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Particles adsorbed at a fluid-fluid interface induce capillary deformations that determine their
orientations and generate mutual capillary interactions which drive them to assemble into 2D ordered
structures. We numerically calculate, by energy minimization, the capillary deformations induced by
adsorbed cubes for various Young’s contact angles. First, we show that capillarity is crucial not only for
quantitative, but also for qualitative predictions of equilibrium configurations of a single cube. For a
Young’s contact angle close to 90°, we show that a single-adsorbed cube generates a hexapolar interface
deformation with three rises and three depressions. Thanks to the threefold symmetry of this hexapole,
strongly directional capillary interactions drive the cubes to self-assemble into hexagonal or graphenelike
honeycomb lattices. By a simple free-energy model, we predict a density-temperature phase diagram in
which both the honeycomb and hexagonal lattice phases are present as stable states.
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Over a century ago, it had already been observed that sub-
mm sized particles strongly adsorb at fluid-fluid interfaces
[1,2]. Indeed, a fluid-fluid interface of area A and surface
tension γ has a free energy cost γA, and particles can reduce
A by adsorbing at the interface. The bonding potential
is usually strong enough to allow stable monolayers of
particles. Since a pioneering study by Pieranski [3], a lot of
interest has been devoted to these quasi-2D systems, which
have many applications, e.g., emulsions [4–9], coatings
[10,11], optics [12], and new material development [13].
Because of the contact angle constraint imposed by Young’s
Law, an adsorbed particle in general induces deformations
in the shape of the fluid-fluid interface. These so-called
capillary deformations are responsible for capillary inter-
actions between the adsorbed particles [14,15], which
regulate the particle self-assembly at the interface [16–18].
These interactions can be tuned by varying, e.g., the particle
shape and chemistry [10,19–21], or the curvature of the fluid-
fluid interface [22–24]. Very recent experiments [25–27]
have shown that adsorbed nanocubes with truncated corners
can assemble into graphenelike honeycomb and hexagonal
lattices. The origin of these structures is unknown, although
ligand adsorption and van der Waals forces between specific
facets of the truncated cubes have been suggested [25].
In this Letter, however, we show that generic cubes with
homogeneous surface properties generate hexapolar capil-
lary deformations which are largely responsible for the
observed structures. Cubes of other materials or dimensions
could, therefore, form similar structures.
A primary step for understanding adsorbed-

particle systems is the study of an isolated particle at a

macroscopically flat fluid-fluid interface. Important issues
are the equilibrium configuration of the particle at the
interface [28–31] and the adsorption energy [32–34] which
depend on the particle shape and chemical properties.
A common approximation (following Pieranski [3]) is to
assume the fluid-fluid interface to be flat even when the
particle is adsorbed, i.e., to ignore the capillary deforma-
tions induced by the particle. In this approximation, which
is geometrically far from trivial for nonspherical particles,
the (free) energy of the particle configuration follows from
the particle surface areas below and above the interface
plane and from the intersection area of the particle with the
interface plane. Numerical techniques employed for these
calculations are, e.g., the triangular tessellation technique
(TTT) [35–39], and a hit and miss Monte Carlo method
[40,41]. However, in this Letter, we will show that
neglecting the capillarity can lead to significant over-
estimates of the energy, and even to erroneous equilibrium
configurations of the particle. We calculate the capillary
deformations induced by the particle with a new numerical
method, recently introduced [42] for 2D systems and here
adapted to study 3D adsorbed particles. Our approach
differs from Ref. [43], where the linearized Young-Laplace
equation is solved, with the location of the triple contact
line imposed a priori rather than by energy minimization.
First, we briefly illustrate our method. When no particle

