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In continuation of our work in Gantapara et al., [Phys. Rev. Lett. 111, 015501 (2013)], we inves-
tigate here the thermodynamic phase behavior of a family of truncated hard cubes, for which the
shape evolves smoothly from a cube via a cuboctahedron to an octahedron. We used Monte Carlo
simulations and free-energy calculations to establish the full phase diagram. This phase diagram
exhibits a remarkable richness in crystal and mesophase structures, depending sensitively on the
precise particle shape. In addition, we examined in detail the nature of the plastic crystal (rotator)
phases that appear for intermediate densities and levels of truncation. Our results allow us to probe the
relation between phase behavior and building-block shape and to further the understanding of rotator
phases. Furthermore, the phase diagram presented here should prove instrumental for guiding future
experimental studies on similarly shaped nanoparticles and the creation of new materials. © 2015 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4906753]

I. INTRODUCTION

Material design based on nanoparticle assemblies have
been at the focus of materials science over the past
decade. In particular, the self-assembly of polyhedral colloidal
nanoparticles into functional materials with targeted properties
has attracted huge interest. Recent advances in experimental
techniques led to the synthesis of a wide variety of polyhedron-
shaped particles, such as cubes,'™ truncated cubes,'”’
truncated octahedra,>® octahedra,® tetrahedra,’ superballs,10
and rhombic dodecahedra.''?> In addition to controlled
synthesis, the ability to perform self-assembly experiments
with these polyhedral particles™'%!3-13 has made significant
strides forward.

This motivated many physicists, mathematicians, and
computer scientists to investigate and try to classify the close-
packed structures exhibited by these particles. Initially, the
focus lay on the prediction of the maximum crystalline packing
for faceted particles, as these structures are likely to form
upon deposition and evaporation, and also have interesting
geometric properties.'®! Recent extensive investigations of
many particle shapes demonstrated the importance of shape
for the high-density (close-packed) structures. In particular, de
Graaf et al.?? investigated the closed packed structures of 142
convex polyhedra, as well as 17 nonconvex faceted shapes.
More recently, Chen et al. B considered over 55000 convex
shapes, using theoretical, numerical, and computational
methods.

Advances in computer power and performance have made
it possible to perform simulations of these systems with large
numbers of particles and opened up the way for a thorough
examination of the phase behavior of faceted colloids at finite
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pressures, i.e., at densities below close packing. Some of
the first examples of the importance of studying larger (non-
crystalline) assemblies appeared, when it was discovered
that there exists a tetrahedron packing into a quasicrystal
arrangement with close-packed density much higher than
that of spheres.?’>*2% Simultaneously, the phase diagrams
for hard superballs,”’?® a family of truncated tetrahedra,
and a family of truncated cubes®’ were established. The
importance of mesophase structures was further underpinned
by investigations of space filling polyhedra,’! truncated
cubes®? and bifrustums? at an interface, and a large number
of polyhedral particles.**

To date, only one experimental investigation of a family
of truncated particles has been undertaken. Using a polyol
synthesis technique, Henzie et al.’> reported the shape-
controlled synthesis of monodisperse silver (Ag) nanocrystals
including cubes, truncated cubes, cuboctahedra, truncated
octahedra, and octahedra. They used these polyhedral particles
to study the close-packed crystal structures via sedimentation
experiments and simulations. Henzie et al. created exotic
superlattices with potential applications in nanophotonics,
photocatalysis, and plasmonics. Their results tested several
conjectures on the densest packings of hard polyhedra.'®-2!-3>
In addition to the close-packed structure studies in the bulk,
they also investigated the influence of walls on the sedimented
structures.

However, Henzie et al. did not examine the finite-pressure
behavior of the system. At finite pressures, the structures
that form by self-assembly may differ substantially from
the packings achieved at high (sedimentation and solvent-
evaporation) pressures. For instance, simulations of superballs
and of truncated cubes exhibited plastic-crystal phases,?30-31
while cubes, cuboids, and truncated cubes exhibit vacancy-
rich simple cubic?®36-37 and tetrahedra exhibit quasicrystalline
mesophases.?’ In fact, for almost all truncated particle shapes
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studied thus far, the finite-pressure phases and those formed
under close-packed conditions differ substantially.>*

In this manuscript, we investigate the finite-pressure
behavior of particles similar to those considered by Henzie
et al. Here, we present a thorough investigation of the
phase behavior of a family of truncated hard cubes, which
interpolates smoothly between cubes and octahedra (the
mathematical dual of the cube) via cuboctahedra. We describe
in detail the different phases, as well as the nature of the phase
transitions between these phases. This work is an extension
of our previous investigation of these systems, see Ref. 30,
and makes several minor updates on our previous results. In
the present paper, we put additional emphasis on the analysis
of the plastic crystal or rotator phases and the computational
details.

We used Monte Carlo (MC) simulation studies and free-
energy calculations to establish the phase diagram for this
system. This diagram exhibits a remarkably rich diversity
in crystal structures that show a sensitive dependence on
the particle shape. Changes in phase behavior and crystal
structures occur even for small variations in the level of
truncation. This is an unexpected result, since the particle
shape varies smoothly from that of a cube to that of an
octahedron by truncation. We also observed that for specific
levels of truncation, the particles possess an equation of state
(EOS) that exhibits three distinct crystal phases as well as an
isotropic fluid phase.

In addition, we found that for close-to-cubic particles that
form a vacancy-rich simple cubic (SC) phase, the equilibrium
concentration of vacancies increases at a fixed packing fraction
¢ upon increasing the level of truncation, see Gantapara et al.>°
The vacancy concentrations for truncated cubes for small
truncations are in agreement with the vacancy concentration
of perfect cubes.’® However, our results differ from those
obtained by Monte Carlo simulations for parallel cuboids,
where the vacancy concentration remains constant, when the
shape is varied from a perfect cube to a sphere via rounded
cubes (so-called cuboids).’

Furthermore, we analyzed the orientation distribution
properties of particles in the plastic-crystal phases observed
in the truncated cubes phase diagram. The orientation
distribution function of plastic crystals of hard anisotropic
particles is shown to be highly anisotropic and strongly peaked
for specific orientations. Based on our results, we present
a grouping of particles with different asphericity A values
according to their cubatic order S4 near (plastic-)crystal-fluid
transition regions. We find that particles with asphericity
A < 0.1 exhibit plastic-crystal phases with cubatic order Sy as
low as S;~ 0.1, comparable to the cubatic order values in the
isotropic fluids. Our results show that the cubatic order in a
system is inversely proportional to the number of preferential
orientations of the truncated cubes in the bulk plastic crystal
phase.

