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I. SINGLE-ADSORBED CUBE

Figure S1: (a): E1 (Eq. (1)) of a cubic particle, with side L and Young’s contact angle θ, at a fluid-fluid interface, minimized
over the particle’s center of mass height zc and the particle’s internal Euler angle ψ, as a function of the particle’s polar angle ϕ
(see Fig. 1(a)), for cos θ = 0.2 and cos θ = 0.5, in units of Σγ, with Σ the cube’s total surface area and γ the fluid-fluid surface
tension. The blue lines are the results obtained through our numerical method [43], which includes capillary deformation
effects. The red lines are the results obtained through the TTT [45], i.e. neglecting capillarity. The labels {100}, {110} and
{111} indicate the cube’s orientations in each minimum of the energy (see Fig. 1(c)). In the insets we show, for the particle
equilibrium configurations, a 3D view of the interface shape (blue grid) close to the particle (black grid), as calculated by
our method. (b): Contour plots for the minimum-energy configuration of the cube of the deformed-interface height profile,
as obtained by our numerical method, for the two Young’s angles considered. The plane z = 0 corresponds to the fluid-fluid
interface when no particle is adsorbed.
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II. TWO-ADSORBED CUBES

Figure S2: Adsorption energy E2 (Eq. (1)) for a system of two adsorbed cubes (with side L, surface area Σ, contact angle
θ = 90◦) at a distance D = 1.6L (i.e. close to the contact distance) and with reciprocal azimuthal orientations such that they
are (a) dipole-dipole and (b) tripole-tripole interacting. The equilibrium configuration of each cube is the minimum-energy
{111} configuration shown in Fig. 1 for θ = 90◦. Here we plot the energy E2 (in units of Σγ, with γ the fluid-fluid surface
tension) obtained by varying the value of, respectively, ϕ, ψ and zc (see Fig. 1) for one of the two cubes. The vertical dotted
line represent the equilibrium value in the {111} configuration. This proves that capillary interactions between two cubes do
not affect the equilibrium configuration {111} of each cube that we calculated for a single-adsorbed cube.
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III. MANY-ADSORBED CUBES

Figure S3: Results for adsorbed {111}-oriented cubes with side L, surface area Σ ≈ 6L2, and Young’s contact angle θ = 90◦.
The fluid-fluid surface tension is γ. (a)-(b): Contour plots of the interface height profile, as obtained through our numerical
method, for N = 6 and N = 7 adsorbed cubes, respectively, for various center-of-mass particle distances D. The azimuthal
orientations of the cubes are such that the cubes interact through the tripole-tripole attachment (see also Fig. 2). The plane

z = 0 corresponds to the interface when no particle is adsorbed. (c): Interaction energy per particle ẼN (Eq. (2)) for N = 6

and N = 7 adsorbed and tripole-tripole interacting cubes. As shown, ẼN for the 6-particle system (i.e. corresponding to
the honeycomb assembly, see (a)) is lower than for the 7-particle system (i.e. corresponding to the hexagonal assembly, see
(b)). Therefore tripole-tripole interacting cubes prefer to assemble into a honeycomb lattice and not into a hexagonal one.
As a matter of fact, in the hexagonal assembly (see (b)) the central cube cannot attach through an attractive tripole-tripole
interaction with all its six neighbors, but it is forced to experience repulsive interaction with some of them.



