
Supporting Information
Rossi et al. 10.1073/pnas.1415467112
SI Text

Depletant Solutions
Attractive forces between superballs were induced by addition of
depletion agents with different gyration radii. The depletant dis-
persions consisted of polymers, microgels, and colloidal particles
and each dispersion was prepared and stored as indicated below.

Poly(ethylene oxide). We used poly(ethylene oxide) (PEO) poly-
mer with two different molar masses, namely 6 × 105 g/mol (PEO
600 k) and 7 × 106 g/mol (PEO 7 M), corresponding to a radius
of gyration Rg of, respectively, 57 nm and 210 nm (1). The
polymer stock solutions of 2 g/L were prepared by dissolving
PEO in 10 mM aqueous sodium chloride (NaCl) and they were
freshly prepared before microscopy experiments.

Xanthan. Xanthan is a wormlike double-helical polysaccharide
with a diameter of ca. 2.2 nm and a persistence length of 120 nm.
The stock solution with a final xanthan concentration of 1 g/L was
prepared by dissolving xanthan powder (Sigma Aldrich) in water
containing 10 mM NaCl and 2 mM sodium azide (NaN3), the
latter to prevent bacterial growth. The mechanically stirred so-
lution was heated to 85 °C using an oil bath and then slowly
cooled for about 15 h (2). The xanthan batch used here has a
weight-average molar mass M of 3 × 106 g/mol, contour length Lc
of about 1.5 μm, and radius of gyration Rg of 329 nm.

Poly(N-isopropylacrylamide). Poly(N-isopropylacrylamide) (pNIPAM)
microgel particles with a radius of 65 nm were prepared fol-
lowing ref. 3. The particles were stored in Millipore water. The
total measured mass concentration of the particles in the stock
dispersion was 1.22% wt.

Colloidal Akaganèite.Akaganèite (β-FeOOH) rods were prepared
following ref. 4. The particles were stored in ethanol at a con-
centration of about 13% wt. The average length of the rod-like
particles was estimated to be 140 nm with a polydispersity of
about 30%.

Sample Preparation for Optical Microscopy
Samples with superballs and depletion agents were prepared fol-
lowing the same procedure independently on what depletant was
used. First, a small amount of silica superballs (∼1 mL), usually stored
in ethanol, were sedimented using a microcentrifuge (Beckman
Coulter Microfuge 16, typical working speed 1,300 × g for about
20 min) and dispersed in water at pH 9; this pH was reached by
adding 20–30 μL tetramethylammonium hydroxide 1% wt to 1 mL
water. If a dispersion appeared stable under the optical micro-
scope, particles were sedimented and dispersed in 1 mL aqueous
solution of 10 mM NaCl, pH 9, containing different depletant
dispersions. In samples containing PEO depletant, to prevent PEO
adsorption on the surface on the particles, Pluronics F 127 was
added to the sample to reach a final Pluronics F 127 concentration
of 500 μg/mL. Superballs were dispersed very well and occasionally
briefly sonicated. The dispersions were placed into flat VitroCom
optical capillaries (0.1 mm × 2 mm × 5 cm) and sealed with UV-
sensitive epoxy glue onto clean microscope slides. The samples
were allowed to equilibrate for about 20 min before imaging.

Crystal–Crystal Transition
Using pNIPAM depletants alone to induce a crystal–crystal transi-
tion poses challenges due to the narrow parameter range that

supports suitable interparticle interactions. As the particles
shrink at high temperatures, the overall interaction energies
decrease considerably, often melting the resulting crystals.
Moreover, increasing the number density of the depletant to
compensate for the energy loss results in too strong interactions
between particles when the depletant is in the expanded state. As
a result, it is difficult to achieve the proper conditions for as-
sembly at both the shrunken and expanded states for pNIPAM
alone. Thus, crystal–crystal transition experiments were per-
formed using a mixture of pNIPAM and PEO depletants. We
used PEO with a molecular weight of 8× 106 g/mol (PEO 8 M),
corresponding to a radius of gyration of ∼228 nm (1). pNIPAM
microgel particles used in these crystal transition experiments
were prepared with no added cross-linker, following ref. 5, and
the stock dispersion consisted of the whole reaction dispersion
brought to a final NaCl concentration of 10 mM by adding
280 mM NaCl.
Because we were unable to characterize pNIPAM particles

