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Colloids suspended in a binary solvent may, under suitable thermodynamic conditions, experience a wide variety of solvent-
mediated interactions that can lead to colloidal phase transitions and aggregation phenomena. We present a simple mean-field
theory, based on free-volume arguments, that describes the phase behaviour of colloids suspended in a near-critical binary
solvent. The theory predicts rich phase behaviour: we find colloidal gas, liquid and crystal phases, a colloidal gas–liquid
critical line and a colloidal solid–solid critical line. We compare our results with those of our recent simulation study of the
same model in two dimensions. Our simple theory accounts for the main features of the phase diagrams found in simulations
and sheds new light on the origin of colloidal aggregation lines in near-critical solvents.

1. Introduction

Understanding how solvent-mediated (SM) interactions be-
tween colloidal particles can dictate aggregation and col-
loidal self-assembly is a key goal for colloid science. An
important situation is when the solvent is close to its critical
point. Then the SM interaction between two colloidal parti-
cles becomes long-ranged; it is governed by the (diverging)
correlation length ξ of the solvent. In this paper we present
a simple theory aimed at understanding colloidal phase
behaviour and aggregation for a lattice model of a dense
suspension of colloidal particles in a binary solvent that is
near its critical point.

Consider a binary AB solvent that displays a de-mixing
phase transition below a critical point at temperature Tc and
composition xc. Colloidal particles are suspended in this
solvent and we suppose these prefer solvent species B, i.e.
there is preferential adsorption of B. Depending on the tem-
perature T and composition x of the solvent, a wide variety
of adsorption and wetting related phenomena can occur at
the surface of a colloidal particle. In the near-critical region
of the solvent T → Tc, x → xc films of the preferred species
will adsorb on a single colloid, up to a length scale given by
the correlation length of the solvent, e.g. [1]. Sufficiently
close to the solvent critical de-mixing point the thickness
of the adsorbed films diverges in the same fashion as the
bulk correlation length, according to the scaling law ξ ∼
|τ |−ν , with τ = (T − Tc)/Tc . It follows that two colloids sus-
pended in the same, near-critical, solvent will experience
a SM interaction that can extend to very long distances.
Fisher and de Gennes made this prediction three decades
ago [2] and argued that the SM interaction should display

∗
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universal scaling properties with scaling functions depend-
ing on the ratio of the particle separation to the correlation
length. In recent years direct experimental measurements
were performed [3,4] of the force between a colloidal par-
ticle and a flat wall for a near-critical (water–lutidine, WL)
binary solvent mixture. The near-critical SM interactions
are often referred to as critical Casimir interactions, making
analogy with the confining effects of quantum fluctuations
of the electromagnetic field [5]. These critical ‘Casimir’
SM interactions depend on the preferential adsorption of
the solvent on the two colloids. For example, identical col-
loidal particles will experience SM attraction whereas two
different colloids, one preferring species B and the other
A, will exhibit repulsion and the scaling functions are dif-
ferent. Theoretical studies of critical Casimir interactions
begin by considering solvent confinement between two pla-
nar walls and determining the scaling behaviour of the SM
force for various universality classes [5,6]. The well-known
Derjaguin approximation is then employed to convert re-
sults from the planar case to those appropriate to the force
between two spherical particles. It is important to recognise
that even at supercritical solvent state points that are away
from the critical scaling regime the SM interactions can
be strong and might influence phase behaviour for a dense
suspension of colloids.

Turning now to the subcritical region of the solvent
T < Tc, strong preferential adsorption can lead to bridg-
ing transitions [7] between two identical colloidal particles
(equivalent to a rounded capillary condensation transition
of a binary mixture between two identical planar substrates).
This scenario occurs if the bulk solvent phase is rich in A but
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the colloids prefer the phase rich in B, leading to a capillary
bridge of the latter. This leads to an SM interaction between
the colloids that is strongly attractive [8–10]. We empha-
sise such transitions occur in the A-rich region of the phase
diagram. Rounded pre-wetting transitions can also man-
ifest themselves in the effective SM interaction between
colloidal particles [11,12]. Unlike the critical Casimir SM
interactions these subcritical interactions, driven by con-
siderations of wetting, are non-universal and depend in a
detailed way on the nature of the local interactions between
a colloid and the binary solvent. An important feature of all
SM interactions is their sensitivity to the temperature and
composition of the solvent. This raises prospects of per-
forming colloidal self-assembly in a reversible and in situ
manner by manipulating the temperature thereby tuning the
effective interactions.

