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Guiding the self-assembly of materials by controlling the shape of
the individual particle constituents is a powerful approach to
material design. We show that colloidal silica superballs crystallize
into canted phases in the presence of depletants. Some of these
phases are consistent with the so-called “Λ1” lattice that was re-
cently predicted as the densest packing of superdisks. As the size
of the depletant is reduced, however, we observe a transition to a
square phase. The differences in these entropically stabilized
phases result from an interplay between the size of the depletants
and the fine structure of the superball shape. We find qualitative
agreement of our experimental results both with a phase diagram
computed on the basis of the volume accessible to the depletants
and with simulations. By using a mixture of depletants, one of
which is thermosensitive, we induce solid-to-solid phase transi-
tions between square and canted structures. The use of depletant
size to leverage fine features of the shape of particles in driving
their self-assembly demonstrates a general and powerful mecha-
nism for engineering novel materials.
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Determining the relationship between the macroscopic struc-
ture of a material and the properties of its microscopic con-

stituents is a fundamental problem in condensed matter science.
A particularly interesting aspect of this problem is to understand
how the self-assembly of a collection of particles is determined
by their shape. These so-called “packing problems” have long
interested physicists, mathematicians, and chemists alike and
have been used to understand the structures of many condensed
phases of matter (1–3). Computational and experimental ad-
vances continue to enable new explorations into fundamental
aspects of these problems today (4–13). Recent discoveries in-
clude dense packings of tetrahedra into disordered, crystalline,
and quasi-crystalline structures (14, 15), as well as the singular
dense packings of ellipsoids (16).
Technologically speaking, these discoveries are becoming in-

creasingly crucial as new synthesis techniques are allowing for
the creation of more and more complex shaped nanoscopic and
microscopic particles (17, 18). The self-assembly of these particles
into ordered structures creates new possibilities for the fabrication of
novel materials (19–23). Moreover, advances in synthesis techniques
have created new capabilities for experimentally investigating how
the shapes of particles can be exploited in their self-assembly (24–26).
Here, we experimentally and computationally explore the self-

assembly of colloidal superballs interacting with depletion forces.
We find that monolayers of superballs can be tuned to equilibrate
into both their densest known packings—so-called “Λ0” and “Λ1”

lattices (12)—as well as into less dense structures of different
symmetries depending on an interplay between the subtle features
of the particle shapes and the size of the depletants. The family of
superballs can smoothly interpolate shapes between spheres and
cubes (Fig. 1E) and is modeled as

ðxÞm + ðyÞm + ðzÞm ≤ 1, [1]

wherem is the shape parameter. Form= 2, this parameterization
describes a purely isotropic sphere. As m is increased, the shape
increasingly resembles a cube, as shown in Fig. 1. The amorphous
colloidal superballs were prepared via controlled deposition of
silica on the surface of hematite templates, using a synthetic tech-
nique (27) that yields high amounts of monodisperse (3% poly-
dispersity) particles. Each batch of particles, which were made
from the same initial hematite cores, contains superballs of com-
parable sizes (∼1.3 μm), but differing shape parameters as a result
of differing amounts of silica precipitated on the surface. Size and
shape of superballs were analyzed using scanning electron micros-
copy (SEM) and transmission electron microscopy (TEM) micro-
graphs (Fig. 1). Analyzing the particle shape from TEM images,
we find agreement between the contour of the particle and the
superball shape as shown in Fig. 1B, in which the red contours
correspond to the superball fits. More information on the fitting
procedure and shape polydispersity can be found in SI Text.
Fig. 1 shows SEM and TEM images of the silica superballs used

for the experiments. Although the particles still possess a distinct
cubic symmetry, they have rounded edges whose curvatures are
consistent with superballs of shape parameters m= 2.0, m= 3.0,
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m= 3.5, and m= 3.9. The spherical particles with shape param-
eters m= 2 were purchased from Bangs Laboratoires.
To perform the experiments, silica superballs were dispersed

in slightly alkaline water (pH = 9) and were stabilized against
aggregation by surface charges. Sodium chloride (10 mM, final
concentration) was added to the dispersion to screen the charges
and lower the Debye length down to a thickness of about 3 nm,
small enough to allow the particles to fully experience their an-
isotropic shape. Attractive forces between superballs arise by
addition of depletion agents with gyration radii of Rg = 57 nm,
65 nm, 70 nm, 210 nm, 228 nm, and 329 nm. Flat optical capillaries
were filled with aqueous mixtures of superballs and depletants and
were monitored in time with bright-field microscopy. More ex-
perimental details as well as information on depletants and sample
preparation can be found in SI Text.
At low particle concentration, the superballs first sediment to

the bottom of the capillary where they are attracted to the glass
wall by depletion forces. While diffusing in the plane, the par-
ticles cluster together into monolayers. Once clusters are formed,
time-lapsed images are collected and analyzed. The images show
the appearance of several qualitatively distinct phases (Fig. 2).

