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Nematic ordering of polarizable colloidal rods in
an external electric field: theory and experiment

Thomas Troppenz,a Anke Kuijk,b Arnout Imhof,b Alfons van Blaaderen,b

Marjolein Dijkstrab and René van Roija

We employ the coupled dipole method [B. W. Kwaadgras, et al., J. Chem. Phys., 2011, 135, 134105] to

calculate the orientation-dependent interaction of polarizable colloidal rods with an external electric

field. We project the angular distribution function of a system of such rods on a quasi-two-dimensional

slab, corresponding to the focal plane of a microscope, and show that the 3D nematic order parameter

and its measurable projected analogue are very similar. We compare our results to confocal microscopy

measurements on the orientation distribution function of systems of polarizable colloidal silica rods in

an external electric field, demonstrating reasonably good agreement between theory and experiment

without any free fit parameter.

Introduction

The self-assembly of Brownian nanoparticles received much
attention in recent years, which is to a large extent due to their
ability to form ordered structures. This is of great interest for
materials science, since these nanostructures may yield new
applications.

Electric fields can be used to control the orientation and
relative position of anisotropic polarizable colloidal particles,1–11

which is of great practical interest, since it creates the possibility
of influencing and directing the self-assembly process of such
systems. This practical potential is demonstrated by applications
such as e-paper12 and liquid-crystal displays.13 Recently, great
progress has been made in the synthesis of anisotropic colloidal
particles, such as rod-like particles,14–16 dimer particles10,11,17–24

and bowl-shaped particles.25–31 For such anisotropic particles,
the coupled dipole method (cdm) has been employed success-
fully to calculate properties such as the polarizability tensor,8,32

the orientation-dependent energy,8,9 and the electric-field induced
dipole interactions.33 This has been done for many different
particle shapes, including needles, bowls, dumbbells, cuboids8

and many others. Here, we use a similar theoretical framework
to calculate the orientation-dependent energy of a polarizable
colloidal rod in a high-dielectric solvent subject to an external
electric field, and from this its thermal orientation distribution
function. We then proceed to compare the theoretical predic-
tions to experimental confocal microscopy measurements in

dilute systems using a novel experimental model system of
colloidal silica rods of varying length L and diameter D.

Confocal microscopy34 is an important experimental tool to
quantitatively visualize the self-assembly process or the result-
ing self-assembled structure using three-dimensional (3D) data
sets, which are built up from stacks of 2D slices. 3D position
coordinates for spherical particles,34 and for rod-like particles
also the orientation,35 can be obtained from such data sets.
However, if the dynamics of the individual particles is too fast
compared to the time it takes to obtain such 3D stacks, as is the
case with the rod-like particles studied in this paper, this 3D
construction process from many 2D slices is not possible. One
way to still follow the dynamics or a self-assembly process under
these conditions is to acquire 2D slices as quickly as possible. An
important complication that manifests itself in this case in
confocal measurements of anisotropic particles is that only the
projection of each particle onto the focal plane, as determined by
the width of the point spread function along the optical axis,34 is
observable. This not only leads to an apparent polydispersity
because different orientations of identical particles lead to
different projection shapes, but it also leads to an orientation
dependent detection efficiency since particles with their center
of mass outside the plane may get detected anyway if a ‘‘tip’’
resides inside the focal plane. In this paper we address these
projection and detection issues for the case of homogeneously
fluorescently labeled micron-sized cylindrical rods aligned by an
external electric field. Interestingly, and perhaps surprisingly, we
will show that reliable information on the full (unprojected)
orientation distribution can be obtained from measurements of
the projected orientations.

Below we develop a method to compare the measured orienta-
tion distribution function in an essentially two-dimensional
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confocal slab of finite thickness D to the fully 3D-resolved
distribution C(y) that follows directly from our theory with
y the angle between the applied electric field and the long axis
of a rod. We find rather good agreement between theory and
experiment, without any free fit parameter. In addition, we will
also show that the nematic order parameter obtained from rod-
orientations projected onto the focal plane agree remarkably
well with the nematic order parameter based on the fully 3D
(unprojected) orientations of the rods. This finding is also
relevant for the interpretation of confocal microscopy observa-
tions of other anisotropic particles that move too quickly with
respect to the time it takes to acquire 3D data sets.