4

Figure S4: Contour plots of the interface height profile, as obtained through our numerical method, for the unit cells of the
hexagonal and honeycomb lattices (see also Fig. 2) corresponding to different center-of-mass particle distances D. Each cube
has side L, contact angle θ = 90◦, total surface area Σ ≈ 6L2, and it is adsorbed at its equilibrium configuration (i.e. the {111}
configuration, see Fig. 1). The plane z = 0 corresponds to the interface when no particle is adsorbed.
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Figure S5: (a) Interaction energy per particle Ẽ∞ (Eq. (2)) for an honeycomb lattice of adsorbed {111}-oriented cubes (with
side L, contact angle θ = 90◦, total surface area Σ ≈ 6L2, at a center-of-mass distance D from each other, and for a fluid-fluid
surface tension γ) with respect to the rotation ω of the azimuthal orientation of the cube from equilibrium. Each cube is
rotated in the opposite angular direction with respect to its neighbors. In this way, by tuning ω, the cubes shift from tripole-
tripole to dipole-dipole attachments. As indicated by the colored arrows in the left graph (and the analogous behavior holds
in the other two graphs), for the honeycomb lattice the tripole-tripole attachment is energetically more favorable than the
dipole-dipole attachment. This suggests that, to evolve from a honeycomb lattice with tripole-tripole interacting cubes to an
hexagonal lattice with dipole-dipole interacting cubes, an energy barrier exists, because the hexagonal lattice is stable only
for dipole-dipole attachments (see Fig. S3), and therefore the honeycomb should first replace the tripole-tripole bonds with
dipole-dipole bonds. (a) Contour plot of the interface height profile, as obtained through our numerical method, for the unit
cell of the honeycomb lattice, for D = 1.65L and different values of ω (see (a)). The plane z = 0 corresponds to the interface
when no particle is adsorbed.
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IV. TEMPERATURE-DENSITY PHASE DIAGRAM CALCULATIONS

In Fig. 2(d) we show the capillary interaction energy per particle Ẽ∞ (Eq. (2)), for adsorbed {111}-oriented cubes
assembled into a honeycomb lattice with tripole-tripole attachments and into a hexagonal lattice with dipole-dipole
attachments, with respect to the lattice spacing. The hexagonal lattice reaches the minimum Ẽ∞, and therefore it is a
candidate for the equilibrium structure. However the honeycomb lattice has a lower density than the hexagonal lattice.
Therefore, for certain temperatures and densities, the cubes could prefer the former phase, if the configurational
entropy is taken into account. To verify this, we define for the cubes a free energy where both entropic and capillary
contributions are included. Firstly, we assume that the adsorbed cubes can have three possible phases: a disordered
fluid phase, a honeycomb-lattice crystal phase with the cubes tripole-tripole interacting, and a hexagonal-lattice
crystal phase with the cubes dipole-dipole interacting. We indicate the free energy of these three phases as Ff , Fh
and Fx, respectively.
In the fluid phase, we assume that our {111}-oriented adsorbed cubes behave like an hard-disk fluid. That is

Ff ≈ F (f)
hd , (S1)

where F
(f)
hd (N,A, T ) is the free energy of a fluid phase of N hard disks of radius R in a 2D space of total area A and

at a temperature T . Using the standard “Taylor expansion” scaled-particle theory [53], we can write

F
(f)
hd

A (kBT )
=
N

A

[
ln

(
N

A
πR2

)
− 1

]
− N

A
ln

(
1− N

A
πR2

)
+

(2πRN/A)
2

4π(1− πR2N/A)
, (S2)

where the first term is the entropic ideal-gas contribution and the rest is due to the hard-disk interactions. In our
approximated model, the area and perimeter of the hard disk become the area and perimeter of the cube-flat interface
intersection, obtaining

(2πR)2 ≈ 3.07Σ , (S3)

and

πR2 ≈ 0.23Σ , (S4)

with Σ the cube total surface area. Note that Eq. (S3) implies R ≈ 0.279
√

Σ, while Eq. (S4) implies R ≈ 0.271
√

Σ.
This slight inconsistence occurs because we are treating our adsorbed cubes as hard disks. We introduce the normalized
density ϑ∗ ≡ ϑ/ϑx, where ϑ ≡ ΣN/A and ϑx ≈ 3.24 is the closest packing value of ϑ for an hexagonal-lattice phase,
i.e. when the dipole-dipole interacting cubes are at their contact distance. So, for a system of N adsorbed cubes, we
obtain

