 50
for more details. Next, we describe the implementation of this
method, called grand canonical staged-insertion (GCSI), for
our ABC model.

The grand canonical partition function of the ternary
system can be written as

Ξ =

{Ω}

e−β(H−ϵ∆µsNB−ϵ∆µcNC), (3)

where {Ω} is the set of all allowed configurations of the lattice,
NC is the number of colloids. Due to the symmetries present
in our model, the ternary ABC system is equivalent to a binary
system where the amount of species B and C is controlled by
fields ∆µs and ∆µc, respectively. The staged insertion method
involves inserting the colloidal (large) particle in stages. That
is, one could insert a small particle and grow it to the desired
size, or insert an ideal-gas particle of the desired size and
couple it to the system energetically in a series of stages.
We use the latter method, and refer to the particle inserted in
stages as the ghost particle. In principle there is no restriction
on the number of ghost particles in the system, however, we
employ a maximum of one ghost particle at any instant of the
simulation.

A ghost particle can transition between M different stages,
where stage m = 0 is equivalent to a system of NC colloidal
particles and m = M − 1 is equivalent to a system with NC + 1
colloidal particles. The ghost particle at a particular stage m
interacts with the solvent particle in the following fashion:
at stage m = 0 the ghost particle is merely an ideal gas
particle, with no interaction with the solvent particles, and
at m = M − 1, the solvent particles at the surface of the
colloid interact with an attractive interaction of strength α,
and solvent particles existing within the hard core experience
an infinite repulsion. Following Ashton and Wilding48 we
introduce a stepwise potential for the intermediate stages.
The ghost particle has an m-dependent field strength αm and
an additional field, with strength σm, associated with the
excluded-volume interaction of the ghost particle with the
solvent sites. A typical set of stage-dependent fields used in
our simulations is

αm = α
m

M − 1
,

σm =
m

M − 1 − m
,

(4)

where we typically employ M = 6 stages. Depending on the
simulated state point, different forms of the fields αm and
σm can provide better acceptance rates. The method increases
slowly the coupling of the ghost particle to the system by
interpolating the two fields, between the fully coupled and
fully decoupled state.

The partition function of the system with the inclusion of
a ghost particle is given by

Ξm =

{Ωm}

e−β(H+H
G
m−ϵ∆µsNB−ϵ∆µcNC), (5)
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where {Ωm} is the set of all allowed configurations including
a ghost particle at stage m, and HG

m is the interaction
Hamiltonian of the ghost particle at stage m,

HG
m = −

αmϵ

4


⟨i, j⟩

gi(1 + s j)(1 − gj)

+
σmϵ

2


i

gi(1 + si), (6)

where gi ∈ {0,1} denotes the presence of a ghost particle at
lattice site i. Note that the grand canonical ensemble is a subset
of the above ensemble. More specifically, this is the subset

for which the stage index m = 0. The expanded ensemble
partition function, is then simply defined as the sum of Ξm
over the different stages, m,

ΞE =

M−2
m=0

Ξm. (7)

To simulate the system in the expanded ensemble, a Monte
Carlo move is introduced which attempts to change the stage
index, as shown in Figure 4. The move is accepted using the
Metropolis criterion with a probability given by

a({NC,M − 2} → {NC + 1,0}) = min
�
1,exp{−β(UG

0 −UG
M−2) + βϵ∆µc − ln(NC + 1)}� , (8)

a({NC,0} → {NC − 1,M − 2}) = min
�
1,exp{−β(UG

M−2 −UG
0 ) − βϵ∆µc + ln NC}� , (9)

a({NC,m} → {NC,m ± 1}) = min
�
1,exp{−β(UG

m±1 −UG
m )}

�
, (10)

where UG
m is the potential energy due to the interactions with

the ghost at stage m, given by Equation (6). During each sweep
we perform k such moves. After every move, we equilibrate
locally the solvent sites in a square of size (2R + 3) × (2R + 3)
centred around the position of the ghost particle, to facilitate
the transition between stages.

C. Transition matrix Monte Carlo technique

As we mentioned earlier, the interface of the ternary
mixture in the two-phase region becomes too diffuse for us
to make reliable measurements close to the critical point
using direct coexistence simulations. In order to determine the
accurate phase coexistence in this case, we use the transition
matrix Monte Carlo (TMMC) technique to calculate the
particle number probability distribution P(NC) in a grand
canonical Monte Carlo simulation. The objective of the
TMMC technique is to estimate the probability of observing
the system at a certain value of a chosen macrostate variable,
Y , i.e., energy, volume, and density. We employ this technique
to determine phase coexistence but also the probability
distribution of the distance between two colloids, P(r), from
which the effective colloid-colloid potential can be calculated.

FIG. 4. Allowable transitions for a ghost particle with M = 6 stages. Note
that a system with NC colloids and a ghost at stage index m =M −1 (5 in the
diagram), the stage at which the ghost becomes fully coupled, is equivalent
to a system with NC+1 colloids and a ghost at stage index m = 0, where the
ghost is fully decoupled.

The TMMC technique is also used to determine the probability
distribution of the number of BC surface interactions, mB,
around a colloid, P(mB; α). This enables us to calculate the
saturation point for the colloid wettability, α, i.e., the value
at which the colloid has essentially only species B solvent
neighbours.

