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Configurational entropy and effective temperature
in systems of active Brownian particles†

Zdeněk Preisler and Marjolein Dijkstra*

We propose a method to determine the effective density of states and configurational entropy in

systems of active Brownian particles by measuring the probability distribution function of potential

energy at varying temperatures. Assuming that the entropy is a continuous and monotonically increasing

function of energy, we provide support that two-dimensional systems of purely repulsive active

Brownian spheres can be mapped onto an equilibrium system with a Boltzmann-like distribution and an

effective temperature. We find that the effective temperature depends even for a large number of

particles on system size, suggesting that active systems are non-extensive. In addition, the effective

Helmholtz free energy can be derived from the configurational entropy. We verify our results regarding

the configurational entropy by using thermodynamic integration of the effective Helmholtz free energy

with respect to temperature.

Introduction

Very recently, there has been a huge shift in interest from
passive to active colloidal systems.1–10 In contrast to passive
colloidal particles that only exhibit Brownian motion due to
thermal fluctuations, active self-propelled colloids are driven by
an intricate interplay between random fluctuations and active
swimming. While passive Brownian particles are in thermo-
dynamic equilibrium with the solvent, thereby satisfying the
fluctuation-dissipation theorem, active particles are driven far
from equilibrium as they incessantly convert energy into active
motion that gets dissipated through viscous damping. These
active systems display a number of compelling features not
typical for equilibrium systems such as dynamical phase
transitions11–15 or anomalous diffusion.16 Yet, they also show
behavior very similar to equilibrium systems, e.g. out-of-
equilibrium analogs of crystals, liquids, and gases, including
phase coexistence, nucleation, and spinodal composition,4,6,17–21

which motivated many researchers to describe these systems
using the framework of equilibrium statistical mechanics.22–24

However, recent attempts show that even basic thermodynamic
properties such as non-equilibrium equivalents of temperature
and pressure depend sensitively on the precise definitions at
hand, e.g., the mechanical pressure (force per unit area exerted
on a wall), thermodynamic pressure (derivative of the free energy
with respect to volume), or hydrodynamic pressure (trace of the

bulk stress tensor) do not necessarily correspond to each other in
out-of-equilibrium systems,25–29 the same is true for various
definitions of temperature, e.g. using diffusion,10 fluctuation-
dissipation theorem,30,31 and others.32–34 So far there is no
consensus on how to define the pressure and temperature in
active matter and there is yet no clear statistical mechanics
framework for active systems.

In this article, we propose a method to determine an
effective non-equilibrium equivalent of the density of states,
ONE(U), hence the effective configurational entropy, SNE(U), in
systems of active Brownian spheres by measuring the prob-
ability distribution function PNE(U) of potential energy U for
varying reduced temperatures T0 of the particle system. By
assuming that the entropy is a continuous and monotonically
increasing function of U, we provide support that active
systems can be mapped onto an equilibrium system with a
many-particle distribution function that resembles the Boltzmann
distribution, but with an effective temperature instead. In addi-
tion, the corresponding effective Helmholtz free energy can be
derived from the configurational entropy, which may allow us to
determine the thermodynamics and phase behavior of active
Brownian particles. Moreover, we verify our results of the con-
figurational entropy using a different route based on thermo-
dynamic integration of the effective free energy with respect to
temperature.

Model

We consider a two-dimensional system of N active Brownian spheres
interacting with a purely repulsive Weeks–Chandler–Andersen
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(WCA) potential in thermodynamic equilibrium with a heat bath
at temperature T. The WCA interaction potential UWCAðrÞ reads

UWCA rij
� �

¼
4e

s
rij

� �12

� s
rij

� �6
" #

þ e if rij o 21=6s

0 if rij � 21=6s

8>><
>>: (1)

where rij is the distance between particles i and j, e is the
interaction strength and s is our unit of length. The motion of
particle i at position ri and velocity :ri is described by the over-
damped Langevin equation