CDM of a polarizable particle in a
solvent

We consider a single rod of dielectric constant e1 in a solvent of
dielectric constant e2 in a homogeneous and static external
electric field E that polarizes both the solvent and the rod as
illustrated in Fig. 1.

We describe the dielectric rod in terms of polarizable units
that we call atoms for simplicity. The atoms are located on a
fixed cubic grid of N lattice sites ri with 1 o i o N such that they
build up the rod. They are modeled as Lorentz-atoms with a
dipole moment pi = eui, with e the effective electron charge and
ui the displacement of the effective electron cloud with respect
to ri.

8 The atom’s polarization pi is linearly dependent on the
local electric field E(i)

loc that atom i is subjected to, so

pi = aE(i)
loc. (1)

Here, a is the molecular excess polarizability given by the
Clausius–Mossotti relation

a ¼ 3

4p
e2
n0

e1 � e2
e1 þ 2e2

; (2)

where n0 denotes the number density of the dipoles in the
rod.36 We note that the Clausius–Mossotti relation may lead to
negative as well as positive values for a. It is important to note
that pi and ui are anti-parallel to E(i)

loc when a o 0. In other
words, the physics for a 4 0 is not identical to that of a o 0
because the induced electric field due to neighboring atoms is

to be added to or subtracted from the applied electric field, as
will be made explicit below.

The Lorentz atoms couple to the external electric field E by
an energy �eui�E and to each other through a pair potential
�e2ui�T(ri � rj)�uj, where i and j represent atoms separated by a
spatial distance ri � rj and where the dipole tensor is given by

TðrÞ ¼
3r̂r̂� I

e2 rj j3
; if ra0;

0; if r ¼ 0;

8><
>: (3)

with r̂ = r/|r| a unit vector, I the 3 � 3 identity matrix, and 0 the
corresponding null matrix.

Note that a dipole at position rj generates an electric field at
position ri given by Tij�pj such that the local electric field can be
written as

E
ðiÞ
loc ¼ Eþ

X
j

Tij � pj ; (4)

where E is the external electric field as introduced above and Tij

is short for T(ri � rj).
Combining eqn (1) with eqn (4), we find

pi ¼ aEþ a
X
j

Tij � pj ; (5)

which we rewrite in matrix form as

ðI � aT Þ � P ¼ aE: (6)

Here, P is a vector with 3N entries containing the N dipole
moment vectors pi, while contains N copies of the external
electric field E. We also introduced the 3N� 3N unity matrix and
the 3N � 3N matrix I which has entries that are given by the Tij.
Eqn (6) is a 3N � 3N linear algebra problem for the dipoles pi

that can be solved numerically with standard methods. The
potential energy VE is the energy of N induced dipoles given by1,8

VE ¼ �
1

2

XN
i¼1

pi � E ¼ �
1

2
E � ac � E; (7)

where the 3 � 3 excess polarizability tensor ac of the rod is
defined by X

i

pi ¼ ac � E; (8)

such that

ac ¼ a
X
i; j

Dij ; (9)

with Dij given by the 3 � 3 dimensional sub blocks of the 3N �
3N matrix ðI � aT Þ�1.8 For a uniaxial rod-like particle, ac can be
diagonalized with only two independent entries, denoted by ac,J

and ac,>. We then find that the orientation-dependent excess
potential energy VE takes a particularly simple form,8

VEðyÞ ¼ �
1

2
ac;k � ac;?
� �

Ej j2cos 2yþ const

¼ � 1

2
Na fk � f?
� �

Ej j2cos 2yþ const;

(10)
Fig. 1 Sketch of a colloidal rod of dielectric constant e1 in a solvent of
dielectric constant e2 exposed to a homogeneous external electric field E.
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where we used the angle y A [0, p/2] between the symmetry axis
of the rod and the electric field. We introduce the so-called
anisotropy factor ( fJ � f>), which is a dimensionless measure
for the eigenvalue difference of the eigenvectors of ac parallel
and perpendicular to E, with fJ = ac,J/Na, and f> = ac,>/Na.