A TMMC simulation involves a regular simulation of
the system with a few additional bookkeeping steps. After
every move which attempts to change the macrostate, Y , of
the system, regardless of whether the move is accepted, we
update a collection matrix in the following fashion:

C(Y → Y ′) = C(Y → Y ′) + a(y → y ′),
C(Y → Y ) = C(Y → Y ) + 1 − a(y → y ′), (11)

where the lower-case y denotes the microstate variable
corresponding to the observed macrostate variable, Y .
Periodically during the simulation the macrostate transition
probability π(Y → Y ′) is estimated as follows:

π(Y → Y ′) = C(Y → Y ′)
W C(Y → W ) . (12)

If we restrict transitions such that any macrostate has only
two neighbouring macrostates, and provided the transition
probabilities are estimated, the macrostate probabilities P(Y )
can be calculated simply using the detailed balance condition,

P(Y )π(Y → Y ′) = P(Y ′)π(Y ′ → Y ). (13)

In order to sample efficiently all macrostates, the acceptance
probabilities are biased according to the multicanonical
approach in the following fashion:

ab(y → y ′) = min
(
1,eη(Y

′)−η(Y )a(y → y ′)) , (14)

where η(Y ) = − ln P(Y ). We begin initially with a flat
distribution for η(Y ). Then routinely as P(Y ) is estimated,
we update the biasing function and the simulations are
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continued until the distribution P(Y ) converges within a certain
acceptable tolerance.

In the grand canonical ensemble, knowledge of the
particle number probability distribution, P(N), allows one
to calculate easily the densities of the two coexisting
phases using histogram reweighting techniques.51 For the
GCSI simulations, we associate the macrostate variable Y ,
with the pair {NC,m}. The dimension of the collection
matrix is (Nmax

C × M − 1) × (Nmax
C × M − 1). In order to

improve the efficiency of the method we split the range
[0,Nmax

C ] × [0,M − 1] into several overlapping windows of
size [N i

C,N
i+1
C ] × [0,M − 1], and simulate the windows in

parallel. The macrostate probabilities, P(Y ), are then estimated
by combining the probabilities from each window in the
following manner:

log P(Yi) = log P(YW (i)
I (i) ) +

W (i)−1
j=0

log P(Y j
n j
), (15)

where Yi is the ith macrostate, Y j
i is the ith macrostate of

window j, and the functions W (i) and I(i) give the window,
and index inside the window of macrostate i, respectively. Y i

ni
is the last macrostate of window i, and Y i

ni
= Y i+1

0 . Note that
when Yi = Y j

n j
= Y j+1

0 , then W (i) = j + 1, and I(i) = 0. The
particle number probability distribution, P(NC), then follows
directly from P({NC,m}), by setting m = 0.

In calculating the two-body effective interaction, U(r),
one particle is kept immobile at position r = (0,0), while
the position of the second is used as the macrostate variable
for the transition matrix. This allows us to calculate the
effective interaction between a pair of colloids as, βU(r)
= − ln[P(r)/P(r → ∞)]. As the particle is only allowed to
translate to the nearest lattice sites, the problem of calculating
the macrostate probabilities can be described as a quasi-birth-
death process.52,53 In order to calculate the probabilities P(r),
instead of Equation (12), we solve the global balance equation
which in matrix notation can be written as

P = πP. (16)

The above equation can be solved easily using an iterative
solver such as successive over-relaxation, if we rewrite it as

Pi+1 = πPi (17)

with the index i denoting the ith iteration of the algorithm.
Using the simulation methods described above, we study

the phase behaviour and structure of a 2D lattice model of
discretized colloidal hard disks in a near-critical binary solvent
mixture. In addition, we investigate systematically the effects
of wettability, α, and the colloid radius, R, on the phase
behaviour of the model colloidal suspension.

IV. RESULTS

A. Phase diagram of solvent

In the absence of colloids, the AB solvent is isomorphic to
the Ising model and in 2D the exact phase diagram is known
analytically from Onsager.54 In Figure 1 we represent the
phase diagram of the solvent in τ vs. xr representation, where

τ = (T − Tc)/Tc is the reduced temperature, with Tc the critical
temperature of the pure solvent, and xr , the composition.
The critical temperature is given by kBTc = 0.567ϵ . We
use the subscript r to denote the solvent reservoir. Due to
the Ising symmetry inherent to the AB lattice model, the
critical composition xr,c = 1/2 and the chemical potential
corresponding to the binodal, at which saturation occurs, is at
∆µs = 0, for τ < 0. For ∆µs < 0 (∆µs > 0) the bulk solvent
mixture is rich in solvent species A(B). In this paper we
show results for colloids which prefer the B species of the
supercritical solvent.

It is important to comment on the choice of our model.
Had we chosen a different model, lattice or off-lattice, to
describe the solvent, we would have needed to compute
and identify with great accuracy the solvent phase diagram.
Moreover, given that a grand canonical treatment of the solvent
is the most accurate way to study the phase behaviour of the
ABC model, lattice models offer computational advantages
over off-lattice models.

B. Adsorption at a single wall

Before we present our results on the phase behaviour of
colloids, we study first the adsorption behaviour of the solvent
mixture at a flat planar wall, which can be regarded as an
infinitely large colloid. We consider only nearest neighbour
interactions between solvent species B and the wall. As
described in Section II, the wettability parameter, α, is a
measure of the preference of the substrate for solvent species
B. For α = 0, the planar wall prefers neither solvent species
and is termed neutral. For such a wall, and ∆µs = 0, there
is no ordering at the surface,55 due to the perfect AB (Ising)
symmetry.