The particles are found to arrange into crystallite islands, often
possessing grain boundaries, which we separate by orientation
and analyze independently. We do not exclude a priori the possi-
bility that a cluster does not have a coherent crystal structure.
To characterize the structure of each cluster, the positions of

the constituent particles are identified for every time-lapsed
image. The relative positions of nearest neighbors are then
computed for each particle. For spherical superballs the dis-
tribution of these positions are found to be consistent with
triangular lattices (Fig. 2C). For superballs with intermediate
shape parameters (2<m<∞), however, the behavior becomes
more interesting. Experimentally, we observe that the particles
often form canted structures (Fig. 2A) characterized by inter-
particle bond angles distinct from 60°, indicative of triangular
lattices, and 90°, which are characteristic of square lattices.
Recently, the densest packings of superdisks with these in-
termediate shape parameters were predicted to fall into two
families of lattices, referred to as Λ0 and Λ1 packings (12).
Testing the distribution of relative nearest-neighbor positions
in the experiment for consistency with the lattice vectors of
these structures confirms, for the first time to our knowledge,
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E

Fig. 1. (A) SEM images of samplem = 3.9. The particles have a cubic shape with rounded edges. (B–D) TEM micrographs of samples withm = 3.5,m = 3.0, and
m = 2.0, respectively. All samples are uniform with a size polydispersity as low as 3%. (Scale bars: 1 μm.) In B the particles are shown with their corresponding
superball fit highlighted in red (see also Fig. S1). (E , Top) Computer-generated models of colloidal superballs with different shape parameters m. A gradual
increase of the absolute value of the shape parameter from m= 2 (spheres) results in a gradual alteration of the particle shape to resemble more cube-like
particles. (E, Bottom) TEM images of silica superballs with different m values.
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the observation of an equilibrium Λ1 lattice of superballs in ex-
periments (Fig. 2). We also find that, for superballs with these
same intermediate shape parameters (m= 3.5 and m= 3.9), the
equilibrium structure transitions to a square lattice as the
depletant size is decreased, suggesting that the resulting phases
are determined by an interplay between the shape of the
particle and the size ratio q= 2Rg=L between the depletant
and the superball.
To understand this interplay, we look at the depletion in-

teractions between the superballs. Each superball is surrounded
by an exclusion zone of thickness Rg that is unavailable for the
centers of the depletants to occupy. Superball configurations that
minimize the volume excluded from the depletants by over-
lapping exclusion zones increase the overall entropy of the sys-
tem. To understand the favorability of the three lattices for a
given choice of parameters, we compute the free energy of a
depletion-stabilized bound state of a particle for each crystal
type. For a number density n of depletants, this energy is given by
U =−nKBTΔVex, where ΔVex is the change in volume excluded
when a particle is removed from the interior of an otherwise
filled lattice. By computing and comparing ΔVex for the Λ0, Λ1,
and square lattices, we estimate which lattice is energetically

favorable for a particular value of m (Fig. 3). In this model, the
magnitude of ΔVex, and thus the overall bound state energy, will
generally scale with Rg. We note that this model neglects the
entropy of the superballs. It has been suggested that the role of
rotational entropy of the particles can be significant in stabilizing
canted phases (25), although the relative importance of this ef-
fect is debated (13). Fig. 3B shows that, for fixed-sized depletants
and superballs, ΔVex varies smoothly for each lattice type as m is
varied. For a particular combination of m and q, the lattice with
the highest value of ΔVex represents the preferred phase. Using
this principle, a 2D phase diagram is approximated in Fig. 3C.
The interplay between the particle shape and the size ratio q
suggested by this diagram is qualitatively apparent in the ex-
perimentally realized structures (Fig. 4).
Indeed, the calculations agree with the experimental result

that for sufficiently small depletants and sufficiently large m,
square lattices, although they are not the densest packings for
any finite value ofm, are preferred. Square lattices occur whenm
is large enough such that the overlap in exclusion zones resulting
from face-to-face contact is considerable and for q small enough
such that depletants are able to fit into the interparticle pores
made where the rounded edges of the superballs meet. When the
osmotic pressure exerted by a depletant within an interparticle
pore is substantial, the cubic phase is stabilized. However, when
intermediate-sized depletants, which can no longer fit into the
spaces within the lattice, are dispersed with superballs possessing
these larger values of m (3.5 and 3.9), the densely packed Λ1
phase emerges. As the size ratio gets larger, we note the distri-
bution of bond angles within a crystallite begins to broaden. In
the case of m  =   3.9, for the highest size ratio q we tested, the
distribution was too broad to identify the experimental structure
with one of the three lattices, leaving the structure undetermined.

A

B

C

Fig. 2. Representative optical microscope images showing three different
ordered structures found in superball samples. (A–C, Right) Histogram of the
relative positions of nearest neighbors for each particle in a crystallite (Top)
and a histogram of the interparticle bond angles (Bottom) (see also Fig. S2).
The structures of the crystallites are characterized by bond angels of 54° (A),
90° (B), and 60° (C). Note that the superballs in A and B have the same shape.
The different lattice structures in these two samples result from different
depletant sizes.
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Fig. 3. Two-dimensional predicted diagram for depletion-stabilized super-
ball phases. The favorability of each lattice type is determined by calculating
the bound state energy of a particle. (A) Operationally, the bound state
energy is found by computing the difference in the excluded volume for a
particular lattice (A, i) and the excluded volume of that lattice when a
particle is removed from the interior (A, ii). (B) Change in excluded volume
for each lattice type with varying m but fixed q = 2Rg/L, where Rg is the
radius of gyration of the depletant and L is the diameter of the superball.
To illustrate the behavior of ΔVex, the range of m used in this plot is larger
than the experimentally investigated range. Background color indicates the
preferred phase. (C) Two-dimensional phase diagram for experimental
range of q and m. (D) Difference in ΔVex between two most favorable lattice
types. Near phase boundaries, the phases become degenerate. In addition,
for large depletants, the benefit of choosing a particular phase is small (see
also Fig. S3). Recent molecular dynamics simulations (12) of convex super-
disks have shown that the critical value of m when the densest packings
change from Λ1 to Λ0 is at m≈ 2.572.
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Whereas our calculations suggest that the Λ1 phase is energeti-
cally favorable, Fig. 3D shows that the difference in ΔVex between
the lattices with the two highest values becomes negligible for
large q. This suggests that the energetic benefit of choosing a
particular phase decreases, which is consistent with our observa-
tion that the variance in experimental bond angle distributions
increases for high q.
As mentioned previously, spherical superballs form triangular