using dynamic light scattering, we instead characterized their
effect on the assembly of silica superballs. To do that we added
6 μL pNIPAM stock dispersion to 7 μL of a diluted superball
suspension, resulting in a total dispersion volume of 13 μL, which
was kept at pH 9 and 10 mM NaCl. We find superballs robustly
form square lattices at 25.5 °C. When heated to 28.5 °C, we find
that depletion interactions weaken considerably, resulting in the
complete melting of crystallites. When cooled down once again,
the square lattices begin to assemble back (Movie S1).
To test the behavior of superballs dispersed in PEO 8 M we

prepared an aqueous dispersion of superballs in 0.31 g/L PEO
8 M, keeping the NaCl concentration at 10 mM and the pH at 9.
To prevent adsorption of the PEO onto the surface of the su-
perballs, Pluronics F 127 was added to the sample to reach a final
concentration of 500 μg/mL. We find the superballs assemble
into Λ1 lattices (Movie S2).
To perform crystal transition experiments we used a mixture of

PEO 8 M and pNIPAM with the same final concentration used
for the single depletant experiments reported above. A total of
13 μL of superball dispersion with a final PEO concentration of
0.31 g/L was prepared by mixing 6 μL of the pNIPAM stock
dispersion to 7 μL of a superball–PEO 8 M mixture (Movie S3).

Shape Parameters of Silica Superballs
The silica superballs reported in this work (except silica spheres)
were obtained by depositing an amorphous silica layer with
varying thicknesses starting from the same hematite cores. As the
shape parameter m decreased with increasing silica thickness we
obtained superballs with m= 3.9, m= 3.5, and m= 3.0, starting
from hematite cores having m≈ 4.0. Growing an even thicker
silica layer would result in superballs with m< 3.0. Using these
hematite seeds, it is not possible to prepare superballs with
m< 2.
The contour of a superball is mathematically represented by

the formula

ðxÞm + ðyÞm + ðzÞm = 1, [S1]

where x, y, and z are Cartesian coordinates and m is the shape
parameter, which indicates the extent of deformation. Fig. 1E of
the main text shows computer-generated models of colloidal
superballs with different shape parameters. It is possible to rec-
ognize two special cases, which are represented by the sphere for
m= 2 and the perfect cube for m=∞. All of the intermediate
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shape parameters (m  >   2) correspond to particles having a
shape that interpolates between the sphere and the cube. Shape
parameters between 2 and 1 correspond to a different family of
square-symmetric superballs, whereas shape parameters smaller
than 1 correspond to convex solids (6).
To determine the parameters that uniquely characterize the

shape of our synthetic particles, we took as a starting point
transmission electron microscopy (TEM) images, such as the ones
shown in Fig. 1 B and C of the main text. We then used a
standard algorithm to find the edges of the particle and sub-
sequently fitted the edges with the equation

�x
a

�m
+
�y
b

�m
= 1, [S2]

where a and b are the semiaxes of the particles. Eq. S2 differs
from Eq. S1 because the analysis is done on TEM images, which
are essentially 2D projections of the superballs, and also because
Eq. S2 should account for deviations in the particle aspect ratio
(a=b) that, by definition, is 1 for a superball. A typical fit is shown
in Fig. 1B in the main text and a plot of the results obtained by
fitting an ensemble of images (about 100 fits) for different m
values is shown in Fig. S1. The average value of m obtained for
each superball sample can therefore be used to characterize the
roundness of the shape and consequently how much the shape
deviates from the cubic shape. The dense cloud of data for the
superballs with highest m (sample S3.9, purple points in Fig. S1)
indicates that particles are highly monodisperse in shape. The
data spread out more for decreasing shape parameter, which is
apparently related to the (still poorly understood) mechanism of
silica growth on a superball surface. The plot in Fig. S1B exhibits
for sample S3.0 a curious relation between particle size and
shape. The graph shows that for small particle size the sample
is monodisperse in shape until a critical particle length is reached
(Lc, in this case corresponding to 1.26 μm) at which the shape
polydispersity increases. Upon further silica growth beyond the
critical length, the shape becomes again monodisperse. The na-
ture of this growth behavior remains to be clarified; the impor-
tant point here is that despite the polydispersity of samples S3.0
and S3.5, the average position of the data points in Fig. S1 clearly
demonstrates that the various superball samples have signifi-
cantly different average shape parameters.