In this work we consider only states where the solvent is
super-critical, i.e., τ > 0, and surfaces with wettability α > 0.
In the limit τ → 0+, the solvent exhibits critical adsorption,
i.e., the thickness of the adsorbed film is determined by ξ, the
bulk correlation length of the solvent.2 Thus, as the critical
point is approached, the presence of a wall can be felt at very
large distances, set by the diverging ξ. In Figure 5 we present

FIG. 5. Density profiles of species B adsorbed on a planar wall with wet-
tability α = 0.6, for ∆µs = 0, and three reduced temperatures τ. In the main
figure, the distance from the wall z is scaled with the correlation length of the
pure solvent ξ = 0.567τ−1. The inset shows the unscaled profiles. ρc is the
critical density.
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the density profiles of species B adsorbed on a planar wall
with α = 0.6, at reduced temperatures, τ = 0.025, 0.05, and
0.075, for ∆µs = 0, i.e., at fixed critical composition. ρ(z) is
simply the local composition at distance z from the planar
wall, with z measured in lattice spacings. The critical density,
ρc = ρ(∞), is the critical composition, i.e., ρc = xr,c = 1/2.
We choose to use the term density profile since this makes clear
the connection with studies of real (off-lattice) mixtures. The
scaling in Figure 5 is motivated by general considerations.2

Distances from the wall are scaled with ξ, the bulk correlation
length, and the deviation from the critical density is scaled by
τ−β, where the order parameter critical exponent β = 1/8 in
D = 2. The plot demonstrates excellent data collapse to the
universal scaling prediction and confirms that the simulations
can tackle efficaciously near-critical adsorption phenomena.
Note that the scaling described in Figure 5 is applicable only
for ∆µs = 0. For non-zero values of ∆µs a field (chemical-
potential) dependent variable enters the scaling relation.

The thickness of adsorbed films is highly sensitive to
the thermodynamic state of the solvent reservoir. Thick
adsorbed films are also observed far from the critical point
of the solvent. In particular, these can arise for τ < 0 when
wetting films develop. We refer to adsorption far from the
critical scaling regime as preferential adsorption; this is a
non-universal phenomenon. Here the detailed nature of the
wall-fluid interactions plays a key role in determining the
film thickness, and hence the effective interactions between
colloidal particles suspended in the solvent.

C. Neutral vs. attractive colloids

We now turn our attention to a system of many colloids
immersed in a supercritical binary solvent mixture, τ > 0, and
relatively poor in the colloid-preferred species B, ∆µs ≤ 0,
i.e., we consider states corresponding to those in the hatched
region in Figure 1. This choice precludes solvent-mediated
colloidal aggregation arising from complete wetting and
capillary condensation, i.e., formation of capillary bridges.56

To this end, we consider a colloidal suspension at a fixed
packing fraction η (the fraction of lattice sites occupied by
colloids), and we treat the solvent grand-canonically, i.e., we
view our system as being in thermal and diffusive contact
with an AB solvent reservoir with composition xr that fixes
τ and ∆µs. Generally, the ABC mixture has composition
x , xr . Here x denotes the fraction of sites occupied by B
when the colloids are present. Note that the variable τ merely
sets the temperature of the reservoir and is not a measure of
distance from criticality of the ternary mixture. We consider
first the case of neutral colloids of radius R = 6, which have no
preference for species A or B (α = 0). In Fig. 6 (Top) we show
a system of these colloids (right) at τ = 0.005 and ∆µs = 0 in
equilibrium with the solvent reservoir (left). The visualization
reveals the tendency of the colloids to preferentially adsorb
at the ‘interfaces’ between the instantaneous (supercritical)
A and B domains. This feature, which resembles the binding
of colloids to static air-liquid or liquid-liquid interfaces by a
Pieranski potential,57 is captured here owing to the Brownian
character of the colloids. Fig. 6 (Bottom) shows a visualization
for the same parameter set, except now the colloids strongly

FIG. 6. Top: Typical configurations of a ternary ABC mixture (right) with
neutral colloids with no preference for A or B (radius R = 6, α = 0) at
colloid packing fraction η = 0.11 and solvent composition x = (1−η)/2 in
equilibrium with a solvent reservoir (left) with η = 0, ∆µs = 0, xr = 1/2,
τ = 0.005, and bulk correlation length ξ ≈ 19R. Bottom: Typical configu-
rations of a ternary ABC mixture (right) with colloids strongly preferring
solvent B (R = 6, α = 19.0) at packing fraction η = 0.11 and solvent compo-
sition x > (1−η)/2 in equilibrium with the same solvent reservoir (left) as in
Top. The system consists of 512 × 512 lattice sites and in both the Top, and
Bottom, the number of colloids is NC = 64.

prefer solvent B (α = 19). The strong B-adsorption on the
colloids and the unfavourable AB interaction lead to an overall
excess of B, thereby driving the ABC mixture far away from
criticality; the solvent correlation length is observed to be
smaller than the particle size. This is in sharp contrast to
Fig. 6 (Top) where the correlation length of the solvent is
hardly altered by the presence of neutral colloids.

