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Random three-dimensional jammed packings of elastic shells acting as force sensors
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In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing.
A full experimental characterization requires measurement of all the interparticle forces, but so far such
measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the
topology of (elastic) shells are good local force sensors as relatively large deformations of the shells result from
relatively small forces. We recently introduced such fluorescent shells as a model granular system in which force
distributions can be determined in three dimensions using confocal microscopy and quantitative image analysis.
An interesting aspect about these shells that differentiates them from other soft deformable particles is their
buckling behavior at higher compression. This leads to deformations that do not conserve the inner volume of
the particle. Here we use this system to accurately measure the contact forces in a three-dimensional packing
of shells subjected to a static anisotropic compression and to shear. At small deformations forces are linear,
however, for a buckled contact, the restoring force is related to the amount of deformation by a square root law,
as follows from the theory of elasticity of shells. Near the unjamming-jamming transition (point J ), we found
the probability distribution of the interparticle forces P (f ) to decay nearly exponentially at large forces, with
little evidence of long-range force chains in the packings. As the packing density is increased, the tail of the
distribution was found to crossover to a Gaussian, in line with other experimental and simulation studies. Under
a small shear strain, up to 0.216, applied at an extremely low shear rate, we observed a shear-induced anisotropy
in both the pair correlation function and contact force network; however, no appreciable change was seen in the
number of contacts per particle.
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I. INTRODUCTION

One of the key features that defines a jammed state of
granular and colloidal particles is the force network that
spans the system. This random network of contact forces
imparts rigidity to a jammed packing that hence acts like a
solid, with several anomalous properties not found with other
elastic solids such as crystals. The most simple and widely
used quantitative way to characterize a force network is to
measure the probability distribution of the interparticle forces,
P (f ) [1–3]. Most published force distributions have been
determined in simulation and theoretical studies, and only a
few experimental systems are presently known for which these
contact forces could be accurately measured, either in two or
especially three dimensions. In addition, experimental work on
three-dimensional (3D) jamming behavior is scarce, owing to
a lack of availability of tools, techniques, and model systems
with which dense packings can be studied quantitatively on
the single particle level, including a quantitative description of
all the forces between the particles.

Experimental studies on contact force networks started
in granular materials research with measurements of forces
exerted by the grains against a constraining surface using a
carbon-paper technique [1,4–6]. In this technique all constrain-
ing surfaces of the system were lined with a layer of carbon
paper covering a white paper. Grains pressed the carbon onto
the white paper and left marks at the contact regions whose
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size and intensity depends on the magnitude of the normal
force on the corresponding grain. By using image analysis
software and calibration curves, the contact forces at the
surface were extracted. However, this method lacks precision
and information about force transmission in the bulk. A more
precise method to measure boundary forces was introduced
by Løvoll et al. [7], using a high-precision electronic balance.
In addition to boundary forces, interparticle force analysis
in the bulk has been achieved, enabling an investigation
of the relations between the geometry of the packing and
the spatial structure of the force network [1,8]. Majmudar
et al. [8] measured the normal and tangential forces inside a
two-dimensional (2D) system of bidisperse photoelastic disks
that were subjected to pure shear and isotropic compression.
The stress-induced birefringence of the disks also allowed
in situ visualization of force chains in their system. The
system under stress was imaged through crossed polarizers.
From the images contact forces were obtained by fitting the
observed photoelastic patterns inside each disk to the 2D
elasticity solution [9] for the stress inside a disk. Although
this system is one of the first experimental systems for
which quantitative forces could be measured, the deformation
per disks was less than 1% of the average diameter in the
compressed state [10], which prevented the study of higher
volume fractions, significantly beyond the jamming point with
this model system and methodology.

Systems that can reach high volume fractions close to
unity are those comprised of softer deformable particles,
for example, emulsions and foams [11–15]. Katgert et al.
extracted various statistical and geometrical quantities in a 2D
static packing of foam bubbles through image analysis. Brujic
et al. [12,13] introduced, as far as we are aware for the first
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time, a method for measuring the contact force distribution
within the bulk of a 3D compressed emulsion system using
confocal microscopy. The oil droplets were index matched
and fluorescently labeled. Using image analysis routines based
on a Fourier filtering method the positions and radii of the
polydisperse emulsion droplets were extracted and the spheres
were reconstructed. By analyzing either the size of the contact
area or the enhanced fluorescence intensity at contact regions,
the degree of deformation and hence the interdroplet normal
forces were calculated. 3D confocal microscopy was also used
by Zhou et al. [14] in 3D piles of frictionless liquid droplets
labeled with a monolayer of fluorescent nanoparticles and
Caswell et al. [16] in a dense 3D packing of soft colloids
made of poly N-isopropyl acrylamide (pNIPAM) to obtain 3D
images.

The probability distribution of interparticle forces P (f )
from these studies is a broad distribution with an exponential
like tail and a peak or a plateau below the average force
[1,3–6,8,11–15,17–20]. Moreover, in some studies the expo-
nential tail is found to crossover to a Gaussian for an increase
in the degree of deformation of the particles or for packing
densities well above the jamming transition [11,12,14,21,22],
but it is still not clear at what point it starts to behave like
a homogeneous, elastic solid block. Thus the majority of
contacts in a marginally jammed solid bear forces smaller
than the average, and there are only a few contacts that
carry large forces, which were found to form chainlike
structures [1,3,8,14,15,23]. Studies have shown an anisotropy
in the force network, where the chains oriented in a preferred
direction under a globally applied shear [8,24–28].

Because we feel it is important that there are more granular
model systems available with different properties from those
already studied to be able to check generality of the findings
so far, we recently introduced a granular model system. This
system is suitable to study forces in packings, and it comprises
fluorescently labeled elastic shells that interact through short-
ranged repulsive forces [29]. These charged spherical particles
(with a size around 5 μm, although we recently were successful
in also creating monodisperse droplets with larger size even
further into the granular regime [30]) contain a solid membrane
with a liquid interior [30]. The membrane is a cross-linked
network formed from a mixture of silicone and silica forming
monomers and with a Young’s modulus of 200 MPa [31].
A key feature of these particles is the membrane elasticity,
which facilitates reversible deformations, as shown in our
recent articles [29,32]. Therefore they can serve as a sensor of
local force. Additionally, there are possibilities to tune several
features of these particles, for example, friction, mechanical
properties, permeability and shape, which are highly relevant
in jamming research as particle-level properties control the
behavior in a jammed state [33–35]. Though the shells as such
are frictionless, due to the thin layer of liquid in between
them, the solid surface allows friction to be incorporated by
surface coatings and/or making the particle surface rough,
e.g., by adsorption of small particles [36,37]. The mechanical
response of these particles can be varied from soft to hard by
tuning the thickness of the shell membrane [38,39]. There has
been increased computational progress recently in modeling
jammed granular packings of nonspherical particles [40–45],
but experimental realizations are challenging. In our previous

studies, we showed that the shape of our elastic shells can be
tuned from a spherical to a nonspherical bowl shape of varying
bowl depth by a buckling process [32]. Moreover, by using
appropriate solvent mixtures, the shells can be simultaneously
index and density matched, which offers opportunities to begin
from an unjammed state. In this paper we focus however on
initially spherical shells already close to a jammed state (point
J). Apart from understanding the physics of jamming, studying
the mechanical and geometrical features of packing of shells
is equally important from an application perspective as these
shells find many applications, especially in industries like food,
paint, and cosmetics as micro-encapsulant [46–51]. So far
mechanical studies on shell-like particles or “microcapsules”
have mainly been performed on a single-particle level [31,52]
rather than on collections of particles that strongly interact.