In order to solve eqn (6) for, we have to ensure that all
eigenvalues of ðI � aT Þ remain positive. Fig. 2(a) shows lmin,
the smallest eigenvalue of ðI � aT Þ, as a function of a/a3, for
three different lattice spacings a, for a spherocylinder of length-
to-diameter ratio 2.4. We see that the absolute value of a/a3

must not be too large, otherwise the coupled dipole method
breaks down, a phenomenon known as the polarization cata-
strophe. This catastrophe is due to an unphysically diverging
polarisation, where the linear response relation of eqn (1)
breaks down.32 To avoid this, we must choose a such that
�0.12 t a/a3 t 0.19, where we note that the lower bound is
close to our experimental system of silica rods in a solvent
mixture of water and dimethylsulfoxide (see below). We
repeated these calculations for spheres and for spherocylinders
with L/D = 5, and found that this range for a also holds in those
cases. We also see from Fig. 2(a) that lmin decreases as we
decrease the lattice constant (and hence increase the number
N of dipoles that build up the rod). This effect is more
pronounced for negative values of the polarizability than for
positive ones. It appears from Fig. 2(b), however, that the
anisotropy factor ( fJ � f>) is not strongly dependent on the
value of the lattice constant a/D used. For comparison, we also plot
the anisotropy factor using the decoupled dipole method (ddm),
i.e., a grid with dipoles of equal magnitude and direction pi = aE,
yielding a potential energy of

VddmðyÞ ¼ �a
2 Ej j2

2

X
iaj

3 cos 2yi; j � 1

rij3
þ const; (11)

where yi, j denotes the angle between rij and E, with rij the vector
between dipoles i and j, and rij = |rij|. Note that here, each dipole
has the same dipole moment, disregarding the influence that
other dipoles can have on the magnitude and direction of each
of them, an effect that is incorporated in the cdm through the
second term on the right of eqn (5). The anisotropy factor is
given by

f ddmk � f ddm? ¼ �2V
ddmðy ¼ 0Þ � Vddmðy ¼ pÞ

NaE2
: (12)

Note that eqn (11) corresponds to the small-a limit of eqn (10),
since ac ¼ NaIþ a2tþO a3

� �
, where t ¼

P
i; j

Tij is a 3 � 3 matrix

that depends on the shape of the particle. Within this limit we

find that VEðyÞ � �a2 tk � t?
� �

cos2y Ej j2
.
2.

From Fig. 2(b) it is clear that for negative a, the anisotropy
factor ( fJ � f>) computed with the cdm converges to that of the
ddm. We thus find that the decoupled dipole method can be
used to approximate the anisotropy factor, yielding accurate
results for negative a, at least in the parameter regime of
present interest. This is a very useful result, since the computa-
tion of anisotropy factors with the ddm is computationally less
involved than the equivalent cdm procedure, and is not limited
to as narrow a range of polarizabilities as the cdm since it
circumvents the polarization catastrophe. Of course the actual
accuracy of the ddm for deeply negative polarizabilities is not
guaranteed, we just have nothing to compare it to in this
regime.

Orientation distribution

We consider a dilute system of colloidal rods, modeled as
spherocylinders with cylinder length L and diameter D, in a
dielectric liquid medium exposed to the external electric field E.
The excess interaction strength between one spherocylinder
and the electric field is given by eqn (10), and hence the
probability distribution C(y) of the relative angle y A [0, p/2]
between a rod and the electric field can be written as the
normalized Boltzmann factor associated with the energy VEðyÞ,
which is given by37

CðyÞ ¼ e�bVEðyÞÐ p=2
0 dy sin ye�bVEðyÞ

; (13)

where b�1 = kBT with T the temperature and kB the Boltzmann
constant.