D. Phase behaviour and structure

The results in Subsection IV C refer to ∆µs = 0. Here
we focus on ∆µs < 0 where colloidal phase transitions occur.
As mentioned earlier, due to the symmetries inherent in our
model, the ternary ABC mixture is equivalent to a binary
mixture and therefore any binodals are a two-dimensional
manifold in the three-dimensional η vs. ∆µs vs. τ space. We
determine cuts of this manifold at certain fixed temperatures.
Here, we expand upon key results from our earlier work on
the ABC model.1

Once again, we fix the parameters R = 6 and α = 0.6, and
determine the binodals at three different fixed temperatures
τ = 0.025, 0.05, and 0.075, as shown in Figure 7. We
choose these temperatures as the bulk correlation length,
ξ = 0.567/τ, of the solvent reservoir evaluated at ∆µs = 0,
is then comparable to the size of the colloid. We plot the
binodals in the η vs. ∆µs representation. In this representation
the tie-lines are horizontal. We observed stable colloidal
gas (G), liquid (L), and crystal (X) phases.1 There is broad
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FIG. 7. Binodals of the ABC ternary mixture, computed using a combi-
nation of the GCSI-TMMC method for near-critical ∆µs, and the direct
coexistence method for the remaining points, for three fixed temperatures
τ = 0.025 (green), τ = 0.05 (orange), and τ = 0.075 (blue) with R = 6 and
α = 0.6. In this solvent chemical potential, ∆µs, vs. colloid packing fraction,
η, representation, the tie lines are horizontal. The red circles and black lines
in the inset are the critical points and binodals obtained by least-squares
fitting of Equation (18). Note that the vertical dashed lines denote fluid-solid
coexistence for pure hard disks. This plot reproduces the data in Fig. 3 of
Ref. 1 and now incorporates the fitting to Eq. (18).

G-X coexistence for ∆µs < −0.1. The vertical dashed lines
in Figure 7 correspond to the (discretized) hard-disk phase
behaviour that is recovered in the limit ∆µs = ±∞.1,37 In the
inset to Figure 7 we have also plotted estimates of the critical
points, obtained by a least-squares fit to the equation,58–61

η± − ηc = A
�
∆µs − ∆µcs

�
± 1

2
B
�
∆µs − ∆µcs,

�β (18)

where η± stands for colloidal liquid/gas packing fraction, with
ηc its critical value, and A and B, as well as the exponent, β,
are fit parameters. Note that we have substituted temperature
with the solvent chemical potential, ∆µs, with ∆µcs being the
solvent chemical potential at the critical point of the ternary
mixture. It is important to realize that Equation (18) is not an
exact relation, and under this understanding, we fit it to our
results mostly as a guide to the eye.

In the remainder of this work we shall focus on the
G-L coexistence. In Figure 8 we show a visualization of
G-L coexistence for τ = 0.05 and ∆µs = −0.04. We note the
presence of two G-L interfaces and that the composition of the
solvent in the coexisting phases is very different. The liquid
phase, L, dense in colloids (orange disks), is extremely dilute
in species A (white). By contrast, the gas phase, G, dilute

FIG. 8. Simulation snapshot of a system of 256×512 lattice sites and 348
colloids with R = 6 and α = 0.6, at τ = 0.05, showing gas-liquid (G-L) coex-
istence at ∆µs =−0.04.

in colloids, is rich in A. Indeed, the solvent composition in
G is close to that of the reservoir: x ≈ xr . This is important
to note as several theoretical approaches that study the phase
behaviour of a colloid solvent mixture treat the solvent as
a uniform background with a fixed composition in both the
coexisting phases.11–13,36

The G-L coexistence shown in Figure 7 terminates at a
critical point (see red circles) that shifts to lower ∆µs and
higher packing fraction, η, with increasing τ. A signature of
criticality is the divergence of the partial structure factors,
Sab(k), in the low k limit. We note that in any mixture, the
solvent-solvent (ab = BB), colloid-colloid (ab = CC), and
solvent-colloid (ab = BC) pair correlation functions should
all decay with the same true correlation length.62 Calculations
of SBB(k → 0) vs. η yield a rough estimate of the G-L
critical point. In Figure 9(a) we show the BB structure factor
defined as SBB(k) = (1/N) nB

k nB
−k


, where nB

k is the Fourier
transform of the solvent species B occupancy profile.63 We
compute SBB(k) at τ = 0.025 and ∆µs = −0.003 15 and five
values of η, i.e., the state points indicated by dots in the phase
diagram shown in the inset of Fig. 9(a). In Fig. 9(b) we plot
the limit SBB(k = 0), obtained from a linear extrapolation to
k = 0 of the simulation data, vs. η. This shows a maximum
corresponding to the state closest to the G-L critical point.
Fig. 9(a) displays data for two values of η (0.1724 and
0.3276) for which SBB(k) exhibits pronounced oscillations.

FIG. 9. (a) Partial structure factor, SBB(k), of the solvent computed at
τ = 0.025, ∆µs =−0.003 15, R = 6, at different values of colloid packing
fraction: η = 0.0 (green), η = 0.0345 (brown), η = 0.1035 (blue), η = 0.1724
(orange), and η = 0.3276 (cyan). For clarity, the curves were shifted by 0.5 on
the log-scale. The inset shows the G-L binodal for τ = 0.025 (black diamond
symbols). (b) The value of the structure factor linearly interpolated to k = 0,
SBB(k → 0) vs. η, at ∆µs =−0.003 15.
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The period of these is about ∆k ≈ 0.54/a, with a the lattice
spacing, which implies that the wavelength of oscillations in
gBB(r) is about 12a, the diameter of the colloidal hard disks.
Examination of plots of gab(r) (see Fig. S3 of Ref. 1) shows
that all three oscillate with roughly this wavelength. In other
words, the (large) colloidal length scale determines the form
of BB and BC correlations, as well as CC correlations, at
sufficiently large packing fraction η.