Bond-Angle Distributions
After particles are allowed to relax, time-lapsed images are
collected and analyzed. The particles are identified using an al-
gorithm based on circular Hough transforms. After identifying the
positions, we cluster the particles and separate the clusters based
on their apparent orientation. For each particle within a cluster,
we compute the angles between adjacent nearest-neighbor bonds.
An ensemble of bond angles is collected over time and over each
particle within a cluster.
The bond-angle distributions are used to identify which of the

lattice type of interest are statistically most similar to the ex-
perimental structures. This is accomplished by comparing the
resulting distributions to the values of the bond angles expected
for the square, Λ0, and Λ1 lattices for the particular value of m.
Fig. S2A shows the distribution of bond angles for experimental
data corresponding to a variety of shape parameters. For ex-
periments characterized by broad distributions of bond angles
(Fig. S2 C and D), a clear identification may not be possible.

Predicted Phase Diagram
The bound state energy of a superball inside of a depletion-
stabilized lattice is given by U =−nKBTΔVex, where ΔVex is the
change in volume excluded when a particle is removed from the
interior of an otherwise filled lattice and n is the number density
of depletants. This volume change is computed by first con-

structing a finely pixelated binary image of an arrangement of
filled outlines of superballs of length L+Rg placed at the lattice
sites corresponding to square, Λ0, and Λ1 lattices for fixed L and
shape parameter m. Similar images are produced corresponding
to the same arrangement with one particle removed from the
interior of the lattice. ΔVex is computed by subtracting the total
number of nonzero pixels for the full lattice by the lattice with
one particle missing and then subsequently subtracting the
number of nonzero pixels for an isolated superball of length
L+Rg. By computing and comparing ΔVex for the Λ0, Λ1, and
square lattices, we estimate which lattice is energetically favor-
able for a particular value of m (Fig. S3 A and C).
To quantify how energetically favorable a particular lattice is

for a particular m and q, we also compute the difference in en-
ergy between the two lattices that have the lowest values. This
difference characterizes the energetic benefit of choosing one
particular lattice. When the difference is zero, the most favor-
able lattices becomes degenerate.
To compare the energetics in different regions of the phase

diagram, however, a consistent definition of the number density
of depletants n must to be used. Fig. S3E shows the diagram
computed using a constant depletant density between experi-
ments. In our experiments, the depletant concentration is typi-
cally on the order of C*, where C* is maximum density in which
the depletants can maintain their radius of gyration. We thus use
n∝ 1=Vdep, where Vdep is the volume of the depletant. Fig. S3 B
and D shows the resulting diagram, which corresponds to nor-
malizing the difference in ΔVex by the volume of the depletant.
We note that this simple model neglects to account for the ro-
tational and vibrational entropy of the superballs.
Fig. S3 C and D corresponds to diagrams computed for 2D

arrangements of 3D superballs. The complementary diagrams
for purely 2D superdisks are shown in Fig. S3 A and B. The
qualitative similarity reflects the quasi-2D nature of the system.

