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A solid-solid phase transition of colloidal hard spheres confined between two planar hard walls is studied
using a combination of molecular dynamics and Monte Carlo simulation. The transition from a solid
consisting of five crystalline layers with square symmetry (5□) to a solid consisting of four layers with
triangular symmetry (4△) is shown to occur through a nonclassical nucleation mechanism that involves
the initial formation of a precritical liquid cluster, within which the cluster of the stable 4△ phase grows.
Free-energy calculations show that the transition occurs in one step, crossing a single free-energy barrier,
and that the critical nucleus consists of a small 4△ solid cluster wetted by a metastable liquid. In addition,
the liquid cluster and the solid cluster are shown to grow at the planar hard walls. We also find that the
critical nucleus size increases with supersaturation, which is at odds with classical nucleation theory.
The△-solid-like cluster is shown to contain both face-centered-cubic and hexagonal-close-packed ordered
particles.
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The kinetics of phase transitions plays an important role
in condensed-matter physics and materials science. In order
to gain a better fundamental understanding of how to
control self-assembly processes in the fabrication of novel
structures, many experimental and simulation studies have
been devoted to colloidal systems. Experiments [1–4] and
computer simulations [5–7] on bulk hard-sphere colloids
suggested that the metastable fluid crystallizes and super-
heated crystals melt via a single-step nucleation process
that is well described by classical nucleation theory (CNT)
[8]. However, Ostwald’s step rule suggests that the kinetic
pathway to the most stable state can initially proceed
through the nucleation of intermediate, metastable phases
[9]. The effect of a nearby metastable state on nucleation
and the occurrence of multistep nucleation processes have
been studied in the crystallization of a range of systems
including colloids [10,11], proteins [12], and patchy
particles [13], and in the crystallization of molecular solids
from solution [14].
In contrast, the kinetic processes of solid-solid phase

transitions, which involve complex structural rearrangements
[15], have received considerably less attention [16].
Solid-solid transitions usually occur in a martensitic fashion
[17,18] involving the concerted, diffusionless motion of the
atoms in the unit cell. Anisotropic stress, rapid quenching,
and a small system size have been found to promote
martensitic transformations [19]. In colloids, martensitic
transitions have been observed in small crystalline clusters
[20–22] or lattices stretched by external fields [18,23–25].
A solid-solid transition involving an activated nucleation
process has recently been experimentally observed at the
single-particle level for the first time in colloidal thin-film

crystals confined between two glass plates [26]. The
equilibrium phase diagram of hard spheres confined between
two planar hard walls shows an alternating sequence of
solid-solid transitions, …n△ → ðnþ 1Þ□ → ðnþ 1Þ△…,
as the plate separation increases [27–30], where n is the
number of crystalline layers. Peng et al. [26] found that the
transition from the ðnþ 1Þ□ crystal to the ðnÞ△ crystal
followed Ostwald’s step rule and occurred via a two-step
nucleation process involving an intermediate liquid phase.
We study the nucleation mechanism of the 5□ → 4△

solid-solid transition in a system of hard spheres of
diameter σ confined between two parallel hard plates
separated by a distance H=σ ¼ 4, using computer simu-
lations. Our simulations are carried out in the packing
fraction range 0.479 < η < 0.500 (i.e., the 2D reduced
lateral pressure range 35.8 < P� ¼ βPσ2 < 40), where the
5□ crystal and the liquid phase are metastable with respect
to the 4△ crystal (see the Supplemental Material [31] for
details). The free energy of the liquid phase lies between the
free energies of the two solid phases. β ¼ 1=ðkBTÞ denotes
the inverse temperature, with T being the temperature and
kB being the Boltzmann constant. In order to explore the
role a metastable liquid phase might play in this solid-solid
transition, we calculate the free energy of formation for a
cluster containing NL liquidlike particles and N△ solidlike
particles with triangular symmetry. The resulting free-
energy surface shows that the optimal kinetic pathway
for the transition entails the initial growth of a liquid cluster,
within which the △-solid cluster forms, but there is only
one nucleation barrier involving a critical cluster consisting
of liquid- and solidlike particles in our parameter regime.
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To distinguish between fluidlike and solidlike particles
with square (□) and triangular (△) symmetries,