The remainder of the paper is organized as follows. We
first present our simulation model in Sec. II. We discuss
the simulation methods as well as the order parameters and
correlation functions used in our analysis of the phase behavior
in Sec. III. The results are presented in Sec. I'V. In particular,
the close-packed structures are presented in Secs. IV A and
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IV B, followed by a discussion of the full phase diagram in
Sec.IVE.In Sec. IV F, we analyze the orientation distributions
of particles in the various plastic-crystal phases observed in
the phase diagram. Finally, we discuss the results and draw
conclusions in Sec. V.

Il. SIMULATION MODEL

The particles that we investigated are completely specified
by the level of truncation of a perfect cube, which we denote by
s €[0,1], and the volume of the particle. We define our family
of truncated cubes using a simple mathematical expression
for the location of the vertices. The line segments that connect
these vertices can only be assigned in one (unique) way to
obtain a truncated cube. The vertices of a truncated cube may
be written as a function of the shape parameter s € [0, 1]:

(=1/3) T
4 1 1 1
(l—§S3) PD(i(E—S),iE,i'E)
1
RS |:0,§:|

4 (=1/3)
(5—443) Pp(£(1-1),+4,0)"
1
A=1-s€ |:0,§:|

where $p is a permutation operation that generates all
permutations of each element in the sets of 8 and 4 vertices
spanned by the =-operations, respectively. The duplicate
vertices that are a consequence of this definition are removed
after letting Pp act. The “T” indicates transposition. The
prefactors ensure that the truncated cubes are normalized
to unit volume. Several Platonic and Archimedean solids
are members of this family: s=0 a cube, s=(2-V2)/2
~(0.292 893 a truncated cube, s = 1/2 a cuboctahedron, s =2/3
a truncated octahedron, and s =1 an octahedron; these are
depicted in Fig. 1(a).

{v(s)} = . (D

lll. SIMULATION METHODS
A. Order parameters and correlations functions

In this subsection, we describe different order parameters
that we used to quantify the positional and orientation order of
particles in our isothermal-isobaric Monte Carlo simulations
(also called NPT simulations; fixed pressure P, temperature
T, and number of particles N) of the truncated cubes. These
order parameters play a crucial role in identifying different
phases exhibited by the truncated cubes. Truncated cubes have
cubatic symmetry. To quantify the orientation order for these
particles, the cubatic order parameter Sy is appropriate as was
shown in earlier simulation studies on cubatic particles.?®3
The cubatic order parameter is defined as

1
S4=max mZ(35|u,~j~n|4—3O|u,-j-n|2+3) . @

L,J

where N is the number of particles as above, u;; is the unit
vector along the main axis (j € {x,y,z}) of particle i, and n
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FIG. 1. (a) Five examples of truncated cubes (Platonic and Archimedean solids only) for levels of truncation s corresponding to the orange lines: s = 0 a cube,
s=02- \/5) /2 =~ 0.293 a truncated cube, s = 1/2 a cuboctahedron, s =2/3 a truncated octahedron, and s = 1 an octahedron. (b) The packing fraction ¢ for the
close-packed structures as a function of s. The values for the five solids shown in (a) are given by red dots. (c) The length v; (i = 1, 2, and 3) of the three lattice
vectors, indicated in red, green, and blue, that span the unit cell of the densest crystal structure as a function of s. Not every line is clearly visible, since there
is some overlap. In the region where the black and gray dots are used (s € (0.37, 0.40] and s € (0.40, 0.42]), there appears to be a degeneracy in the crystal
structures, as explained in the text. (d) The cosine of the angles 6;; (i < j = 1, 2, and 3) between the three vectors that span the unit cell as a function of s. Gray
vertical lines partition the s-domain into 14 pieces with a “different” crystal structure, based on the discontinuities shown in the v; and cos ;j results. These
regions are numbered with roman numerals in (b); only those regions large enough to accommodate a label are numbered, but the numbering can be continued

from left to right in the unnumbered regions.

is the unit vector for which S is maximized. Sy values range
from O for a completely disordered system to 1 for perfect
crystals.

To investigate the structural correlations in the particle
orientations, we use an orientation correlation function g4(r)
defined as

ga(r) = 13—4 (35[ua,(0).up;(r)]* = 30[ug(0).up (r) P +3),  (3)

where (-) denotes the ensemble average over all the particle
axes j €{x,y,z} and particle pairs a and b. For more
details about the definitions and computation of these order
parameters, we refer the reader to Duncan et al.’®

To determine the translational order in the system, we use
the radial distribution function g(r) defined as

| YN
g(}"):?<226(r_ri)6(r’—rj)>, 4)

i=1 j#i

with r = |r—r’|, §(x) is the usual Kronecker ¢-function, r; and
r; are the positions of the ith and jth particle, respectively,
and p = N/V is the number density of the system. The radial
distribution function together with the order parameters are
useful to distinguish plastic crystal from crystal and isotropic
fluid phases.

B. Free-energy calculations and confining potentials

We obtained the dimensionless free energy per particle
f=BF/N as a function of packing fraction ¢ = Nv,/V,
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with v, the particle volume (¢ = p, since v, is the unit of
volume in this manuscript), for the entire density range by
thermodynamic integration® over the EOS, from reference
density pq to the density of interest p:

£(0)= f(po)+ / F p(p ) g 5)

Here, f(po) = Bu(po)— BP(po)/ po is the reduced Helmholtz
free energy per particle at density po, with 8 =1/kgT, with
T the temperature and kg the Boltzmann constant, u(pg) the
chemical potential, and P(po) the pressure. The Helmholtz
free energy at reference density po was obtained as follows.

1. In the fluid phase, we used Widom’s particle insertion
method*® to obtain the free energy. This method was
employed at relatively low densities to obtain small error
bars. We performed the calculations at ¢ ~ 0.2. We note that
there were no finite-size effects within the computational
accuracy for the particle insertion method.

2. In the crystal phase, we used the Einstein integration
method.**!*? The reduced Helmholtz free energy per
particle f = BF/N of a crystal is given by

f(p) = fEinst()\max)
Fma 0 :8 UEmstO\)
N / dk< > (6)

where fging denotes the reduced free energy per particle of
the ideal Einstein crystal, which is given by

3NED [
N B\ o
A3A 1 v
+1 2 —1 (—p )
Og( 0, ) N B\t

——log 1 / dfsin(@)d¢dy
8x2

fEinstO\'max) =

X exp

)Lmax s 2 L2
_k,TT(Sln Wiq+sin 1//,,,)]}_ 7

Uginst(A) denotes the harmonic potential that fixes the
particles to the respective Einstein lattice positions and
orientations

N
BUsins() = 1) [(r;=r;0° v}
i=1

+(sin® 1 +sin® )], (8)

with (r; —r;0) the displacement of particle i from its
position in the ideal Einstein crystal. The angles v,
and ¢ ;; are the minimum angles between vectors, a and
b, describing the orientations of the particles in the ideal
Einstein crystal and the equivalent vectors that describe the
orientation of the particle in the actual crystal, respectively.
The translational and rotational thermal wavelengths A,
and A, in Eq. (8) were set to unity in our calculations. When
A is large, the translational and orientation displacements
of the particles are frozen, while at lower A’s the particles
freely displace and rotate, exploring the underlying
degeneracy coming from the symmetry of the particle
itself.
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We typically used system sizes of 700 to 1500 particles
to compute the free energies for the (plastic) crystal phases.
We found that finite-size scaling (FSS) was only necessary
in the octahedron regime, i.e., s ~ 1, to establish the phase
diagram. For such high levels of truncation, the free-energy
differences between the various phases at coexistence
proved to be very small, see Ni et al.?® For the other
phase transitions, the free energies obtained without FSS
proved to be sufficient to accurately determine the phase
boundaries.