is adsorbed, the fluid-fluid interface is the flat plane z ¼ 0,
with area A. Then, we introduce a rigid particle with a fixed
position and orientation defined by the polar angle φ of
the particle’s vertical axis with the interface normal, the
internal Euler angle ψ around the particle’s vertical axis,
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and the height zc of the particle’s center of mass [see
Fig. 1(a)]. Possibly, N > 1 particles can be introduced,
and for each ith particle, the in-plane coordinates xi and yi
of its center of mass and the azimuthal angle αi of its
vertical axis also need to be specified. The whole particle-
fluid-fluid system is surrounded by an external vertical
wall at a distance much larger than the particle size.
Given fixed volumes of the two fluids, and fixed
position(s) and orientation(s) of the particle(s) defined
by Ω ¼ fzci;φi;ψ i; xi; yi; αigNi¼1, we numerically calculate
the fluid-fluid interface equilibrium shape. This is done
(see Ref. [42]) by representing the fluid-fluid interface
by a grid of points and exploiting a simulated annealing
algorithm to calculate the positions of these points that
minimize the thermodynamic potential, hereafter called
energy, given by [42]

ENðΩÞ ¼ γ½SðΩÞ − AþWðΩÞ cos θ�: ð1Þ

Here, SðΩÞ and A are the total area of the fluid-fluid
interface with and without particle(s), respectively, and γ is
the fluid-fluid surface tension. The total surface area of the
particle(s) in contact with the fluid above the interface is
WðΩÞ, and θ is the Young’s contact angle (in the fluid
below the interface). Note that γ and θ are input parameters.
Equation (1) is defined such that EN ¼ 0 when all the
particles are desorbed from the interface into the fluid
below. The gravitational energy of the fluid-fluid interface
is not included in Eq. (1), as it is negligible when the
capillary length l is much larger than the particle size.
Also, the particle(s) weight is not included in Eq. (1), as it is
typically negligible for sub-mm particles. As proven in
Ref. [42], the interface shape that minimizes EN is the
solution of the Young-Laplace equation with Young’s Law
as boundary condition; i.e., it is the equilibrium shape of
the fluid-fluid interface. Note that the position of the
three-phase contact line is automatically found by the
minimization of EN ; i.e., it is not imposed a priori, and
the calculated fluid-fluid interface shape forms an angle
with the particle surface that matches the input angle θ
introduced in Eq. (1).
In this Letter, we show results for cubic particles with

smooth edges and side length L ≪ l, where typically
l ∼ 1 mm. Since we use a macroscopic fluid-fluid model,
we also assume L much larger than the fluid-fluid interface
thickness. So our results generally hold for micron-to-
nanometer sized cubes. In Fig. 1(b), we show, for a single
adsorbed cube, the dependence of E1, minimized over zc
and ψ , on the polar angle φ, for contact angles given by
cos θ ¼ 0 and cos θ ¼ 0.3. We plot E1 in units of γΣ,
with Σ ≈ 6L2, the cube’s total surface area. For a typical
surface tension γ ¼ 0.01 N=m, we have Σγ ≈ 350kBT for
L ¼ 5 nm, and Σγ ≈ 1.5 × 107kBT for L ¼ 1 μm. The
coordinates zc, φ, ψ which locally minimize E1ðzc;φ;ψÞ
correspond to an equilibrium or metastable configuration of
the cube. We found that these are (slight perturbations of)
the three configurations shown in Fig. 1(c): f100g, when
one face of the cube points upward; f110g, when one edge
between two faces of the cube points upward; f111g when
one corner between three faces of the cube points upward.
To illustrate the importance of capillarity, we compare, in
Fig. 1(b), the energy E1 with the results obtained from the
TTT [44], in which capillarity is neglected. For a given
particle configuration, the energy E1 calculated by the TTT
is always higher, as expected. More interestingly, we
found that neglecting capillarity leads, for cos θ ¼ 0, to
the wrong equilibrium orientation of the cube: our method
predicts f111g as equilibrium configuration, whereas the
TTT finds f110g. For cos θ ¼ 0.2 we find essentially
the same equilibrium configuration as for cos θ ¼ 0 (see
Ref. [45]). For cos θ ¼ 0.3, i.e., for a larger affinity of the
cube with the lower fluid, both our numerical method and
the TTT predict that f100g becomes the minimum-energy
configuration, with the cube almost completely immersed