we calculate the bond orientational order ψmj ¼
PNbðjÞ

k¼1 exp ðimθkÞ=NbðjÞ of each particle j with m ¼
4; 6 for solidlike particles with four- and sixfold sym-
metries, where θj is the angle between the bond of particles
i and j with an arbitrary reference axis, and NbðjÞ denotes
the number of nearest neighbors of particle j [34]. We
divide the system into five and four layers for the
calculation of ψ4 and ψ6, respectively. In addition, a
crystalline bond with m-fold symmetry is defined if jψ�

mi ·
ψmjj > 0.5 [26]. We define particles as △-solid-like if the
number of crystalline bonds with triangular symmetry
ξ△ ≥ 3, and as □-solid-like if the number of crystalline
bonds with square symmetry ξ□ ≥ 2. All other particles are
defined as liquidlike. The criteria guarantee that no particle
is both□-solid-like and△-solid-like. Liquid- and△-solid-
like particles are considered to belong to the same cluster
if the distance between any two particles is less than 1.5σ.
We perform Monte Carlo (MC) simulations using the

umbrella sampling technique in the isothermal-isobaric
(NPT) ensemble, with the number of particles
N ¼ 2000, the reduced 2D lateral pressure P� ¼ 40, and
the temperature T fixed. Figure 1(a)–1(c) show typical
configurations along the nucleation pathway in MC sim-
ulations. Nucleation studies usually focus on a one-
dimensional free-energy barrier using the total cluster size,
Ncl, as the reaction coordinate. Hence, we calculate the free
energy, βΔGðNclÞ ¼ − logPðNclÞ, where PðNclÞ is the
probability of observing a cluster of size Ncl ¼ NL þ N△.

We use two different biasing potentials: WðNclÞ ¼
1
2
kðNcl − Ncl0Þ2 and WðNLÞ ¼ 1

2
kðNL − NL0Þ2. The first

biasing potential is designed to follow the growth of a
binary cluster and the second the possible nucleation of a
liquid cluster, but we stress that the potential does not
prevent the growth of △-solid-like particles. Ncl0 and NL0
are the umbrella window centers for the total cluster size
and the number of liquid particles in the cluster, respec-
tively. The sampling is performed using 60 umbrella
centers, equally spaced in the region Ncl; NL ∈ ½0; 300�.
For each umbrella window, the data are harvested from
10000 equilibrium configurations and averaged over ten
independent runs. The free energies from each umbrella
window are combined into a single curve using the
multistage Bennet acceptance ratio method [35].
Figure 2 shows that the two biasing schemes give similar

free energies for cluster sizes up to ∼100, where the cluster
consists solely of liquidlike particles [Figs. 1(a) and 1(b)].
At larger cluster sizes, the two free-energy curves begin to
diverge with the emergence of △-solid-like particles in the
Ncl biasing scheme but not in the NL biasing scheme,
which suggests a degree of hysteresis. If both schemes were
fully equilibrated, we would expect them to yield similar
free energies, but the newly emerged △-solid particles are
not easily sampled when the NL biasing potential is
employed. N△ increases rapidly for both biasing schemes
at the free-energy maximum, where N�

cl ∼ 175, but
Fig. 2(b) also shows that N△ is already increasing, even
before the maximum under Ncl biasing.
More insight into the nucleation mechanism can be

obtained by calculating the two-dimensional free-energy

FIG. 1 (color online). Typical configurations of the solid-solid transition. Configurations obtained by umbrella sampling in MC
simulations with a bias towards cluster sizes of (a) Ncl ¼ 60, (b)Ncl ¼ 120, and (c) Ncl ¼ 180 particles. (d) A configuration obtained by
EDMD simulation at t ¼ 518τ for η ¼ 0.490. Side (e) and top (f) views of a liquid nucleus in an EDMD simulation. Side (g) and top
(h) views of a △-solid nucleus in an EDMD simulation. (i) A solid consisting of four △ layers arranged in both fcc and hcp structures
from EDMD simulations. In (a)–(d), multilayer particles are projected onto the xy plane. □-solid, △-solid and liquidlike particles are
colored in blue, green, and red, respectively. Particles not belonging to the largest cluster are drawn small.
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surface of forming a cluster containing NL and N△

particles, βΔGðNL;N△Þ ¼ − logPðNL;N△Þ, where
PðNL;N△Þ denotes the probability of observing the largest
cluster in the system with (NL, N△). We perform MC
simulations using umbrella sampling in theNPT ensemble,
at the same thermodynamic conditions, and use a quadratic
biasing potential, WðNL;N△Þ ¼ 1