In our previous article we introduced our granular models
system and how it can be used to measure all the forces on
particles under stress with a focus on an investigation of the
microstructure and geometrical features of random packings
of these shells as a function of volume fraction above the
jamming point. Studies were performed in 3D real space using
a confocal microscope, where the fluorescently labeled shells
were dispersed in an index matched solvent to avoid scattering.
From the obtained 3D image stacks, we determined the particle
coordinates and radii with subpixel resolution by image
processing algorithms, specially developed for these shells.
In a dilute state shells underwent slight Brownian motion
(self-diffusion coefficient = 0.07 μm2/s, which translates to
a time of 360 s for this particles to diffuse a distance equal
to its diameter), but when the density was increased particles
came in close contact and were arrested in a jammed state.
Near the jamming point, the majority of particles remained
spherical with little deformation at the contact points. But
with increasing volume fraction, they deformed in such a
way that their volume was reduced. In each contact, one
of the shells buckled with a dimple at the contact region,
while the other one remained spherical. This distinguishes
them from emulsions, foams, and thermosensitive hydrogel
particles, jammed packings of which have also been studied
[11–13,15,16,53,54]. Note that the buckling of the shell is
fully reversible. This we checked by releasing the stress acting
on individual particles in a respective strongly compressed
packing and reported in detail in Ref. [29]. It only took less
than 2 min for a completely emptied or buckled shell to relax
back to its uncompressed original spherical shape. We also
found that this process of buckling towards one particle or
the other was volume fraction dependent. At lower volume
fractions it was found to be a random process but at higher
volume fractions dimpling became gradually nonrandom, such
that particles with a small number of contacts tend to receive
more than their share of dimples; on the other hand particles
having a large number of contacts tended to make a dimple on
their neighbors.

This article is a followup where we utilize the stress sensing
capability of individual shells by measuring the restoring
forces and thereby analyzing the contact force distribution,
a signature of jamming, under two kind of applied stresses:
compression in a gravitational field and shear. To calculate
the magnitude of the interparticle forces at each contact the
quantity that we measure from the image stacks is the amount
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of deformation of each particle in all directions. For elastic
shells the amount of deformation can be related to the restoring
force by the theory of elasticity of thin shells [9,55]. The
theory predicts a linear force law at small deformations and
a crossover to square root behavior at large deformations
where the particles were found to form dimples. A square root
variation differs from the harmonic force law that is used to
describe emulsion droplets and foam bubbles [11–13,15,53],
as well as from the Hertzian force law that applies to solid
spheres, such as glass beads. In the present study we first focus
on the measurement of the normal component of the contact
forces (friction is negligible) and the force distributions in a
range of volume fractions: from a marginally jammed state
(close to jamming point) to a deeply jammed solid. Further,
from the measured contact forces and the distances between the
particle pairs we determined the global pressure and analyze
how it scales with the packing density.

In the second part we describe a preliminary experiment
on the behavior of shells under applied shear. Here our
first results are limited to small shear strains. Although it is
demonstrated that a significant shear can be applied on this
system, the conditions to prevent slip at the walls were not yet
optimized. We started with a jammed solid such that the shells
were already deformed before a controlled shear was applied.
First we looked at the effect of shear on the microstructure
of jammed shells, by analyzing the projection of the radial
distribution function g(r) in the shear velocity-gradient plane
and the changes in the number of contacts per particle for
different values of strain (γ < 1; see Fig. 1). Then we studied
the changes in the probability distribution of the contact forces
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FIG. 1. (a) Schematic of the shear cell. The sample between the
glass plates is strained by moving the top plate a distance A in the
direction of the X axis that together with the Y axis forms planes
parallel to the imaging planes of the microscope. The movement of
the plate creates a velocity field along the X axis of the microscope
and a gradient along the Z axis. The curl of the field, the vorticity,
is oriented along the Y axis. (b) Confocal micrographs of jammed
packing of shells before being subjected to shear in a XZ, XY , and
YZ plane. Image size in XY is 1024 × 1024 pixels (106.25 μm) and
352 slices (33.26 μm) in Z.

and the anisotropy in the force network, as, for example, would
be caused by force chains, in the packing that resulted from
the applied shear deformation.

II. EXPERIMENTAL METHOD

A. Static shell packings

Monodisperse, several micron-sized elastic shells of
tetraethoxysilane crosslinked polydimethylsiloxane used were
prepared by an emulsion templating technique. The template
polydimethylsiloxane (PDMS) oil droplets were obtained
by using a Turrax homogenizer for the efficient mixing
of reactants followed by droplet growth without external
agitation [29,30]. The system used for this study is same
as that of Ref. [29] and contained particles of radius Rt =
2.88 ± 0.03 μm with polydispersity ∼3% and a shell thick-
ness d = 56 ± 2 nm. This corresponds to a shell thickness
to particle radius, d/Rt = 0.02. The aforementioned radius
denote the value obtained by static light scattering (SLS)
measurement and the shell thickness was obtained from
atomic force microscopy (AFM). To enable 3D confocal
microscopy, the rhodamine B-isothiocyanate (RITC, Sigma-
Aldrich) labeled shells, after removing the PDMS droplet
template by solvent exchange, were dispersed in an index-
matched solvent of dimethyl sulfoxide (DMSO, 52.6% v/v)
and ethanol (47.4% v/v) of refractive index n20

D = 1.42.
A detailed description of the experimental procedure to

create packings of shells of different volume fractions and of
3D image analysis routines to find the coordinates and radii
of particles can be found in our recent article on jammed
shells [29]. Briefly, random packings of compressed shells
were prepared in capillaries of typical dimensions 0.1 × 1 ×
50 mm or 0.1 × 2 × 50 mm (depth × width × length, Vitro-
Com) with a wall thickness 0.1 mm by centrifugation, with the
length of the capillary along the direction of gravity. Without
disturbing the capillary, volumes of size 99.94 × 99.94 ×
86.43 μm3 (1024 × 1024 × 790 voxels with a voxel size
of 0.0976 × 0.0976 × 0.1094 μm3) were imaged at different
heights in the sediment using a Nikon C1 confocal microscope
with a 63× NA 1.4 oil immersion objective (Nikon) in
fluorescence mode. Average radii and polydispersity obtained
from image analysis [29] were 2.952 ± 0.002 μm and 6%
respectively. The radii of the particles obtained from image
analysis is close to the value that was obtained from SLS,
which is more accurate, but polydispersity is slightly higher
resulting from the inaccuracies in image analysis. The volume
fraction of each imaged volume was obtained from the image
analysis and can be found in Table 1 in Ref. [29] and in Table
S1 [56].