FIG. 1. (a) Configuration of a cubic particle at a fluid-fluid
interface. (b) Adsorption energy E1 [Eq. (1)] of a single cube
(side L) at a fluid-fluid interface, in units of Σγ (see text),
minimized over the center of mass height zc and the internal Euler
angle ψ [see (a)], as a function of the polar angle φ, for Young’s
contact angle cos θ ¼ 0 and cos θ ¼ 0.3. The blue and red lines
include and neglect capillarity, respectively. The labels f100g,
f110g, and f111g indicate the cube’s orientation in each
minimum of the energy. The insets show, for the equilibrium
configurations, a 3D view of the interface shape (blue grid) close
to the particle (black grid), as calculated by our method. (c) 3D
illustration of the f100g, f110g, and f111g orientations of a
cube, where the red grid represents a plane parallel to the flat
interface. (d) Contour plots of the deformed-interface height
profile for the global minimum-energy configuration of the cube.
For cos θ ¼ 0, a hexapolar deformation emerges, while for
cos θ ¼ 0.3, the interface is essentially undeformed.
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in the lower fluid and without any significant capillarity
[see Fig. 1(d)], while f111g is now a metastable
configuration.
Having established the equilibrium single-cube configu-

ration, we now study the pair interaction and the assembly
of many adsorbed cubes. For cubes with cos θ ¼ 0.3, which
induce negligible deformations, we do not expect capillary
interactions, in agreement with experiments of cubes with
cos θ ≈ 0.3 and L ≈ 1 μm [46]. Cubes with such a contact
angle tend to assemble into tetragonal, possibly closed-
packed structures [47]. More interesting is the case
cos θ ¼ 0, where cubes are in the f111g configuration
and induce a hexapolar deformation in the height profile of
the interface, with three depressions and three rises [see
Fig. 1(d)]. Similar predictions have also been made for
cubes adsorbed at thin films [48]. To study N cubes in such
a configuration, we first consider, in Fig. 2(a), the depend-
ence on the particle-particle distance D of the interaction
energy per particle

~EN ≡ EN

N
− E1; ð2Þ

for N ¼ 2, for several relative orientations of the two
hexapoles. We indicate a rise induced by a cube in the
interface height profile with a red spot, and a depression
with a blue spot. Figure 2(a) shows that two cubes attract
each other when their orientations allow them to overlap
spots with the same color, whereas the cubes repel each
other when spots of unlike color overlap. This was to be
expected, because the fluid-fluid surface area decreases for
overlapping spots of identical color, while it increases when
a rise and a depression approach each other. In these
calculations, we kept zc, φ, ψ for each cube fixed to their

values for a single-adsorbed cube at cos θ ¼ 0, as we
verified that these are hardly influenced by the presence of
the other cubes (see Ref. [49]). To predict the structures
in which such cubes assemble, we note from ~E2ðDÞ in
Fig. 2(a) that there are two kinds of orientations that allow
two cubes to attract each other: (i) “dipole-dipole” attrac-
tion [Fig. 2(b)], when a set of two spots (one red and one
blue) of one cube overlaps with the same set of two
spots of another cube, and (ii) a “tripole-tripole” attraction
[Fig. 2(c)], when a set of three spots (blue-red-blue or
red-blue-red) of one cube overlaps with the same set of
three spots of another cube. In Fig. 2(a), we see that the
interaction strength ~E2 for these two different orientations
is essentially the same, for cos θ ¼ 0. However, the contact
distance for dipole-dipole interacting cubes is smaller than
for tripole-tripole interacting cubes. Therefore, two f111g-
oriented cubes minimize the interaction energy ~E2 by a
dipole-dipole bond, while the tripole-tripole bond is meta-
stable. For N ≫ 2, dipole-dipole attached cubes can form a
hexagonal lattice in which all bonds are satisfied, as shown
in Fig. 2(b). Instead, tripole-tripole attached cubes can form
a honeycomb lattice with all bonds satisfied, as shown in
Fig. 2(c). Note that the holes of this honeycomb lattice are
all filled with either depressions or rises, frustrating the
inclusion of another f111g-oriented hexapole-generating
cube (see Ref. [50]). In Fig. 2(d), we show, for a periodic
extension (N → ∞) of these two lattices, the interaction
energy per particle ~E∞ [Eq. (2)] as a function of the lattice
spacing D. This is calculated by applying our numerical
method to a lattice unit cell, which is rectangular with
N¼ 2 for the honeycomb lattice and hexagonal with N ¼ 1
for the hexagonal lattice. The periodic boundary conditions
applied to these unit cells are indicated in Figs. 2(b)–2(d):