lattices, which are equivalent to the Λ0 lattice for m= 2. For
small deviations from spheres, our calculations suggest that the
Λ0 lattice also tends to maximize ΔVex. As the deformation pa-
rameter is increased, however, the value of ΔVex for a different

lattice, depending on q, surpasses that of the Λ0 lattice. This can
be seen, for example, in Fig. 3B where the curve representing the
square lattice intersects the curve representing the Λ0 lattice. At
this intersection point, the lowest energy state becomes de-
generate. Near these regions, the difference in energy between
the most favorable lattices is small (Fig. 3D). As a result, we find
experimental structures near phase boundaries fail to conform to
a single coherent crystal type. Again, here we find some exper-
imental structures are characterized by broad variances in bond
angle distributions, which disallow the identification of a par-
ticular crystal type. Often, however, although there are in-
sufficient statistical data to make a precise classification, we find
the appearance of mixed assortments of crystallites (SI Text) of
both cubic structures and undetermined, noncubic structures
within a single sample cell.
To more carefully probe the stability of our observed lattices,

we perform idealized simulations of superballs and depletants
(SI Text and Fig. S4). We first simulate finite crystallites and find
the results qualitatively agree with experiments (Figs. S5 and S6).
A particular choice of initial conditions, however, may influence
the vulnerability of the resulting assembly to fall into kinetic
traps. To probe the true stability of our candidate lattices, and to
remove surface effects that exist in finite crystallites, we perform
bulk crystal simulations, using periodic boundary conditions of
each candidate lattice (Fig. S7). Fig. 4 shows the resulting stable
lattices determined from these simulations. The results qualita-
tively agree with our excluded volume calculations. It is in-
teresting to note that near phase boundaries both Λ1 and square
lattices often can be stable for the same parameters, as suggested
by the appearance of mixed crystallites in experimental struc-
tures. In addition, we find that, for m values between 2 and 3,
particles often assemble with irregular orientations with respect
to their neighbors, consistent with the observation of indeterminate
experimental structures.
It is particularly interesting to note that for both experiment

and simulation, we identify different crystalline structures as q is

Fig. 4. Comparison between experimental observations, bulk crystal simu-
lations, and calculated phase diagram for superballs at different m and q
values. Circles indicate the experimental results, open circles indicate simu-
lation results, and the background color indicates the predicted phase. The
approximated phase diagram qualitatively agrees with our experimental
and simulation results.
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Fig. 5. Demonstration of reversible solid–solid phase transition of superballs. (A) Colloidal superballs with shape parameter m = 3.9 dispersed in depletant
mixture of PEO and pNIPAM. At 27.5 °C, superballs assemble into a square lattice. At 31 °C, energetic contribution of pNIPAM becomes negligible, while
that of PEO stays fixed, resulting in the transition into a Λ1 lattice. (B) Simulated phase transition in a bulk crystal of superballs and depletants. A periodic
lattice of superballs is simulated along with a mixture of two species of depletants, one with fixed size ratio of q1 = 0.35 (which favors a Λ1 lattice) and a
smaller depletant (which favors a square lattice) of size ratio varying from q2 = 0.04 to 0.032. As the smaller depletant is reduced in size, its overall energetic
contribution decreases and the lattice transitions to a Λ1 structure. When the size of the smaller depletant is once again increased, the square lattice once
again emerges.
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varied for m ≥ 3.5. In principle, it is thus experimentally possible
to use size-variable depletants to reversibly switch the lattice
structure within a single sample. To explore this possibility,
we use thermosensitive poly(N-isopropylacrylamide) (pNIPAM)
microgel spheres as depletants. Although we find inducing a
structural transition with pNIPAM depletants alone is difficult
(SI Text), we find that, using a bidepletant mixture, we are able to
entropically drive a solid–solid transition. This transition dem-
onstrates a powerful mechanism in which leveraging different
geometric features of individual particles enables one to con-
trollably and reversibly tune their assembly.
To drive this transition, we use superballs with shape param-

eter m= 3.9 and a mixture of polyethylene oxide (PEO) and
pNIPAM as depletant. Using the pNIPAM alone, the superballs
form square lattices at 25 °C. When they are heated to 29 °C, we
find the overall superball interactions induced by pNIPAM de-
crease sufficiently to melt this square lattice (Movie S1). Moreover,
when the superballs are dispersed with PEO (molecular weight
of 8 M) alone as depletant, we find we are able to stabilize a Λ1
lattice of superballs (Movie S2).
Using a mixture of the two depletants, however, allows us to

