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Using computer simulations, we study the phase behavior of a model system of colloidal hard disks
with a diameter σ and a soft corona of width 1.4σ. The particles interact with a hard core and a
repulsive square-shoulder potential. We calculate the free energy of the random-tiling quasicrystal and
its crystalline approximants using the Frenkel-Ladd method. We explicitly account for the configura-
tional entropy associated with the number of distinct configurations of the random-tiling quasicrystal.
We map out the phase diagram and find that the random tiling dodecagonal quasicrystal is stabilised
by entropy at finite temperatures with respect to the crystalline approximants that we considered, and
its stability region seems to extend to zero temperature as the energies of the defect-free quasicrystal
and the crystalline approximants are equal within our statistical accuracy. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4934499]

I. INTRODUCTION

Quasicrystals (QCs) are materials that exhibit long-range
order but no translational periodicity. The first observation of a
metastable quasicrystal was reported by Shechtman and Blech
in a rapidly cooled Al-Mn alloy.1 Since then, quasicrystals
have been observed in a wide range of intermetallic alloys.
Surprisingly, quasicrystalline order has also been discovered
recently in several soft-matter systems, ranging from spherical
dendrite micelles,2 block copolymers3–7 to binary mixtures of
nanoparticles.8,9 In addition, soft-matter quasicrystals can also
be fabricated in colloidal systems using external fields such as
holography10 or laser beams.11

Quasicrystalline behavior arises due to the presence of two
competing length scales, either induced by the different sizes
of the two particle species in the case of binary mixtures, or due
to an effective pair interaction that favors two length scales.12

This leads to a broad classification of soft-matter quasicrys-
tals into two categories: (1) binary mixtures, for example,
of nanoparticles interacting with simple isotropic pair poten-
tials, and (2) single-component systems, like micelles, with
effective pair interactions that favor two length scales. Evi-
dence of spontaneous formation of quasicrystalline order in
soft-matter systems belonging to both categories have been
observed in computer simulation studies. Examples of in silico
quasicrystals in binary mixtures include particles interacting
with Lennard-Jones13,14 and square-well15 potentials. Single-
component quasicrystals have been observed in particles inter-
acting with Lennard-Jones-Gauss,16 square-shoulder,17 square-
well,18 linear ramp,19 flat-well,20 and three-well oscillating21

pair interactions. For completeness, we mention that quasicrys-
tals are also studied in systems of patchy particles and hard
non-spherical particles such as tetrahedra22 and (truncated)

a)h.pattabhiraman@uu.nl
b)m.dijkstra@uu.nl

triangular bipyramids,23,24 where the interactions or particle
shape generate local arrangements or packings that are compat-
ible with quasicrystals.

From a theoretical point of view, the thermodynamic
stability of these soft-matter quasicrystals is widely debated
in the literature.25–27 The presence of two length scales in a
single component system creates a core-corona type structure
that is thought to stabilise the quasicrystal by reducing its
surface area.28,29 Indeed, many experimentally discovered soft-
matter quasicrystals in one-component systems frequently
consist of spherical particles with a rigid core and a squishy
corona, e.g., the spherical dendrite micelles consist of a rigid
aromatic core with a deformable shell of alkyl chains,2 and
the block copolymer micelles consist of a micellar core of
hydrophobic polymer surrounded by a large shell of hydro-
philic polymer blocks.7 In addition, it was found by simulations
that the mobility of the surface entities and shape polydis-
persity in the case of one-component micellar systems play
an important role in the stabilisation of quasicrystals.30 It
is tempting to speculate that the role of the surface entities
with respect to mobility and polydispersity is replaced by
the smaller species in the case of quasicrystals of binary
systems.

In order to prove the thermodynamic stability of quasi-
crystals, one has to show that the quasicrystal corresponds to
the lowest free-energy state of the system. Quasicrystals can
be either energetically or entropically stabilised.25 An energet-
ically stabilised quasicrystal results when the quasicrystal is
the minimum-energy configuration at zero temperature.26 On
the other hand, when the configurational entropy outweighs
the energetic contribution, the quasicrystal may be entropically
stabilised at finite temperatures.27

An extension of this debate deals with the relative stability
of a random-tiling quasicrystal and its crystalline approximant
at finite temperatures. A crystalline approximant is a periodic
quasicrystalline counterpart which is described by a large unit