Simulation Details
We consider colloidal superballs with a surface satisfying the equality

jxjm + jyjm + jzjm =
�σc
2

�m
, [S3]

where σc is the superball diameter at its narrowest point and m
controls the particle shape as described in the main text. The
rounded cubes are treated as hard particles with no attraction or
repulsion and are confined to move in a 2D plane to mimic
moving on a substrate. The depletants may move in all three
dimensions and are modeled as penetrable spheres of diameter
σd = 2Rg, with Rg the radius of gyration of the polymer depletant,
that may overlap with one another but not with the superballs.
Overlap is detected using the algorithm of Donev (7) as imple-
mented in ref. 8.
For all simulations described here we study a fixed number, N,

of superballs and the depletant particles are treated grand ca-
nonically with a constant chemical potential, μd, corresponding
to a fixed reservoir volume fraction, ηrd. Instead of the depletant
diameter we quote the size ratio, q= σd=σc, which we study in the
range 0.04≤ q≤ 0.35. The volume fraction, ηrd is related to res-
ervoir number density by

ηrd =
nrdπσ

3
cq

3

6
[S4]

and from here on we quote reservoir number density.
The difficulty in simulating highly size-asymmetric binary mix-

tures is that rearrangements of the large particles (the ones we are
most interested in) are limited by the length scales of the smaller
particles. To remediate this problem we use the geometric cluster
algorithm (GCA) of Dress and Krauth (9), later extended by Liu
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and Luijten (10). In this method a large particle is added to the
cluster and moved using a self-inverse operation, such as reflection
in a point pivot. After this move, any particles overlapping are also
added to a cluster. At each iteration a particle is taken off the
bottom of the stack and moved, repeating until all particles have
been moved or no overlaps remain. Clusters may move an arbi-
trary number of large particles or can be limited to one large
particle. Rearrangement of large clusters is vital in the early stages
of self-assembly, whereas single-particle moves are more efficient
for relaxing particles within an assembled structure.
Special consideration is required for moving anisotropic par-

ticles such as the superballs considered here. As described in ref.
11, we include a GCA move that reflects a large particle in a
plane instead of a point pivot as shown in Fig. S4. If the plane
lies close to one of the superball’s axes, then the rotation can be
arbitrarily small. This allows the large particles to fully explore
their orientational degrees of freedom. Our full move set is as
follows: Each Monte Carlo sweep we attempt on average one
large cluster move and N single-particle moves. For the single-
particle moves the reflection pivots and planes are chosen close
to the target particle to increase the acceptance rate.
Even using the GCA simulations is challenging for a number of

reasons: The interactions are strong and short ranged, which makes
assembly difficult with very long physical timescales. Computa-
tionally the overlap checks with superballs are expensive and often
require slowly converging numerical solvers. The large number of
depletants means that many overlap checks need to be made. In
particular, to observe transitions between states in a reasonable
timescale, care has to be taken to choose parameters that do not
create interactions that are too strong, leading to kinetic trapping,
while strong enough to allow assembly.

Self-Assembly Simulations
To study the formation of self-assembled structures we place
N = 169 superballs evenly distributed in a periodic box of di-
mensions Lx =Ly = 30σc and Lz = 1.05σc. The box is filled with
depletants grand canonically before the large particles are al-
lowed to move. The simulation is then run until the assembled
structures are stable to rearrangement. We studied a range of
particle shapes, m, and depletant size ratios, q, and for each
combination scanned a range of depletant number densities, nrd
to find the point of best assembly. We found that the window
between the interactions being too weak for assembly and too
strong for good assembly (kinetic trapping) was quite narrow due
to the short-ranged nature of the depletion interaction.
The final configurations are shown in Fig. S5, indicating the

different structures that assemble for different combinations of
shape and depletant size. The simulations suffer from kinetic
trapping, in particular when the depletant is small, in a manner
quite similar to that seen in experiments. The stable structures
from these simulations generally agree with the experimental
results. The results are summarized and compared with the ex-
periment in Fig. S6.