reversibly switch between the two lattice types by varying the
temperature. At room temperature, the interactions induced by
the pNIPAM are activated, and the superballs once again favor a
square lattice. As the temperature is increased, the relative en-
ergetic contribution of the pNIPAM depletant decreases, while
the contribution of the PEO remains the same. Because the PEO
dominates the overall energy at high temperatures, the Λ1 lattice
emerges. Fig. 5 and Movie S3 demonstrate this reversible solid–
solid phase transition.
By performing simulations of bidepletant superball dispersions

we provide further evidence of the simple entropic nature of the
geometric mechanism that induces this solid–solid transition.
Again we perform periodic simulations of a bulk crystal as well as
simulations of finite crystallites. Superballs are dispersed with
two species of depletant, one with fixed size ratio q1 = 0.35, which
is found to stabilize a Λ1 lattice, and a variable-size depletant with
initial size ratio q2 = 0.04, which is found to stabilize a square lattice.

When dispersed in a mixture with number densities n1 = 24.9L−3

and n2 = 596.8L−3 for the large and small depletant, respectively,
superballs with shape parameterm= 4 arrange into a square lattice.
Here L is the diameter of the superball. As the smaller depletant is
shrunk by 20% at fixed number density, its induced pressure re-
mains fixed while its overall energetic contribution is lowered. We
find, consistent with our experimental observations, that the lattice
becomes canted. Upon increasing q2 once again, we find the square
lattice is restored (Figs. S8 and S9 and Movie S4).
In this article we have demonstrated the reversible assembly of

the same superball-shaped colloidal particles into both a square
phase and the recently predicted Λ1 phase. We show depletant
size can be used to tune interparticle interactions. As a result,
both particle shape and depletant size are used to determine the
resulting phases. By mixing large depletants and small thermo-
sensitive depletants we demonstrate a fully reversible solid-to-solid
transition between square and Λ1 superball phases. The sensitivity
of the assembled phase to a fine feature of the particle shape,
combined with a mechanism to reversibly activate a depletant on
that scale, demonstrates that depletants can be used to tune in-
teractions. These results create previously unidentified opportuni-
ties for controlling the reversible self-assembly of colloidal
particles and controlling phases, for example through solid-to-
solid phase transitions.
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Depletant Solutions
Attractive forces between superballs were induced by addition of
depletion agents with different gyration radii. The depletant dis-
persions consisted of polymers, microgels, and colloidal particles
and each dispersion was prepared and stored as indicated below.

Poly(ethylene oxide). We used poly(ethylene oxide) (PEO) poly-
mer with two different molar masses, namely 6 × 105 g/mol (PEO
600 k) and 7 × 106 g/mol (PEO 7 M), corresponding to a radius
of gyration Rg of, respectively, 57 nm and 210 nm (1). The
polymer stock solutions of 2 g/L were prepared by dissolving
PEO in 10 mM aqueous sodium chloride (NaCl) and they were
freshly prepared before microscopy experiments.

Xanthan. Xanthan is a wormlike double-helical polysaccharide
with a diameter of ca. 2.2 nm and a persistence length of 120 nm.
The stock solution with a final xanthan concentration of 1 g/L was
prepared by dissolving xanthan powder (Sigma Aldrich) in water
containing 10 mM NaCl and 2 mM sodium azide (NaN3), the
latter to prevent bacterial growth. The mechanically stirred so-
lution was heated to 85 °C using an oil bath and then slowly
cooled for about 15 h (2). The xanthan batch used here has a
weight-average molar mass M of 3 × 106 g/mol, contour length Lc
of about 1.5 μm, and radius of gyration Rg of 329 nm.

Poly(N-isopropylacrylamide). Poly(N-isopropylacrylamide) (pNIPAM)
microgel particles with a radius of 65 nm were prepared fol-
lowing ref. 3. The particles were stored in Millipore water. The
total measured mass concentration of the particles in the stock
dispersion was 1.22% wt.

Colloidal Akaganèite.Akaganèite (β-FeOOH) rods were prepared
following ref. 4. The particles were stored in ethanol at a con-
centration of about 13% wt. The average length of the rod-like
particles was estimated to be 140 nm with a polydispersity of
about 30%.

Sample Preparation for Optical Microscopy
Samples with superballs and depletion agents were prepared fol-
lowing the same procedure independently on what depletant was
used. First, a small amount of silica superballs (∼1 mL), usually stored
in ethanol, were sedimented using a microcentrifuge (Beckman
Coulter Microfuge 16, typical working speed 1,300 × g for about
20 min) and dispersed in water at pH 9; this pH was reached by
adding 20–30 μL tetramethylammonium hydroxide 1% wt to 1 mL
water. If a dispersion appeared stable under the optical micro-
scope, particles were sedimented and dispersed in 1 mL aqueous
solution of 10 mM NaCl, pH 9, containing different depletant
dispersions. In samples containing PEO depletant, to prevent PEO
adsorption on the surface on the particles, Pluronics F 127 was
added to the sample to reach a final Pluronics F 127 concentration
of 500 μg/mL. Superballs were dispersed very well and occasionally
briefly sonicated. The dispersions were placed into flat VitroCom
optical capillaries (0.1 mm × 2 mm × 5 cm) and sealed with UV-
sensitive epoxy glue onto clean microscope slides. The samples
were allowed to equilibrate for about 20 min before imaging.