Ff
Aγ

=
kBT

Σ γ
ϑx

[
ϑ∗ ln

(
0.23ϑ∗

1/ϑx − 0.23ϑ∗

)
− ϑ∗ +

3.07(ϑ∗)2

4π(1/ϑx − 0.23ϑ∗)

]
. (S5)

In Eq. (S5) we are not including the capillary-interaction contribution to the energy. Therefore the fluid phase holds
for cubes at a rather low density (such that particle-particle distances are, on average, big enough to make the capillary
interactions negligible) or for cubes with a random azimuthal orientation of their vertical axis (such that they exert
both attractive and repulsive capillary interactions to each other, giving on average a negligible contribution to the
total energy). Hard disk systems freeze for a system area lower than 1.328A0 [54], with A0 ≡ 2N

√
3R2 the closest

packing area for hard disks with radius R. In our approximate analogy for the {111}-oriented adsorbed cubes, this
corresponds to ϑ∗ > 1/1.328, so we estimate that Eq. (S5) is reliable for ϑ∗ < 0.75.
For the cubes in the honeycomb-lattice phase we assume that

Fh ≈ N Ẽ
(h)

N −N kBT lnZ(h)
or + F

(f)
hd (S6)

where Ẽ
(h)

N is the capillary-interaction energy per adsorbed cube (Eq. (2)) for the honeycomb lattice with tripole-tripole
interacting cubes, and it is computed through our numerical method. The second term is the entropic contribution
per cube to the free energy due to the cube azimuthal orientations. Indeed, in this lattice phase, any i-th cube has
a fixed azimuthal orientation αi of its vertical axis. We assume that the cubes can experience only small angular
variations ω in αi, with an energy cost U(ω) ≈ Ch(ϑ∗)ω2/2, where the rotational spring constant Ch(ϑ∗) depends on
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the honeycomb lattice density ϑ∗. Using this approximation, the orientation partition function Z
(h)
or of a single cube

can be written as

Z(h)
or =

3

2π

∫ π/3

−π/3
e−U(ω)/kBT dω =

3

4

√
2 kBT

π Ch(ϑ∗)
ξ [Ch(ϑ∗)] , (S7)

where

ξ [Ch(ϑ∗)] ≡ 2 Erf

[
π

3

√
1

2
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Σγ

Σ γ

kBT

]
, (S8)

and Erf(x) is the “error function”. As shown in Fig. S8, for the whole range of parameters that we consider,
ξ [Ch(ϑ∗)] ≈ 2, such that the integral in Eq. (S7) is actually a Gaussian one. In Eq. (S7), the factor 3 and the
integration between [−π/3, π/3] takes into account that, for any i-th cube, there are three equivalent minimum-

energy azimuthal orientations, which are αi, αi + 2π/3, and αi + 4π/3. So from Eq. (S6), expressing F
(f)
hd by Eq.

(S2) analogously to the fluid phase case, we obtain for the honeycomb-lattice free energy
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= ϑxϑ
∗ Ẽ
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The closest-packing value of ϑ∗ for the honeycomb lattice, i.e. when the tripole-tripole interacting cubes are at their
contact distance, is about 1.83/ϑx.
Finally, for the hexagonal-lattice solid phase we assume that

Fx ≈ N Ẽ
(x)

N −N kBT lnZ(x)
or + F

(x)
hd , (S10)

where Ẽ
(x)

N is the capillary-interaction energy per adsorbed cube (Eq. (2)) for the hexagonal lattice with dipole-dipole
interacting cubes, and it is computed through our numerical method, the second term is the azimuthal orientation
entropic contribution per cube to the free energy and it is calculated analogously to the honeycomb-lattice case,

F
(x)
hd (N,A, T ) is the entropic free energy of a solid phase of N hard disks with radius R in a 2D space of total area A

and at a temperature T . Following ref. [54], we can write

F
(x)
hd = NkBT
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A

)
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)
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]
, (S11)

where A0 = 2
√

3NR2 is the closest-packing area for N disks. For our cubes in the hexagonal-lattice phase we use
A0/A = ϑ∗, so for Fx we obtain