3. For the free-energy calculations of a plastic-crystal (rotator)
phase, we followed the approach of Fortini et al.,** who
introduced a method, which allows for a continuous
transition from a non-interacting plastic-crystal to an
interacting plastic-crystal phase of hard truncated cubes.
We used a tunable soft-to-hard interaction potential
between the particles

o y[T=AQ+£G )] i 4G, <0
w(i.j) =

0 otherwise

C))

Here, £(i,j) is the overlap potential defined in Donev
et al,** which is negative when two particles i and j
overlap and positive otherwise. The integration parameter
v runs from O (noninteracting) to Ymax, for which the
system interacts fully. In our calculations, we set A=0.9
following Marechal et al.* The dimensionless Helmholtz
free energy per particle in the plastic crystal is given by

f(P) = fEinst()\max)
1 fhow 0 BUging(M)
N / d}\‘< (9)\, >7max

max (9 ,
_/7 < Zl¢,ﬁ¢(11)> ' 10)

Amax

IV. RESULTS
A. Determining the close-packed structures

The simulations by which the close-packed structures
were derived are based on the floppy-box Monte Carlo
(FBMC) method*** in combination with the separating-axis-
based overlap algorithm.*® We obtained the densest crystal
structure and the corresponding packing fraction ¢ as a
function of the level of particle truncation s by considering
1000 equidistant points in s € [0,1]. For each point, we
prepared systems of truncated particles in a dilute phase,
typically with packing fraction ¢ ~0.001. We increased the
reduced pressure in 100 steps according to a geometric series
from p=1 to p~ 10> over 4x10° MC cycles in order to
compress these systems to a high-density crystalline state.
This pressure increase was typically applied a total of 1000
times for N =1 particles in the unit cell and for each shape.
We restricted ourselves to N =1 particles in the unit cell
because the truncated cubes are all centrosymmetric. We only
considered N =2, ..., 6 for 14 conveniently chosen values of s,
located in the center of the regions indicated in Fig. 1, as
will be justified shortly. For these N > 1 systems, we ob-
tained roughly the same value of ¢ and also the same
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crystal structures. The densest crystal-structure candidate was
selected and allowed to compress further for another 10° MC
cycles at p=10° to achieve 5 decimals of precision in ¢. In
practice, these final cycles of compression did not improve
the packing fraction substantially. Figure 1(b) shows ¢ as
a function of s. Note that the packing fraction “curve” is
continuous but has discontinuities in its first derivative. To
double check our result, we considered another set of FBMC
runs. For these, we took several of the 1000 densely packed
crystals as our initial configuration and varied s around the
selected points at high pressure to study the evolution of the
crystal structure. Steps of 107> in s were employed and for
each step the system is expanded to remove any overlaps,
before re-compressing it at p~ 10°. The packing fractions
we obtained showed good correspondence with our original
result, but this correspondence failed for a transition between
two crystal structures. The consecutive method would often
become stuck in the lower density structure that corresponded
to the morphology of the crystal phase it came from.

The unit cell for N =1 truncated cubes can be specified
by three vectors v; (i = 1, 2, 3) that are implicitly s dependent.
The structure spanned by these three vectors can also be
described by the length v; = |v;| of the vectors and the angles
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0;j i<j=1,2,3) between them. Note that we ignored the
orientation of the particle with respect to the unit cell here. In
order to give an unbiased comparison of the different vectors,
we used lattice reduction® to ensure that for each unit cell the
surface-to-volume ratio is minimal. These results are shown in
Figs. 1(c) and 1(d), respectively. By analyzing the v; and 6, as
well as the location of the kinks in the ¢-curve, we were able
to partition the s € [0,1] domain into 14 distinct regions. This
is the reason behind our choice of 14 verification points for
N > 1 simulations. Below, we discuss the crystal structures in
the different regions and the way these regions can be grouped.

B. Properties of the close-packed structures

Figure 2 shows the crystal structure in the center of
each of the 14 regions that we found in Fig. 1. There is a
strong difference between the domains s < 1/2 and s > 1/2.
Geometrically, the cuboctahedron (s =1/2) is the transition
point between shapes which have a more cube-like nature
and shapes which have a more octahedron-like nature. It is
therefore not surprising that the crystal structures in the two
regions (s < 1/2 and s > 1/2) appear to have a deformed simple
cubic symmetry and a deformed body-centered tetragonal
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FIG. 2. Visual representations of the crystal structures obtained for the first 7 regions (left) and the last 7 regions (right) of Fig. 1. From left to right each entry
(row) contains a bird’s eye view, the front view, the side view, and the top view of these structures. The roman numeral in the top-left corner gives the relevant
domain in Fig. 1. The truncation parameter s for these structures is given in the bottom-right corner of the first panel.
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symmetry, respectively. We illustrate this in Fig. 2, where we
show the most orthorhombic unit cell: N =1 for s < 1/2 and
N =2 for s > 1/2. A remarkable result is the stability of the
Minkowski crystal,® which is the densest-packed Bravais-
lattice structure for octahedra,!® under variations in s. For
all s €[0.71, 1], we find a Minkowski structure in the dense-
packed limit, which can be inferred from the horizontal cos#;;
lines in Fig. 1(d). The scaled length of the vectors v;¢~!/3 is
also constant on this domain.

Let us now examine the crystal structures in the 14
regions identified by the discontinuities in the vectors of the
unit cell. In literature, it has become commonplace to assign
atomic equivalents to structures observed in simulations or
experiments. For example, this is done for binary mixtures of
spheres,%'50 a family of truncated tetrahedra,?® several faceted
particles,>*3* and systems of nanoparticles.’'>> We attempted
to follow suit by determining the symmetry group of the
structures in Fig. 2 using FindSym>® and by subsequently
assigning an atomic equivalent.”* However, we found that
a description in terms of atomic equivalents inadequately
captures the richness in crystal structure, since particle
orientation is not taken into account. Moreover, for many
of our structures, we are unable to determine a nontrivial
space group using FindSym. We therefore resorted to visual
analysis and we used this to group the 14 regions in Fig. 1
based on similarities between the respective structures.