_riðtÞ ¼
Dt

kBT
�riUðtÞ þ feiðtÞ½ � þ

ffiffiffiffiffiffiffiffi
2Dt

p
CiðtÞ; (2)

where the potential energy U ¼
P
io j

UWCA rij
� �

is the sum of WCA

interactions between all active spheres and Dt = kBT/g is the
translational diffusion coefficient with g being the translational
friction coefficient. A stochastic force with zero mean, C(t),
describes the collisions with the solvent molecules, and satisfies
hGa,i(t)Gb, j(t0)i = dabdijd(t � t0) with a, b = x, y, z. In addition, the
self-propulsion of particle i is described by a constant force f in the
direction ei(t) at time t. The orientation ei(t) of particle i undergoes

free Brownian rotation according to _eiðtÞ ¼
ffiffiffiffiffiffiffiffi
2Dr

p
eiðtÞ � Cr

i ðtÞ
� �

,
where Dr denotes the rotational diffusion coefficient and Cr

i(t) is a
Gaussian white-noise random vector, which satisfies hGr

a,ii = 0
and hGr

a,i(t)G
r
b, j(t0)i = dabdijd(t � t0). In addition, we define the

temperature of our system of active Brownian spheres by a
dimensionless temperature T0 = kBT/e, which we vary by changing
the interaction strength e in the WCA potential (1). Please note
that changing the temperature T of the heat bath changes not
only the temperature of the particle system through T 0 = kBT/e,
but also the magnitude of the Brownian noise and thus the
system dynamics. We therefore kept the temperature T of the
Brownian bath constant as well as the translational diffusion
coefficient Dt and rotational diffusion coefficient Dr, and changed
the temperature of the particle system only by changing e.
Exemplarily, we show typical configurations of the active system
with 512 particles in Fig. 1 for density rs2 = 0.5, temperature
T 0 = 1, and varying self-propulsion forces fs/kBT = 0, 6.35, 10.08,
and 25.4. We clearly observe that the system becomes more
heterogeneous upon increasing the activity.

Results
Configurational entropy in an equilibrium system

In order to investigate the configurational entropy S(U) we use
the direct histogram method35 and the thermodynamic inte-
gration technique.36 Both methods are standard techniques
used in simulations of equilibrium systems. Below, we describe
them first for equilibrium systems, and explain then how we
extend them to active systems. In ref. 35, a method was devised
for calculating the density of states O(U) and the configura-
tional entropy function S(U) directly from simulation data. In
this method, O(U) and S(U) are determined from the probability
distribution function of energy P(U) with U being the potential
energy of the system due to the particle interactions. P(U) is
measured from simulations in a canonical ensemble, i.e., the
number of particles N, the volume V, and the temperature T are
fixed. In the canonical ensemble, P(U) reads

P UjN;V;Tð Þ ¼ OðU;V;NÞe�U=kBT
QðN;V ;TÞ ; (3)

where Q ¼
Ð
drN exp �U=kBT½ � denotes the configurational part

of the partition function. The configurational entropy S(U) can
be obtained directly from

S(U,V,N) = kB lnO(U,V,N). (4)

From eqn (4), it is straightforward to obtain the difference in
entropy DSIJ = S(UI) � S(UJ) between states I and J with energies
UI and UJ, respectively

DSIJ=kB ¼ ln
P UI jN;V ;Tð Þ
P UJ jN;V ;Tð Þ þ UI �UJð Þ=kBT : (5)

We note that DSIJ is independent of the configurational
partition function Q(N,V,T). Eqn (5) is the key equation here,
which we employ to probe the system statistics. In order to
determine the entropy function S(U), we measure P(U) for
varying reduced temperatures T 0 = kBT/e of the particle system.
The temperatures are chosen such that the energy distributions
overlap. The entropy function is then recovered by solving
consecutively eqn (5) for energy states I and J = I + 1 for all I.
To this end, we perform Brownian dynamics simulations of
N = 512 passive WCA particles at a number density rs2 = 0.7.
The self-propulsion force fs/kBT = 0 and the simulations
correspond to an equilibrium system. We measure P(U) for
varying T 0, and present the results in Fig. 2a. We observe that
the maximum of P(U) shifts to higher energies upon increasing
T 0 as expected. In addition, the distributions become broader
with T 0. In Fig. 2b we show the average potential energy hU/ei
as a function of reduced inverse temperature 1/T0 and we fit
the data with a spline as denoted by the blue line. Using
eqn (5), we determine the difference in configurational entropy
DSIJ/kB between energy states UI and UJ as a function of
U = (UI + UJ)/2 with J = I + 1 and for all I. We fix the energy
difference DUIJ = UI � UJ = 0.71e, and plot the results in Fig. 2c.
We clearly find that the entropy differences DSIJ as obtained
from Brownian dynamics simulations at varying T0 nicely over-
lap. Finally, we obtain the configurational entropy S(U) as a

Fig. 1 Typical configurations of a system of N = 512 active Brownian
spheres at a number density rs2 = 0.5, reduced temperature T0 = kBT/e = 1,
and varying self-propulsion forces fs/kBT = 0, 6.35, 10.08, and 25.4 from
left to right.
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function of energy U by summing up DSIJ sequentially for
increasing I as plotted in Fig. 2d. As expected, we observe that
S(U) is a continuous and monotonically increasing function of U.
We verify our results of the entropy by using thermodynamic
integration of the Helmholtz free energy F = U � TS with respect
to the inverse temperature

F N;V;T 02
� �

T 02
�
F N;V ;T 01
� �

T 01
¼
ð1=T 02
1=T 01

Uh id 1=T 0ð Þ: (6)

Using the spline fit U(1/T0) as shown in Fig. 2b in eqn (6), it is
straightforward to obtain the difference in entropy, which we
plot in Fig. 2d for comparison with the direct histogram method.
We find a perfect agreement between the two methods.