Fx
Aγ

= ϑxϑ
∗ Ẽ

(x)

N

Σ γ
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Σ γ
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,

(S12)

where Cx(ϑ∗) is the rotational spring constant for the hexagonal lattice.
In Fig. S9 we show the behavior of Ff (ϑ∗)/Aγ (Eq. (S5)), Fh(ϑ∗)/Aγ (Eq. (S9)), and Fx(ϑ∗)/Aγ (Eq. (S12)) for

several values of Σγ/kBT , where Σ is the cube surface area and γ the fluid-fluid surface tension.

For the hexagonal-lattice and honeycomb-lattice phases, we calculated Ẽ
(x/h)

N (D) (Eq. (2)) in the limit N → ∞ by

applying our numerical method to, respectively, an hexagonal lattice unit cell with side D/
√

3 and N = 1 cube,

and a rectangular lattice unit cell
√

3D× 3D/2, with N = 2 cubes, and with periodic boundary conditions shifted of
half-side along the longest side (see Fig. 2(b)-(d)). With D we refer to the center-of-mass distance between two closest-

neighbor cubes. The value of ϑ∗ for the hexagonal and honeycomb lattices is related to D by ϑ∗ = 2Σ/(ϑxD
2
√

3)

and ϑ∗ = 4Σ/(3ϑx
√

3D2), respectively.
To calculate the rotational spring constant Ch for the honeycomb lattice with tripole-tripole interacting cubes, we
calculated

E∗∞
(h) ≡ 2

(
Ẽ
(h)

∞ (ω)− Ẽ
(h)

∞

)
(S13)
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for a honeycomb lattice unit cell where the two cubes have azimuthal orientation of their vertical axis given by α1 and
α2 + ω, respectively. With α1 and α2 we refer to the minimum-energy azimuthal orientations that the two tripole-

tripole interacting cubes have in the unit cell of the honeycomb-lattice phase, and Ẽ
(h)

∞ is the capillary-interaction

energy per cube (Eq. (2)) when the two cubes have such orientations. With Ẽ
(h)

∞ (ω) we refer to Ẽ
(h)

∞ calculated when

the second cube has orientation α2 + ω. In Fig. S6(a) we show E∗∞
(h)(ω) for several fixed D, as obtained by our

numerical method. In Fig. S6(b) we show the values of Ch(ϑ∗) obtained by fitting E∗∞
(h)(ω) for each ϑ∗ considered,

in a neighborhood of ±π/10 around each minimum in ω, with the function Uh(ω) = ah(ϑ∗) + ω2 Ch(ϑ∗)/2. Then, as
shown, we can fit these values using Ch(ϑ∗) = Ae−B ϑ

∗
, with A = 0.021 Σγ and B = 2.70.

To calculate the rotational spring constant Cx for the hexagonal lattice with dipole-dipole interacting cubes, we
proceeded analogously to the honeycomb case, but calculating

E∗7
(x) ≡ 7

(
Ẽ
(x)

7 (ω)− Ẽ
(x)

7

)
, (S14)

for N = 7 cubes, where 6 of them are placed with their center of mass at the vertexes of a side-D hexagon, and the
7th cube is placed at the center of this hexagon. So the minimum-energy azimuthal orientation of these cubes is such

that they dipole-dipole interact with each other. In Fig. S7(a) we show E∗7
(x)(ω) for several fixed D, as obtained by

our numerical method, where ω is the rotation of the azimuthal orientation of the central cube from its equilibrium

value. The terms Ẽ
(x)

7 and Ẽ
(x)

7 (ω) are the capillary-interaction energy per cube (Eq. (2)) when ω = 0 and ω 6= 0,

respectively. In Fig. S7(b) we show the values of Cx(ϑ∗) obtained by fitting E∗7
(x)(ω), in a neighborhood of ±π/10

around each minimum in ω, with the function Ux(ω) = ax(ϑ∗) +ω2 Cx(ϑ∗)/2. Then, as shown, we can fit these values
using Cx(ϑ∗) = Ae−B/ϑ

∗
, with A = 55.30 Σγ and B = 6.71.