In the supplement to Gantapara et al.,*” this grouping
was originally discussed and it was subsequently commented
upon in the work of Chen et al.>® In the latter, the fact that
we identified 14 distinct regions in the packing fraction was
mistakenly interpreted to mean that these regions all had
different crystal structures. Here, we discuss the comparison
and show how our original grouping of regions for the
different crystal structures corresponds and differs from the
one provided by Chen et al.

1. I:Inthis region (s € [0.00, 0.37]), we obtained a continuous
and uniform distortion of the simple cubic structure for
cubes. For s =0, the particles form a SC crystal, which
has the same morphology as aPo (a-Polonium).>* The
uniformly distorted simple cubic (UDSC) structure we
found for s > 0 is similar to that of SPo.>* We verified this
distorted quality for values as low as s = 10™. This region
corresponds to p7 in Chen et al.

2. II and III: For these two regions (s € (0.37,0.40] and
5 €(0.40,0.42]), we found that there is a degeneracy in the
crystal-structure candidates that achieve the densest-known
packing. Although certain structures appear favored over
others, there is no clear relation between the structure and
s. However, the packing fraction ¢ of the close-packed
crystals is continuous in these regions.

The observed degeneracy can be explained by the
formation of sheets consisting of diagonally interlocked
columns, which can slide up or down (in the direction
of the columns) with respect to each other, as shown in
Fig. 3 for s =0.387. The truncated cubes are arranged
in a distorted simple cubic (DSC) crystal lattice, where
the particles form columns that are interlocked in a
diagonal way. These structures are referred to as mono-
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(e)

FIG. 3. A visual representation of the degenerate crystal structure; we con-
sider the value s = 0.387 in this figure. Pairs of truncated cubes, for which the
octahedral faces are aligned (columns), are color-coded. Different viewpoints
are displayed for a piece of crystal consisting of 8 particles: (a) bird’s eye
view, (b) side view, (c), front view, and (d) top view of this structure. In
(c), we use a magenta circle to indicate that the blue column is interlocking
with the green column in a diagonal way. (e) A diagonal view of the crystal
structure, where the red columns have been removed. Magenta circles show
the interlocking. (f) The two red columns are not interlocking with the blue
and green column, allowing for freedom of motion in the direction of the
magenta arrows. The green column is made translucent to better illustrate the
properties of this crystal structure.

interlocking distorted simple cubic (MI-DSC) crystals.
This diagonal interlocking together with the close-packing
condition prevents lateral motion in the plane normal to
the column’s direction. However, since the system is not
fully interlocked, motion in the direction of the columns is
possible for the diagonally interlocked sheets.

The observed degeneracy is different from the
degeneracy that occurs in structures consisting of cubes or
hexagonal prisms for instance, since such systems allow
lateral freedom of movement of columns or (perpendicular
to the columns) of sheets of aligned particles. That is, there
is possible freedom of motion in three directions, albeit not
necessarily at the same time. The interlocking nature of the
MI-DSC phase only allows for movement in one direction
only, namely parallel to the columns, which may lead to
strong rheological differences between this structure and,
e.g., the SC structure for cubes. This grouping corresponds
to region p; in Chen et al.

3. IV: For this region (s € (0.42,0.49]), we find a DSC phase
that is interlocking in two directions: a bi-interlocking
DSC (BI-DSC) phase. For each instance of interlocking,
two degrees of translational motion are frozen out. This
implies that the BI-DSC structure is completely fixed,
which is confirmed by the unicity of the v; and 6;; results
in Figs. 1(c) and 1(d). This region corresponds to ps in
Chen et al.

4. V: In this region (s € (0.49,0.50]), we observed a tri-
interlocking DSC (TI-DSC) phase. This region corresponds
to pg in Chen et al.

5. VI-VII: Here (s €(0.50,0.51], (0.51,0.52], and (0.52,
0.54]), we found structures that are best described by a
distorted body-centered tetragonal (DBCT) structure. The
truncated cubes in these crystals are not aligned with the
axes of the unit cell. It is unclear to what extent structures
in regions VI, VII, and VIII are the same. The smooth
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flow of the ¢-curve s (Fig. 1(b)), as well as the appearance
of these crystals, implies continuity, but the jumps in the
values of v; and 6;; [Figs. 1(c) and 1(d)] suggest otherwise.
This grouping corresponds to region p4 in Chen ef al. in
which the subregions are considered to be the same.

6. IX-XII: These structures (s € (0.54,0.56], (0.56,0.59],
(0.59,0.63], and (0.63,0.67]) have a body-centered
tetragonal (BCT) morphology, for which the particles are
aligned with the lattice vectors of the unit cell. Originally,
we had assigned region XII to a separate structure.
Chen et al. correctly pointed out that regions IX—XII
belong to the same crystal structure, namely, pg in their
notation. It should be further pointed out that in this region,
the BCT structure smoothly deforms into a body-centered
cubic (BCC) structure for s =2/3, by increasing s.

7. XIII: This DBCT structure (s € (0.67,0.71]) is different
from the DBCT structures in regions VI-VIII, since the
particles appear to be aligned with the lattice vectors of
the unit cell. Moreover, crystals in this region are unusual,
since there are large “voids” in the structure. That is, for
all other structures, we found that the largest facets of
a particle are always in contact with a similar facet of
another particle. This is not the case here because there is
a substantial gap between some of the hexagonal facets.
Chen et al. assign our region XIII to their p;.

8. XIV: The Minkowski crystal of region XIV (s € (0.71,
1.00]) is also noteworthy. It is the only structure which
does not undergo any reorganization upon varying the
level of truncation. It is worthwhile to study the origin
of this apparent stability, which sharply contrasts with the
immediate distortion found around s =0. However, this
goes beyond the scope of the current investigation. This
region corresponds to region p3 in Chen et al.

In conclusion, our visual-inspection-based grouping of
the 14 regions of Fig. 1 leads to 8 distinct crystal structures
being identified. This grouping is the same as the one specified
in Chen et al.,” after making one correction to our previous
finding.>°

C. Equations of state and mesophase structures

We used the close-packed crystal structures obtained
from the FBMC calculations as initial configurations for
variable-box-shape isothermal-isobaric (NPT) Monte Carlo
simulations, to study the phase behavior at intermediate
pressures. Initial configurations of 300-600 particles were
prepared and melted to determine the EOSs for the various
phases. Typical equilibration times were around 1.2x 10°
Monte Carlo sweeps (MCS) and the production times around
2% 10° MCS. One MCS is defined as N Monte Carlo trial
moves (translation, rotation, volume change, or deformation
of the box, respectively), where N is the number of particles
in the system. We sampled the lattice vectors, as well as
the average positions and orientations of the particles as a
function of packing fraction and for fixed truncation parameter
s. The sampling was done on an interval of 100 MCS to
avoid correlated configurations. Using these results, we set
up regular NPT simulations (possibly with a triclinic box
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shape) to more accurately sample the EOSs for all phases
with larger system sizes of 1000-2000 particles, including the
liquid phase.