0021-9606/2015/143(16)/164905/6/$30.00 143, 164905-1 © 2015 AIP Publishing LLC
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cell with a structure that resembles that of a quasicrystal.23,31

While the enthalpic and vibrational contributions to the free
energy are assumed to be very similar for the quasicrystal and
its approximant, the free energy of a random-tiling quasicrystal
involves a configurational entropy contribution due to the num-
ber of distinct configurations,32 which is absent for the approx-
imant.33 We thus expect that the quasicrystal is more stable
than the approximant due to its configurational entropy. On
the other hand, one might expect the approximant to be more
stable as it is assumed to have a lower energy and is considered
to pack more efficiently due to the absence of defects.22,23,30

Hence, we conclude that it is still unresolved whether or not
the quasicrystal is more stable than its crystalline approxi-
mant, and how this depends on the thermodynamic state of the
system.

A major setback in determining the stability of these quasi-
crystals arises from the fact that computing their free energies
is not straightforward. A reference state with known free en-
ergy from which thermodynamic integration can be performed
to a quasicrystal is unknown. This issue is further complicated
by the fact that there is no simple way to sample over the
distinct configurations of the quasicrystal and to account for
its configurational entropy.32 Recently, a method was proposed
to determine the free energy of a quasicrystal by simulating
the direct coexistence of a fluid and quasicrystalline phases
of patchy particles.33 Due to the lack of hysteresis in the fluid
to quasicrystal transformation of this system, the free energy
could be directly determined from the free energy of the fluid
phase.

In this work, we follow a different route to determine
the free energy of a two-dimensional random-tiling quasi-
crystal in a 2D system of hard disks interacting with a square-
shoulder potential. We determine the free energy of a defect-
free random-tiling quasicrystal and some of its approximants
using thermodynamic integration to a non-interacting Einstein
crystal.34 We find that the free energy of the random-tiling
quasicrystal is slightly lower than that of the crystalline ap-
proximants. For the random-tiling quasicrystal, we explicitly
account for the configurational entropy using an expression
from the literature.35 Here, we approximate the configurational
entropy by assuming that all possible realizations that are
equivalent in the random-tiling model are also equally probable
in our system. Finally, we also map out the phase diagram of the
system under study and find that the defect-free random-tiling
quasicrystal is stable with respect to the crystalline approxi-
mants that we considered, both with and without the additional
configurational entropy term.

II. MODEL

In this paper, we focus on quasicrystalline order in one-
component systems. We consider a 2D system of spherical
particles decorated with a soft deformable corona mimick-
ing the floppy corona of alkyl chains in the case of micellar
particles or the squishy hydrophilic shell of block copolymer
micelles. Analogous to previous work,17 we model this system
by 2D hard disks with diameter σ interacting with a repulsive
square-shoulder potential. Hence, the resulting pair potential
of this hard-core square shoulder (HCSS) system reads

VHCSS(r) =



∞, r ≤ σ

ϵ, σ < r < δσ

0, r ≥ δσ

, (1)

where r is the center-of-mass distance between two particles,
and δ and ϵ are the square shoulder width and height, respec-
tively. Despite the simplicity of the pair interaction, a whole
family of quasicrystals with 10-, 12-, 18-, and 24-fold bond
orientational order has been observed in a previous simulation
study depending on the shoulder width-to-core ratio and the
packing fraction.17 Here, we focus on a shoulder width δ = 1.4,
which gives rise to a dodecagonal quasicrystal at sufficiently
low temperatures and high enough densities.17 At these condi-
tions of shoulder width, temperatures, and densities, the system
prefers the formation of square environments with four nearest
neighbours to that of six coordinated hexagonal environments,
thereby lowering its potential energy.

III. SIMULATIONS AND RESULTS

We perform Monte Carlo (MC) simulations in the canon-
ical (NVT) and isothermal-isobaric (NPT) ensemble, where
we fix the number of particles N , the temperature T , and
the volume V or the pressure P, respectively. We employ
a rectangular box of area A and apply periodic boundary
conditions. We find that a random-tiling quasicrystal is formed
either by compressing the fluid phase at a constant temperature
or by cooling the hexagonal phase to a lower temperature at
a constant density. In Fig. 1(a), we show a typical configu-
ration of the quasicrystal for a system of N = 4900 particles
as obtained at δ = 1.4, ρ∗ = Nσ2/A = 0.98, and T∗ = kBT/ϵ
= 0.278, where kB is the Boltzmann’s constant. In order to
eliminate any effect of defects on the subsequent free-energy
calculations, we constructed a defect-free random square-
triangle tiling QC adapted from a non-Stampfli-type square-
triangle approximant36 which is shown in Fig. 1(b).