We introduce the order parameter

S ¼
ðp=2
0

dy sin yCðyÞ3 cos
2y� 1

2
; (14)

which is a quantitative measure of the field-induced nematic
ordering of the rods, yielding S = 1 for perfect alignment and
S = 0 for an isotropic angular distribution function.

Although the distribution C(y) and the order parameter S are
natural quantities to consider from a theoretical perspective,

Fig. 2 (a) The value of lmin, the smallest eigenvalue of ðI � aT Þ, of a
spherocylinder with length-to-diameter ratio L/D = 2.4, as a function of
the polarizability a, as calculated with the coupled dipole method for
different lattice spacings a. The cdm is only applicable if this smallest
eigenvalue is larger than zero, corresponding to a range of approximately
�0.12 t a/a3 t 0.19. (b) Anisotropy factor (fJ � f>) of the system. The
result for the decoupled dipole method (ddm) is also shown (see text).
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they are not necessarily the most convenient measurable quan-
tities. Below we will present confocal microscopy measure-
ments in which slices of 3D samples are imaged, showing
only projections of rods onto the confocal imaging plane.
In order to bridge the gap between theoretical and experi-
mentally accessible quantities, we now calculate the projected
2D orientation distribution function C2D(y0) and the associated
nematic order parameter S2D from our fully 3D theoretical
predictions as follows. In a single confocal microscopy image
the angle y0 between the electric-field direction ê and the
projected particle orientation vector w0 is measured, rather
than the polar angle y = arccos(ŵ�ê) between the electric field
and the actual orientation of the rod ŵ, see Fig. 3. Here the
projected orientation vector is defined as w0 � ŵ � (ŵ�n̂)n̂,
where n̂ denotes the normal of the focal plane. Note that w0 is
not a unit vector. In our experiments the focal plane is chosen
such that n̂ > ê, see Fig. 3. Elementary geometry relates the
polar angle y and the azimuthal angle f of ŵ to the measured
angle y0 by

sinfj j ¼ tan y0

tan y
; (15)

where we use the convention that the azimuthal angle satisfies
ŵ�n̂ = sin y cosf and ŵ�x̂ = sin y sinf (and hence ŵ�ê = cos y).
Our measurements are also affected by the finite depth D of
the focal plane (in the direction parallel to n̂). If the size of D is
of the same order of magnitude as the spatial dimensions
of the rods in the experiment, the probability of detecting a

rod in the focal plane is orientation dependent, with
rods with ŵ J n̂ having relatively large detection probability
since their end may ‘‘stick’’ into the focal plane even though
their center of mass position is not in the focal plane.
It is reasonable to assume that a spherocylindrical rod of
cylinder length L, diameter D and orientation ŵ gets detected
with a probability that is proportional to D + D + L(ŵ�n̂),
corresponding to an effective length interval of the center of
mass in which the rod can be detected in the direction
perpendicular to the focal plane (note that D + L(ŵ�n̂) is the
end-to-end length L + D of the rod projected onto the
normal direction). We furthermore assume that the angular
distribution is uniaxial about E such that it is independent of
the azimuthal angle f. Using the weight factor D + D + L cosf
sin y to account for the orientation-dependence of the
probability of detecting a rod of orientation (y, f), and taking
into account the uniaxiality and the geometric relation of
eqn (15), the probability distribution for the projected orienta-
tion reads

which is normalized such that
Ð p=2
0

dy0C2D y0ð Þ ¼ 1 is ensured.
The corresponding order parameter of the projected angular

distribution is defined by

S2D ¼
ðp=2
0

dy0C2D y0ð Þ cos 2y0ð Þ; (17)

and takes values between 0 (no ordering) and 1 (perfect ordering
along ê). Fig. 4 compares S2D with the three dimensional order
parameter S for a variety of dimensionless length-to-effective-
plane-thickness ratios l = L/(D + D), revealing that S2D E S for

Fig. 3 (a) Schematic representation of the rod orientation ŵ with respect
to the focal plane of thickness D and normal n̂, in the presence of an
in-plane electric field E. (b) Schematic representation of the projection w0

of the rod orientation ŵ onto the focal plane. Here, y denotes the polar
angle of ŵ w.r.t. ê, f the azimuthal angle of ŵ, and y0 the angle between ê
and w0. Here, we choose the coordinate system such that the x̂-direction
is perpendicular to n̂ and ê, with the unit vector ê J E.