In Fig. 4, we show the EOS obtained from our FBMC
simulations as a function of the packing fraction. We show the
EOSs only for selected shapes. The liquid EOS branches were
obtained by compressing dilute systems (¢ ~ 0.1) while the
crystalline branches of the EOS were obtained by melting the
close-packed structures. We grouped the EOSs on the basis of
their phase behavior. EOSs for truncated cubes with truncation
s <0.30 are shown in Fig. 4(a). These systems exhibit an
isotropic liquid phase and a simple cubic phase separated by
a first-order phase transition. During our NPT compression
runs, we observed that these systems crystallize easily with
relatively little hysteresis compared to systems with s > 0.7.
In Fig. 4(b), we show EOSs for s =0.35 and 0.40. These two
shapes, surprisingly, exhibit one isotropic phase and three
crystalline phases. The rest of the EOSs in Figs. 4(c) and 4(d)
show three phases: liquid, plastic crystal, and crystalline phase.
More details about the phase behavior and individual (plastic-)
crystalline phases of these systems will be given in Sec. IV
E. These EOSs were used to calculate the Helmholtz free
energies at different packing fractions using thermodynamic
integration as explained in Sec. III B.

D. Mesophase lattice vectors

Before we turn our attention to the phase diagram, we
explain how the NPT data were used to compute free energies
and to determine the crystal structure of the mesophases.
To compute these quantities, we determined the inherent
ideal lattice at each pressure or packing fraction. This was
accomplished by averaging the box vectors and the angles
between them during the NPT simulations at each given
pressure. Using these averaged quantities, we reconstructed
an ideal lattice. Visual inspection of the ideal lattice allowed
us to determine the crystal structure. We also used the ideal
lattice in the free-energy calculations as the reference Einstein
crystal.

To illustrate the averaging procedure, we show the ratio of
the lattice lengths v;/v; and the lattice angles 6,; as a function
of packing fraction ¢ for s =0.750 in Fig. 5. The dots in the
plots represent the average values from the NPT simulations
at each pressure, while the thick lines represent lattice vectors
and their angles from the close-packed structure. For s = 0.750,
the close-packed structure is the Minkowski lattice. For the
Minkowski lattice, v;/v; = 1 and 6;; % 93.1847°. A BCC lattice
is defined by v;/v; =1 and 6;; = 90°. From Fig. 5, we can see
that the lattice vectors and the angles show a sharp transition
from the close-packed Minkowski lattice to the BCC lattice
around ¢ ~ 0.67. In a similar fashion, we also average out the
orientations and positions of individual particles in our NPT
simulations to construct the ideal lattice.

E. Phase diagram

As explained in Secs. IV A-IV D, using the FBMC
results in combination with regular isothermal-isobaric (NPT)
simulations and free-energy calculations, we were able to
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FIG. 4. The EOSs for a selection of truncation values s. The reduced pressures P /(kgT p) is plotted as a function of packing fraction ¢, where P is the pressure
of the bulk system, p is the number density of the system, and kg7 is the thermal energy. The EOSs are grouped into four sets based on their phase behavior.

establish the full phase diagram for our hard truncated-cubes
system. Figure 6 shows the phase diagram for the family of
truncated cubes in the packing fraction ¢ vs. the level of
truncation s representation.

1. The Cubic Part

For s < 1/2 the particles are essentially “cubic” in shape
and we found high-density simple-cubic-like phases. The
phase diagram for truncated cubes with shape parameter
s €[0.00,0.35] displays three stable bulk phases. At very
high pressures, we observed a DSC crystal phase, which is
Cl-like in nature, see Torquato et al?’ for the definition
of the CI1 structure. This phase melted either via a weak

@ 42

11t -

Vi1V,

0.9 r R

0.5 0.6

0

0.7 0.8

first-order or via a second-order phase transition into a SC
crystal phase. At even lower pressures, the SC crystal coexists
with the fluid phase, i.e., there is a first-order phase transition
between SC and fluid. The effect of vacancies on the SC-fluid
coexistence densities is not taken into account as the shift is
minute. We discuss the vacancy-rich SC phase in detail in
Gantapara et al.>

For s €(0.35,0.422], the phase diagram exhibits four
stable phases, which are separated by three two-phase
coexistence regions. At low pressures, we observed a liquid
phase, which transformed into a plastic crystal phase with a
hexagonal close-packed crystal structure (the PHCP phase)
upon increasing the pressure. By further increasing the
pressure, the system underwent a first-order transition to a

(b)

94

8; (°)

88 r

86

0.5 0.6

0

0.7 0.8

FIG. 5. (a) The ratio of the averaged lattice vectors v; and v;. (b) The angles 6;; between these vectors. Both are shown as a function of the averaged packing
fraction ¢, which was obtained from our NPT simulations for s =0.750. The indices i, j run over all the x, y, and z components of the box as described in
Sec. IV A. The 6;; values are given in degrees. The black dashed lines correspond to values extracted from the close-packed Minkowski crystal. The black solid

line in (b) corresponds to the value of 6;; for a BCC lattice.
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FIG. 6. (a) Truncated cubes for five different values of the truncation parameter s. Truncated corners are shown in red. (b) Phase diagram for the family
of truncated hard cubes in the packing fraction ¢ versus shape parameter s representation. In the dark-gray area, ¢ exceeds the maximum packing fraction.
The light-gray areas indicate the two-phase coexistence regions. The solid square symbols denote the bulk coexistence densities as obtained from free-energy
calculations, while the open circles indicate those derived from the EOSs. Coexistence lines that follow from free-energy calculations are represented by solid
lines, and those that connect EOS derived points are given by dashed lines. The various labels stand for: distorted simple cubic (DSC), (distorted) body-centered
tetragonal ((D)BCT), plastic BCT (PBCT), (plastic) body-centered cubic ((P)BCC), and plastic hexagonal close packed (PHCP). The prefixes MI-, BI-, TI-
stand for mono-, bi-, and tri-interlocking, and the numbers that follow the DBCT label signify that these DBCT phases are distinct. The two DSC phases have
different morphologies, one is C0-like, the other is C1-like. Finally, the two white arrows in the forbidden region connect the label TI-DSC to the small region

between the green and purple dashed line and the label BCC with the turquoise line, respectively.

deformed simple cubic crystal (DSC) phase, which has a
CO0-like morphology, also see Torquato et al.”’ Finally, the
system self-assembled at sufficiently high pressure into the
respective densest-packed structures, i.e., for s € (0.35,0.374]
the system self-assembled into a C1-like structure (DSC) and
for s €(0.374,0.422] a mono-interlocking deformed simple
cubic (MI-DSC) phase is formed, as discussed in the close-
packed structures.