A significant fraction of local particle environments in
dodecagonal quasicrystals has a coordination number of five.
Depending on the local arrangement of squares and triangles
around the central particle, these environments can be cat-
egorised as H or σ phases in analogy to the Frank-Kasper
phases.37 Both these phases can be considered as crystalline
approximants to the dodecagonal quasicrystals. We term these
as first-order crystalline approximants and their structures and
corresponding diffraction patterns are shown in Figs. 1(c) and
1(d). It can be noted from the diffraction patterns that the H
phase shows more linear order than the required dodecagonal
symmetry, while the dodecagonal symmetry obtained in the
σ phase is somewhat distorted. This is attributed to the low
number of particles in the approximant unit cell, namely, 8 and
32 in the H and σ phases, respectively.

For further analysis, we construct second-order crystalline
approximants with a larger number of particles in their unit
cells. These consist of dodecagonal motifs of particles ar-
ranged either in a triangle (AC-tr)33,37 or a square-triangle (AC-
sqtr)36 tiling, constituting 52 and 56 particles, respectively, in
their unit cells. The latter was obtained by repeated vertex
substitution of the (32.4.3.4) Archimedean tiling consisting
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FIG. 1. Comparison of the quasicrystal and its crystalline approximants.
Random tiling dodecagonal quasicrystal (QC), (a) as obtained from simula-
tions, (b) defect-free configuration, (c) H phase, (d)σ phase and approximant
crystals consisting of dodecagons in (e) square-triangle (AC-sqtr), and (f)
triangle (AC-tr) tiling. (Top) Examples of a typical particle configuration
showing dodecagonal arrangement of particles, if present. The tiling of the
centers of dodecagons (marked red) is shown in ((e) and (f)). (Bottom) The
corresponding square-triangle tiling (left) and diffraction pattern (right).

of squares and triangles.38 These structures are shown in
Figs. 1(e) and 1(f). It is good to mention that the AC-tr consists
solely of σ environments, while the AC-sqtr consists of both
H and σ environments.

To study the relative stability of the above mentioned
phases, we first compare their equations of state, i.e., the pres-
sure P as a function of density ρ, measured by varying the
pressure in a step-wise manner in the NPT ensemble. We
perform compression runs starting from a disordered fluid
phase (FL), and expansion runs using a crystal phase with a
square (SQ) or a hexagonal (HDH) symmetry, a defect-free
random-tiling QC or either of its crystalline approximants (H ,
σ, AC-sqtr, or AC-tr). We plot the results for T∗ = 0.10 in
Fig. 2(a). Two essential observations can be made from these
plots, namely, (1) the first-order approximants are less dense
than the QC and the second-order approximants, which are all
equally dense for all pressures higher than the melting point,
and (2) the first-order approximants melt before the second-
order approximants and the quasicrystal. This hints towards
lower thermodynamic stability of the first-order approximants,
namely, the H and σ phases, in comparison to the others.

FIG. 2. Relative stability of the solid phases, namely, square (SQ), high-
density hexagonal (HDH), quasicrystal (QC), H phase, σ phase and the two
approximant crystals in square-triangle (AC sqtr) and triangle (AC tr) tiling
at reduced temperature T ∗= kBT /ϵ = 0.10 for a HCSS system with δ = 1.4.
(a) Equations of state, reduced pressure P∗= βPσ2 versus reduced density
ρ∗= Nσ2/A. Common tangent construction at the (b) square-quasicrystal
and (c) quasicrystal-high-density hexagonal phase coexistence, where we plot
the Helmholtz free energy per area βF/A as a function of reduced density
ρ∗. For convenience, we subtract a linear fit ρµc− pc, where µc and pc are
the bulk chemical potential and bulk pressure, respectively.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

84.84.134.248 On: Sun, 01 Nov 2015 15:47:46



164905-4 Pattabhiraman, Gantapara, and Dijkstra J. Chem. Phys. 143, 164905 (2015)

In order to identify the stable phases and the various phase
transitions, we calculate the Helmholtz free energy F of the
phases involved. We determine the free energy of the fluid
phase by constructing a reversible path from the HCSS system
to the hard-disk fluid at the same density,34,39 where we employ
the free-energy expression for the hard-disk fluid by Santos
et al.40 For the crystalline phases, the free energy is calculated
using the Frenkel-Ladd method by using the Einstein crystal
as the reference state.34,41 Subsequently, we determine the
Helmholtz free energy F(ρ) of both the fluid and crystal phases
by using thermodynamic integration of the equation of state
P(ρ).