Our present study focuses on a dense suspension of
colloids in a near-critical binary solvent rather than on a
very dilute system where only interactions between a pair
of colloids are relevant. That is, we are concerned with the
situation where not only pairwise but also many-body SM
interactions between colloids might come to the fore.

There have been several experimental investigations
of near-critical colloidal aggregation or self-assembly, e.g.
[13–16]; for a recent study see [17]. In 1985 Beysens and
Estève [13] made the first observation of reversible colloidal
aggregation in their pioneering investigation of a system of
silica colloids suspended in a WL mixture. The WL solvent
exhibits a de-mixing phase transition above the (lower) crit-
ical temperature Tc = 34 ◦C and the critical lutidine mass
fraction xc = 0.286. The silica colloids had an inherent pref-
erence for adsorption of lutidine over water. A suspension
of colloids, initially at T < Tc and x < xc, exhibited aggre-
gation upon heating to a well-defined temperature Ta. The
aggregation temperature depended on the solvent composi-
tion x, and an aggregation line could be determined, below
the binodal of the WL mixture, i.e. in the one-phase region
of the solvent. Beysens and Estève noted that aggregation
was observed only in the water-rich region (x < xc) of the
solvent. In their original paper Beysens and Estève iden-
tified the aggregation line with a pre-wetting line linked
with strong adsorption of the wetting phase (L) on the sil-
ica colloids. However, unlike pre-wetting at a macroscopic
substrate, the aggregation line extended to below the crit-
ical temperature into the one-phase region of the solvent.
In an article published in 1999, Beysens and Narayanan
[18] review several experimental studies and suggest that
the scenario found in the WL studies is rather general: ag-
gregation is found near the binodal of the solvent phase not
preferred by the colloids. Recently there has been a resur-
gence of interest in studying a dense suspension of colloids
in a near-critical binary solvent [17]. In particular, using
confocal microscropy, Schall and co-workers have made
real-space measurements of the SM colloidal aggregation
process [16,17].

Motivated by both the early and recent experiments we
performed computer simulations [19] for a simple two-
dimensional (2D) lattice based model, i.e. we investigated
the phase behaviour of hard-disk colloids suspended in a
near-critical binary lattice gas (AB) solvent. Our simula-
tion results revealed: (1) the presence of gas–liquid (G-L)
and gas–crystal (G-X) coexistence at state points both close
to and far from the criticality of the solvent reservoir. (2)
The critical point of the ternary mixture is shifted from
that of the solvent reservoir upon adding a small fraction of
colloids. (3) Two-body SM interactions, calculated in the
dilute limit, are not sufficient to account accurately for the
critical point shift, and (4) the phase separation is driven
by preferential adsorption of one species of solvent on the
(model) colloid. Our results pertained to the supercritical
(one-phase) region of the solvent. The richness of the sim-
ulation phase diagrams led us to enquire whether a simple
mean-field theory could describe the overall features of the
phase behaviour that we observe. Such a theory might then
form the basis for a description of the continuum ternary
fluid mixture.

We are not the first to attempt to develop a theory.
There have been several attempts to account for the ob-
servation of reversible colloidal aggregation in near-critical
solvents. The review [18] summarises the early ones and
it would not be appropriate to re-visit all of these. The
work of [20,21] focused on the situation where the sol-
vent reservoir is subcritical and described the implications
of wetting and capillary bridging transitions for the phase
behaviour of model colloidal suspensions. Earlier Sluckin
[22] had argued that aggregation should be viewed as phase
separation in a ternary system. The same viewpoint was
adopted in [14]. More recently, Mohry et al. [23–25] stud-
ied the structure, phase behaviour and aggregation of model
colloids immersed in a near-critical solvent using an effec-
tive one-component description. The solvent is assumed
to give rise to pairwise SM interactions between the col-
loidal particles which depend on temperature and solvent
composition. The attractive portions of the pair potentials
are extracted from Monte Carlo simulations, e.g. [6] of
the critical Casimir scaling functions using the Derjaguin
approximation. Schall and co-workers [17,26] adopt a sim-
ilar standpoint, except the SM pair potentials are extracted
from experiment. Such an approach can be expected to be
reliable for very dilute suspensions where many-body inter-
actions might not be very important. However, it is not clear
a priori that a pairwise description of the SM interactions is
sufficient to capture all the features of phase behaviour that
might occur in dense suspensions. Moreover, when the cor-
relation length of the solvent is large, perhaps comparable
with the size of the colloid, one expects many-body effects
to be important.