We found a triple point (SC/CO-PHCP-liquid) at s
~0.374. For s €(0.422,0.5], we observed higher orders of
the interlocking of the DSC crystal phase at sufficiently high
pressures: a bi-interlocking DSC (BI-DSC) and a TI-DSC
crystal, respectively. These phases melted into the PHCP
phase and subsequently into the isotropic liquid phase upon
lowering the pressure, again via first-order phase transitions
in both instances.

For s €[0.35,0.5], we did not perform free-energy calcu-
lations because there are significant fluctuations in the mean
position of the particles and the averaged box vectors even for
systems as large as N = 1000, which interfered with obtaining
a proper Einstein crystal as reference system for the thermo-
dynamic integration method,*"*> as described in Sec. IIL.

2. The octahedral part

For s > 1/2, the shape is “octahedron-like,” and we found
body-centered-tetragonal-like (BCT-like) structures at close
packing. For s € [0.5,0.54], the close-packed distorted BCT
(DBCT; labeled DBCTO, since there are multiple DBCT
regions) phase melted into a PBCT phase upon lowering the
pressure via a first-order phase transition. At lower pressures,
we found two-phase coexistence between the PBCT and the
fluid phase. In the region s € (0.54,0.666], we obtained a
regular BCT phase at high pressures, which underwent a first-
order phase transition into the PBCT phase for intermediate
pressures. Remarkably, for s =2/3 the tetragonal nature of
the lattice is lost and the system exhibits a purely BCC
crystal structure, which exists only for this exact value of the
truncation parameter.

For s € (0.666,0.712], we found another DBCT crystal
structure (DBCT1 in Fig. 6). All crystal structures in the
region s € (0.636,0.712] melt directly into a liquid phase via
a first-order phase transition upon decreasing the pressure.
That is, the coexistence region for the BCT-PBCT transition
does not extend up to s =2/3.
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In the region s € (0.712,0.95], we found a Minkowski
lattice® at high pressures. At intermediate pressures, this
system melted into a stable plastic BCC (PBCC) phase before
melting into fluid. However, for s € (0.95,1.0] we found that
the PBCC phase became metastable with respect to the solid-
liquid phase transition (also see Ni et al?®) such that at
s =0.95 a triple point (isotropic liquid—-PBCC—Minkowski
crystal) appeared in the phase diagram. The straight lines
separating the phase boundaries for s € [0.374,0.712] at high
packing fractions are a continuation of the subdivision that
followed from the FBMC simulations. Several simulations
close to the boundaries (on either side) are performed, to
prove that within the numerical accuracy there is no deviation
from the vertical phase boundaries shown in Fig. 6.

FIG. 7. The value of the cubatic or-
der parameter S4 as a function of the
location in the phase diagram, where
s is the truncation parameter and ¢ is
the packing fraction. The color function
gives the value of S4 as indicated by
the legend next to the figure. The white
regions in the plot denote the coexis-
tence regions. The white dashed lines
indicate different phase boundaries, also
see Fig. 6.

3. Mesophases

Now that we have described the position of the meso-
phases in the phase diagram in detail as well as the phase
transitions, we will turn our attention to the order in these
mesophases. We computed the cubatic order parameter Sy
defined in Eq. (2) as a function of packing fraction ¢ and
shape s. To accomplish this, we first calculated Su(s, ¢)
for selected values of s as a function of the pressure and
in turn used these data to interpolate and determine the
cubatic order Sy(s, ¢) in the entire range of s € [0.05,0.95]
and ¢ €[0.4,0.8]. We show S4(s,¢) projected onto the
phase diagram in Fig. 7. The use of colors is as follows:
blue for S4(s,¢) ~ 0, green for Sy(s,¢)~ 0.4, and red for

FIG. 8. Snapshots of the plastic-crystal
phases from our NPT simulations. The
plastic crystal for a truncated cube with
s =0.572 at packing fractions close to
(a) $=0.545 and (b) ¢ =0.675 with
N =216 particles. Typical configura-
tions for s =0.666, the mathematical
truncated octahedron, for packing frac-
tions (c) ¢ =0.55 and (d) ¢ =0.744
with N =1024 particles. The coloring
used here indicates the level of align-
ment of these particles with respect to
the orientation of a reference particle in
an ideal crystal. The particles which de-
viate maximally from the orientation of
a particle in the reference ideal crystal
are indicated in green and the particles
with minimum deviation in blue.
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S4(s, ¢) > 0.9 and above; intermediate values are given by a
smooth interpolation of these points. The white regions in
Fig. 7 represent the coexistence regions and the black squares
are the exact coexistence densities calculated from the free
energies. From this plot, we can infer how the order develops
from the freezing densities all the way up to the close-packed
densities.

Figure 7 shows that the crystal structures of truncated
cubes with shape parameter s < (0.35 develop global orien-
tation order at relatively low packing fractions compared
to the ones in the s> 0.35 region. For truncated cubes
s €[0.35,0.65] the cubatic order parameter Si(s,¢) of the
plastic crystal phases are similar to those of the isotropic fluid
phase. Near s = 0.58, the cubatic order Sy is less than 0.1,
even for packing fractions as high as ¢ ~ 0.69. To give a better
impression of the order in the (plastic) crystal phases, we
show snapshots at packing fractions ¢ =0.545 and ¢ =0.675,
corresponding to a plastic crystal phase both with low cubatic
order for s =0.572 and ¢ = 0.55 and ¢ = 0.744 corresponding
to BCC phase for s =0.666 in Fig. 8.

It should be pointed out that in some of the regions of
Fig. 7, around s ~ 0.666 and close to coexistence, the cubatic
order values are as low as in a plastic-crystal phase. Our
results agree with the presence of low cubatic order values
for s =0.666 as observed by Agarwal and Escobedo®' and
Thapar and Escobedo.>® However, we do not consider these
phases “plastic,” since there is no first-order phase transition
between the dense crystal and the mesophase. We show
typical configurations of a simple cubic crystal phase at s
=0.25, a plastic HCP at s =0.411, a plastic BCT at s =0.607,
and a plastic BCC phase at s =0.900, all slightly above fluid-
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FIG. 9. Several snapshots of our
isothermal-isobaric (NPT) simulations
showing the various crystal structures
that form in our family of truncated
cubes. (a) Equilibrium vacancy-rich
simple cubic crystal for a truncation of
s =0.25 at packing fraction ¢ =0.56.
The simulation was performed for
N =3235 particles. In this system,
the vacancy concentration was found
to be a=0.032. (b) Plastic hexa-
gonal-close-packed (PHCP) phase for
s=0.411 and ¢ =0.6 in a box con-
taining N =216 particles. (c) PBCT
phase for s =0.607 and ¢ =0.58 in a
box containing N =512 particles. (c)
PBCC phase for s =0.900 and ¢ =0.52
in a box containing N =250 particles.
The coloring used here is same as the
one explained in Fig. 8.

solid coexistence are shown in Fig. 9 to give (together with
Fig. 8) a complete impression of the mesophases that occur in
the family of hard truncated cubes.