Fig. 4 The projected 2-dimensional order parameter S2D as a function of
the standard 3-dimensional nematic order parameter S for different values
of the length-to-effective-plane-thickness ratio l = L/(D + D). For com-
parison, we also plot the line S2D = S.

C2D y0ð Þ ¼
Ð p=2
0 dy sin y

Ð p=2
0 dfCðyÞðDþDþ L sin y cosfÞd sinfj j � tan y0= tan yð ÞÐ p=2

0 dy0
Ð p=2
0 dy sin y

Ð p=2
0 dfCðyÞðDþDþ L sin y cosfÞd sinfj j � tan y0= tan yð Þ

; (16)
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all l and S A [0, 1]. In other words, measuring the projected
order parameter S2D yields a reliable estimate for the standard
3D nematic order parameters S, at least for the functional form
C(y) B exp{C cos2 y} that follows from eqn (10) and (13). Here
C = b(ac,J � ac,>)|E|2/2 uniquely determines S, leaving l as the
only remaining dimensionless parameter in the comparison
between S2D and S. We wish to remark here that in the experi-
ments on silica rods, which are described below, the length-to-
effective-plane thickness ratio l ranges from [0.9, 1.8].

Experiments

In this section we discuss the colloidal silica rods, and the measure-
ment of their projected orientation distribution functions when
exposed to an external electric field. We compare this orientation
distribution function to the results of the cdm.

We synthesized four batches of micron-sized silica rods.15,16

Systems B35 and B31 consisted of non-fluorescent core parti-
cles with a 30 nm FITC-labeled fluorescent inner shell and a
190 nm non-fluorescent outer shell. The rods of B47 had a
FITC-labeled core and a 150 nm non-fluorescent shell. Systems
N51 had a rhodamine isothiocyanate (RITC) labeled core and a
150 nm non-fluorescent shell. Due to the coated silica layers the
particles had approximately the shape of a spherocylinder. We
denote by L the length of the cylindrical segment and by D the
diameter (values are shown in Table 1). The total length of the
rods is therefore L + D. We prepared dilute dispersions of these
rods in a solvent mixture consisting of dimethylsulfoxide
(DMSO) with a dielectric constant of 47 and ultrapure water
with a dielectric constant of 80. The volume ratio between DMSO
and water was 10/0.85 yielding a dielectric constant e2 = 50 for
the medium. The volume fraction of rods in the solvent was
about 0.0025, which is a factor 200 below any expected ordering
transition and so low that the interactions between rods can
safely be ignored.38 For the sample cells, 0.2 � 0.2 mm capil-
laries were used, with two sides coated with gold. A field
perpendicular to gravity was created by two 50 mm wires that
were connected to the capillary by silverpaint (SPI-paint), with
each wire wrapped around a standard electronic wire. For con-
figurations in which several layers of material are positioned
between the electrodes, which is the case when the electrodes
are on the outside of the capillary, the electric field inside any
of these layers can be calculated by:

Ei ¼
V

ei

e1e2e3
d1e2e3 þ d2e1e3 þ d3e1e2

� �
; (18)