B. Sheared shell packings

The sample for the shear experiments consisted of shells
of radius Rt = 2.16 ± 0.03 μm with polydispersity 3%,
measured by SLS and a shell thickness d = 30 nm (d/Rt =
0.013), measured by AFM. The average radius of the particles
measured from the image analysis was Rt = 2.20 μm with
polydispersity 5%. This size is only 40 nm larger than the
size obtained from light scattering measurements. To study
the effect of shear on our shell packings, we prepared a
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concentrated suspension of shells again by centrifugation,
but this time in an Eppendorf tube. After centrifugation, the
surplus solvent was removed, and the sample (in the form
of a paste) was carefully scooped out and placed between
two parallel microscope glass slides that had been attached
to the bottom and top cassettes of a parallel plate shear cell.
The shear cell was mounted on top of an inverted confocal
scanning laser microscope (Leica TCS-SP2) for real-space
imaging. Details of the design and layout of the shear cell are
described in Ref. [57]. In brief, on the bottom cassette a glass
coverslip (Menzel Gläzer, no. 1.5, thickness 0.15–0.17 mm)
of 24 × 50 mm and on the top cassette a microscopy glass
slide (Menzel Gläzer, thickness 1–1.5 mm) cut to 9 × 29 mm
were attached, following the method described in Ref. [57]. In
order to apply a shear strain to the sample, these cassettes
were placed in translational stages that were displaced by
piezostepper motors. Before loading the sample the glass
plates were carefully aligned parallel to each other with
adjustment screws. This is important in order to create a
uniform and parallel shear flow. The alignment was determined
with confocal microscopy in reflection mode using an Argon
488 nm laser and an air objective (20 × 0.7 NA, Leica). After
alignment the objective was changed for an oil immersion
objective (63 × 1.4 NA, Leica) that was used for imaging,
and the gap width was set (h ≈ 46 μm). The vapor barrier
of the bottom cassette was filled with water, and a few
droplets of solvent were dropped into the vapor gully to
minimize evaporation of the sample. After that, the sample
was placed on the glass slide of the bottom cassette. Finally,
the top cassette (with the metal vapor lock attached to it)
was carefully and slowly lowered on top of the sample. We
observed that the sample spread uniformly in several seconds,
and the concentration remained homogeneous between the
plates as we overfill the cell. Figure 1(a) shows a schematic
representation of the shear cell. The top plate (gray) was then
translated from its initial position by a distance A with a
velocity vt that can be set during the experiment. The bottom
plate was kept stationary as the speeds in our experiments was
very small, but normally this plate can be driven as well. The
movement of the plate creates a velocity field along the X axis
of the microscope and a gradient along the Z axis. The curl of
the field, the vorticity, is oriented along the Y axis.

Before shearing the sample was left to equilibrate for 15–20
min. Then a shear was applied to the system by moving the
top plate to a final amplitude of A = 20 μm in steps of 5 μm
with a slow, constant speed of vt = 10 nm/s, to limit the risk
of wall slip. This corresponds to a shear rate of γ̇ ≡ vt /h =

0.217 × 10−3 s−1 and a total applied shear strain γ ≡ A/h =
0.434 in steps of 0.11. During each shear step a time series
of XZ scans covering the whole gap from plate to plate was
taken. Before shearing the sample a XYZ stack was acquired
as a reference. Then the top plate was moved 20 μm with a
speed 10 nm/s in successive steps. After each shear step a
new XYZ stack of the sample volume was taken. The size of
the image volume is 106.25 × 106.25 × 33.26 μm3 (1024 ×
1024 × 352 voxels with a voxel size of 0.1037 × 0.1037 ×
0.0945 μm3). The voxel size in Z was corrected for index
mismatch with a scaling factor 0.91 [58,59]. The acquisition
time for each image stack was approximately 25 min, during
which no particle motion or restructuring was observed as
confirmed from XZ time series data. The 2D confocal images
of the sample in a XZ, XY , and YZ plane before are shown in
Fig. 1(b). The shells are clearly jammed and deformed between
the parallel plates.

The coordinates of the particles were obtained through the
image analysis procedure as described in Ref. [29] for static
packings. Table I gives an overview of the sample before shear
and at different values of the shear strains. We measured the
actual strain in the sample by measuring the change in position
of the shells next to the top plate from their initial position after
each shear step. By looking at the displacement of shells at
other positions we found that the shear was uniform throughout
the gap. The measured strain was found to stay behind the
applied strain, especially for the largest strain. For shear 4
the measured strain was just half the total applied strain, and
thereafter the shells no longer followed the plate movement
at all due to complete slip at the moving upper plate. Note
that we tried a few methods to avoid wall slip, for example,
by introducing roughness on to the plate by abrasion and by
adsorbing 5 μm polymethylmethacrylate (PMMA) particles to
the plate. Both methods failed to prevent the wall slip; on the
contrary, the rough plates were found to enhance slipping of
the shells near the plate. Untreated glass plates were found
to work better for the shear experiment. Moreover, we also
noticed that repeated use of the same glass plates for shearing
of the shells also enhanced wall slip. We hypothesize that this
is caused by the adsorption of polyvinylpyrrolidone (PVP) that
sterically stabilizes the shells to the glass plate, modifying the
plate surface and thereby preventing the shells from sticking
to the plate. This hypothesis needs to be investigated further in
order to obtain optimized walls with (much) less slip. For the
experiments reported in this paper, where a slow small strain
was applied sequentially, the plates were not new, and they
were used beforehand a couple of times and this might have

TABLE I. Details of the image stacks obtained from image analysis algorithms from the sample before undergoing shear and after the
sample had been strained by a total strain 0.434 in four steps.

Image Applied Measured No. of Image No. of Average contact φ 〈F 〉 σF /〈F 〉
stack strain strain particles volume (μm3) contacts number,〈Z〉 (μN) (%)

Before 0 0 5321 290 444 21 504 8.79 0.835 0.0147 30.13
shear
Shear1 0.108 0.093 4697 264 465 19 237 9.01 0.784 0.0158 33.75
Shear2 0.217 0.169 4613 264 470 18 733 8.99 0.758 0.0159 36.47
Shear3 0.326 0.204 4592 264 675 18 502 8.93 0.755 0.0160 36.47
Shear4 0.434 0.216 4775 264 631 19 416 8.99 0.778 0.0154 37.01
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led to increased slipping near the shearing surface towards the
end of the experiments.

The number of particles listed in the table was obtained from
an image volume that avoided one layer of particles close to
both the glass plates. From the Z coordinates obtained from
the analysis we found a 9% reduction in the height h for the
sample just after the first shear step, which then later remained
unchanged. This reduction in the gap width between the plates
resulted probably from relaxation of the bottom plate, which
may have been slightly bent by the weight of the top cassette
when it was put on and was transferred through the suspension
of jammed shells.