Crystal–Crystal Transition
Using pNIPAM depletants alone to induce a crystal–crystal transi-
tion poses challenges due to the narrow parameter range that

supports suitable interparticle interactions. As the particles
shrink at high temperatures, the overall interaction energies
decrease considerably, often melting the resulting crystals.
Moreover, increasing the number density of the depletant to
compensate for the energy loss results in too strong interactions
between particles when the depletant is in the expanded state. As
a result, it is difficult to achieve the proper conditions for as-
sembly at both the shrunken and expanded states for pNIPAM
alone. Thus, crystal–crystal transition experiments were per-
formed using a mixture of pNIPAM and PEO depletants. We
used PEO with a molecular weight of 8× 106 g/mol (PEO 8 M),
corresponding to a radius of gyration of ∼228 nm (1). pNIPAM
microgel particles used in these crystal transition experiments
were prepared with no added cross-linker, following ref. 5, and
the stock dispersion consisted of the whole reaction dispersion
brought to a final NaCl concentration of 10 mM by adding
280 mM NaCl.
Because we were unable to characterize pNIPAM particles

using dynamic light scattering, we instead characterized their
effect on the assembly of silica superballs. To do that we added
6 μL pNIPAM stock dispersion to 7 μL of a diluted superball
suspension, resulting in a total dispersion volume of 13 μL, which
was kept at pH 9 and 10 mM NaCl. We find superballs robustly
form square lattices at 25.5 °C. When heated to 28.5 °C, we find
that depletion interactions weaken considerably, resulting in the
complete melting of crystallites. When cooled down once again,
the square lattices begin to assemble back (Movie S1).
To test the behavior of superballs dispersed in PEO 8 M we

prepared an aqueous dispersion of superballs in 0.31 g/L PEO
8 M, keeping the NaCl concentration at 10 mM and the pH at 9.
To prevent adsorption of the PEO onto the surface of the su-
perballs, Pluronics F 127 was added to the sample to reach a final
concentration of 500 μg/mL. We find the superballs assemble
into Λ1 lattices (Movie S2).
To perform crystal transition experiments we used a mixture of

PEO 8 M and pNIPAM with the same final concentration used
for the single depletant experiments reported above. A total of
13 μL of superball dispersion with a final PEO concentration of
0.31 g/L was prepared by mixing 6 μL of the pNIPAM stock
dispersion to 7 μL of a superball–PEO 8 M mixture (Movie S3).

Shape Parameters of Silica Superballs
The silica superballs reported in this work (except silica spheres)
were obtained by depositing an amorphous silica layer with
varying thicknesses starting from the same hematite cores. As the
shape parameter m decreased with increasing silica thickness we
obtained superballs with m= 3.9, m= 3.5, and m= 3.0, starting
from hematite cores having m≈ 4.0. Growing an even thicker
silica layer would result in superballs with m< 3.0. Using these
hematite seeds, it is not possible to prepare superballs with
m< 2.
The contour of a superball is mathematically represented by

the formula

ðxÞm + ðyÞm + ðzÞm = 1, [S1]

where x, y, and z are Cartesian coordinates and m is the shape
parameter, which indicates the extent of deformation. Fig. 1E of
the main text shows computer-generated models of colloidal
superballs with different shape parameters. It is possible to rec-
ognize two special cases, which are represented by the sphere for
m= 2 and the perfect cube for m=∞. All of the intermediate
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shape parameters (m  >   2) correspond to particles having a
shape that interpolates between the sphere and the cube. Shape
parameters between 2 and 1 correspond to a different family of
square-symmetric superballs, whereas shape parameters smaller
than 1 correspond to convex solids (6).
To determine the parameters that uniquely characterize the

shape of our synthetic particles, we took as a starting point
transmission electron microscopy (TEM) images, such as the ones
shown in Fig. 1 B and C of the main text. We then used a
standard algorithm to find the edges of the particle and sub-
sequently fitted the edges with the equation

�x
a

�m
+
�y
b

�m
= 1, [S2]

where a and b are the semiaxes of the particles. Eq. S2 differs
from Eq. S1 because the analysis is done on TEM images, which
are essentially 2D projections of the superballs, and also because
Eq. S2 should account for deviations in the particle aspect ratio
(a=b) that, by definition, is 1 for a superball. A typical fit is shown
in Fig. 1B in the main text and a plot of the results obtained by
fitting an ensemble of images (about 100 fits) for different m
values is shown in Fig. S1. The average value of m obtained for
each superball sample can therefore be used to characterize the
roundness of the shape and consequently how much the shape
deviates from the cubic shape. The dense cloud of data for the
superballs with highest m (sample S3.9, purple points in Fig. S1)
indicates that particles are highly monodisperse in shape. The
data spread out more for decreasing shape parameter, which is
apparently related to the (still poorly understood) mechanism of
silica growth on a superball surface. The plot in Fig. S1B exhibits
for sample S3.0 a curious relation between particle size and
shape. The graph shows that for small particle size the sample
is monodisperse in shape until a critical particle length is reached
(Lc, in this case corresponding to 1.26 μm) at which the shape
polydispersity increases. Upon further silica growth beyond the
critical length, the shape becomes again monodisperse. The na-
ture of this growth behavior remains to be clarified; the impor-
tant point here is that despite the polydispersity of samples S3.0
and S3.5, the average position of the data points in Fig. S1 clearly
demonstrates that the various superball samples have signifi-
cantly different average shape parameters.