FIG. 2. Results for f111g-oriented adsorbed cubes with side L and Young’s contact angle θ ¼ 90°. (a) Interaction energy per particle
~E2 [Eq. (2)] of two cubes, in units of Σγ (see text), as a function of their center-of-mass distance D, for five relative orientations of their
hexapole deformations, sketched in the insets with blue spots for depressions and red spots for rises. The main graph shows the two
attractive configurations, where (violet curve) a red-blue dipole approaches another red-blue dipole, and (green curve) a red-blue-red
tripole approaches another red-blue-red tripole. The inset shows the two repulsive counterparts and an almost “neutral” dipole-tripole
pair. The violet and green vertical dotted lines represent the cube contact distance for the dipole-dipole and tripole-tripole attachments,
respectively. As cos θ ¼ 0, the system is invariant under exchange of red and blue. (b), (c) Sketch of the hexagonal (b) and honeycomb
(c) lattices, formed by dipole-dipole and tripole-tripole attached cubes, respectively. Particle-particle distances are only schematic.
In the hexagonal lattice, all cubes have the same azimuthal orientation, whereas in the honeycomb, each neighbor is rotated by π.
(d) Interaction energy per particle ~E∞ [Eq. (2)], as a function of D, for a periodic (N → ∞) hexagonal (violet curve) and honeycomb
(green curve) lattice, formed by dipole-dipole and tripole-tripole interacting cubes, respectively. The two insets illustrate the lattice
unit cells.
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sides of the cell with the same color (yellow, green, and
brown) correspond to the same interface height. Contour
plots of the interface height profile are shown in Ref. [51],
for various lattice spacings. Figure 2(d) shows that, for a
given lattice spacing, the hexagonal phase (called phase x)
has a lower energy per particle than the honeycomb phase
(called phase h). Moreover, phase x can reach a smaller
lattice spacing than phase h, and hence, it is tempting to
conclude that the equilibrium structure consists of touching
cubes in phase x, while the h phase of touching cubes is a
metastable state. However, this reasoning on the basis of
energetics is only correct if translational and rotational
entropy contributions can be ignored, which is only the
case in the low-temperature or large-particle regime where
γΣ=kBT is sufficiently large. Given the energy scale of
about −0.02γΣ per particle in the close-packed x phase as
shown in Fig. 2(d), and given a typical free-energy scale
of ∼10kBT per particle in hard disks at packing fractions
varying from rather dilute to close-packed, one arrives
at a rough estimate of a balance of energetic and
entropic contributions for γΣ=kBT ≃ 500. This estimate
is also borne out by a somewhat more quantitative
(albeit still quite approximate) calculation of the free
energies per particle of the (x, h, f) phases given by