The theory we develop and implement here is not based
on an effective pair potential description. Rather it is in the
spirit of some of the earlier approaches. We consider the
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lattice model treated in our simulations [19] and mentioned
above. Using free-volume arguments we write down an ap-
proximation for the Helmholtz free energy of the AB sol-
vent that lives on the lattice sites not occupied by colloidal
disks in 2D or spheres in 3D. Our theory is arguably the
simplest mean-field treatment of a ternary mixture where
one of the species is much larger in size than the other two
and where this large species has an inherent preference to
adsorb one of the two smaller species. In Section 2 we de-
scribe our lattice model. The mean-field theory is described
in Section 3 and in Section 4 we present results for the phase
diagrams. As in our simulation study [19] we focus on sit-
uations where the solvent reservoir is supercritical. Finally
in Section 5 we summarise our results and discuss their
implications for colloidal aggregation.

2. Model

We describe the ternary system using a simple lattice model.
Colloids (C) are discretised hard particles (disks/spheres)
with radius R, that can undergo Brownian motion in a binary
lattice solvent (AB). The Hamiltonian HC describing the
bare colloids is simple. The potential energy is zero for
non-overlapping configurations, and infinite if any pair of
hard colloids overlaps. Every lattice site i has an occupancy
number ni = 1 if it is occupied by a colloidal disk, and
ni = 0 if it is available for an A or a B solvent molecule. For
every solvent occupied site we assign an occupancy number
si = −1 if it is occupied by A, and si = 1 for B. We consider
only nearest neighbour interactions, and assign an energy
penalty ε/2 > 0 for every nearest neighbour AB pair in order
to drive AB de-mixing at sufficiently low temperatures. We
impose an energy gain of −αε/2 with α ≥ 0 for every BC
pair to mimic preferential adsorption of solvent species B
on the colloid (C) surfaces. The total Hamiltonian of the
ternary ABC system is given by

H = HC + ε

4

∑
〈i,j〉

(1 − sisj )(1 − ni)(1 − nj )

− αε

4

∑
〈i,j〉

ni(1 + sj )(1 − nj ) (1)

where the summation runs over the set of distinct nearest
neighbour pairs ij. This is the model that was treated by
Monte Carlo simulations in [19].

3. Theory

The free energy of the ternary ABC model is calculated
within a simple mean-field approximation. For a lattice con-
sisting of M sites, the colloids occupy a fraction η of these,
and the remaining free ‘volume’ M(1 − η) is filled by the
AB binary solvent. The fraction of sites occupied by B is
denoted by x, so that the fraction of sites occupied by A is

1 − η − x. The mean-field Helmholtz free energy of the
system can be written as

FMF(Nc,M, T , x) = FC(Nc,M, T )

+(1 − η)FAB(Ns,M, T ) + NcUBC

(2)

where Nc is the number of colloidal particles and Ns is the
number of molecules of solvent species B. Note that due to
the incompressible lattice nature of the solvent, Nc and Ns

suffice to describe uniquely the number of particles of each
species present in the system. Thus the ternary system is
equivalent to a binary system. In Equation (2) the first term
FC(Nc, M, T) is the pure-colloid contribution. FAB(Ns, M,
T) is the mean-field free energy of the binary AB mixture in
the free space in between the colloids (with fractions 1 − x̂

and x̂ ≡ x/(1 − η) of A and B, respectively). UBC is the
average adsorption energy of the B solvent on the colloid
surface. This yields, up to irrelevant additive constants,

FMF(Nc,M, T , x) = Fc(Nc,M, T ) − Nczcsαεx̂

+ (1 − η)M(kBT [x̂ ln x̂

+ (1 − x̂) ln(1 − x̂)]+zss

2
εx̂(1 − x̂))

(3)

where Fc is the Helmholtz free energy of a system of hard
disks (spheres), η is the packing fraction of the hard disks,
T is the temperature, kB is the Boltzmann constant, zss is
the coordination number of the lattice (in 2D for a square
lattice zss = 4), zcs is the total number of nearest neighbours
for a colloid of radius R and x̂ is the fraction of the solvent
in the free volume (1 − η)M. Note that the overall solvent
composition x = Ns/M. The free energy per site can be
written as

FMF(η, T , x)

M
= Fc(η, T )

M
− η

vc

zcsαε
x

1 − η

+ kBT

[
x ln

x

1 − η
+ (1 − x − η)

× ln

(
1 − x − η

1 − η

)]
+zss

2
ε
x(1 − x − η)

(1 − η)