In Fig. S9 we plot, for some values of Σγ/kBT , Ff (ϑ∗)/Aγ (Eq. (S5)), Fh(ϑ∗)/Aγ (Eq. (S9)), and Fx(ϑ∗)/Aγ (Eq.
(S12)), showing the common tangents between these curves, when present.
In Fig. 3 we report the phase diagram for the adsorbed cubes with respect to Σγ/kBT and ϑ∗, obtained by calculating
the common tangents present between Ff (ϑ∗)/Aγ, Fh(ϑ∗)/Aγ, and Fx(ϑ∗)/Aγ for many different values of Σγ/kBT .
The temperature range goes from Σγ = 1300 kBT to Σγ = 300 kBT , as this was the meaningful part of the diagram. As
expected, the results predict for T → 0 that the system phase separates for any ϑ∗, collapsing into a hexagonal-lattice
phase and leaving the rest of the interface empty. For Σγ/kBT within, about, 350 and 650, we predict the presence of
the honeycomb-lattice phase, which can be uniform in the whole system, or coexist with the hexagonal-lattice phase
or with the disordered-fluid phase, depending on the global density of the system.
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Figure S6: (a) Energy E∗∞
(h) (Eq. (S13)) for an honeycomb-lattice unit cell with tripole-tripole interacting cubes, where the

azimuthal orientation of the vertical axis of one cube is rotated by ω from its equilibrium value, for several values of the
center-of-mass distance D between the two cubes. The cube contact angle is 90◦, the cube total surface Σ, and the cube
side L. The red dotted curves represent the fit around each minimum of E∗∞

(h) with ah(ϑ∗) + ω2 Ch(ϑ∗)/2. (b) Values of

Ch(ϑ∗), as obtained for the various D considered. The dotted curve is the fit of these values using AeB ϑ∗
. The green vertical

line corresponds to 1.83/ϑx, i.e. the value of ϑ∗ for the honeycomb-lattice phase at its closest-packing density. (c) Contour
plots of the interface height profile, as obtained through our numerical method, for the honeycomb-lattice unit cell in the case
D = 1.65L and for different values of ω. The plane z = 0 correspond to the fluid-fluid interface when no cubes are adsorbed.
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Figure S7: (a) Energy E∗7
(x) (Eq. (S14)) for an hexagonal-lattice unit cell with dipole-dipole interacting cubes, where the

azimuthal orientation of the vertical axis of the central cube is rotated by ω from its equilibrium value, for several values of the
center-of-mass distance D between any couple of closest-neighbor cubes. The cube contact angle is 90◦, the cube total surface
Σ, and the cube side L. The red dotted curves represent the fit around each minimum of E∗7

(x) with ax(ϑ∗) + ω2 Cx(ϑ∗)/2.

(b) Values of Cx(ϑ∗), as obtained for the various D considered. The dotted curve is the fit of these values using Ae−B/ϑ∗
. (c)

Contour plots of the interface height profile, as obtained through our numerical method, for the honeycomb-lattice unit cell in
the case D = 1.65L and for different values of ω. The plane z = 0 correspond to the fluid-fluid interface when no cubes are
adsorbed.
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Figure S8: Behavior of ξ[Ch] (Eq. (S8)) for different values of Σγ/kBT . As shown, for Σγ/kBT ≥ 100 we can consider ξ ≈ 2
always.

Figure S9: Plots of Ff (ϑ∗)/Aγ (Eq. (S5)), Fh(ϑ∗)/Aγ (Eq. (S9)), and Fx(ϑ∗)/Aγ (Eq. (S12)), in blue, green, and violet lines
respectively, with respect to the normalized density ϑ∗, for different values of Σγ/kBT . The dotted vertical blue line represents
the value of ϑ∗ for which the fluid phase can no longer occur. The dotted vertical green line represents the value of ϑ∗

corresponding to the closest-packing fraction for the honeycomb-lattice phase. The closest-packing fraction for the hexagonal-
lattice phase corresponds to ϑ∗ = 1. With black dotted lines we show the presence of common tangents, which indicate phase
coexistence.