The volume fractions of these packings were calculated
by summing the volumes of the spheres and subtracting their
overlap volumes in the image volume as described in Ref. [29]
and are listed in Table I. The image volumes correspond
to the product of the length in X and Y directions that are
reduced by an amount Rt (average radius obtained from image
analysis) from both sides to compensate for the particles that
are missing near the edge (not identified during image analysis)
and in the Z direction to exclude one layer of particles close
to both the glass plates. For particles straddling the edges
of the reduced volume it is somewhat arbitrary how much
of their volume should be included in the volume fraction
measurement. This produced an uncertainty of about 0.005 in
the determination of the volume fraction. The difference in the
image volume and in the number of particles between different
shear experiments mostly resulted from the reduction of the
gap width due to the relaxation of the bottom plate combined
with slight discrepancies in the cutoff values chosen along the
gap width to remove particles close to the wall. We determined
the number of contacts for each shell from the coordinates of
their centers and radii [29]. A pair of particles is considered a
contact pair if the distance between their centers is less than or
equal to the sum of their radii. The chances of missing a contact
in our system are determined by the resolution in finding the
radii and particle position (which is less than one pixel, about
80 nm).

C. Contact forces between buckled shells

In a jammed system of spherical elastic shells, the shells
deform at regions where they are in contact with each other.
Figures 2(a) and 2(b) shows confocal images of jammed shells
(d/Rt = 0.02) at volume fractions ϕ = 0.663 and ϕ = 0.908.
At low ϕ, near the jamming point, the deformation of the shells
should not be prominent; obviously in the image [Fig. 2(a)]
there is no noticeable change in the shape of the contact region.
However, for ϕ = 0.908 the shells were clearly deformed,
and the contact regions were buckled with shells making or
receiving an indentation from their neighbors. For each pair of
contacting particles i and j the interparticle contact force can
be determined by measuring the depth of the indentation, i.e.,
the deflection of the shell at the contact point δij . For a pair of
shells of radii Ri and Rj , the deflection δij [Fig. 2(c)] is

δij = (Ri + Rj ) − �ij , (1)

where �ij is the distance between their centers.
The deflection δij can be related to the force acting at

the contact region by a force law derived from the theory of

A BBAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

δ

d

Ri
Rj

(c)

a b

FIG. 2. Confocal images of shells at volume fractions (a) ϕ =
0.663 and (b) ϕ = 0.908. Image size is 550 × 550 pixels.
(c) Schematic of a contact pair where, particle j of radius Rj makes
an indentation in particle i of radius Ri . The depth of the indentation
is δij , and d is the thickness of the shell.

elasticity of shells [9,55]. Under a small localized load a thin
elastic shell is predicted to respond linearly to the indentation
magnitude up to about the shell thickness (d) [60,61]:

Fij = k
δij

Rij

, (2)

where k = 2Ed2/
√

3(1 − ν2) and Rij = (Ri + Rj )/2 is the
average radius of the particles i and j measured from the
microscope data. For these elastic shells the value of the
Young’s modulus (E) and the Poisson ratio (ν) are 200 MPa
and 0.3, respectively, as reported in Ref. [31].

If the deflection is beyond the shell thickness, the shell
undergoes mirror buckling [Figs. 2(b) and 2(c)]. This leads to
an inversion of curvature of the shell, i.e., the formation of
a dimple at the contact region. The major part of the elastic
energy is then concentrated in the bending strip near the edge
of the dimple, whose radius grows with the indentation. The
magnitude of the applied force is then proportional to the
square root of the indentation [55]:

Fij = c

√
δij

Rij

, (3)

where c = 0.534Ed5/2π/(1 − ν2)
√

R. To obtain more ac-
curate forces we use the ratio δij /Rij obtained from the
microscopy data, and R from the (more accurate) light-
scattering measurement.

The above solution for the deformation of a shell was
obtained through a geometric approach and following the
assumption that the applied load is conservative, i.e., the
work it performs under deformation of the shell depends only
on the final shape and not on the path it followed [9,55].
Equation (3) was derived for a point load, but the final shape is
a spherical dimple, which is the same as for a pair of contacting
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equal-sized spheres. If the shape is the same as for a point
contact, the elastic energy must also be the same (if it is
conservative). Then the restoring force between the spheres
is the same as the force applied by a point load, as it is the
derivative of the elastic energy. We therefore expect Eq. (3) to
hold in our experiment, where two spherical shells of almost
equal radius and elasticity are in contact and only one of the
shells is dimpled at the contact point as shown in Fig. 2(c).

For large deformations of a spherical shell, it is also
important to take in to account the permeability of shell
membrane or volume conservation [9,62]. The volume of an
impermeable shell with an incompressible fluid is constrained.
This results in an additional restoring force that arises due to
the stretching of the membrane to keep its volume conserved
while the shell is deformed. Clearly in the packing of our
elastic shells filled with index-matched solvent, during the
time of the experiment, the shells were fully permeable to the
solvent on the time scale of the deformations, which resulted in
the formation of dimples. However, if instead of solvent-filled
shells, shells filled with polydimethysiloxane (PDMS) oil
dispersed in an index-matching water and glycerol mixture
were compressed, the content could not leave the shells to mix
with the solvent, and the shells had to deform in such a way
as to conserve their inner volume. Such a case is shown in the
confocal image [Fig. 3(a)], where shells filled with PDMS oil
were confined between two glass plates. Here the deformation
was completely different as compared to solvent permeable
shells. The shells became flattened at the contact regions
and are bulged at noncontact areas. The final shapes of these
shells resemble the deformation of oil droplets in compressed
emulsions [12,13], where instead of membrane elasticity the
deformation energy is dominated by the interfacial tension. We
would like to note here that, from experiments on the release of
oil from inside the shell by micelles, it had become evident that
the shells were permeable to the inner oil [32]. These results
show the possibility to modulate the interaction potential and
even particle volume in one single system that can lead to
different mechanical properties, which is rare. However, in
the present experiments there were no micelles to solubilize

FIG. 3. Confocal images of alternately deformed shells:
(a) Filled with PDMS oil, dispersed in an index matched water
and glycerol mixture, confined between two glass plates. The red
contours represents the shell walls. The deformation of these shells
was completely different from those in the force measurements.
(b) Filled with an index matched solvent at extreme compression
ϕ ≈ 1. Inset is a zoomed in picture of a shell with wrinkles. The
arrows point to the dimples created on this shell by its neighbors. The
scale bar in both pictures represents 5 μm.

that oil, and therefore the shells acted like an impermeable
membrane for the oil inside.