(4)

where vc is the effective volume (area in 2D) of the colloid.
R is of course, measured in units of the lattice spacing.
We present results for the phase behaviour of the ternary
ABC model in two dimensions, using the Santos–de Haro–
Yuste approximate equation of state [27] to describe the
fluid phase of the hard-disk colloids. The solid phase is
treated using the equation of state developed by Young
and Alder [28]. We could use the same theory, to study
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systems in 3D, by replacing Fc with hard-sphere equations
of state and taking vc to be the effective volume along with
coordination numbers appropriate to 3D. Phase coexistence
between colloidal phases I and II is computed using the
following standard relations:

P (xI, ηI) = P (xII, ηII)

�μc(xI, ηI) = �μc(xII, ηII)

�μs(xI, ηI) = �μs(xII, ηII) (5)

where P is the pressure, �μs = μB − μA and �μc = μC

− vcμA are chemical potentials of the solvent and colloid,
respectively. The equality of temperatures in the two co-
existing phases is implicit in Equation (5). The above set
of equations has four unknowns, and we use an additional
constraint (see appendix I of [29]). The constraint we use is
ηI/(ηI + xI) = c, where c is a constant. We start tracing the
binodals at a fixed temperature by estimating a value of c,
where we expect phase coexistence, and proceed to trace the
entire binodal by incrementally varying c. We solve Equa-
tions (5) using Newton Raphson’s method. For cases where
loops occur in the phase diagram, we use the pseudo arc-
length continuation technique to obtain the solution [30].

4. Results

4.1. Model parameters

In the limit η → 0, the ABC model reduces to a binary (AB)
solvent mixture. The solvent displays phase coexistence
between an A-rich phase and a B-rich phase for temperature
T < T MF

c , where T MF
c is the critical temperature of the

binary (AB) solvent within the mean-field approximation.
Due to the Ising symmetry inherent in the lattice model,
the solvent phase separates at a fixed value of the chemical
potential �μs = 0, for all T < T MF

c . For �μs < 0, the

solvent is A-rich and for �μs > 0, it is B-rich in this
temperature range.

We define the reduced temperature of our system as
τ = (T − T MF

c )/T MF
c , where kBT MF

c /ε = 1. All energies
are scaled with the solvent–solvent interaction strength ε.
The two parameters of our model are vc, which gives the
size (area) of the colloid, and zcsα which determines the
coupling strength between colloid C and solvent species B.
Unless otherwise stated, we set the values of the parameters
as vc = 1000 and zcsα = 32. In 2D for colloids of radius
R, vc = πR2 is the area of a colloidal disk, and zcs = 2πR,
is the circumference of the disk. Colloids with α > 0 (α <

0), have a preference for species B (A), while for α = 0,
colloids prefer neither species. In this work, we consider a
situation where the colloids prefer species B (α > 0), while
the colloid-free solvent has �μs < 0, so that the reservoir
lies on the A-rich side. We restrict our study to temperatures
τ > 0, i.e. the single phase region of the colloid-free solvent.

4.2. Phase behaviour in 2D

In a recent paper we investigated the phase behaviour of
the ternary ABC lattice model defined by Equation (1) via
Monte Carlo computer simulations [19]. In Figure 1(b) we
show the phase diagram computed by simulation for col-
loids of radius R = 6, and a surface field α = 0.6. We
compare the simulation results with phase diagrams ob-
tained from our mean-field theory in Figure 1(a). Note that
for the mean-field theory we chose empirically vc = 1000
and zcsα = 32; these values provide the best, overall qual-
itative agreement with the simulation results. For R = 6,
vc = πR2 should be � 113 and zcsα � 23. However, the
hard-core repulsion of the colloids is severely underesti-
mated by our mean-field approximation, and therefore we
use a value of vc which is very much larger. The phase dia-
gram in Figure 1 is plotted in the �μs vs. η representation.

0 0.25 0.5 0.75
η

-0.3

-0.2

-0.1

0

Δμs

L

G Xτ = 0.025

τ = 0.05

τ = 0.075

τ = 0.1

τ = 0.2

(a)

0 0.25 0.5 0.75
-0.75

-0.5

-0.25

0

η

Δμs

L

XG

(b)

Figure 1. (a) Binodals of the ABC ternary mixture as calculated within mean-field theory for five fixed temperatures τ = 0.025 (black),
τ = 0.05 (green ), τ = 0.075 (blue) (these are projections of data shown in Figure 2), τ = 0.1 ( red ) and τ = 0.2 (purple ), in the �μs–η
plane, i.e. solvent chemical potential vs. hard-disk (colloid) packing fraction. The grey, pale green and pale blue curves correspond to
metastable colloidal G-L coexistence which terminates at a lower critical point. (b) Binodals of the same model computed with Monte
Carlo simulations for three fixed temperatures τ = 0.025 (black), τ = 0.05 (dark red ) and τ = 0.075 (blue) (as in figure 3(a) of [19] where
R = 6 and α = 0.6).
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0