1. Phase behaviour: Dependence on α

Here we discuss how the phase behaviour of the model
depends on the wettability α of the colloids C. Recall that
values of α > 0 cause species B to preferentially adsorb on
the surface of colloid C. We have shown that phase separation
into colloidal gas, liquid, or crystal phases then occurs for
∆µs < 0, i.e., where the bulk solvent reservoir is rich in species
A. Clearly, the phase separation is driven by a competition
between bulk, favouring A, and colloid adsorption, favouring
B. When ∆µs > 0, so that the bulk reservoir is rich in species
B, there is no phase separation. By the same argument, if we
set α < 0, then phase separation will be observed for states
where the bulk prefers species B, i.e., ∆µs > 0.

The role of α in our model is to promote the formation
of an adsorption layer around each colloidal particle. This
extends, due to solvent-solvent correlations, up to a distance
given by the solvent correlation length ξ. Above a certain
value of α the surface of the colloid remains saturated with
particles of species B. In Figure 10 we show mB, the fraction
of BC interactions on a single colloidal particle, as a function
of the wettability, α, for reduced temperature τ = 0.025, and
∆µs = 0 and−0.1. As expected, for∆µs = 0, mB = 1/2 for the
neutral case α = 0. These results are obtained by calculating
the probability P(mB; α) using TMMC (see Section III C), and
subsequently using histogram reweighting in the wettability,
α. This procedure is similar to that described in Ref. 64. From
Figure 10 we see that the surface layer is saturated at α ≃ 3.

In Figure 11 we plot the G-L coexistence region of the
phase diagram for four different values of the wettability α
at a fixed temperature τ = 0.025 and colloid radius R = 6.
The binodals are computed from probability distributions
using the TMMC technique (see Section III C) for a system
size L = 256, and broaden upon increasing the wettability.
However, for α beyond a saturation value of about 4.0, the

FIG. 10. Fraction of BC interactions, mB, for a colloid of R = 6, as a
function of the wettability, α, at temperature τ = 0.025, for two different
values of the solvent chemical potential, ∆µs.

FIG. 11. G-L binodals for the full ABC ternary mixture plotted as hard-disk
packing fraction η vs. solvent chemical potential ∆µs for α = 0.6 (green),
α = 1.0 (orange), α = 5.0 (blue), and α = 19.0 (pink). The temperature
τ = 0.025 is fixed, and R = 6. The red circles and black lines are the critical
points and binodals obtained by least-squares fitting of Equation (18). Note
that for α = 5.0 and 19.0, the binodals are extremely close.

binodals are unchanged. Provided α is sufficiently large that
the surface layer around the colloid is occupied fully by B,
i.e., mB = 1 in Fig. 10, G-L coexistence remains unaffected by
stronger wettability. Note that for α = 0.6, the value chosen
for the majority of our studies, mB is typically about 0.8–0.9
for states close to the colloidal critical points.

The results in Fig. 11 correspond to a much narrower
range of ∆µs than in Fig. 7. In addition to broadening the
binodals, increasing α shifts the colloidal critical point to
smaller values of η and to smaller values of |∆µs |. This trend
is similar to that found in the mean-field treatment of Edison
et al. (see Fig. 7 of Ref. 37).

For∆µs < −0.1, we observed broad G-X coexistence (not
shown in Figure 11) similar to that shown in Figure 7. In this
regime lattice effects become important and below we explain
this in more detail.

2. Phase behaviour: Dependence on R

Next we discuss the dependence of the phase behaviour on
the radius of the colloids, R. We computed the phase diagrams
of three systems where the colloids have radii R = 6, R = 9,
and R = 12. Ideally we would like to investigate colloid sizes
which are much larger ∼O(100). However, determining the
phase behaviour of these systems using the aforementioned
techniques is not computationally feasible. The sizes we
investigate are more representative of nanoparticles in solvents
than micron-sized colloids. The G-L binodals are computed
from probability distributions using the TMMC technique (see
Section III C). We used system sizes of L = 256, 384, and 512
for colloid radii R = 6, 9, and 12, respectively. In Figure 12
we show the G-L binodals at a fixed temperature τ = 0.025.
We set the wettability α = 0.6 for all three cases. Increasing
the radius broadens the binodal and shifts the colloidal critical
point to larger values of η and smaller values of |∆µs |. The
same trend is found in Fig. 8 of Ref. 37. Note that for R = 12,
the binodal is extremely flat in the neighbourhood of the
critical point.

As a remark concerning the critical behaviour of the
ternary mixture, we note that although the various liquid-gas
coexistence curves in Figs. 11 and 12 appear to show different
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FIG. 12. G-L binodals for the full ABC ternary mixture plotted as hard-disk
packing fraction η vs. solvent chemical potential ∆µs, for particle radius,
R = 6 (green), R = 9 (orange), and R = 12 (blue). The temperature is fixed
at τ = 0.025 and wettability α = 0.6. The red circles and black lines are the
critical points and binodals obtained by least-squares fitting of Equation (18).

degrees of “flatness” in the vicinity of their critical points,
all the ternary mixtures must lie in the 2D Ising universality
class. In other words, were we able to perform simulations for
increasing system sizes at states sufficiently close to criticality,
and employ finite-size scaling arguments, we would find the
critical exponent in Eq. (18) is β = 1/8. Current resources do
not permit such an analysis.