Calculating the free energy of a quasicrystal is less trivial.
This is because integrating from the fluid or ideal gas would
involve crossing an intervening phase transition and on the
other hand, using the Einstein crystal as a reference state
in the thermodynamic integration would not account for the
configurational entropy of the system. Also, in our system of
particles, we do not observe a clear two-phase coexistence of
the quasicrystal with another phase, viz., FL, SQ, or HDH,
due to their structural similarities. In this work, we calculate
the free energy of the quasicrystal using the Frenkel-Ladd
method,34 and subsequently add an additional configurational
entropy contribution associated with the number of distinct
random-tiling configurations.

An estimate for the configurational entropy for the do-
decagonal quasicrystal has previously been obtained by numer-
ically solving the Bethe ansatz for the square-triangle random
tiling model.35,42,43 The maximum-entropy random tiling that
results in a dodecagonal quasicrystal is observed at equal
area fractions of squares and triangles,17,35 for which a value
of Sconfig/kBA = 0.129 34 was obtained by Widom.35 Indeed,
the quasicrystals as obtained from our simulations exhibit a
triangle area fraction of 0.50 ± 0.02 in good agreement with
the maximum-entropy random tiling. It is good to point out
that this value of configurational entropy considers a perfect
random tiling of squares and triangles, where all configura-
tions of the square and triangular tiles are equally probable.
However, these tilings are not necessarily equivalent in our
HCSS system, and the probability to find a certain tiling in our
system should depend on its potential energy and its vibrational
entropy. Therefore, the value used here is only an upper bound
for the configurational entropy of the HCSS system.

Further, we construct common tangents between various
sets of phases as a function of density to identify the most
stable phase with dodecagonal symmetry and the various solid-
solid phase transitions. To construct the common tangent,
we plot the Helmholtz free energy per unit area βF/A as a
function of reduced density ρ∗, wherein we subtract a linear
fit ρµc − pc with µc the bulk chemical potential of the coex-
isting phases and pc the bulk pressure. The common tangent
constructions between the quasicrystal with entropy correction
and the square and hexagonal phases at T∗ = 0.10 are shown
in Figs. 2(b) and 2(c), respectively. The free energy of the
defect-free QC with and without the configurational entropy
correction is denoted by the solid and dashed green lines,
respectively. From these common tangent constructions, we
can conclude that the quasicrystal is the most stable dodecago-
nal symmetric phase under these conditions. Surprisingly, we

find that the random-tiling quasicrystal is even stable without
the configurational entropy correction with respect to the
various crystalline approximants within the statistical accuracy
of our calculations. The lower free energy of the quasicrystal
compared to its approximants, even without the configurational
entropy correction, points at an (vibrational) entropic stabili-
sation of the quasicrystal. The vibrational entropy is related
to the number of configurations that particles can explore
while moving around their lattice positions. It is important to
stress that the vibrational entropy is fully captured by our free-
energy calculations, where the mean square displacements
of the particles around their lattice sites are integrated as a
function of the spring constant of the springs with which the
particles are tied to their respective lattice positions.34 We wish
to remark here that the role of vibrational entropy is often
not taken into account in the discussions regarding entropy
versus energy stabilisation of quasicrystals. However, its role
has been studied in the context of aperiodically modulated
superstructures44 and patchy particles.45

For all temperatures considered in this study (T∗ ≥ 0.05),
we find that the QC, even without the configurational en-
tropy correction, is thermodynamically more stable than its
approximants. Previous studies have reported a quasicrystal-
approximant transition for a random-tiling quasicrystal at
lower temperatures.32 On the other hand, the conjecture by
Dotera et al.17 suggests the formation of a stable random-
tiling dodecagonal quasicrystal at 0 K with a density ρ∗ ≈ 1.07
and ground state energy E/ϵN of 2.536. We find that the
closed packed density of the quasicrystal and the second-order
approximants is indeed ρ∗ = 1.07 with a potential energy U
= E/ϵN equal to 2.536 ± 0.002. Extrapolating to lower temper-
atures, we speculate that the quasicrystal remains more stable
than its approximants at finite temperatures. At zero tempera-
ture, the quasicrystal and the second-order approximants may
be equally probable, considering their equal potential energy
within our error bars.