with V the applied voltage, ei the dielectric constant of the
material the field strength is calculated in, e1–3 the dielectric
constants of layers 1–3 and d1–3 the thickness of layer 1–3. In our
cells, which consist of two layers of glass (d = 0.1 mm, e = 3.5) and
one layer of solvent (DMSO/water, d = 0.1 mm, e = 50), the field
inside the solvent can thus be calculated by E = 3.4 � 10�4 V
(V mm�1). A function generator (Agilent, type 33220A or 33120A)
was used to generate a sinusoidal signal with a frequency of 1
MHz and an amplitude of 3.0 V. The generated signal was send
to the sample via a wide band amplifier (Krohn-Hite, 7602M),
which was used to control the field strength in the sample cell.
The field strength was measured by an oscilloscope (Tektronix,
TDS3012B or TDS3052). We studied these systems in an exter-
nal electric field with a confocal microscope (Leica SP2), with
the electric field direction ê and the normal n̂ of the confocal
planes as indicated in Fig. 3, where we estimate D E 1 mm. The
projected orientation of the rods was determined by analyzing
2D confocal images of rods during sedimentation using an
algorithm based on the one described in ref. 35. By a counting
and binning procedure we measured the projected orientation
distribution functions C2D(y0) for our four different batches of
particles, each at several different field strengths. A selection of
these results is shown in Fig. 5, revealing (as expected) that the
rods can indeed be aligned by field strengths of the order of
several tens of V mm�1, the more so for stronger fields. In Fig. 5
we also compare these experimental observations with the theo-
retical predictions that follow from eqn (10), (13) and (16), where
the parameter a = �0.281 nm3 follows from eqn (2) with e1 E
3.5 and n0 = 19.07 nm�3 (silica), and e2 E 50. The parameters
fJ and f>, the combination of which is given in Table 1, follow
accurately from applying the coupled dipole method, in parti-
cular eqn (9), for N equal to several hundred to a thousand
dipoles on a cubic lattice filling up spherocylindrical shapes
with cylinder length L and diameter D.8,9 Note that the value of
a is close to the polarization catastrophe, prohibiting us from
using very small lattice spacings when applying the cdm. To
test our results for the anisotropy factors as calculated with
the cdm for a/D = 0.13, we compare them with the results
obtained with the ddm for a/D = 0.05, see Table 1. Both sets of
results agree well, with a relative difference of about three
percent between them. Note that fJ � f> increases monoto-
nically with increasing aspect ratio L/D as expected. Using
fJ � f>, we calculate the orientation distribution function and
the projected nematic order parameter. We see in Fig. 5 that the
agreement between the orientation distribution function as
measured in the experiments and computed theoretically is
reasonable, where one should realize that no fit parameter is
involved.

In Fig. 6 we compare the theoretical prediction for S2D with
the experimental value

Sexp
2D ¼

1

M

XM
i¼1

cos 2yi
0

� �
; (19)

as obtained in the experiments for different kinds of rods as
a function of the field strength E = |E|. Here, M denotes the

Table 1 Dimensions of rods utilized in the experiments and the corres-
ponding values of Df = fJ � f> as computed with the coupled dipole
method for a lattice spacing of a/D = 0.13 and the decoupled dipole
method for a/D = 0.05

L/D L [nm] D [nm] Df cdm Df ddm

B47 2.4 1480 � 160 620 � 40 �0.4444 �0.4572
B31 2.7 1730 � 190 640 � 50 �0.4621 �0.4753
N51 4.0 2130 � 230 530 � 30 �0.5126 �0.5280
B35 5.0 2750 � 270 550 � 60 �0.5366 �0.5533
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total number of rods detected (typically M B 100) and yi
0

the
measured angle of rod i with respect to the electric field
direction in the two dimensional measurement plane, see
Fig. 3. We see from Fig. 6 that the E-dependence of S2D is quite
strong, with S2D varying from 0 for

ffiffiffiffiffi
v0
p

E �o 5� 10�6 V m1=2 up
to S2D E 1 at

ffiffiffiffiffi
v0
p

E �4 20� 10�6 V m1=2, where v0 denotes the
volume of the rod. The combination

ffiffiffiffiffi
v0
p

E is useful since VE
scales linearly with v0 and E2, and by using this combination on
the axis of our graphs the effects of the anisotropy factors can
be readily compared for the four different batches of rods, see
eqn (10). The errorbars in Fig. 6 denote standard deviations
that stem from the size polydispersity of the rods. Despite some
systematic trends that will be discussed in more detail below,
a 95% confidence interval of two standard deviations reveals
good consistency between experiment and theory for the longer
rods in (a) and (b) and to some degree also for the shorter rods
of (c), but somewhat less so for the low-field regime of the
shortest rods in (d). A possible source of systematic error stems
from the image processing routines that were used to analyze the
experimental images of the confocal microscope;34 the measure-
ment of the exact orientation of the rods becomes more and
more difficult with decreasing aspect ratio L/D, leading to a