2
½kLðNL − NL0Þ2 þ

k△ðN△ − N△0Þ2� [36], where βkL ¼ 0.15 and βk△ ¼ 0.3.
A total of 300 umbrella windows are used, with adjacent
umbrella window centers separated by five particles,
covering the ranges NL0 ∈ ½0; 250� and N△0 ∈ ½0; 30�.
For each umbrella window, the system is equilibrated for
107 MC steps before data are collected over the next
2 × 106 MC steps, harvesting configurations every 200 MC
steps. We present the contour plot of the free-energy surface
in the NL − N△ plane in Fig. 3. We see a significant
increase in the free energy of growing pure liquidlike
clusters beyond NL ≈ 170, and we do not find a saddle
point leading to the nucleation of the pure liquid phase.
Instead, the lowest free-energy path on the surface shows
that a △-solid-like cluster starts growing inside the pre-
critical liquid cluster and that the critical embryo contains

N△ ≈ 25 solidlike particles surrounded by NL ∼ 155
liquidlike particles [Fig. 1(c)]. Beyond the nucleation
saddle point, the new phase continues to grow as N△

and NL both increase [Fig. 1(d)]. A key feature of our free-
energy surface is the presence of a single free-energy
barrier leading to the △ crystal, which suggests that the
transition occurs in a single step, even though a liquid
cluster is developed in the initial stages of the nucleation
process. The free-energy surface has a similar form to that
obtained by ten Wolde and Frenkel [12] in their study of
protein crystallization. They showed that the lowest free-
energy path proceeds via the formation of a liquidlike
droplet, within which a crystallite starts to form.
A simple CNT for our system, where the nucleus has a

cylindrical core of △-solid particles surrounded by a layer
of liquid particles, exhibits a two-step mechanism (see
Fig. S6). A saddle point associated with a pure liquid
critical cluster leads to the liquid free-energy basin, which
is then separated from the△-crystal basin by a ridge on the
free-energy surface, so nucleation requires the crossing of
two barriers. Accounting for the disjoining pressure [37,38]
associated with the thin wetting layer and the strain energy
of the lattice [15], the CNT introduces a saddle point on the
free-energy surface with a liquid-△-solid critical cluster
leading directly to the crystal phase, as observed in our
simulations, but the valley floor approaching this saddle
point, and hence the precritical fluctuations, grows along
the △-solid axis. In our simulation results, the early stages
of nucleation are characterized by the formation of pure
liquidlike clusters, which is at odds with CNT.
Finally, we use event-driven molecular dynamics

(EDMD) simulations in the canonical (NVT) ensemble
to obtain the dynamics of the nucleation process, starting
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FIG. 2 (color online). (a) The Gibbs free energy ΔGðNclÞ=
ðkBTÞ as a function of the total number of particles Ncl using the
WðNclÞ biasing potential (the squares) and the WðNLÞ biasing
potential (the circles). (b) Number of △-like particles N△

averaged over 10000 nuclei as a function of cluster size Ncl as
obtained from the two biasing methods. (Inset) The same plot
as (b) but with the region 60 < Ncl < 180 enlarged for clarity.
The vertical line marks the critical nucleus size.
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FIG. 3 (color online). Contour plot of βΔGðNL; N△Þ in the
saddle point region. The nucleation barrier height βΔG� ≈ 26 and
the critical cluster (the white cross) contains NL ¼ 155 liquidlike
particles and N△ ¼ 22 △-solid-like particles. The lowest free-
energy path through the saddle point region is indicated by the
dashed orange curve.
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from a metastable defect-free 5□ phase. At η ≥ 0.5
(i.e., P� ≥ 40 in the 5□ phase), the EDMD runs never
nucleate on the time scale of our simulations. Nucleation
events begin when η is reduced to 0.49. A long induction
period is observed during which the liquid cluster size
fluctuates and the number of N△ remains near zero (Fig. 4).
The initial liquid cluster appears to form at the hard-wall
interface in a heterogeneous fashion [Fig. 1(e)]. It then
grows into a cylindrical nucleus spanning the two walls
[Fig. 1(f)]. The△-solid cluster forms within the fluctuating
liquid also at the liquid-wall interface [Fig. 1(g)], which is
consistent with studies of the prefreezing and crystalliza-
tion of the bulk hard-sphere fluid at a hard-wall interface
[39]. In our EDMD simulations, the number of liquid
particles NL surges to a maximum before decreasing as
the liquid is consumed in the growth of the △-nucleus
[Figs. 1(h) and 4], which contains either face-centered-cubic
(fcc) or hexagonal-close-packed (hcp) layering [Fig. 1(i)].
To further examine the possibility that the liquid and