Bond-Angle Distributions
After particles are allowed to relax, time-lapsed images are
collected and analyzed. The particles are identified using an al-
gorithm based on circular Hough transforms. After identifying the
positions, we cluster the particles and separate the clusters based
on their apparent orientation. For each particle within a cluster,
we compute the angles between adjacent nearest-neighbor bonds.
An ensemble of bond angles is collected over time and over each
particle within a cluster.
The bond-angle distributions are used to identify which of the

lattice type of interest are statistically most similar to the ex-
perimental structures. This is accomplished by comparing the
resulting distributions to the values of the bond angles expected
for the square, Λ0, and Λ1 lattices for the particular value of m.
Fig. S2A shows the distribution of bond angles for experimental
data corresponding to a variety of shape parameters. For ex-
periments characterized by broad distributions of bond angles
(Fig. S2 C and D), a clear identification may not be possible.

Predicted Phase Diagram
The bound state energy of a superball inside of a depletion-
stabilized lattice is given by U =−nKBTΔVex, where ΔVex is the
change in volume excluded when a particle is removed from the
interior of an otherwise filled lattice and n is the number density
of depletants. This volume change is computed by first con-

structing a finely pixelated binary image of an arrangement of
filled outlines of superballs of length L+Rg placed at the lattice
sites corresponding to square, Λ0, and Λ1 lattices for fixed L and
shape parameter m. Similar images are produced corresponding
to the same arrangement with one particle removed from the
interior of the lattice. ΔVex is computed by subtracting the total
number of nonzero pixels for the full lattice by the lattice with
one particle missing and then subsequently subtracting the
number of nonzero pixels for an isolated superball of length
L+Rg. By computing and comparing ΔVex for the Λ0, Λ1, and
square lattices, we estimate which lattice is energetically favor-
able for a particular value of m (Fig. S3 A and C).
To quantify how energetically favorable a particular lattice is

for a particular m and q, we also compute the difference in en-
ergy between the two lattices that have the lowest values. This
difference characterizes the energetic benefit of choosing one
particular lattice. When the difference is zero, the most favor-
able lattices becomes degenerate.
To compare the energetics in different regions of the phase

diagram, however, a consistent definition of the number density
of depletants n must to be used. Fig. S3E shows the diagram
computed using a constant depletant density between experi-
ments. In our experiments, the depletant concentration is typi-
cally on the order of C*, where C* is maximum density in which
the depletants can maintain their radius of gyration. We thus use
n∝ 1=Vdep, where Vdep is the volume of the depletant. Fig. S3 B
and D shows the resulting diagram, which corresponds to nor-
malizing the difference in ΔVex by the volume of the depletant.
We note that this simple model neglects to account for the ro-
tational and vibrational entropy of the superballs.
Fig. S3 C and D corresponds to diagrams computed for 2D

arrangements of 3D superballs. The complementary diagrams
for purely 2D superdisks are shown in Fig. S3 A and B. The
qualitative similarity reflects the quasi-2D nature of the system.

Simulation Details
We consider colloidal superballs with a surface satisfying the equality

jxjm + jyjm + jzjm =
�σc
2

�m
, [S3]

where σc is the superball diameter at its narrowest point and m
controls the particle shape as described in the main text. The
rounded cubes are treated as hard particles with no attraction or
repulsion and are confined to move in a 2D plane to mimic
moving on a substrate. The depletants may move in all three
dimensions and are modeled as penetrable spheres of diameter
σd = 2Rg, with Rg the radius of gyration of the polymer depletant,
that may overlap with one another but not with the superballs.
Overlap is detected using the algorithm of Donev (7) as imple-
mented in ref. 8.
For all simulations described here we study a fixed number, N,

of superballs and the depletant particles are treated grand ca-
nonically with a constant chemical potential, μd, corresponding
to a fixed reservoir volume fraction, ηrd. Instead of the depletant
diameter we quote the size ratio, q= σd=σc, which we study in the
range 0.04≤ q≤ 0.35. The volume fraction, ηrd is related to res-
ervoir number density by

ηrd =
nrdπσ

3
cq

3

6
[S4]

and from here on we quote reservoir number density.
The difficulty in simulating highly size-asymmetric binary mix-

tures is that rearrangements of the large particles (the ones we are
most interested in) are limited by the length scales of the smaller
particles. To remediate this problem we use the geometric cluster
algorithm (GCA) of Dress and Krauth (9), later extended by Liu
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and Luijten (10). In this method a large particle is added to the
cluster and moved using a self-inverse operation, such as reflection
in a point pivot. After this move, any particles overlapping are also
added to a cluster. At each iteration a particle is taken off the
bottom of the stack and moved, repeating until all particles have
been moved or no overlaps remain. Clusters may move an arbi-
trary number of large particles or can be limited to one large
particle. Rearrangement of large clusters is vital in the early stages
of self-assembly, whereas single-particle moves are more efficient
for relaxing particles within an assembled structure.
Special consideration is required for moving anisotropic par-