possible source of systematic errors that is expected to be most
severe for the shortest aspect ratio of L/D = 2.4.35 Even though
we did not synthesize a sufficiently large number of batches to
make a definite statement about this effect we do note that,
indeed, the agreement between theory and experiment is best
for the longest and worst for the shortest rods. Sample N51
(with L/D = 4) stands out in the sense that the alignment of the
rods with the field as observed in experiments was less or equal
than our theory predicts over the whole range of field values
sampled, while for the other three samples a systematically
stronger alignment was observed in the experiments for inter-
mediate (but not high) field strengths. Interestingly, there is
indeed a difference between sample N51 and the other samples,
since sample N51 is the only one that contains the dye RITC
instead of FITC. Since the dyes are located throughout the rod,
this may affect the molecular polarizability a and thereby also
the cluster polarizability, which scales with the volume v0 of the
rod. However, since the dye fraction in the rods is only of the
order of 10�3, this is most probably not the explanation of this
anomalous behavior of sample N51. Another possible explana-
tion for the observation that the alignment of the colloids in the
field direction tends to be weaker in the theoretical prediction

Fig. 5 The projected orientation distribution function C2D(y0) as measured and calculated for the different types of rods, (a) B35 (L/D = 5), (b) N51 (L/D = 4),
(c) B31 (L/D = 2.7), (d) B47 (L/D = 2.4). Our experimental results are denoted by symbols, our theoretical predictions by lines. Note that no fit parameter
was used.
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than in the experiments for intermediate field strengths for all
but one set of rods (N51), might be that the dimensions of N51
could have been overestimated compared to the other three
batches of rods, although we cannot offer an explanation as to
why this could have been the case.

We conclude that our theoretical approach yields results
that are in good agreement with the measured data for all but
the shortest rods as was demonstrated by the favorable com-
parisons of C2D y0ð Þ and S2D with the experimentally measured
values.

Summary and outlook

We succeeded in employing the coupled dipole method to
calculate the orientation-dependent excess interaction strength
between polarizable colloidal rods and an external electric field.
We showed that a decoupled dipole method can be used to
circumvent the polarization catastrophe for large negative
values of the polarizability. We proceeded to derive the pro-
jected orientation distribution function of rods in a focal plane
of finite thickness using simple geometric considerations, and
found that the measurable projected nematic order parameter
S2D is a good estimate for the full 3D nematic order parameter
S for all S A [0, 1] and for all rod lengths L, rod diameters D and

confocal resolutions D. We also synthesized four batches of
colloidal silica rods, all with different aspect ratio, and used
confocal microscopy to measure the projected orientation dis-
tribution and the associated order parameter of very dilute
samples in electric fields. Our theoretical predictions without
any free fit parameter for the projected orientation distribution
and corresponding nematic order parameter are in agreement
with the experimental results, the agreement being within a
95% confidence interval for the longest rods and with systematic
deviations that probably stem from a limited orientation measure-
ment for the shortest rods. We conclude that our approach to the
coupled dipole method in the presence of a solvent can be used to
calculate the ordering of dielectric particles of other shapes in an
electric field.
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Fig. 6 The 2D nematic order parameter S2D as a function of the applied field strength times square root of the particle volume for all four samples of
rods as measured (symbols) and calculated from the presently developed theory (curves). The error bars display the results covered within the range of
size polydispersity of the rods as denoted in Table 1. (a) B35 (L/D = 5), (b) N51 (L/D = 4), (c) B31 (L/D = 2.7), (d) B47 (L/D = 2.4).
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