the △ crystal nucleate independently of each other, we
estimate the nucleation rate by measuring the mean first
passage time, τðNÞ, during the appearance of a cluster
containing N ¼ NL or N ¼ N△ particles [40,41] (see the
Supplemental Material [31] for more details). Figures 5(a)
and 5(b) show that the mean first passage times for the
liquid and the △ solid reach their plateaus at similar
times, yielding a nucleation rate J ¼ C1=ð2VÞ ¼
1.43 × 10−7τ=σ3, where V is the sample volume. At a
lower η, the liquid nucleates slightly slower than the solid
(see Table II in the Supplemental Material [31]), which
indicates that the △ solid nucleates within a precritical
liquid nucleus. Furthermore, the critical nucleus size is
determined from the EDMD simulations as a function of η.
According to CNT, the critical size of the liquid nucleus
should decrease as η decreases (i.e., as the chemical
potential difference between the liquid and the 5□ crystal

increases). However, Fig. 5(c) shows the opposite trend: the
number of liquid particles in the critical cluster actually
increases. A possible explanation for this unconventional
finding might be that the liquid clusters correspond to
precritical fluctuations with a correlation length that
increases as the limit of stability of the 5□ crystal is
approached with respect to the liquid [12,42] (i.e., upon
lowering the packing fraction η).
Solid-solid transitions usually occur through a marten-

sitic process when the driving force for nucleation is small
and the barrier is high because it avoids the need to develop
a solid-solid interface, which has a high free-energy cost.
However, our simulations show that the 5□ → 4△ solid-
solid transition occurs via a nonclassical nucleation mecha-
nism involving an intermediate liquid stage. This provides
an alternative mechanism that also obviates the need to
form a solid-solid interface. Furthermore, the initial nuclei
should always be liquid if the△ −□ interfacial free energy
is higher than the sum of the △-liquid and liquid-□
interfacial free energies since the interfacial free energy
dominates over the bulk chemical potential difference when
the nucleus is small enough. Since the mechanism is
general, intermediate liquids could exist widely in other
systems. For example, the interfacial energy in metals and
alloys ranges from 500 to 1000 ∼mJ=m2 for the incoherent
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interfaces between two crystalline phases and from 30 to
250 ∼mJ=m2 for solid-liquid interfaces [15]. Hence,
an intermediate liquid stage could similarly exist in the
solid-solid transformation of metals.
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I. PHASE BEHAVIOR OF CONFINED HARD
SPHERES: THE 5�→ 44 TRANSITION

We consider a system consisting of N hard spheres of
diameter σ confined between two parallel hard walls with
a surface area A and separated by a distance H/σ = 4.
The packing fraction for the system is defined as η =
πNσ3/(6AH). According to free-energy calculations [1],
the system exhibits a first-order phase transition from a
liquid to a crystal phase consisting of four triangular lay-
ers (44), and a first-order phase transition from the 44
crystal phase to a crystal phase consisting of five square
layers (5�) with a 5� − 44 phase coexisting regime
0.537 < η < 0.571.