F. Plastic crystal phases

Plastic crystals (rotator phases) are characterized by
long-ranged positional order and short-ranged orientation
order.’*% Recent simulation studies on hard anisotropic
colloidal systems have shown the existence of intriguing
plastic crystalline phases.?33%313* These studies showed that
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FIG. 10. Asphericity A, defined in Eq. (11), as a function of the shape pa-
rameter s, which defines the level of truncation of a cube. The minimum at
s = 0.58 gives the best potential plastic-crystal former of the truncated cubes
family. Based on our observations of the phase behavior of the truncated cubes,
we divided the A into three regions Crystal, Hi-Cub PC (plastic crystals with a
high value of the cubatic order parameter), and Low-Cub PC (plastic crystals
with a low value of the cubatic order parameter). Properties of truncated cubes
belonging to different regions are explained in the main text.



054904-12 Gantapara et al.

the particle shape plays an important role in the formation of
these plastic crystals for hard-particle systems. In addition,
various physical quantities were calculated to quantify the
shape of a given colloidal particle with respect to that of
a sphere and to predict whether or not the particles will
form a plastic crystal phase. In this section, we first group
the truncated cubes based on their phase behavior and
their respective asphericity values. Afterwards, we describe
different plastic crystals and their properties.

Typical physical quantities used to understand the
observed phase behavior of an anisotropic particle are the

asphericity and the isoperimetric coefficient.”83!** Here, we
use asphericity
U316y (5)2/3
A= POV (11
S(s)

where V(s) and S(s) are the volume and surface area of a
truncated cube with truncation parameter s. The asphericity

a)
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A of truncated cubes as a function of the shape parameter is
shown in Fig. 10.

Based on our observations of the phase behavior of
truncated cubes (Fig. 6) and the cubatic order parameter
S4(s, @) values (Fig. 7) close to the fluid-crystal and fluid-
plastic-crystal phase coexistence regions, we have divided the
asphericity A plot into three different regions. This division
in terms of the asphericity is an attempt to connect the
observed phase behavior to the respective asphericity values.
The division is as follows.

1. Crystal: Truncated cubes falling in this region freeze into
a crystal phase with the cubatic order Sy(s, ¢) = 0.7 when
compressed from a fluid phase.

2. Hi-Cub PC: In this region, we observed that the truncated
cubes can form plastic crystals with Sy(s, ¢) ~ 0.3-0.4
when compressed from a fluid phase.

o/m

0 1

FIG. 11. Various truncated cubes and their orientation distribution functions in the plastic crystal phase. Panels (a), (d), and (g) show the particle shape for
truncation s = 0.457, 0.572, and 0.750, respectively. We have chosen these shapes to represent three different plastic crystals in the phase diagram of truncated
cubes. Panels (b), (e), and (h) show the orientations projected onto the surface of a unit sphere for the shapes shown in (a), (d), and (g), respectively, just
above the fluid-plastic crystal phase coexistence. We have colored different clusters with different (randomly chosen) colors. The clusters are obtained using the
“FindClusters” routine of the Mathematica software package. Panels (c), (f), and (i) show contour plots of the corresponding orientation distribution functions
in the azimuthal € and polar ¢ angle representation. We have used a CMYK (cyan, magenta, yellow, and black) color gradient to show the probability density
of the orientation distribution functions. Low probability regions are colored cyan and high probability regions are colored black.
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FIG. 12. Analysis of particle shape s =0.572 as a function of packing fraction. (a) shows the particle shape. (b) and (c) show the position and orientation
correlation functions, respectively, for three different packing fractions as a function of the radial distance r scaled by the cubic root of the particle volume
v. These packing fractions are chosen such that ¢ =0.547 is just above the liquid-plastic crystal coexistence region, while ¢ =0.659 is slightly below the
plastic-close-packed crystal coexistence region, and ¢ =0.715 is in close-packed crystal region. In (d), (e), and (f), we show the orientation distributions for
s =0.572 at ¢ =0.547, 0.659, and 0.715, respectively. Different clusters of orientations are (randomly) colored to improve visibility. We found that there are
18 favored orientations. Panels (g), (h), and (i) show the density of the orientation distribution in @ and ¢ representation. The use of colors is the same as in

Figs. 11(g), 11(h) and 11(i).

3. Low-Cub PC: The region with lowest asphericity values
in the family of our truncated cubes. Truncated cubes in
this region can form plastic crystals with Sy(s, ¢) <0.1
near the fluid-plastic-crystal phase coexistence densities.

Using the asphericity parameter in combination with the
particle’s rotational symmetry, one can estimate the phase

behavior of anisotropic and point symmetric particles.>' The
asphericity values at which we find plastic-crystal phases
with low cubatic order for truncated cubes are in agreement
with those of cube-like superballs, which self-assemble
into plastic-crystal phases for A < 0.08.”® We cannot make
a similar comparison with octahedron-like superballs, as
less is known about the phase behavior of these particles,
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due to the instabilities in the overlap algorithm for these
superballs.?®

In the remainder of this section, we describe the prop-
erties of the plastic crystals found in the phase diagram in
the region s € [0.35,0.95]. We found three different types of
plastic crystal, namely, HCP, BCT, and BCC. To study and
understand the properties of these different plastic crystal
phases, we have chosen three representative particle shapes
5 =0.457,0.572, and 0.750. The particles with s =0.457 and
s =0.750 belong to the Hi-Cub PC region, while s =0.572
lies inside the Low-Cub PC region and is close to the
minimum value of the asphericity A as shown in Fig. 10. The
above three particle shapes are displayed in Figs. 11(a), 11(d),
and 11(g), respectively.

We calculated the orientation distribution functions for
these three systems at fixed pressures. Figures 11(b), 11(e),
and 11(h) show the orientation distribution function of
the three particle shapes projected onto the surface of a
unit sphere and Figs. 11(c), 11(f), and 11(i) show the
same distribution plotted as contour plot for our parameter
choices, respectively. These orientation distribution functions
are computed just above the fluid-plastic crystal coexistence
region. Surprisingly, our results show that the plastic-crystal
phase exhibits an inhomogeneous orientation distribution
on a unit sphere. In the orientations projected onto the
surface of a sphere, we identified different clusters using
the Mathematica “FindClusters” routine in combination with
visual observations. These clusters are colored (randomly)
to improve the clarity of the presentation, as shown in
Figs. 11(b), 11(e), and 11(h). The orientation distributions
show well-defined peaks for a few specific orientations
dictated by the shape of the particle in combination with
the crystal structure. The corresponding contour plots for the
three particle shapes are shown in the azimuthal/polar (8, y)
representation in Figs. 11(c), 11(f), and 11(i), respectively.
The contour plots of the orientation distribution functions
are colored using a CMYK color gradient, cyan (C) is used
to color the low probability region, while black (K) is used
to color regions with a high probability and the remaining
two colors—magenta (M) and yellow (Y)—are used for the
intermediate probabilities. Most of the peaks in the contour
plots are clearly visible in Figs. 11(c), 11(f), and 11((i),
however, some peaks are overshadowed by others.