12

V. VAN DER WAALS INTERACTIONS

In our work we did not include other possible kinds of particle-particle interactions. So one needs to be aware when
they are also relevant, compared to capillarity. Here we address this point for van der Waals forces, showing that,
for typical experimental parameters, they are relevant only in the limit of very small particles and very small (almost
contact) particle-particle distances. In Fig. S10 we show the van der Waals potential Φvdw between two spheres of
diameter σ ≡ 2R, with respect to the particle center-of-mass distance D ≡ d+ σ, calculated with a Hamaker-de Boer
approach [61] as

Φvdw(d) = −A
6

[
2R2

d2 + 4Rd
+

2R2

d2 + 4Rd+ 4R2
+ ln

(
d2 + 4Rd

d2 + 4Rd+ 4R2

)]
, (S15)

for a system with surface tension γ = 0.02 N/m and Hamaker constant A = 0.15 eV (which is an estimation for a
PbSe/Hexane/PbSe system [62]. These values are an order-of-magnitude estimate for the experimental systems in
Refs. [26-28], and a more accurate estimation should take into account that the cubes are adsorbed at a fluid-fluid
interface and therefore the effective Hamaker constant can be slightly different. We plot Φvdw/2 in units of Γγ, where
Γ = 4πσ2, such that Γγ ≈ 1.5 · 105 kBT for σ = 100 nm and Γγ ≈ 1.5 · 103 kBT for σ = 10 nm. Compared with the
capillary forces in Fig. 2(d), van der Waals interactions are completely negligible for spheres with σ = 100 nm, while
they may become relevant for spheres with σ = 10 nm, i.e. with size comparable to the nano-cubes in Refs. [26-28].
Note however that the range of capillary interactions goes far beyond the range of van der Waals forces (compare Fig.
2(d) and S10). So, for such experiments, capillarity remains the leading driving force, while van der Waals forces may
come into play only when the particles get very close to each other.

Figure S10: van der Waals interaction potential Φvdw between two spheres of diameter σ and at a center-of-mass distance D
(see Eq. (S15)), for a system with Hamaker constant A = 0.15 eV, in units of Γγ, with γ = 0.02 N/m and Γ = 4πσ2 the sphere
surface area.
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VI. CASIMIR-LIKE INTERACTIONS

Another kind of particle-particle interactions that we did not include in our analysis are Casimir-like forces, which
arise between adsorbed particles as a consequence of the thermal fluctuations (called capillary waves) experienced
by the fluid-fluid interface equilibrium profile. We show here that these forces are indeed negligible compared to the
capillary interactions induced by the hexapolar deformations considered in our work.
Following Ref. [63], we can express the fluctuation-induced potential between two spheres adsorbed at a fluid-fluid
interface as

Vfluc ≈ −kBT
R4

D4
, (S16)

with R the sphere radius and D the distance between the centers of mass of the two spheres. For our cubes (with side
L and total surface area Σ) adsorbed at a fluid-fluid interface with surface tension γ, we can use R ≈ L/2 to rewrite
this expression, as an order-of-magnitude estimation, as

Vfluc
Σγ

≈ −kBT
Σγ

L4

16D4
. (S17)

Using for example kBT/Σγ ≈ 350, which corresponds to the high-temperature limit for the honeycomb-hexagonal
phase-coexistence area in the phase diagram of Fig. 3, and D = 1.5L, i.e. almost the contact distance for the cubes,
we obtain Vfluc ≈ 0.000035 Σγ, which is definitely negligible compared to the cube-cube attractive pair potential

2Ẽ2 = O(0.01Σγ) (see Fig. 2(a)).