To obtain the chemical potential differences between
the phases in the metastable regions of the phase dia-
gram, we use event-driven molecular dynamics (EDMD)
simulations to calculate the equation of state. In an
EDMD simulation, the system evolves via a time-ordered
sequence of elastic collision events, which are described
by Newton’s equations of motion. The spheres move at
constant velocity between collisions, and their velocities
are updated when a collision occurs. We compute the
reduced 2D lateral pressure P ∗ = βPσ2 via the virial
theorem,

P ∗ = βPσ2 =
Nσ2

A

1− βm

2t

1

N

N∑
i<j

rij · vij

 , (1)

where m = 1 is the mass of the particles, N = 12500 is
the number of particles, β = 1/kBT , kB is the Boltzmann
constant, T is the temperature, rij and vij are respec-
tively the displacement and velocity of particle i relative
to those of particle j, and t is the time interval. Time is

measured in MD units τ =
√

mσ2

kBT
. The system is equi-

librated for 800τ , and the pressure is measured for an
additional 200τ . Figure S1 shows the equations of states
obtained from the simulation.

In this work, we study the kinetics of the phase transi-
tion from a metastable 5�-crystal to a stable 44-crystal
phase. A phase diagram in the literature shows that for
η < 0.571, the 44-crystal phase is thermodynamically
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FIG. S1. Equations of states (i.e. the reduced 2D lateral pres-
sure P ∗ = βPσ2 as a function of packing fraction η) of the
liquid (dots), 44 crystal (triangles) and 5� crystal (squares)
phases in a system of hard spheres confined between two pla-
nar hard walls separated by a distance H/σ = 4. Curves
are the fifth degree polynomial fittings of equations of states
of the liquid (red), 44 crystal (green) and 5� crystal (blue)
phases. The yellow line indicates the region where the liquid
and 44 crystal phases coexist and the star indicates the point
where the pressure is the same for both the 44 and 5� crys-
tal phases. Our nucleation study is carried out in the region
35.8 ≤ P ∗ ≤ 40 (white area between the dotted lines).

stable as its free energy is lower than that of the 5� phase
[1]. Using the 5�-crystal phase as the initial configura-
tion in our simulations, we find that this phase remains
metastable down to a pressure P ∗ = 35.8, which corre-
sponds to a packing fraction η = 0.479. We also note
that at η = 0.479, both the 44 and 5� crystals have the
same pressure P ∗ = 35.8. The 5�-crystal phase is thus
metastable in the region 0.479 < η < 0.571. Due to the
limited simulation time, a critical nucleus cannot form in
the 5� → 44 transition at η > 0.500. We calculate the
chemical potentials of each phase using thermodynamic
integration along the equation of state. For η ≤ 0.500,
the chemical potential difference between the 5�-solid
and liquid phases, µ�−L, decreases with increasing pack-
ing fraction η (see Table 1 or Fig. S2). This reduces
the thermodynamic driving force for nucleation and low-
ers the probability of observing liquid droplets through
density fluctuations in our simulations. As a result, we

mailto:M.Dijkstra1@uu.nl


2

P ∗ ηL η4 η� βµL βµ4 βµ� βµ�−L βµL−4
40 0.460 0.492 0.500 15.14 15.02 15.34 0.20 0.12
39 0.457 0.489 0.496 14.85 14.75 15.08 0.23 0.10
38 0.454 0.486 0.491 14.56 14.48 14.81 0.25 0.08
37 0.451 0.483 0.487 14.27 14.21 14.54 0.27 0.06

TABLE I. Pressure P ∗ = βPσ2, packing fraction η and chemical potentials βµ for the liquid, 44-solid and 5�-solid phases.
βµ�−L is the chemical potential difference between 5� and the liquid, and βµL−4 is the chemical potential difference between
the liquid and the 44-solid phase.
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FIG. S2. Chemical potentials βµ for the liquid, 44 and 5�
phases in the region 35.8 < P ∗ < 70 where the liquid and 5�
are metastable. Inset shows chemical potentials in the region
35.8 ≤ P ∗ ≤ 40.

focus on nucleation in the region 0.479 ≤ η ≤ 0.500 or
35.8 ≤ P ∗ ≤ 40.