E. The effective two-body potential

In this subsection we present some results for the effective
pair potential, U(r), obtained from our MC simulations, using
the method described in Section III C. The potentials shown
in Figure 13, for R = 6 and α = 0.6, are calculated at the
solvent state points given in the inset, i.e., τ = 0.025 and
three different values of ∆µs. For the state at the critical
composition, ∆µs = 0, the potential is slowly decaying. Recall
that the correlation length ξ ∼ 23 lattice spacings at this state
point. For ∆µs = −0.01, slightly off the critical composition,
the potential decays faster but the range is comparable
with ξ. However, the minimum of U(s), which occurs at

FIG. 13. Effective two-body potentials,U (s), between two colloids of radius
R = 6 and α = 0.6, suspended in a solvent at τ = 0.05, for ∆µs = 0 (green),
∆µs =−0.01 (orange), and ∆µs =−0.2 (blue). Here, s is the surface to
surface distance, s = |r⃗ |− (2R+1). The inset shows the phase diagram of the
AB solvent in the ∆µs vs. τ representation. The red dot denotes the solvent
critical point. The other dots show the state points at which the effective
potential is calculated.

contact between the disks, s = 0, is about 5 times deeper
than for ∆µs = 0. Moving further into the A-rich phase,
∆µs = −0.2, the strength of the attraction is reduced. More
strikingly, the range is dramatically reduced and the potential
becomes “sticky.” This variation of U(s) with ∆µs leads
to a characteristic variation in the reduced second virial
coefficient, B∗2 — see Fig. 4 in Ref. 1. The net attraction
between the colloids is strongest at off-critical compositions
of the solvent, consistent with results of studies of the critical
Casimir attraction between walls.11,27,28

As we model the colloid-fluid interactions via nearest
neighbour interactions, and the surface perimeter of our
colloid is discretized, the effective two-body potential between
colloids is not smooth. Therefore certain solvent sites right
next to the colloid can have more than one colloid site as its
neighbour, as is clear from Fig. 2. The surface field induced by
the colloid is not homogeneous and under certain conditions
this heterogeneity plays an important role.

In Figure 14 we plot the effective two-body potential
between colloids of radius R = 6 with α = 0.6, determined
at ∆µs = −0.01 and ∆µs = −0.5, for temperature τ = 0.05.
The effective potential close to the surface of the colloid
is heterogeneous for both chemical potentials, i.e., U(x, y)
, U(x2 + y2). It turns out that these lattice effects can have
a pronounced effect on phase coexistence. The lattice effects

FIG. 14. Effective two-body potential, U (x, y), between two colloids
of radius R = 6 and α = 0.6 suspended in a solvent at τ = 0.025 for
(a) ∆µs =−0.01 and (b) ∆µs =−0.5. The area in white is inaccessible
due to the hard-core repulsion. For (x2+ y2)1/2≈ 2R, the potential displays
lattice-induced heterogeneity.
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play no role in G-L coexistence where typically a solvent film
spanning several lattice sites is found preferentially adsorbed
on the surface of a colloid and the range of the effective
interaction is many lattice sites, as in Fig. 14(a). However,
they do play a significant role in G-X coexistence, i.e., the
crystal phase is facilitated by the colloids aligning along
the more energetically favourable directions. Recall that the
crystal phase typically becomes stable for ∆µs . −0.1 (see
Fig. 7) where for α = 0.6, mB, the fraction of BC surface
interactions is . 0.5 (see Fig. 10). In this regime it is the
relatively low surface occupancy that determines the short-
range of the effective potential: this is only 1-3 lattice sites in
Fig. 14(b).

In our earlier study1 we reported results of simulations of
the colloidal phase diagram for an effective system, namely
one in which the colloidal particles interact solely via the pair
potential U(r) determined at solvent state points (∆µs and τ) as
described above. We re-iterate that whilst the effective system
does exhibit G-L and G-X coexistence, the G-L binodals are
not close to those computed for the full ternary mixture with
R = 6 and α = 0.6—see Fig. 4(d) of Ref. 1. In particular
the pair-potential treatment overestimates the extent of G-L
coexistence and underestimates the shift of the critical point
from that of the solvent reservoir. We return to this point later.
Once more, we note that lattice effects are not important for
G-L coexistence. On the other hand, the effective pair-potential
treatment provides a rather good account of G-X coexistence,
i.e., the binodals for ∆µs < −0.1 in Figure 7, provided lattice
effects are incorporated properly. From our present study we
conclude that an effective-pair potential treatment can capture
the gross features of the phase behaviour but is very unlikely
to provide a quantitative description. It would be instructive to
perform detailed comparisons for other radii and wettability
strength.

V. CONCLUSION

Using a simple lattice model we have investigated the
phase behaviour of colloidal particles immersed in near-
critical solvents. Our model is a minimal one for treating
colloidal self-assembly mediated by the long-ranged effective
interactions that arise from long-ranged correlations in an
explicit solvent. The choice of model was motivated in
Sec. II. The size asymmetry between the (big) colloid and the
(small) solvent particles and the requirement to treat a dense
solvent grand canonically set severe computational demands.
In addition, having accurate estimates of the binodal of the
colloid-free solvent and knowledge of the solvent’s adsorption
(wetting) properties at the surface of a single (very large)
colloid are important prerequisites. Such considerations led
us to treat a 2D lattice model for the AB solvent, incorporating
hard disks representing the colloids (C), that was introduced
in a recent Letter.1 There we presented results for the phase
behaviour of the ABC model for colloids of a particular radius
R = 6 and colloid-solvent adsorption strength (wettability)
α = 0.6. In the present work we have provided details of
the computer simulation methods employed and extended
our earlier study by (i) investigating systematically the phase

behaviour of our model as a function of R and α, and (ii) by
determining the structure of the ternary liquid mixture.