ticles such as the superballs considered here. As described in ref.
11, we include a GCA move that reflects a large particle in a
plane instead of a point pivot as shown in Fig. S4. If the plane
lies close to one of the superball’s axes, then the rotation can be
arbitrarily small. This allows the large particles to fully explore
their orientational degrees of freedom. Our full move set is as
follows: Each Monte Carlo sweep we attempt on average one
large cluster move and N single-particle moves. For the single-
particle moves the reflection pivots and planes are chosen close
to the target particle to increase the acceptance rate.
Even using the GCA simulations is challenging for a number of

reasons: The interactions are strong and short ranged, which makes
assembly difficult with very long physical timescales. Computa-
tionally the overlap checks with superballs are expensive and often
require slowly converging numerical solvers. The large number of
depletants means that many overlap checks need to be made. In
particular, to observe transitions between states in a reasonable
timescale, care has to be taken to choose parameters that do not
create interactions that are too strong, leading to kinetic trapping,
while strong enough to allow assembly.

Self-Assembly Simulations
To study the formation of self-assembled structures we place
N = 169 superballs evenly distributed in a periodic box of di-
mensions Lx =Ly = 30σc and Lz = 1.05σc. The box is filled with
depletants grand canonically before the large particles are al-
lowed to move. The simulation is then run until the assembled
structures are stable to rearrangement. We studied a range of
particle shapes, m, and depletant size ratios, q, and for each
combination scanned a range of depletant number densities, nrd
to find the point of best assembly. We found that the window
between the interactions being too weak for assembly and too
strong for good assembly (kinetic trapping) was quite narrow due
to the short-ranged nature of the depletion interaction.
The final configurations are shown in Fig. S5, indicating the

different structures that assemble for different combinations of
shape and depletant size. The simulations suffer from kinetic
trapping, in particular when the depletant is small, in a manner
quite similar to that seen in experiments. The stable structures
from these simulations generally agree with the experimental
results. The results are summarized and compared with the ex-
periment in Fig. S6.

Bulk Phase Simulations
To better understand which phase, square or Λ1, is truly ther-
modynamically stable we also performed simulations in the bulk
to remove surface effects. Simulations were performed in the
NPTμd ensemble at a constant pressure, P, and fluctuating box
size. The box shape was also allowed to fluctuate (sometimes
referred to as a “floppy box”) to accommodate crystal structures
that do not tile in a square box. The pressure, P, is set by the
depletant pressure in the reservoir, that of an ideal gas βP= nrd
where nrd is the reservoir depletant number density and β is the
inverse of temperature multiplied by Boltzmann’s constant,
β= ðkBTÞ−1, which is far higher than the pressure from the su-
perballs. In this ensemble it is possible for the box to increase to
an arbitrarily large size if the depletion interaction is not strong

enough. If the superballs are started sufficiently close together,
this does not represent a practical problem.
We placed N = 6× 6= 36 superballs in a periodic box. The

values for nrd and hence also the pressure were chosen to match
the values at which we see good assembly in the previous section.
To determine which phase is stable for any given set of param-
eters we started simulations from square, Λ0, and Λ1 phases.
Example configurations are shown in Fig. S7.

Bidepletant
In this section we demonstrate the possibility of switchable phases by
considering a system made up of superballs and two species of
depletant. The big depletants are spheres with size ratio q1 = 0.35 and
the small depletants are spheres with size ratio q2 = 0.04. Both de-
pletants can overlap with each other but not with the superballs. The
changes in size always occur at constant reservoir number density
so that the average number of small depletants remains constant
throughout the simulation. This is an average because the depletants
are treated grand canonically and their numbers fluctuate.

Self-Assembly. In this ensemble the number of superballs is fixed
at N = 169 and the box size is constant at Lx =Ly = 30σc and
Lz = 1.02σc. Both depletants are treated grand canonically with
constant chemical potentials, μ1 and μ2. The simulations start
with all of the superballs evenly distributed and the box filled
with depletant. Although there is potentially a large parameter
space, we have found that starting with q1 = 0.35 and q2 = 0.04
and at reservoir number density n1 = 24.9σ−3c and n2 = 596.8σ−3c
provides the best results.
As shown in Fig. S8 under the starting conditions the superballs

assemble into a square structure. Even though the amount of
small depletant would not be strong enough to drive assembly on
its own, with the help of the larger depletant to hold the particles
together it is enough to direct the superballs into a square phase.
At this point the size of the small depletant is changed from
q2 = 0.04 to q2 = 0.032, holding the number density fixed, result-
ing in a canted lattice. When the small depletants are swollen
back to q2 = 0.04, the square phase is restored, demonstrating a
mechanism that induces reversibly switchable phases.
We note that to see transitions in a computationally accessible

timescale, the parameters must be chosen such that the in-
teractions are not too strong. Due to the weaker and competing
interactions, the bond angles that we see in the canted phase are
slightly different from those in the close-packed Λ1 phase.