II. FORMATION OF A LIQUID DROPLET IN
THE SOLID-SOLID TRANSITION

In the EDMD simulations, the defect-free 5�-solid
phase at packing fraction η = 0.490 developed small
liquid-like clusters which fluctuated in size. After a long
induction time, a critical liquid nucleus appeared embed-
ding a 44-nucleus. The bond orientational order param-
eter Ψ6 has been used to distinguish among the fluid-,
44-, and 5�-like particles in the main text. However,
as the liquid-like particles move much faster than the
crystalline particles, one can also employ a dynamic cri-
terion. To this end, we measure the self-part of the Van
Hove correlation function as defined by [2]

Gs(R, t) =
1

N

〈
N∑
i

δ (R− |Ri(t+ tw)−Ri(tw)|)

〉
,

(2)
where Ri(t) is the position of particle i at time t, and R
the diffusion distance of the particles during time interval
t. At short waiting times, the Van Hove correlation func-
tion is Gaussian. As soon as a liquid nucleus starts to
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FIG. S3. (a) Self-part of the Van Hove correlation function
G(R, t = 10τ) at waiting times tw = 468τ and tw = 518τ . The
vertical line marks the non-Gaussian long tails corresponding
to the fast-moving particles. Solid curves are the Gaussian
fits. (b) A typical configuration at waiting time tw = 518τ of
the EDMD simulation at packing fraction η = 0.490. The red
and blue particles denote the fast-moving and slow-moving
particles, respectively.

grow at waiting times tw = 468τ and 518τ , the Van Hove
correlation function becomes non-Gaussian as shown in
Fig. S3a. The long tail of the self-part of the Van Hove
correlation function indicates the presence of liquid-like
particles with higher mobilities than the solid-like par-
ticles. In Fig. S3b, the fast-moving particles, i.e. those
with displacement > 0.5σ in a time interval t = 10τ , cor-
respond to disordered fluid-like particles, which confirms
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FIG. S4. The density profile across the diameter of the cluster
at waiting time tw = 518τ in MD time units and at a packing
fraction η = 0.490. The green dashed line denotes the packing
fraction of the metastable 5� phase. The location of the
liquid-44 nucleus is denoted by the shaded region.

the formation of a liquid-like droplet in the nucleation
process. In addition, the density profile of the cluster in
Fig. S4 confirms the formation of a liquid-like droplet.
The packing fraction a long way from the nucleus ap-
proaches that of the metastable 5� phase.

III. CLASSICAL NUCLEATION THEORY FOR
THE 5�→ 44 SOLID-SOLID TRANSITION

We consider a simple model for the nucleation process.
We assume that nucleation proceeds via the formation of
a nucleus consisting of liquid-like and 4-solid-like parti-
cles. In addition, we assume that the nucleus is cylin-
drical with height H and consists of a cylindrical core of
4-solid-like particles surrounded by a cylindrical ring of
liquid. We first consider two systems as shown in Fig. S5.
System I contains the homogeneous metastable 5� phase,
characterized by entropy SI , volume V I , and number of
particles N , confined between two planar hard walls of
total area Atot = 2A, where A is the surface area of a
single wall. System II contains a cluster consisting of NL
liquid particles and N4 particles of the 44−solid phase.

The difference between the Gibbs free energies of sys-
tems II and I is then given by

∆G = (µL − µ�)NL + (µ4 − µ�)N4

+(γ4W − γ�W )A4 + (γLW − γ�W )AL

+γ4LA4L + γL�AL�, (3)

where γαβ and Aαβ are the surface free energy (ten-
sion) and surface area for the α − β interface re-
spectively, where α, β refer to L,�,4 and the hard
wall, W . For a cylindrical core of 4-solid-like
particles surrounded by a cylindrical ring of liquid-
like particles, we have A4 = 2N4/(Hρ4), AL =

2NL/(HρL), A4L =
√

4πH/ρ4
√
N4 and AL� =

FIG. S5. A simple model for nucleation in a solid-solid transi-
tion. System I contains the homogeneous metastable 5�-solid
phase confined between two planar hard walls. System II con-
tains a cluster consisting of a 44−solid-like core, surrounded
by a liquid-like nucleus in a 5� solid confined between the
same two walls.
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FIG. S6. Contour Plot of β∆G(NL, N4) as obtained from
classical nucleation theory for the 5� → 44 solid-solid tran-
sition at pressure P ∗ = 40. The green line represents a tran-
sition pathway along the N� axis at NL = 0, and the blue
line represents a transition pathway along a contour line of
the surface.