In Ref. 1 we found that the critical point of the ternary
colloid-solvent mixture shifts significantly from that of the
colloid-free solvent upon adding a small volume fraction η
of colloids. Here we show that on increasing α, i.e., the
preference of colloid C for species B, at a fixed reduced
temperature τ and radius R = 6, the G-L binodals broaden
and the G-L critical point shifts towards the critical point of
the solvent. However, there is a saturation value of α above
which the phase coexistence is unchanged. For the data shown
in Fig. 11, the saturation value of α is ≃ 5.0. The phase
behaviour with respect to the size of the colloid R is arguably
more important than that with respect to α. Upon increasing
R at fixed τ and α, the G-L binodal becomes much flatter,
and the critical point shifts to larger colloid fraction η (see
Figure 12). Unfortunately, investigating larger values of R
pertinent to the regime of real colloidal systems is constrained
by computational resources. It is significant that the trends
found by increasing both α and R are similar to those found in
the mean-field treatment of Ref. 37 for the same model. This
observation suggests that excluded volume considerations,
incorporated in the mean-field treatment, are important in
determining G-L coexistence and, indeed, the overall phase
behaviour of our model.

One of the key advantages of our ternary mixture model
is that it enables us to investigate fractionation of the solvent;
the composition x of the solvent is generally different from
that of the solvent reservoir xr . This is illustrated (see Fig. 8)
for coexisting colloidal liquid and gas phases. In the dense
liquid phase, L, the solvent is very rich in the solvent species
B favoured by the colloids. In principle we could calculate the
values of x from our simulation results for the two coexisting
phases. That would allow us to make further contact with
the mean-field treatment of Ref. 37. Note that unlike the
results for ∆µs versus η shown here and those for xr versus
η given in Fig. 3(c) of Ref. 1, the tie-lines are not horizontal
in the x versus η representation—see Fig. 3 of Ref. 37.
Fractionation arises naturally in our approach that treats a
full ternary mixture. By contrast, approaches such as those of
Mohry et al.11–13 and Nguyen et al.36 that treat the solvent
as an implicit background, whose role is merely to induce
an effective pairwise colloid-colloid interaction, struggle to
incorporate this important element of the physics of the phase
behaviour.

Results for the partial structure factors shed further light
on the nature of criticality in our model ternary mixture.
Sufficiently close to a critical point, all the partial structure
factors Sab(k) exhibit Ornstein-Zernike-like (OZ) behaviour
at small wavenumbers k characterized by a single (OZ)
correlation length. We chose to focus on SBB(k), i.e., on
solvent species BB correlations. However, we could equally
have measured the BC or CC partial structure factors.
Although these are quite different from SBB(k) plotted in
Fig. 9(a), the modulus of each Sab(0) should exhibit the same
dependence on η as that shown in Fig. 9(b). That is, proximity
to the critical point is signalled by a diverging Sab(0) for any ab
pair. This phenomenon of “critical point infection” is manifest
more directly in real space. The quantity r (D−1)/2(gab(r) − 1),
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as r → ∞, decays exponentially with a common correlation
length ξ.62 Here, gab(r) is the pair correlation function for
species ab and, as before, D is the spatial dimension. As the
critical point is approached, ξ diverges.

Now consider an extremely dilute colloidal suspension
that may or may not be close to criticality of the solvent,
where the colloid volume fraction η → 0. Then, for mixtures
where all species interact with short-ranged potentials,
r (D−1)/2(gCC(r) − 1) decays as e−r/ξ where, in the dilute
colloid limit, ξ is determined by correlations in the pure
solvent. In this limit, gCC(r) = exp(−βφeff(r)), and it follows
that the effective colloid-colloid pair potential φeff(r) must
decay as e−r/ξ/r (D−1)/2 as r → ∞. Suppose now the solvent
is only very slightly removed from its criticality. The
solvent correlation length ξ is long and sets the length
scale determining the range of φeff(r). This simple argument
describes the origin of the tail of the critical Casimir
interaction between two identical colloids in the framework
of liquid mixtures. Suppose now we have a more concentrated
suspension of colloids. Measuring SCC(k) or gCC(r) at
given η, τ and xr will yield the correlation length of the
concentrated ternary mixture, not that of the pure solvent,
under the given conditions. This observation is relevant for
experimental work34,35 that attempts to extract a reliable
φeff(r), characteristic of the pure solvent, from measurements
of gCC(r). Performing an experiment that extracts reliable
data in the dilute limit is not straightforward. Given that the
critical point shifts rapidly with η, values extracted for ξ, and
hence φeff(r), are likely to be very sensitive to η.

We have focused on the supercritical regime of the solvent
phase diagram—the box in Fig. 1. The same ABC model and
computational techniques could be used to investigate the sub-
critical region of the solvent reservoir. In this regime (τ < 0,
∆µs < 0) strong preferential adsorption can lead to a bridging
transition65 between two identical colloidal particles. This is
equivalent to rounding the well-known capillary condensation
transition of a binary mixture confined between two identical
planar substrates.56 Once again it is important that the bulk
solvent prefers species A, while the colloids prefer the phase
rich in B, leading to a capillary bridge of the latter phase.
The resulting SM interaction can be strongly attractive66–70

Unlike the critical Casimir SM interactions, these non-critical
interactions are non-universal and are dependent on the precise
nature of the local interactions between a colloid and the binary
solvent at the given state point. Our model can incorporate
these. Indeed we have observed bridging phenomena in our
simulations under subcritical conditions.