Non-equilibrium equivalent of configurational entropy

Now we turn our attention to active systems. There are different
approaches that can be chosen to describe steady states in out-
of-equilibrium systems. One approach is to construct an effec-
tive Hamiltonian that generates a Liouville distribution in an
equilibrium system that closely resembles that of the non-
equilibrium system of interest, i.e., the same (or nearly the same)
configurational phase space distribution function is sampled by
both dynamics and it thus captures in an equilibrium system the
static properties of the out-of-equilibrium system. The advantage

of such an approach is that the framework of statistical mechanics
can readily be employed, see e.g., ref. 22–24 and 37. In this article,
we investigate the statistics of the out-of-equilibrium system of
active Brownian disks, and suggest that the steady state of an
active system can be mapped onto an equilibrium system with a
Boltzmann-like distribution with the potential energy given by the
bare particle interactions instead of the unknown effective inter-
actions, but with an effective temperature.

To this end, we assume that the probability PNE(U) to find
our non-equilibrium (NE) system in a steady-state with potential
energy U can be written in a similar way as in eqn (3), where the
Boltzmann–Gibbs measure is replaced by an unknown measure
that is determined by the dynamics. We note here that such an
alternative can be formulated, at least formally, for deterministic
systems, where the dynamical measure is defined by the phase
space trajectories.38 Unfortunately, we are not aware of such
an expression for stochastic systems like the active Brownian
spheres. In order to proceed we consider a probability weight
g(U) by analogy with equilibrium systems, which depends only
on the potential energy U of the steady states that are sampled by
the dynamics of the system.

PNE UjN; V; T 0; Dt; Dr; fð Þ ¼ ONEðU;V;NÞgðUÞ
QNE N; V ; T 0; Dt; Dr; fð Þ;

(7)

where PNE(U) is a probability distribution of the potential energy
U generated by the out-of-equilibrium dynamics. This probability
distribution is, however, dependent on all parameters that
determine the dynamics of the particle system i.e. N, V, T0, Dt,
Dr and f. Furthermore, QNE ¼

Ð
drNgðUÞ denotes the non-

equilibrium configurational part of the partition function and
ONE(U,V,N) the effective non-equilibrium density of states of the
non-equilibrium system. There are a few remarks that we wish to
make. We first note that PNE(U) denotes the probability of
finding a configuration in a steady state with potential energy
U. Since U depends only on the positions of particles in the
system and not on the instantaneous momenta of the particles,
we have basically integrated out the momenta of the particles.
Note, however, that the kinetic contributions to U and S are
trivial for equilibrium systems on which we map our active
system, but this might not be true for the original out-of-
equilibrium system. Secondly, we assume that the integral
QNE ¼

Ð
drNgðUÞ holds and that the system is ergodic. By

requiring this we neglect the system’s dissipation and its con-
sequences. Within this interpretation, our approach can be
considered as a mapping of the steady state of an out-of-
equilibrium system onto an effective equilibrium one.

We now assume that g(U) is still exponential in U, but with
an effective temperature Teff

g(U) = exp [�U/(kBTeff)] (8)

with U ¼
P
io j

UWCA rij
� �

. We thus assume that the many-particle

configurational probability distribution depends only on the
potential energy due to the bare particle interactions, which is

Fig. 2 (a) Probability distribution function P(U/e) of potential energy U for
varying reduced temperatures T0 = kBT/e = 0.25, 0.286, 0.33, 0.4, 0.5, 0.67,
and 1.0 in the direction denoted by the arrow as obtained from Brownian
dynamics simulations of a system of N = 512 passive WCA particles and
number density rs2 = 0.7. (b) The averaged potential energy hU/ei as a
function of 1/T0. The orange dots correspond to measured averages. The
blue line is a spline fit, which is used for the thermodynamic integration.
(c) The entropy difference DSIJ/kB between energy states UI and UJ as a
function of U = (UI + UJ)/2 with J = I + 1. The energy difference DUIJ/e =
0.71 is kept fixed for all I. (d) The entropy DS(U)/kB = (S(U) � S(U*))/kB as a
function of energy U with U* = 162.38e as obtained from the direct
histogram method (blue line) and the thermodynamic integration method
(red).
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valid in the limit of weakly persistent motion, i.e., the persis-
tence time t = Dt/(2Drs