By visual inspection of the orientation distribution func-
tions along with the results of the “FindClusters” routine, we
found that there are 6, 16, and 6 distinct peaks in the orien-
tation distribution functions for s = 0.457,0.572, and 0.750,
respectively. Note that truncated cubes with an asphericity A
in the Hi-Cub PC region (s =0.457 and 0.750) have a smaller
number of peaks in the orientation distribution function
compared to the ones with A in the Low-Cub PC region
(s = 0.572). Additionally, we found that the cubatic order
is inversely proportional to the number of peaks in the
orientation distribution function, i.e., a greater number of
peaks in the orientation distribution functions gives rise to a
lower cubatic order. This is due to the fact that the probability
of the particles to orient themselves along one of the cubatic
axes of a reference particle in the simulation box goes down if
the orientation distribution function has more peaks.

J. Chem. Phys. 142, 054904 (2015)

We found that the peaks in the orientation distribu-
tion function corresponding to the crystalline configuration
increase in size with increasing packing fraction and that
the peaks corresponding to non-cubatic symmetry disappear
when the system undergoes a transition from a plastic crystal
to a solid phase. To further investigate this property, we study
the orientation distribution of a plastic crystal as a function of
packing fraction ¢. We chose s =0.572, as this particle shape
has the lowest asphericity of the particles that we simulated.
We show the particle shape along with its correlation function
and orientation distribution functions in Fig. 12. We chose
three packing fractions to calculate the correlation functions
and orientation distributions

1. ¢ =0.547, which is just above the liquid-plastic crystal
coexistence region,

2. ¢ =0.659, which is slightly below the plastic-crystal-
crystal coexistence region, and

3. ¢ =0.715, which is in the stable crystal region.

In Fig. 12(b), we show the position correlation functions
g(r) for the aforementioned three packing fractions. We
clearly see that g(r) shows long-range positional order for
all the chosen packing fractions. However, the g4(r) shown in
Fig. 12(c) exhibits long-range orientation correlations only in
the crystal regime, i.e., for ¢ =0.715. In the plastic-crystal
phase (¢ =0.547 and 0.659), the orientation correlations
vanish at a distance smaller than one lattice spacing, as
expected. With increasing packing fraction, the orientation
distribution of the particles in the plastic-crystal phase
displays long-range orientation order, as shown in Fig. 12.
The probability density in the crystal phase (¢ =0.715) shows
the same 16 peaks as in the plastic-crystal phase. However,
the peaks close to the crystal exhibit far more sharply defined
long-range orientation order.

To recap, the orientation distribution function of plastic
crystals of hard anisotropic particles can be highly anisotropic
and can be strongly peaked for specific orientations. These
orientation directions depend not only on the crystal structure
of the particle but also on the shape of the particle. Our
results show that hard particle plastic crystals are different in
nature from those of plastic crystals constituted of particles
that have long-range interactions.”® Systems with long-
range interactions tend to form plastic crystals with uniform
orientation distribution functions unlike the hard particles
studied here.

V. CONCLUSIONS

Summarizing, the investigation in this manuscript is a
continuation of the work put forward in Ref. 30, wherein
the full phase diagram was determined for a family of
hard truncated cubes, which interpolates smoothly from a
cube via a cuboctahedron to an octahedron, using Monte
Carlo simulations and free-energy calculations. We started
our presentation by providing a detailed description of the
methods employed to construct the phase diagram for our
shapes and hard anisotropic faceted particles in general.
Subsequently, we discussed the nature of the densest packing
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crystal structures, from which we later determined the EOSs.
Here, we focused on the properties of these structures,
the way they can be grouped, and the differences between
our grouping and that of Chen et al.?> We showed that
our grouping matches well with that of Chen et al., with
only one minor correction to our original results. Next, the
EOSs were determined by melting the densest structures
and compressing from the liquid phases. Using these results
in combination free-energy calculations, we established the
phase diagram. This diagram shows a remarkable diversity
in crystal structures. In discussing its properties, we spent
special attention to the nature of the mesophases. Finally, we
considered the plastic-crystalline mesophases of these hard
particles in more detail and showed how their orientation
distribution functions display significant anisotropy.

The following properties of the phases formed by this
family of truncated cubes are of particular interest.

e There is a fully degenerate crystal phase for a trunca-
tion parameter s ~ 0.4, in which diagonally interlocked
sheets of particles can move with respect to each other
in only one direction.

e This system is remarkable in more than one way, since
it also exhibits a fluid state and three different bulk
crystals upon increasing the pressure. Both these qual-
ities may make similarly shaped nanoparticles suitable
for the creation of highly tunable functional materials,
for which optical, electrical, and rheological properties
vary strongly with the bulk pressure of the system.

e We calculated the cubatic order parameter S; for
truncated cubes with varying truncation level and
showed that the values of S, are related to the number
of preferred particle orientations in the plastic-crystal
phase. We found that PHCP and PBCT plastic-crystal
phases in the truncated-cube family have S; values
similar to that of the isotropic fluid and exhibit short
range orientation correlations for asphericity values
A <0.1. This is a surprising result for faceted particles,
as this behavior was expected only for particles with
smooth edges.”

e A comparison to the results for superballs?’?® leads
us to conclude that plastic crystal (or rotator) phases
of faceted particles have a smaller domain of stability.
Moreover, the phase behavior as a function of shape
parameter is much smoother for hard superballs than
for truncated cubes. These observations give rise to
the idea that the more spread-out local curvature of
the superball tends to favor the formation of rotator
phases and overall smoother phase behavior, whereas
the polyhedral particles with flat faces and sharp edges
prefer to align flat faces to form crystals and have
sharp transitions even though s varies smoothly.

e Our study shows that the orientation distribution
for particles in plastic-crystal phases can be highly
anisotropic. This anisotropic nature of the orientation
distribution for hard particle plastic crystals shows
that these phases are fundamentally different in nature
from those of plastic crystals constituted by particles
that have long-range interactions, as the latter exhibit
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a homogeneous orientation distribution. The favored
orientations depend not only on the particle shape, but
also on the crystal structure. In addition, we found
that the cubatic order of the plastic-crystal phases is
inversely proportional to the number of peaks in the
orientation distribution functions.

Our results provide a solid basis for future studies of aniso-
tropic particle systems and pave the way for a full understand-
ing of the recent experimental studies performed on systems of
nanoscopic truncated cubes. In addition, our study of the phase
behavior of truncated cubes by smoothly varying the shape can
be used in future studies to obtain rules for the prediction of
self-assembled structures based only on the shape.
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