Bulk Phase Simulations
To better understand which phase, square or Λ1, is truly ther-
modynamically stable we also performed simulations in the bulk
to remove surface effects. Simulations were performed in the
NPTμd ensemble at a constant pressure, P, and fluctuating box
size. The box shape was also allowed to fluctuate (sometimes
referred to as a “floppy box”) to accommodate crystal structures
that do not tile in a square box. The pressure, P, is set by the
depletant pressure in the reservoir, that of an ideal gas βP= nrd
where nrd is the reservoir depletant number density and β is the
inverse of temperature multiplied by Boltzmann’s constant,
β= ðkBTÞ−1, which is far higher than the pressure from the su-
perballs. In this ensemble it is possible for the box to increase to
an arbitrarily large size if the depletion interaction is not strong

enough. If the superballs are started sufficiently close together,
this does not represent a practical problem.
We placed N = 6× 6= 36 superballs in a periodic box. The

values for nrd and hence also the pressure were chosen to match
the values at which we see good assembly in the previous section.
To determine which phase is stable for any given set of param-
eters we started simulations from square, Λ0, and Λ1 phases.
Example configurations are shown in Fig. S7.

Bidepletant
In this section we demonstrate the possibility of switchable phases by
considering a system made up of superballs and two species of
depletant. The big depletants are spheres with size ratio q1 = 0.35 and
the small depletants are spheres with size ratio q2 = 0.04. Both de-
pletants can overlap with each other but not with the superballs. The
changes in size always occur at constant reservoir number density
so that the average number of small depletants remains constant
throughout the simulation. This is an average because the depletants
are treated grand canonically and their numbers fluctuate.

Self-Assembly. In this ensemble the number of superballs is fixed
at N = 169 and the box size is constant at Lx =Ly = 30σc and
Lz = 1.02σc. Both depletants are treated grand canonically with
constant chemical potentials, μ1 and μ2. The simulations start
with all of the superballs evenly distributed and the box filled
with depletant. Although there is potentially a large parameter
space, we have found that starting with q1 = 0.35 and q2 = 0.04
and at reservoir number density n1 = 24.9σ−3c and n2 = 596.8σ−3c
provides the best results.
As shown in Fig. S8 under the starting conditions the superballs

assemble into a square structure. Even though the amount of
small depletant would not be strong enough to drive assembly on
its own, with the help of the larger depletant to hold the particles
together it is enough to direct the superballs into a square phase.
At this point the size of the small depletant is changed from
q2 = 0.04 to q2 = 0.032, holding the number density fixed, result-
ing in a canted lattice. When the small depletants are swollen
back to q2 = 0.04, the square phase is restored, demonstrating a
mechanism that induces reversibly switchable phases.
We note that to see transitions in a computationally accessible

timescale, the parameters must be chosen such that the in-
teractions are not too strong. Due to the weaker and competing
interactions, the bond angles that we see in the canted phase are
slightly different from those in the close-packed Λ1 phase.

Bulk Phase.This is a constantNPTμ2 ensemble. N is the number of
superballs. The pressure is set by the depletant pressure in the
reservoir, which is far higher than pressure from the superballs.
Because the reservoir is an ideal gas, the reservoir pressure is the
sum of the depletant number densities, βP= n1 + n2. The big
depletants are too big to penetrate the crystal structure so al-
though it contributes to the pressure, it is not explicitly simulated
in this ensemble. As in the previous bulk section, as well as in
volume-changing moves (Lx and Ly only), the box may also make
shape-changing moves. This allows the Λ1 phase to properly fit
around the periodic boundaries.
The contribution to the pressure from the big depletant is fixed

at σ3cβP1 = 30. The box is filled with small depletant with q2 = 0.04
at nr2 = 596.8σ−3c , so the total pressure is βP= βðP1 +P2Þ= 626.8.
The number densities remain fixed so this pressure is the same in
all results shown here.
Fig. S9 shows the switchable nature of the crystals. The su-

perballs are started in a square configuration and then the box is
filled with depletant at q2 = 0.04, nr2 = 596.8σ−3c , where the square
phase is stable. The small depletant is then changed in size to
q2 = 0.032 and the system reliably changes into the canted phase.
From this configuration the small depletant size is changed back to
q2 = 0.04, and the crystal changes back to the square (Movie S4).
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Fig. S1. (A) The points of this graph represent the shape parameters m of the silica superballs measured by fitting the shape of 80–100 particles. Different
colors correspond to different samples as indicated in the legend. The average values are indicated with the horizontal lines interpolating the y axis in their
corresponding mean values. (B) For sample S3.0 the shape parameter (m) of the particle is plotted against the particle size (L). A sharp transition is visible
around a critical value Lc = 1.26 μm, which shows a rapid decay in shape polydispersity after the transition.