The results presented here are relevant to experimentally
realisable quasi-2D systems such as protein assembly in
plasma membranes of living cells where it is argued
Critical Casimir forces might arise between macromolecules
embedded in a biomembrane,71,72 an observation that
has spurred careful density matrix renormalization group
calculations of the scaled Casimir force between disks.73 In
our earlier discussion we implied that our results should also
be relevant to 3D systems. The results of a mean-field theory
presented in Ref. 37 suggest that the fine details of solvent
criticality, specifically the precise nature of two-body critical
Casimir forces, are not too important in determining the main

features of the observed phase coexistence. Thus, we speculate
that the phase behaviour in 3D will be qualitatively similar to
the currently investigated 2D case. Preliminary results from
simulations of a 3D system of hard spheres embedded in a 3D
AB lattice-gas, which we hope to publish in the near future,
appear to confirm our speculation.

Equipped with this insight, we conclude by returning to
two pertinent experimental studies of near-critical colloidal
aggregation. We focus first on the pioneering study of Beysens
and Estève,17 mentioned in Section I, who used light scattering
to investigate silica colloids suspended in a water-lutidine
mixture. Recall this solvent exhibits a lower demixing critical
point with Tc = 34◦ and lutidine mass fraction of xc = 0.286.
The colloids prefer lutidine over water and in Fig. 2 of Ref. 17,
the authors plot the thickness of the lutidine layer adsorbed on a
silica colloid. At fixed solvent concentrations xLu lying slightly
below xc, the thickness increases rapidly with increasing
temperature until the aggregation line is reached; this lies
about 0.4 K below the binodal. The observed increase in layer
thickness at state points approaching the aggregation line,
residing in the water-rich region, is a signature that strong
preferential adsorption drives the aggregation phenomenon.
The inset to our Fig. 5 shows that the (excess) adsorption,
obtained by integrating the density profiles, increases rapidly
with decreasing τ, approaching the critical point. Fig. 4(a)
of Ref. 1 shows the thickness of the B-rich film increasing
with decreasing τ, for ∆µs slightly negative, corresponding to
solvent compositions slightly below xr,c. Clearly our model
system incorporates correctly the preferential adsorption at
a single colloid. It also incorporates the crucial competition
between the bulk solvent preferring a certain species (A)
and the colloid preferring another (B), which drives the
aggregation. In a typical experiment a fixed number of
colloids is suspended in a solvent at fixed composition,
xr , and the temperature is changed to induce (reversibly)
aggregation. Then, for fixed η, the locus of points in the
T versus xr plane, where aggregation is first observed, is
termed an aggregation line—see, e.g., Fig. 3 in Ref. 17. In
Ref. 37 aggregation lines were calculated using the mean-field
treatment, taking the view that aggregation corresponds to the
onset of colloidal phase separation. Results are shown for
η = 0.05 and 0.1 in Fig. 5 of this paper. The shape of the
aggregation lines is similar to that shown in Ref. 17 when we
recognize that our model has an upper, rather than a lower,
demixing critical point. In principle we could also compute
aggregation lines from our simulation results but this would
be hugely expensive. Given the mean-field treatment captures
the main features of the simulation phase diagrams, we would
expect to find the same shapes for aggregation lines from our
simulations. Quantitative comparisons with experiment are
inappropriate. In Ref. 17 results near aggregation imply the
ratio ξ/R is at most 0.2 which should be contrasted with a
typical value of about 3 from theory and simulation.37

The second experimental study we consider is the
confocal microscopy (real-space) investigation34 of poly-n-
isopropyl acrylamide (PNIPAM) colloidal particles suspended
in quasi-binary solvent of 3-methyl pyridine, water, and heavy
water which has a lower critical temperature and a critical
methyl pyridine mass fraction xc = 0.31. PNIPAM particles

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  79.7.147.103 On: Sun, 04 Sep

2016 22:52:07



084902-14 Tasios et al. J. Chem. Phys. 145, 084902 (2016)

swell in the solvent; near the critical point the particle radius
was about 250 nm. In the experiments the initial packing
fraction was about 0.02 and the mass fraction of methyl
pyridine was fixed at 0.25, i.e., substantially below the critical
composition. Remarkably, upon increasing the temperature
towards that of the solvent binodal, colloidal gas, liquid,
and crystal phases were observed. Specifically, condensed,
liquid-like aggregates were first observed at 0.3 K below
the temperature of the solvent binodal, and upon raising the
temperature a further 0.1 K the particles inside the aggregates
formed an ordered fcc crystal.34 Although our model certainly
yields stable gas, liquid and crystal phases it is not clear
that it can account for the sequence of phases found in
Ref. 34. As observed in Ref. 37, changing the composition
of the solvent reservoir does lead to considerable variation
in the τ versus η phase diagrams of our model. Making
direct comparisons is not straightforward. Given the PNIPAM
particles are very large and there is substantial deviation
from the critical composition, the ratio ξ/R is very small
in these experiments and is typically much smaller than in
the regime investigated in the present study. Therefore one
should not rule out the possibility that aggregates observed in
Ref. 34 arise from specific (non-universal) solvent-mediated
interactions. Whether these are captured properly by the
“Casimir” pair potentials extracted from measurements of
gCC(r) in the dilute colloidal gas is open to discussion.
Bearing in mind the ratios of length scales, our study
is, perhaps, more representative of nanoparticles suspended
in a near-critical solvent. In this respect it suggests that
such systems might exhibit very rich phase diagrams with
the potential for a wide range of colloidal self-assembly
controlled by sensitive tuning of temperature and solvent
composition.
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