√
4πH/ρL

√
(ρL/ρ4)N4 +NL. The Gibbs free-energy

difference then reads

∆G =

[
µL − µ� +

2

HρL
(γLW − γ�W )

]
NL

+

[
µ4 − µ� +

2

Hρ4
(γ4W − γ�W )

]
N4

+γ4L

√
4πHN4
ρ4

+γL�

√
4πH

ρL

(
ρL
ρ4

N4 +NL

)
. (4)

Figure S6 shows the free-energy landscape
∆G(NL, N4) obtained from Eq. 4 at pressure P ∗ = 40,
where we have used the wall-fluid interfacial tension
βγLWσ

2 = 1.990, the wall-4 solid interfacial tension
βγ4Wσ

2 = 1.457, the wall-� solid interfacial tension
βγ�Wσ

2 = 2.106 [1], and the liquid-solid interfacial
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FIG. S7. Contour Plot of β∆G(NL, N4) as obtained from the
modified CNT model for the 5� → 44 solid-solid transition
at pressure P ∗ = 40 with parameters S = 0.03, ξ = 0.5
and δε = 0. The saddle points are marked by stars. White
lines represent transition pathways along the valley floor and
through the saddle points.

tension βγLTσ
2 = 0.62 and βγL�σ

2 = 0.62 [3]. The
free-energy surface shows that a high free-energy barrier
stands between the 5�-solid and the 44-solid phase
(i.e. a path along the N� axis at NL = 0) due to the
large free-energy cost associated with the formation of
an interface between the two solid phases. This prevents
a direct transformation of the 5�−solid to the 44−solid
phase. Instead, a lower free-energy path involves the
formation of a liquid droplet, which beyond the saddle
point grows spontaneously into the metastable liquid.
The free-energy basin associated with the 44-solid
phase is separated from the liquid basin by a ridge
on the free-energy surface. This free-energy surface is
representative of a two-step nucleation mechanism where
a liquid droplet first forms and grows before the solid
phase nucleates, yielding two separate free-energy barri-
ers. However, it is also interesting to note that clusters
of the 44-crystal can grow inside a critical liquid-like
cluster without incurring an additional free-energy cost
by following a path along the contour lines of the surface.
The free energy surface obtained here differs from the
one obtained in our free-energy calculations in Monte
Carlo simulations using umbrella sampling.

IV. MODIFIED CNT MODEL

Now we consider two corrections of the classical nu-
cleation theorem (CNT) model. The first correction
term accounts for the disjoining pressure between the
5�-liquid and liquid-44 interfaces [4, 5]

∆G�−liquid−4 = A�LS exp [−(rL − r�)/ξ], (5)
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FIG. S8. Contour plot of β∆G(NL, N4) as obtained from the
modified CNT model for the 5� → 44 solid-solid transition
at pressure P ∗ = 40 with parameters S = 0.03, ξ = 0.5 and
δε = 0.15. The saddle points are marked by stars. The white
line represents transition pathways along the valley floor and
through the saddle point.

where S = γ�4−γ4L−γL� is the spreading parameter,
r is the nucleus radius, and ξ is the range of interaction
between the two interfaces. For S = 0, the contribution
of the disjoining pressure is zero. The second correc-
tion term is the strain energy Estrain ' NL∆ε associated
with the expansion of the nucleus [6]. By adding the two
correction terms to the CNT model, the free energy of
formation of a nucleus is then given by

∆G =

[
µL − µ� + ∆ε+

2

HρL
(γLW − γ�W )

]
NL

+

[
µ4 − µ� +

2

Hρ4
(γ4W − γ�W )

]
N4

+γ4L

√
4πHN4
ρ4

+γL�

√
4πH

ρL

(
ρL
ρ4

N4 +NL

)

+S exp [−(rL − r�)/ξ]

√
4πH

ρL

(
ρL
ρ4

N4 +NL

)
. (6)

As the values of γ�4, ξ and ∆ε are unknown, we treat
them as free parameters in the modified CNT model.
We set ξ = 0.5σ and find that the value of ξ does not
affect the shape of the free-energy surface. Figure S7
is the free-energy surface of the modified CNT model
with parameters βSσ2 = 0.03 and ∆ε = 0. There are
two saddle points as denoted by the white asterisks in
Figure S7, one for the pure liquid nucleus and the other
for the liquid-4 nucleus. As the value of the spreading
parameter S increases, the saddle point of the liquid-4
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FIG. S9. The free energy barriers of the pure liquid nucleus
and liquid-4 nucleus as a function of strain energy ∆ε at
P ∗ = 40. The other parameters are βSσ2 = 0.03 and ξ =
0.5σ.

nucleus moves towards the saddle point of the pure liquid
nucleus, but the lowest free-energy pathway is always the
one along the saddle point of the pure liquid involving the
formation of a liquid nucleus.