Fx¼ ~EðxÞ
∞ þFðxÞ

hd −kBT lnZ
ðxÞ
or , Fh¼ ~EðhÞ

∞ þFðfÞ
hd −kBT lnZ

ðhÞ
or ,

and Ff ¼ FðfÞ
hd , respectively, where f labels the disordered

fluid phase of f111g-oriented cubes, Fðx=fÞ
hd is the hard-disk

free energy in the crystalline or fluid phase for which

we use the expressions in Refs. [52,53], and Zðx=hÞ
or ¼

ð3=2πÞ Rþπ=3
−π=3 dω expð−Cx=hω

2=2kBTÞ is the single-cube
orientation partition function. Here, Cx=h are spring con-
stants that we extract from our capillary energy calculations
by perturbing the relative azimuthal angle ω of neighboring
cubes in the x=h phases (see Ref. [54] for details). By
performing common tangent constructions of F=A as a
function of N=A (see Ref. [55]) to identify coexisting states
with different 2D densities ϑ� ≡ NΣ=3.24A, scaled such
that ϑ� ¼ 1 in phase x at close packing, we construct the
temperature-density phase diagram in Fig. 3. The blue,
green, and purple areas denote one-phase f, h, and x

regions, and the gray areas indicate two-phase regions of
coexisting phases that can be found by horizontal tie lines.
For Σγ=kBT < 350 and Σγ=kBT > 650, the phase behavior
is in the high- and low-temperature limit where the highest-
density x phase coexists with the high-density and low-
density f phase, respectively. Interestingly, however, in the
intermediate regime 350≲ Σγ=kBT ≲ 650 that is bounded
by an h − f − x and an f − h − x triple point, the h phase is
thermodynamically stable in a huge density regime, either
coexisting with the f or the x phase, or as a single phase in a
tiny density regime. Note that, for such T, cubes are still
strongly bound to the interface, as E1 ≈ −0.25Σγ for
θ ¼ 90° [see Fig. 1(b)]. To find a stable h phase of cubes
with side L ¼ 5 nm, a typical tension γ ≈ 0.01 − 0.02 N=m
is required at room temperature, which is, indeed, a reason-
able estimate for γ in the experiments in Refs. [25,26], where
both hexagonal and honeycomb lattices of truncated nano-
cubes were observed. For cubes with L ¼ 1 μm, instead, a
much lower tension γ ≈ 0.2 − 0.5 μN=m is needed to obtain
the h phase, which could, however, possibly be achieved in
the extreme case of, e.g., water-water interfaces [9]. In our
analysis, we did not include other kinds of particle-particle
interactions, e.g., van der Waals which appear to become
relevant only in the limit of nanosized particles at near-
contact distances (see Ref. [56]). We leave for future studies
the effects of a cubic shape with truncated corners, which
could explain the long chain structures at low concentrations
observed in Ref. [25].
In summary, we demonstrate the importance of capil-

larity for single-cube behavior as well as the self-assembly
of many cubes adsorbed at fluid-fluid interfaces. In
particular, we showed that cubes with a contact angle close
to 90° prefer the f111g orientation that generates a
hexapolar capillary deformation profile, which leads the
cubes to self-assemble into hexagonal and honeycomb
lattices. Experiments [60–62] showed that hexagonal plate-
lets self-assemble into honeycomb or hexagonal lattices,
depending on whether three or six of the side facets were
made hydrophobic. However, here, we theoretically dem-
onstrate that adsorbed cubes with homogeneous surface
properties can also self-assemble through capillary inter-
actions into lattices with hexagonal and honeycomb rather
than tetragonal symmetries. In addition, with a simple
free-energy model, where both configurational entropy and
capillary interactions are included, we predict a phase
diagram that features both the honeycomb and hexagonal
lattices as stable structures. Interestingly, in Refs. [25,26]
where hexagonal and honeycomb lattices of adsorbed
cubes are actually observed, capillarity is not taken into
account to justify such structures, rather ligand adsorption
and van der Waals forces between specific facets of the
truncated cubes are suggested. Although we cannot exclude
other driving forces, our results strongly suggest that
capillarity could generate the observed structures. In fact,
our phase diagram even features a well-defined parameter

FIG. 3. Temperature-density phase diagram for the adsorbed
cubes. In colors, we show the honeycomb-lattice (h), hexagonal-
lattice (x), and disordered-fluid (f) phases. The gray area
indicates phase coexistence. The normalized density ϑ� is 1
for the x-phase closest packing density.
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range in which the honeycomb lattice is to be expected,
and this region is consistent with the experiments in
Refs. [25,26].
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