In principle, to determine all the contact force magnitudes
we should use the linear force law [Eq. (2)] for small
deformations and the nonlinear force law for large deforma-
tions [Eq. (3)] where one particle buckles with a dimple.
Unfortunately, an analytical force law valid for arbitrary
deformation does not appear to be available. Theoretically,
the cutoff value of the overlap depth δij where the linear and
the square root force laws intersect is at about twice the shell
thickness (≈2d). In the packing at ϕ = 0.663, about 40% of
the contacts have an overlap depth δij < 2d, which is rather
high, but this value decreased rapidly with increasing volume
fraction [a plot of fraction of contacts with δij < 2d as a
function of volume fraction is shown in Fig. S1(A) [56]].
Although the differences in the forces found with Eq. (2) or
Eq. (3) are not large, use of Eq. (3) irrespective of deformation
would lead to a severe underestimation of the number of small
contact forces in a packing [Fig. S1(B) [56]]. On the other
hand, attempting to use the correct force law in each of the two
regimes led to an undesired discontinuity in the force distri-
butions [Fig. S1(B) [56]]. Note that this discontinuity in force
distribution is purely an artifact and not a physical event, as
indentation always grows continuously with the force [31,63].
To overcome this problem we derived an empirical formula
that we call stitching force law as it interpolates smoothly
between the linear and nonlinear behavior:

F = c2

2k

⎡
⎢⎣

√
1 +

4k2
( δij

Rij

)
c2

− 1 + 0.92

( δij

Rij

)2

( δij

Rij

)2 + c4

k4

⎤
⎥⎦. (4)

The factor 0.92 was chosen to obtain the best fit to the known
limits at small and large deformations. A detailed derivation
of this stitching force law is described in the supporting
information. It was compared with atomic force microscopy
measurements on similar shells from the literature [31], and
good agreement was found [Fig. S1(D) [56]].

In this work interactions that result from elastic deforma-
tion dominate the usual colloidal interactions. Many body
interactions will arise when two or more dimples from
different particles come close to each other. So at high volume
fractions these may become important. Then we also start
seeing the irregular deformations. The densest packing that
we analyzed in our experiments on compressed elastic shells
was of volume fraction ϕ ≈ 0.9 [29]. Further increase of the
number of particles in a finite volume did not appreciably
increase the volume fraction, which is a likely indication
that the volume squeezed out of the system came mainly
from a reduction of shell volumes rather than a reduction
of interstitial spaces. However, for completeness we mention
that we have seen packings where the shells occupy nearly
all the interstitial spaces leading to a volume fraction of
almost unity by deforming as shown in Fig. 3(b). This high
packing fraction of shells was partly obtained by slow solvent
evaporation from an already jammed system. For this case
the shells started to wrinkle and formed highly interlocked
cogwheel-like structures. By wrinkling we mean the formation
of more than one dimple at the contact region between a
contact pair. The inset figure is a zoomed-in image of a
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FIG. 4. Probability distributions of the contact forces normalized by the average contact force, P (f ) (f = F/〈F 〉) for (a) a range of
experimental volume fractions, ϕ, above the jamming point, (b) the sample with a thicker shell compared with a thin shell system at similar ϕ,
and with a thin shell system with a similar distribution, and (c) the sample with higher order compared with a disordered sample with similar
ϕ. Solid lines in (a) are exponential and Gaussian fits for the lowest and highest volume fractions. Note that in the tails, the distributions have
data points forming horizontal lines. This is due to the smaller value of the number of counts in the histogram.

shell with six neighbors in a 2D plane. The arrows point to
dimples formed on this shell by its neighbors. These dimples
were most likely created by the forces exerted by the sharp
cusps of neighbor particles. The new dimples were formed on
the shells, which initially remained spherical at the contact
region. They appear to have formed when one of the shells
invaded the remaining interstitial space. In this case the square
root relation between the contact force and the depth of the
indentation between a pair of particles is not expected to be
valid anymore. Moreover, the image analysis routines used
become unreliable for these shapes, making it difficult to
analyze these structures. However, the extreme interlocking
and mechanical entanglement of particle surfaces can lead
to interesting bulk mechanical properties, which could be
explored in the future.

III. RESULTS AND DISCUSSION

A. Static shell packings

Here we focus on the probability and spatial distribution
of the contact forces and subsequently scaling of pressure as
a function of volume fraction in static packings of our shells
compacted with a gravitational field.

1. Probability distribution of the contact forces as a function of
volume fraction

We calculated the magnitudes of the contact forces for
all particle pairs with overlap depth δij > 0 using the force
law Eq. (4). The error in force magnitude in our experiment
depends on the error in the overlap depth, which in turn is
limited by the resolution in finding the coordinates of the
shells. The coordinates of the shells were obtained with an
error less than one pixel (0.080 μm in Xc and Yc and 0.073 μm
in Zc) [29]. This leads to an error of approximately ±0.026 μN
in the contact force magnitudes (forces less than 0.026 μN are
clearly unreliable). This is close to the value of the average
force measured in the packing at the lowest volume fraction
(for ϕ = 0.663, 〈F 〉 = 0.031 μN; see Table S1 [56]) but below
that of more compressed packings. However, the total force on
each particle is zero within the experimental error. With an
error of 0.026 μN in each contact force in a random direction

we obtain a root mean square error of 0.06 to 0.08 μN for
N = 6 to 12 forces on a particle. The measured average of
total force on each particle is found to be 0.06 to 0.08 μN for
packings with 6 to 12 contacts, which is the same as the root
mean square error. Therefore the nonzero value of total force
is completely a contribution from the position error.

Figure 4(a) shows the probability distributions of the
contact force magnitudes normalized by the average force
at different volume fractions away from the jamming point.
For the lowest volume fraction, the distribution is uniform
near small forces but decays above the mean, at larger
forces. This clearly reflects the heterogeneity in the contact
force magnitudes in these packings. As the volume fraction
increases, the distribution was found to peak around the mean,
the maximum becoming more pronounced with increasing
packing fraction. Moreover, the tail became steeper. The
tail can approximately be fitted with an exponential and
a Gaussian for the lowest and highest volume fractions,
respectively, as shown in Fig. 4(a). In other words, the tail
of the distributions was found to decay roughly exponentially
for the lowest volume fractions and to crossover to a Gaussian
at the highest volume fractions, qualitatively similar to the
results reported in simulations and experiments on 2D and
3D soft deformable granular systems [11,12,14,21,22]. The
evidence for transition of P (f ) from a pure exponential for
small deformations to a Gaussian centered at f = 1 when
particle deformation is increased at higher compression was
first reported in simulations and experiments performed by
Makse et al. [21]. The observed crossover is associated with
a loss of localization of force chains that span the system
at high applied stress. Near the critical density, or point J ,
the grains are weakly deformed but still well connected, and
hence a broad force distribution is found. As the system is
compressed further, new contacts are created and the density
of force chains increases. This in turn gives rise to a more
homogeneous spatial distribution of forces.