2) - 0.22–24

The effective temperature is thus a consequence of the non-
equilibrium dynamics and depends on all system parameters
N, V, T0, Dt, Dr and f. In the limit of fs/kBT - 0, our active
system reduces to an equilibrium system with the Boltzmann
statistics and with Teff - T0. In the absence of interactions or in
the limit of weakly persistent motion the effective temperature
can be expressed as Teff = T0(1 + v0

2/2DrDt), also called the swim
temperature22–24 with v0 = fDt/kBT. Hence, the effective tem-
perature should be in the range 1 r Teff/T0 r 1 + v0

2/2DrDt. We
wish to note here that many extensions of a more generalized
statistics for dynamical systems reduce to a Boltzmann-like
weight with an effective temperature provided the fluctuations
are sufficiently small.39 Moreover, recent work on sedimenta-
tion or centrifugation of active colloidal suspensions supports
the concept of an effective temperature in active systems.1,40–42

In order to investigate if the energy probability distribution
function (7) can be described by an alternative measure, in our
case represented by the probability weight (8) with an effective
temperature Teff, we measure PNE(U|N, V, T) in Brownian
dynamics simulations of N = 512 active particles with a self-
propulsion force fs/kBT = 10, number density rs2 = 0.7, and
rotational diffusion coefficient Dr = Dt/s

2. We plot PNE(U) for

varying T0 in Fig. 3a, which are shifted to higher energy values
with respect to a passive system due to the activity of the
particles. Assuming an ordinary Boltzmann distribution and
employing naively the direct histogram method as described by
eqn (5) for an equilibrium system, we clearly observe in Fig. 3b
that the entropy differences DSIJ for fixed DUIJ/e = 1.33 are not
overlapping for varying T0 as the steady-state of the out-of-
equilibrium system is not described by an ordinary Boltzmann
statistics with potential energy U. If we assume that DSIJ should
be a continuous function of U and we replace T0 with an
effective temperature Teff/T0 = a, we recover the perfect overlap
of DSeff

IJ as shown in Fig. 3c with just a single fit parameter
a = 1.67 for all seven different temperatures T0 that we con-
sidered. We thus find that Teff 4 T0 due to the self-propulsion,
but Teff/T0 o (1 + v0

2/2DrDt) = 51 as a result of the particle
interactions. Summing up DSeff

IJ sequentially, we obtained
SNE(U) as shown in Fig. 3d. We again compare our results with
thermodynamic integration, where we use the effective tem-
perature as obtained from the direct histogram method in
eqn (6). We find a perfect match between the two methods,
thereby providing support for the Boltzmann-like probability
weight (8) and an effective temperature. We thus use the
effective temperature Teff not only as a fit parameter, but it
also has a thermodynamic meaning since 1/Teff = qSNE/qU by
construction.

In addition, we investigate the effect of system size on the
resulting Teff using this approach. In Fig. 4a, we plot Teff for a
system of WCA particles with a self-propulsion force fs/kBT = 10,
number density rs2 = 0.5 and rotational diffusion coefficient
Dr = Dt/s

2 as a function of system size N. We observe that Teff is
strongly dependent on N even for large system sizes up to 8192
particles and keeps on increasing with N. Fig. 4a suggests that
these active systems are non-extensive, which would be in
agreement with previous studies on granular matter, where
extensivity has been investigated using similar approaches.43–45

However, as it becomes more difficult to measure the effective
temperature for larger system sizes, it would be interesting for
future work to employ more precise methodologies to calculate
the system size dependence of the effective temperature.

Fig. 3 (a) Probability distribution functions PNE(U/e) for a system of
N = 512 WCA particles with a self-propulsion force fs/kBT = 10, number
density rs2 = 0.7, and rotational diffusion coefficient Dr = Dt/s

2 for varying
reduced temperatures T0 = kBT/e = 0.25, 0.286, 0.33, 0.4, 0.5, 0.67, and
1.0 in the direction denoted by the arrow. (b) The entropy difference
DSIJ/kB between energy states UI and UJ as a function of U = (UI + UJ)/2
with J = I + 1 as obtained from eqn (5) The entropy differences are not
overlapping for varying T0. (c) DSeff

IJ /kB as a function of U = (UI + UJ)/2, but
assuming an effective temperature Teff/T0 = 1.67. The curves are over-
lapping well within our statistical accuracy. The energy difference DUIJ =
1.33e is kept fixed for all I. (d) The relative effective entropy DSNE(U)/kB =
(SNE(U) � SNE(U*))/kB as a function of energy U with U* = 315.35e as
obtained from the direct histogram method (blue line) and the thermo-
dynamic integration method (red line).