Bulk Phase.This is a constantNPTμ2 ensemble. N is the number of
superballs. The pressure is set by the depletant pressure in the
reservoir, which is far higher than pressure from the superballs.
Because the reservoir is an ideal gas, the reservoir pressure is the
sum of the depletant number densities, βP= n1 + n2. The big
depletants are too big to penetrate the crystal structure so al-
though it contributes to the pressure, it is not explicitly simulated
in this ensemble. As in the previous bulk section, as well as in
volume-changing moves (Lx and Ly only), the box may also make
shape-changing moves. This allows the Λ1 phase to properly fit
around the periodic boundaries.
The contribution to the pressure from the big depletant is fixed

at σ3cβP1 = 30. The box is filled with small depletant with q2 = 0.04
at nr2 = 596.8σ−3c , so the total pressure is βP= βðP1 +P2Þ= 626.8.
The number densities remain fixed so this pressure is the same in
all results shown here.
Fig. S9 shows the switchable nature of the crystals. The su-

perballs are started in a square configuration and then the box is
filled with depletant at q2 = 0.04, nr2 = 596.8σ−3c , where the square
phase is stable. The small depletant is then changed in size to
q2 = 0.032 and the system reliably changes into the canted phase.
From this configuration the small depletant size is changed back to
q2 = 0.04, and the crystal changes back to the square (Movie S4).
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Fig. S1. (A) The points of this graph represent the shape parameters m of the silica superballs measured by fitting the shape of 80–100 particles. Different
colors correspond to different samples as indicated in the legend. The average values are indicated with the horizontal lines interpolating the y axis in their
corresponding mean values. (B) For sample S3.0 the shape parameter (m) of the particle is plotted against the particle size (L). A sharp transition is visible
around a critical value Lc = 1.26 μm, which shows a rapid decay in shape polydispersity after the transition.

Fig. S2. Angular histograms of experimental data. (A) Angular histograms for spherical particles show sharp peaks indicating 60° bond angles between
particles, as expected for a triangular lattice, which is consistent with both the Λ0 and Λ1 lattices for m=2. (B) Example angular histogram from which a Λ1

lattice is identified. C and D show examples of distributions in which a clear identification is not possible.
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Fig. S3. Phase diagrams and energetic characterization of superball lattices. (A) The phase diagram of 2D superdisks is computed by computing ΔVex of each
lattice type for each value of m and q. (B) The energetic benefit of choosing a particular lattice type for 2D superdisks is computed for each m and q by finding
the difference in the energy of the two most energetically favorable lattices. (C and D) Phase diagram for 3D superballs arranged in 2D lattices. The structures
of the diagrams are qualitatively similar to those of the 2D diagrams. (E) The energy difference between the two most favorable lattices computed using a
constant number density of depletants.

Fig. S4. Starting from the dotted outline the colloid particle is reflected in the plane (thick dashed line). As a result it overlaps with three depletant particles
that are reflected in the same plane into the space left by the colloid.
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Fig. S5. Final configurations for the self-assembly simulation runs for varying size ratios q and superball shape parameter m as labeled.

Fig. S6. Comparison of finite crystal self-assembly simulation results with experiment results.
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Fig. S7. (A and B) Floppy box NPT simulations showing the stable structures for superballs with shape parameter m= 3.5 (A) Λ1 phase for size ratio q= 0.1 and
(B) square phase for q= 0.05.

Initial 
Assembly

Shrink by 
20%

Swell 
back

Fig. S8. After initial assembly into a square phase the small depletant is shrunk by 20% from q2 = 0.04 to q2 = 0.032, holding the densities of both depletant
species and superballs fixed. The crystal rearranges to a canted phase. The depletant then goes back to q2 = 0.04 and the square phase is recovered.

Fig. S9. Constant pressure simulations with a flexible “floppy” box. Starting from a square phase we cycle to a Λ1 phase and back again by changing the
small depletant size from q2 = 0.04→ 0.032→ 0.04 at constant number density. The big depletants do not penetrate the crystal so are treated implicitly as a
pressure term.
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Movie S1. Silica superballs with m = 3.9 are dispersed with pNIPAM depletants and equilibrated at room temperature, where they form square crystallites. As
the temperature is increased to 28.5 °C, the crystallites melt. Upon decreasing the temperature back to room temperature, the particles begin to reassemble.

Movie S1

Movie S2. Silica superballs with m = 3.9 are dispersed in the presence of PEO depletants with molecular weight 8 M. In these conditions the superballs
assemble into Λ1 crystallites.

Movie S2
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Movie S3. Silica superballs with m = 3.9 are dispersed in the presence of a mixture of PEO (molecular weight 8 M) and pNIPAM depletants. At 27 °C, the
superballs assemble into square crystallites, as observed when the particles are dispersed with pNIPAM alone. As the temperature is increased we observe that
the lattice shifts to a Λ1 configuration as observed when the superballs are dispersed with PEO alone. This happens because at higher temperatures the in-
teractions induced by the pNIPAM weaken whereas those induced by the PEO are fixed. By cycling the temperature, we are able to observe a reversible solid-
to-solid phase transition over several iterations.

Movie S3

Movie S4. Periodic bulk crystal simulations are performed with superballs with a fluctuating simulation box. Superballs are dispersed with two species of
depletants, one with size ratio q1 = 0.35 and one with size ratio q2 = 0.04. For these parameters, The square lattice configuration is stable. By decreasing the
size ratio of the smaller species from q2 = 0.04 to q2 = 0.032, we observe a transition into a canted phase, as we observe when the superballs are dispersed only
with depletants with a size ratio q1 = 0.35. When the size of the smaller depletant is once again increased (q2 = 0.04), the square phase is restored.

Movie S4
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