Note that the packing at ϕ = 0.906 consisted of slightly
stiffer shells (shell thickness to radius ratio, d/Rt = 0.04) in
contrast to all the other volume fractions (d/Rt = 0.02). As
a result, for the same amount of deformation, the average
value of the contact forces in ϕ = 0.906 was higher (〈F〉 =
0.27 μN) compared to the soft shell packing corresponding to
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a volume fraction ϕ = 0.908 (〈F〉 = 0.074 μN). Moreover, the
shape of P (f ) was also slightly different for the stiffer shells: in
particular the tail is less steep and the peak around the mean is
broader [Fig. 4(b)]. A similar trend in the force distribution was
also observed experimentally in a 3D compressible granular
packing with an increase in hardness of individual grains [6].
In our case, the shape of P (f ) in the stiff shell packing actually
coincides more closely with the packing at ϕ = 0.791 (〈F〉 =
0.054 μN) containing less stiff shells [Fig. 4(b)]. Thus, clearly,
as expected, the stiffness of the constituent particle has an
effect on the distribution of forces in jammed materials.

The distribution shown by the open symbol in Fig. 4(a)
represents the packing of ϕ = 0.810, which showed a split
second peak in the radial distribution function, g(r), and that
did not fall in the trend of other packings as shown in Ref. [29].
This packing also exhibited a similar discrepancy in the force
distribution as well. The P (f ) of this packing showed a slightly
higher peak near the mean force and a steeper tail compared
to all other volume fractions, including the disordered sample
with similar ϕ, shown in Fig. 4(c). A similar observation has
been previously reported by Blair etal. [5] for a crystalline
packing in a 2D experimental study on the effect of particle
order on the distribution of the contact forces. Thus, our results
on the force distribution (along with its radial distribution
function [29]) are consistent with a slight order in our packing
of shells at ϕ = 0.810 and ϕ = 0.835 (not shown), which was,
however, neither observed visually in the confocal images nor
in a local bond order analysis [29].

2. Force networks

Having found the coordinates of the particles and their
respective interparticle forces, our experimental data allow us
to examine the spatial distribution of the contact forces in the
different volume fractions of our compressed elastic shells.
The forces are represented by tubes connecting the centers
of the contact pairs. Figures 5(a) and 5(b) shows the force
networks in shell packings at low and high volume fractions,
ϕ = 0.699 and ϕ = 0.908 (magnified view of the force
networks in these sample volumes are shown in Fig. S2 [56]).
Only forces above 1.5 times the average force are shown in the
figure. The thickness of the tube and its color are proportional
to the force magnitude. The box dimensions given in Fig. 5
correlate to the length, width, and depth in the capillary tube
in which the packings of shells were prepared. In ϕ = 0.699
the force network is nearly isotropic, in contrast to the high
volume fraction packing ϕ = 0.908, where the direction of
the force segments tended to align along the X direction,
which is the direction of gravity. This is also the direction
in which the shells were subjected to an uniaxial compression
in the capillary (as described in the experimental method).
Not only for the above packings, but also for other volume
fractions, we saw a clear difference in the directionality of the
average stress; lower ϕ being more isotropic than higher ϕ.
This is quantitatively shown in Figs. 5(c) and 5(d), in a plot
of the spatial orientation of the contacts carrying larger forces
at different volume fractions. The observed isotropy at low
volume fractions is likely due to the uniform confinement of
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FIG. 5. Force networks in compressed shells in the lowest and highest packing fractions, (a) ϕ = 0.699 and (b) ϕ = 0.908 for forces greater
than 1.5 times the average value. Forces, in units of the average force 〈F 〉 are represented by tubes connecting the centers of contact pairs
where the thickness and color of the tube is proportional to the magnitude of the normal force. Red indicates a force 3.5 times larger than the
average force. The X axis is the direction of gravity. (c) and (d) Probability distribution of angles with respect to gravity for contacts carrying
above average force in compressed packings of shells at high and low ϕ. (e) Graphical representation of change in average chain length (closed
square) and persistence length (open square) of force chains obtained from shell packings under compression.
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the shells by the capillary walls along the Y and Z directions
and from the weight of the shells on top of the sediment in
the X direction. This weight of course is decreasing with
distance to the bottom of sediment (see figure in Ref. [29])
leading to the anisotropic stress distributions observed at
higher ϕ.

In both packings, in addition to many isolated segments
there are also short force chains that are tenuous and not well
defined. In addition to 3D visualization of the force networks,
a more quantitative search for the existence of force chains
was also performed (supporting information). Force chains,
i.e., contacts carrying larger forces, were described in many
experimental systems with anisotropic stresses, for example,
in a 2D granular packing of photoelastic disks under shear [8],
bidisperse emulsion droplets in a quasi-2D experiment [15],
and polydisperse 3D piles of frictionless liquid droplets under
uniaxial compression [14]. However, force chains were not
seen in the 3D emulsion system studied by Brujic et al.,
where the droplets were compressed by centrifugation [12,13].
Instead, in their admittedly small sample volume, the forces
appeared to be uniformly distributed in space, and the average
stress was found to be independent of direction, indicating
isotropy. Our analysis of force chains was based on the
definition described in the article by Desmond et al. on
a 2D bidisperse system of emulsion droplets [15]. In this
definition, a force segment between two shells in contact
belongs to a chain if it is one of the two largest forces on
both shells. This does not allow branching of chains and
so favors the identification of chains. In our shell packings,
the average length and persistence length (Table S2 [56]),
a measure of the average length beyond which the chain
has forgotten its original direction, were found to be 6.21
〈2Rt 〉 and 3.11〈2Rt 〉 (Rt = 2.88 ± 0.03 μm), respectively, at
the highest volume fraction and 4.45 〈2Rt 〉 and 2.31〈2Rt 〉 at
the lowest volume fraction. These numbers are rather small
compared to the sample volume (99.94 × 99.94 × 66 μm3),
which indeed matches the visual observation of Figs. 5(a)
and 5(b). Figure 5(e) shows the variation of average chain
length (closed square) and persistence length (open square) of
force chains obtained from these compressed packings. The
slightly higher value of the force chain length in the shell
packing at high volume fraction most likely is a result of the
anisotropy in the contact network [Figs. 5(c) and 5(d)].

3. Pressure

From the measured contact forces between particle pairs
we calculated the pressure at each packing density, above the
jamming threshold. The global pressure is determined from
P = 
i
j>iFij �ij /V [15,33], where V is the total 3D image
volume, �ij is the distance between the centers of the contact
pairs. The calculated value of P varied from 2.57 kPa to 18.93
kPa for the experimental range of ϕ [Fig. 6(a)]. The nonzero
value of the pressure at the lowest value of ϕ resulted from the
error in the measurement of the overlap depth and the radii of
the shells. Since the contact forces must be positive, this leads
to a finite pressure where it should be almost zero. Therefore,
we subtracted from the measured pressures an amount Pc =
3.98 kPa, which was the pressure close to ϕc = 0.683 (pressure
at ϕ = 0.677) obtained from a power law fit of Z.
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FIG. 6. (a) Scaling of excess pressure δP with volume fraction
δϕ above the jamming point (ϕc = 0.683). The lines are fits to the
experimental data. (b) The variation of excess contact numbers δZ

with pressure that follows a nonlinear power law of exponent 0.52
(solid line). The data points marked by asterisks are the Z values
avoiding the rattlers. The inset graph shows a double logarithmic
plot.