Fig. 4 (a) The effective temperature Teff/T0 as a function of N on a
logarithmic scale for WCA particles with self-propulsion fs/kBT = 10,
Dr = Dt/s

2 and number density rs2 = 0.5. (b) Teff/T 0 as a function of
Drs

2/Dt for WCA particles with number density rs2 = 0.5, N = 1024, and
varying v0

2/2DrDt = 0.5, 1, 2, and 3 from bottom to top as denoted by the
arrow. For large Drs

2/Dt we recover the weakly persistent motion regime
with the effective temperature Teff/T0 = 1 + v0

2/2DrDt as denoted by the
horizontal dashed lines.
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Our results thus show that care has to be taken with finite-size
effects in active systems.

Additionally, we determine the effective temperature as a
function of rotational diffusion coefficient Dr in order to study
the limit of weakly persistent motion for which Teff/T0- 1 + v0

2/
2DrDt.

22–24,46 To this end we fix v0
2/2DrDt = 0.5, 1, 2, 3 while

changing the rotational diffusion Dr. Fig. 4b shows Teff/T0 as a
function of Dr for a system of WCA particles with a self-
propulsion force fs/kBT = 10, number density rs2 = 0.5, and
N = 1024. We clearly observe that Teff/T0 increases from B1 at
low rotational diffusion Dr to 1 + v0

2/2DrDt as denoted by the
dashed horizontal lines in the limit of high Dr.

Additionally, we studied the effect of the self-propulsion
force fs/kBT on Teff as shown in Fig. 5 for a system of N = 512
particles with rs2 = 0.5 and Dr = Dt/s

2. As expected Teff increases
with activity, which can also be seen in Fig. 5a as the slope of

qSNE/qU = 1/Teff decreases with self-propulsion. It is worth
mentioning that for low activity fs/kBT o 10, we clearly see
that the effective temperature becomes intensive, which can be
appreciated by the data collapse in Fig. 5b for various system
sizes. For fs/kBT 4 10, Teff becomes strongly dependent on
system size as shown in Fig. 5b. However, in this case the
system becomes inhomogeneous and is close to a motility-
induced phase separation.

Finally, we also study Teff/T0 as a function of rs2 for a system
of N = 450 particles. Surprisingly, we find that the configura-
tional probability distribution is well described by a Boltzmann-
like distribution as illustrated in Fig. 6a, but the effective
temperature Teff/T0 increases with density rs2, see Fig. 6b. This
seems to be at odds with our naive interpretation that the
mobility decreases, and hence the ‘‘kinetic’’ effective tempera-
ture, with increasing density due to the interactions between
the particles,24 but we note here that the potential energy also
increases with density as the particles interact more strongly at
higher densities yielding a higher ‘‘thermodynamic’’ effective
temperature.

Conclusions

In conclusion, we propose a method to determine the configura-
tional entropy and probe the statistics of the many-particle
configurational distribution functions in simulations of out-of-
equilibrium systems. Assuming that the entropy is a continuous
function of the potential energy, we lend support that systems of
repulsive active Brownian spheres can be mapped onto an equili-
brium system described by a Boltzmann-like distribution with the
potential energy given by the bare particle interactions, and an
effective temperature determined by an effective mobility that
depends on the activity and interactions between the particles.
We wish to remark here that in ref. 22–24 and 37 a different
approach was adopted, in which the temperature is kept constant
in the mapping or fixed to the swim temperature, but the effect of
the dynamics due to self-propulsion, rotational diffusion, and
particle interactions is casted into an effective Hamiltonian. It is
tempting to speculate that the two descriptions are different sides
of the same coin in which the combination Ueff/kBTeff is key: one
can either map the active system onto an effective equilibrium
system with effective interactions and a fixed temperature, or one
can keep the bare interactions but use instead an effective tem-
perature. This demonstrates that the temperature is not uniquely
defined for active systems. It would be interesting to measure the
probability distribution functions of the potential energy of active
systems using the effective Hamiltonian as presented in ref. 22–24
or to determine the effective interactions from structural input
obtained from simulations of active systems,37 which will be left for
future studies.
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