The transformation from the square to the hexagonal phase
can be essentially described by an increase in the triangle-to-
square ratio upon increasing the density of the system. In other
words, we find that the triangle-to-square ratio increases with
density until it matches with the maximum entropy random til-
ing consisting of equal area fractions of squares and triangles.
We then find the formation of a dodecagonal quasicrystal with
a triangle-to-square ratio of 4/

√
3 ≃ 2.309. It is interesting

to note that the triangle-to-square ratio of the second-order
approximants is 2.3, whereas that of the first-order approxi-
mants is equal to 2.0. The first-order approximants with a lower
triangle-to-square ratio are thus formed at a density in between
that of the square phase and the random-tiling quasicrystal
phase as can also be seen in Fig. 2(a), and have a higher free
energy than the quasicrystal as shown in Fig. 2(b).

In addition, we map out the phase diagram for this HCSS
system with a shoulder width δ = 1.4 using the common
tangent construction to obtain the coexistence points. The
resulting phase diagram is given in Fig. 3 in the (reduced)
pressure-temperature and temperature-density planes. The sta-
ble phases identified in the system are the FL, SQ, low-density
hexagonal (LDH), high-density hexagonal (HDH) phase, and
the QC. We note that the quasicrystal is the thermodynamically

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

84.84.134.248 On: Sun, 01 Nov 2015 15:47:46



164905-5 Pattabhiraman, Gantapara, and Dijkstra J. Chem. Phys. 143, 164905 (2015)

FIG. 3. Phase diagram of a two-dimensional hard-core square-shoulder
(HCSS) system with a shoulder width δ = 1.4 in the (a) pressure-temperature
and (b) temperature-density planes. All quantities are represented in reduced
units as P∗= βPσ2, T ∗= kBT /ϵ, and ρ∗= Nσ2/A. The phases represented
are fluid (FL), square (SQ), low-density hexagonal (LDH), high-density
hexagonal (HDH) solids, and random-tiling quasicrystal (QC). The phase
boundaries of the QC without the entropy correction, that accounts for the
number of distinct configurations, are shown with dashed grey lines.

stable dodecagonal symmetric phase in the system and is stable
over a range of temperatures (0.10 ≤ T∗ < 0.45) even without
the configurational entropy term associated with the number of
distinct configurations. The phase boundaries of the QC calcu-
lated without the additional configurational entropy correction
are also shown with dashed grey lines. At lower temperatures
(T∗ < 0.20) and densities (0.45 < ρ∗ < 0.60), we observe a re-
entrant behavior of the fluid phase with a stable LDH phase
region in between. The LDH phase is a consequence of the

repulsive square shoulder, which stabilizes a hexagonal phase
with a lattice spacing of the order of the square shoulder width.
At higher temperatures, T∗ ≥ 0.45, the phase behaviour of the
system is similar to that of hard disks, with a fluid phase at
low densities and a hexagonal phase at higher densities and
a fluid-solid coexistence region in between. Given the system
sizes used in this study, the presence of the hexatic phase is not
considered.46,47

IV. CONCLUSION

In conclusion, we investigated the phase behaviour of
a model system of colloidal particles with a core-corona
architecture. The particles are modeled by a hard-core square-
shoulder pair potential with a shoulder width δ = 1.4. We
calculate the free energy of random-tiling quasicrystals by
explicitly accounting for its configurational entropy. For this
system, we find a stable quasicrystal region sandwiched be-
tween the high-density hexagonal phase and a square (fluid)
phase at sufficiently low (high) temperatures. We confirm that
the quasicrystal is stabilised over the crystalline approximants
by its vibrational entropy. In future work, it is interesting to
extend this study to different values of the shoulder width,
which enables us to stabilize quasicrystals with 10-, 18-, and
24-fold bond orientational order,17 different particle potentials
that may be more realistic, or to binary quasicrystals. Work
along these lines is in progress.
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