The predicted scaling of the pressure as a function of
volume fraction from numerical simulations [20] is P − Pc =
P0(ϕ − ϕc)α−1, with the exponent (α − 1) the same as for the
force law. Here α is the exponent of the interaction potential,
which is 2 for the harmonic interaction and 2.5 for a Hertzian.
In our system of shells, the force is linearly related to the
deformation only near contact and crosses over to a square root
variation at higher deformations. Even close to the jamming
point only 40% of the contacts fall in the linear regime, and
this number drops with increasing ϕ. Moreover, in this regime
the magnitude of the force calculated from the linear and
nonlinear force laws is small. Therefore, we expect the value
of exponent to be in the range 0.5 � (α − 1) < 1. However,
this does not agree with the experimental data in Fig. 6(a).
If anything, the experimental value of (α − 1) is found to be
slightly larger than 1, a value of 1.30 is obtained from the
fit. Furthermore, the scaling of the excess contact numbers
δZ with pressure δP was also found to deviate from the
predicted linear power law, which is obtained by considering
the effect of applied stress on density of vibrational modes
D(w) described in Ref. [64], shown in Fig. 6(b). Note that
the fit in Fig. 6(b) corresponds to δZ = 1.10δP 0.52, where
the fit parameters are equivalent to the prefactor and exponent
obtained by solving the power law scaling: δZ = 11.39δϕ0.681
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shown in Ref. [29] and δP = 94.20δϕ1.30. Hence, the three
scaling laws are interdependent.

A similar deviation of pressure scaling from the predicted
power law was also observed for emulsion droplets, both in
two and three dimensions [15,65]. However, in 2D photoelastic
disks the reported value of (α − 1) = 1.1 was in good
agreement with simulation results, but the range in the density
was rather narrow, only 1% [10]. The reason for this deviation
in a compressed emulsion system [65] was explained based on
the difference in the response of random elastic networks and
random packings of particles to compression, as is observed
numerically [66]. In random networks all the elastic moduli
vanish linearly with the excess contact G (shear modulus) ∼B

(bulk modulus) ∼δZ; however in packing-derived networks of
harmonic particles the bulk modulus remains constant down to
the jamming transition, where it vanishes discontinuously. The
finite value of the bulk modulus at δZ = 0 is purely geometric
with contacts tending to move towards each other more
prominently than to slide past each other [66]. Based on this
numerical observation, that is, B ≡ ϕ∂P/∂ϕ ≈ C1 + C2δZ,
where C1 and C2 are constants, in Ref. [65] a new scaling
was proposed that results in two leading order terms in δϕ:
δP = (P − Pc) = P1δϕ + P2δϕ

1.5. Our data can be well fitted
with this power law for the full range of ϕ shown in Fig. 6(a)
(dash line), where P1 = 19.58 kPa and P2 = 84.05 kPa are
prefactors obtained from the fit.

B. Sheared shell packings

1. Microstructure

Here we discuss our experimental results on the effect of
shear on the structure and force distributions in our jammed
systems of elastic shells. The shear-induced structure of the
system was analyzed by calculating the distribution functions
g(X,Z), g(X,Y ), and g(Y,Z). Because of the anisotropy intro-
duced by the shear, we made 2D cuts of a finite thickness along
different planes to illustrate how the g(r) is changing in 3D
in the different planes. More specifically, g(X,Z) is calculated
by considering all pair separations in which the magnitude of
the Y component of the separation satisfies |Y | < Rt .

Figure 7 shows g(X,Z), g(Y,Z) and g(X,Y ) for the sample
before and after applying shear, for two measured consecutive
strains γ = 0.093 (shear 1) and γ = 0.169 (shear 2). The three
bright rings with decaying probability (indicated by color)
in the plots represent the first, second, and third shell of
neighbor particles. The configuration of the sample before
shear, γ = 0, already shows a slight anisotropy, visible as
sixfold maxima in the first-order ring, especially in the X

(velocity) direction. This is probably due to less well controlled
shear that occurred by the flow when the top cassette was
lowered on top of the sample. The amount of change in order
that this flow may have introduced appears modest as can be
observed from the images in Fig. 1 and also as was confirmed
by a local bond order analysis (not shown). In addition, this
flow caused an uniaxial compression, which is the cause of
the observed flattening of the bright rings along the Z axis.
When the sample was then sheared the configuration became
more asymmetric around the center where the bright rings
got closer to the center as the shells were squeezed along
the compression axis and stretched out along the extension
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FIG. 7. Probability of interparticle distances in different planes
XZ (velocity-gradient), YZ (vorticity-gradient), and XY (velocity-
vorticity) for the shells before subjecting to shear and after the sample
was sheared by an amount γ = 0.093 and γ = 0.169. Bin size in X,
Y , and Z are 0.498 μm, 0.498 μm, and 0.504 μm, respectively. Shear-
induced extension and compression are illustrated by the arrows.

axis. In the velocity-vorticity (XY ) plane the configuration was
symmetric and remained unaffected by this intentional shear.
For γ = 0.204 and γ = 0.216 the structure only changed
slightly from that shown in Fig. 7. Since in these cases
significant wall slip took place and the microstructure was
not distorted much further.

Despite the straining of the system, there was no significant
change in the shape of the distribution of the contact number
per particle with increasing strain, shown in Fig. 8(A). There-
fore, the average contact numbers 〈Z〉 ∼9 remained nearly the
same for the low strains applied in these experiments. However,
〈Z〉 was slightly higher for shear deformation γ = 0.093
compared to the sample before shear, γ = 0. The reason is
perhaps the compression of the shells along the Z axis of
the microscope during the relaxation of the bottom cassette
creating slightly more contacts along Z. From the small
amount the sample was strained in the experiment it is likely
that shells did not significantly make or lose contacts during
shear. Particles also hardly underwent rearrangements for the
low applied shear deformation. This was also confirmed in the
confocal movies taken during shear.