Fig. S2. Angular histograms of experimental data. (A) Angular histograms for spherical particles show sharp peaks indicating 60° bond angles between
particles, as expected for a triangular lattice, which is consistent with both the Λ0 and Λ1 lattices for m=2. (B) Example angular histogram from which a Λ1

lattice is identified. C and D show examples of distributions in which a clear identification is not possible.
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Fig. S3. Phase diagrams and energetic characterization of superball lattices. (A) The phase diagram of 2D superdisks is computed by computing ΔVex of each
lattice type for each value of m and q. (B) The energetic benefit of choosing a particular lattice type for 2D superdisks is computed for each m and q by finding
the difference in the energy of the two most energetically favorable lattices. (C and D) Phase diagram for 3D superballs arranged in 2D lattices. The structures
of the diagrams are qualitatively similar to those of the 2D diagrams. (E) The energy difference between the two most favorable lattices computed using a
constant number density of depletants.

Fig. S4. Starting from the dotted outline the colloid particle is reflected in the plane (thick dashed line). As a result it overlaps with three depletant particles
that are reflected in the same plane into the space left by the colloid.
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Fig. S5. Final configurations for the self-assembly simulation runs for varying size ratios q and superball shape parameter m as labeled.

Fig. S6. Comparison of finite crystal self-assembly simulation results with experiment results.
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Fig. S7. (A and B) Floppy box NPT simulations showing the stable structures for superballs with shape parameter m= 3.5 (A) Λ1 phase for size ratio q= 0.1 and
(B) square phase for q= 0.05.

Initial 
Assembly

Shrink by 
20%

Swell 
back

Fig. S8. After initial assembly into a square phase the small depletant is shrunk by 20% from q2 = 0.04 to q2 = 0.032, holding the densities of both depletant
species and superballs fixed. The crystal rearranges to a canted phase. The depletant then goes back to q2 = 0.04 and the square phase is recovered.

Fig. S9. Constant pressure simulations with a flexible “floppy” box. Starting from a square phase we cycle to a Λ1 phase and back again by changing the
small depletant size from q2 = 0.04→ 0.032→ 0.04 at constant number density. The big depletants do not penetrate the crystal so are treated implicitly as a
pressure term.
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Movie S1. Silica superballs with m = 3.9 are dispersed with pNIPAM depletants and equilibrated at room temperature, where they form square crystallites. As
the temperature is increased to 28.5 °C, the crystallites melt. Upon decreasing the temperature back to room temperature, the particles begin to reassemble.

Movie S1

Movie S2. Silica superballs with m = 3.9 are dispersed in the presence of PEO depletants with molecular weight 8 M. In these conditions the superballs
assemble into Λ1 crystallites.

Movie S2
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Movie S3. Silica superballs with m = 3.9 are dispersed in the presence of a mixture of PEO (molecular weight 8 M) and pNIPAM depletants. At 27 °C, the
superballs assemble into square crystallites, as observed when the particles are dispersed with pNIPAM alone. As the temperature is increased we observe that
the lattice shifts to a Λ1 configuration as observed when the superballs are dispersed with PEO alone. This happens because at higher temperatures the in-
teractions induced by the pNIPAM weaken whereas those induced by the PEO are fixed. By cycling the temperature, we are able to observe a reversible solid-
to-solid phase transition over several iterations.

Movie S3

Movie S4. Periodic bulk crystal simulations are performed with superballs with a fluctuating simulation box. Superballs are dispersed with two species of
depletants, one with size ratio q1 = 0.35 and one with size ratio q2 = 0.04. For these parameters, The square lattice configuration is stable. By decreasing the
size ratio of the smaller species from q2 = 0.04 to q2 = 0.032, we observe a transition into a canted phase, as we observe when the superballs are dispersed only
with depletants with a size ratio q1 = 0.35. When the size of the smaller depletant is once again increased (q2 = 0.04), the square phase is restored.

Movie S4
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