Figure S8 is the free-energy surface of the modified
CNT model with parameters S = 0.03 and β∆ε = 0.15,
and thus includes a correction made to the strain energy
of the 5� crystal lattice. In this case, the free-energy
barrier is ∆G = 45.6kBT for the pure liquid nucleus and
∆G = 34.3kBT for the liquid-4 nucleus. Thus, the path-
way along the liquid-4 nucleus has the lowest free-energy
barrier. Figure S9 shows the free-energy barriers of the
pure liquid nucleus and of the liquid-4 nucleus as a func-
tion of ∆ε. For β∆ε < 0.108, the nucleation process is
� → liquid → 4; for β∆ε > 0.108, the nucleation pro-
cess is � → (liquid-4) → 4. Note that the modified
CNT model includes the possibility of liquid-4 critical
nucleus, the fluctuations leading to the growth of the
critical cluster along the N4 axis. But in our simulation,

a pure liquid nucleus is formed at the first stage of the
nucleation, unlike in the simulations.

V. NUCLEATION RATES FROM EDMD
SIMULATIONS

For packing fraction η < 0.490, EDMD simulations
can reveal every step of the nucleation process. The
nucleation rate can be calculated by employing a com-
bination of EDMD simulations and the mean first pas-
sage time analysis [7, 8]. At each packing fraction
η = 0.480, 0.485, 0.488 and 0.490, we collect 3000 nu-
cleation trajectories and calculate the mean first passage
time, τ(NL), for the formation of the cluster contain-
ing NL liquid particles and the mean first passage time,
τ(N4), for the formation of the cluster containing N4
4-solid particles. These quantities are calculated inde-
pendently, even though the triangular solid phase forms
only in the presence of the liquid droplet. We estimate
the size of the critical nucleus and the nucleation rate
J by substituting the mean first passage times into the
following expression [7, 8]:

τ(Ni) =
1

2JV
{1 + erf[C(Ni −Ncri)]}, (7)

where i = L,4, Ncri is the critical size of the nucleus, J
is the nucleation rate, V is the system volume, erf(x) is
the error function, and C represents the curvature at the
top of the nucleation barrier. Figure S10 shows the mean
first passage times at η = 0.480, 0.485, and0.488. The
corresponding fitting parameters of Eq.(7) are presented
in Table II. The critical size of the 44 nucleus does not
change appreciably across η. In addition, we find that
the nucleation rates J for the liquid-like and 44 solid-
like clusters are very similar, which suggests that they
describe the same nucleation barrier. The difference be-
tween the nucleation rates increases only slightly with
decreasing η, which indicates that the 4-solid nucleates
within a liquid nucleus.
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[3] A. Härtel, M. Oettel, R. E. Rozas, S. U. Egelhaaf, J. Hor-
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liquid 44
η JL(τ/σ3) CL Ncri,L J4(τ/σ3) C4 Ncri,4

0.480 3.53× 10−6 0.0437 395 4.07× 10−6 0.246 5
0.485 8.98× 10−7 0.0982 242 9.90× 10−7 0.314 6
0.488 2.40× 10−7 0.0157 199 2.42× 10−7 0.319 6
0.490 1.43× 10−7 0.0216 166 1.43× 10−7 0.394 6

TABLE II. Fitting parameters of the mean first passage time for the liquid and the 44 solid at packing fractions η = 0.480,
0.485, 0.488 and 0.490. Ncri is the critical nucleus size. JL and J4 are the nucleation rate for the liquid and the 44 solid,
respectively. CL and C4 denote the curvature at the top of the nucleation barrier.
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FIG. S10. The mean first passage time measured in EDMD time units for liquid-like (a, c, e) and 44−solid-like (b, d, f)
clusters as obtained from EDMD simulation at packing fractions η = 0.480 (a, b), 0.485 (c, d) and 0.488 (e, f). Lines are fits
of the mean first passage time using 1

2JV
{1 + erf[C(N −Ncri)]}. The fitting parameters are shown in Table II.
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