2. Contact forces

The calculated average contact forces and the respective rel-
ative standard deviations obtained from the sample subjected
to shear are shown in Table I. We measured a 7% increase
in the magnitude of the average force when the sample was
deformed by an amount γ = 0.093 and for further strains the
average force remained more or less the same. This increase
in the average force during shear 1, perhaps resulted from
the compression of the shells along the gradient direction
during the relaxation of the bottom cassette. Further shear

062901-10



RANDOM THREE-DIMENSIONAL JAMMED PACKINGS OF . . . PHYSICAL REVIEW E 93, 062901 (2016)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10-5

10-4

10-3

10-2

10-1

100
= 0

= 0.093

= 0.169

= 0.204

= 0.216

0 2 4 6 8 10 12 14 16 18 20
0.0

0.1

0.2

0.3

0.4

0 ; =  8.79
0.093; = 9.01
0.169; = 8.99
0.204; =  8.93

P(Z)

P(f)

Z

f

(a)

(b)

FIG. 8. Probability distribution of (a) contact number and
(b) contact force normalized by the average contact force, per particle
before shearing the sample and after the sample had been strained at
different strain amplitudes.

apparently did not change the average contact forces for the
small shear strains but the relative standard deviation (σF /〈F 〉)
increased slightly with increasing strain. This is perhaps not
surprising, as shear deformation causes both a compression
and an extension. Therefore, the probability distributions of
the contact force magnitudes normalized by the average force,
P (f ) became slightly wider with an increase in the measured
strain from γ = 0 to γ = 0.216, as is seen in Fig. 8(b). The
higher probability of large and small forces resulted from an
increase in the deformations of approaching shells along the
compression axis and a relaxation of shells receding along
the extension axis. A similar broadening of the distribution
under shear has been reported in granular materials where the
tail of the distribution became less steep than exponential with
applied shear [8]. However, this result is not consistent with the
tail of distributions measured in a study by Corwin et.al. [67],
where the tail became steeper when the grains started to flow.
To further investigate if the observed changes in the shape of
the force distributions indeed correlate with the compression
or extension axes of the shear we now turn to the angular
distribution of the contact forces.

Shear-induced anisotropy in the orientation of the contact
forces was analyzed by plotting the angle that the contacts
make with the velocity axis for all forces with a magnitude
above the average. Only the component of the force in the XZ

plane was taken for the angle distribution. This distribution was

found to be anisotropic even before the sample was sheared,
clearly showing the compression that was caused by lowering
the upper plate onto the sample [Fig. 9(a)]. With the applied
shear strain we noticed a clear increase in the probability in the
quadrants 90◦–180◦ and 270◦–360◦(compression zone) and a
decrease of P(θ ) in the other two quadrants (extension zone).
The effect of shear becomes more clear in Fig. 9(b) where the
ratio is plotted of the probability distribution after shear and
before shear. Clearly, a significant increase in the probability
of larger forces takes place between 135◦ and 170◦ with a
maximum around 160◦. A correspondingly large reduction is
found between 10◦ and 45◦, with a maximum at 20◦. While
these directions qualitatively correlate with the compression
and extension axes of the shear there is a clear preference for a
force build up at a smaller angles of around 20◦ to the velocity
direction. A 3D visualization of the shear-induced anisotropic
network of the contacts carrying larger forces (greater than
1.5 times average value) is depicted in Figs. 9(d) and 9(e),
before and after shear. At γ = 0, larger forces in the force
network are mostly aligned along the gradient axis in layers
due to the compression induced by the plate-plate confinement.
Upon shear the number of the force segments increased due to
a build up of larger forces in the compression zone. However,
the effect of the shear appears to consists of only a very small
increase in the average length and persistence length of force
chains [Fig. 9(c)] (Table S2 [56]), probably due to the small
applied strain. Although the chain correlation is small, it is still
higher compared to the static packings of shells at high volume
fractions, where the samples were not confined between plates
but the contact network was anisotropic. This result confirms
the higher tendency for the forces to form linear chains under
anisotropically applied stress, for example, shear.

Finally, a number of preliminary experiments with a larger
strain were also conducted. This was possible only in a few
cases where wall slip was almost absent using fresh glass
plates. These successful results do indicate that a significantly
larger strain can be applied without slip, in future work.
Figure 10 shows the confocal images (XZ mode) of the
amorphous packing of jammed shells taken after shearing the
shells by an amount γ = 1.72 and γ = 2.17. The two images
were taken from different experiments and the applied shear
rates were γ̇ = 7.8 × 10−2 s−1 and γ̇ = 2.8 × 10−3 s−1. We
didn’t perform a quantitative analysis on these systems, but
the observations revealed that these deeply jammed shells
at these relatively large strains and shear rates do undergo
fracture. In Figs. 10(a) and 10(b) cracks that developed during
the strain in the sample can be seen along the direction
approximately normal to the direction of extension. The
formation of cracks is a likely indication that these packings
behaved like a brittle amorphous solid under this shear rate
and much larger strains than in the other experiments that
were analyzed more quantitatively.

IV. CONCLUSIONS

In this article we have shown, by accurately measuring the
interparticle forces, how elastic shells can serve as local force
sensors in jammed states for a wide range of volume fractions
above the jamming point. From the deflection of the shells
at the contact points, we determined the magnitudes of the
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FIG. 9. (a) Probability distribution of the angle of contacts carrying forces above the average force with respect to the velocity direction
(X axis) for γ = 0. (b) The ratio is plotted of the probability distribution after shear and before shear for three values of strain amplitudes.
(c) The variation in average chain length (closed square) and persistence length (open square) of force chains obtained from shell packings
shear. Force networks in jammed shells (d) before shear, γ = 0 and (e) after shear, γ = 0.169. for forces greater than 1.5 times the average
value. The Z coordinate is increased by a factor of 1.5 for better visibility.

normal forces by a semiempirical force law that interpolates
smoothly between linear and square root behavior. We found
that with increasing compression, the probability distribution
at larger forces changed from exponential near the jamming
transition to Gaussian at higher packing densities. An analysis
of the correlation between the contact forces did not produce
evidence for the presence of a significant amount of force
chains, though the forces were slightly anisotropic in the
system due to the unidirectional compression in the preparation
of the sample. Local correlations were slightly higher in the
shear experiments. Although the shear deformations investi-
gated in this study were small (γ � 0.216), the microstructure
and contact force network showed already a pronounced

FIG. 10. Confocal images in XZ mode of jammed shells in two
different preliminary experiments, under various amounts of shear at
much larger shear strain and shear rate than in the experiments that
were analyzed quantitatively in this paper. The systems underwent
failure by developing cracks, in regions marked by the red ellipses
(a) at a shear strain γ = 1.72 and shear rate γ̇ = 7.8 × 10−2 s−1 and
(b) at a shear strain γ = 2.17 and shear rate γ̇ = 2.8 × 10−3 s−1.

anisotropy with increasing strain. We observed an increase in
the probability of forces both larger and smaller than average,
which correlated with the compression and extension axes of
the shear, respectively. Interestingly, the largest changes in the
contact forces were seen not at ±45◦ to the velocity axis but
at ±20◦. However, due to the small strains, no appreciable
change was observed in the distribution of contact number.
This reflected the fact that rearrangements of particles were
almost absent. Apparently, the system was only elastically
deformed by the applied stress. It would be interesting to
carry out quantitative studies at higher values of strain, after
introducing a better adhesion between the shells and the
walls. Future studies therefore would involve a systematic
investigation of mechanical and geometrical properties under
applied shear (without slipping) at different volume fractions
including marginally jammed shells. Moreover, research in
the direction of the effects of friction, stiffness, polydispersity,
shape anisotropy on jamming behavior, are also a possibility
to address without too many modifications of the same model
system as used in the present work.
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