0.25

0.5

0.75
0 0.025 0.05 0.075

−0.3

−0.2

−0.1

0

τ

η

Δ
μ

s

Figure 2. Binodals of the ternary ABC mixture as calculated
within mean-field theory plotted in the �μs vs. η vs. τ represen-
tation. We show slices of the full phase diagram for three fixed
temperatures τ = 0.025 (black), τ = 0.05 (green ) and τ = 0.075
(blue). The grey, pale green and pale blue curves correspond to
metastable colloidal gas–liquid coexistence, which also terminates
at a critical point. The dark red curve is the locus of critical points
of the ternary mixture, this approaches smoothly the critical point
of the solvent denoted by the blue diamond in the limit τ → τ c =
0.0, η = 0, �μs = 0. For each τ we show the upper (stable) and
lower (metastable) G-L critical points as indicated by the orange
diamond symbols. The olive green diamond symbol corresponds
to the point where the upper and lower critical points of the ternary
system merge and disappear. The dashed orange lines (guide to
the eye) connect the critical points to their projection in the η–τ
plane. The projection of the locus of critical points in the η–τ
plane is given by the pale red curve. The purple square symbols
denote triple points. There is an upper and lower set of these – see
text.

In this representation the tie lines that connect coexisting
phases are horizontal, i.e. parallel to the η axis. Fixing �μs,
at a fixed temperature, is equivalent to fixing the composi-
tion of the solvent reservoir. Note that the composition x of
the solvent in the coexisting phases is generally very dif-
ferent from the composition of the solvent reservoir, xr. It
is convenient to describe the general features of the topol-
ogy of the phase diagrams before comparing theory and
simulation results.

In Figure 2, the two-phase or phase-coexistence region
is bounded by a two-dimensional manifold (binodals) in
the three-dimensional η vs. �μs vs. τ space. Figure 1(a)
displays the projections of this phase diagram in the �μs

vs. η plane for different values of the reduced temperature
τ . The main features of the phase diagram are as follows: at
a fixed temperature (see Figure 1), the system displays: (1)
stable upper gas–liquid (G-L) coexistence and metastable
lower G-L coexistence, (2) a broad gas–crystal (G-X) co-
existence and (3) crystal–crystal (X-X) coexistence. The
X-X coexistence that terminates at a (lower) critical point
is between two phases with the same (hexagonal) structure
but different lattice spacings. The upper and the metastable
lower G-L coexistence curves terminate at critical points.

As the temperature increases the upper and lower critical
points merge and disappear at a certain fixed temperature
(τ � 0.0858). In Figure 2 we show a red curve which is
the locus of G-L critical points that originates at the critical
point of the solvent reservoir (η = 0, τ = 0, �μs = 0).
We also observe an upper line of G-L-X triple points and
a lower line of G-X-X triple points. These are denoted by
purple squares in Figure 2. The locus of the G-L-X triple
points intersects the locus of critical points at τ � 0.077.
This signifies the presence of a critical end point where of
the three coexisting phases, a pair of phases (G-L) becomes
critical. Further we observe two vertical chimneys, which
approach the fluid–solid transition of hard disks in the lim-
its |�μs| → ∞. Within our present approximate treatment
the fluid–solid transition is a conventional first-order freez-
ing transition. In reality the transition is more subtle; see
[31–33]. The dashed vertical lines in Figure 1(b) denote the
transition region determined in [31,32].

The shapes and trends observed in the mean-field bin-
odals upon varying temperature are consistent with simula-
tions. In the simulations we could not confirm the presence
of a lower metastable critical point, nor the presence of
solid–solid coexistence. Nevertheless, it is striking that our
simple mean-field theory captures the qualitative features
of the phase behaviour. In Figure 1(a) we also show binodals
at temperatures τ = 0.1 and τ = 0.2. At very high tempera-
tures, the system can display only the hard-disk fluid–solid
transition. Lowering the temperature to τ = 0.2, the fluid–
solid transition region begins to broaden near �μs = 0 (see
purple curve). Upon lowering the temperature further to
τ = 0.1, the G-X transition region broadens, and the X-X
transition appears (see red curve in Figure 1(a)). On further
decrease of temperature the G-L coexistence appears and
the two-phase regions become broader.

In Figure 3 we present the phase diagrams shown in
Figure 2 in the x vs. η representation. As noted earlier, the
composition of the solvent x is different from the compo-
sition of the solvent reservoir xr and the tie lines in this
representation are not horizontal. We show a few tie lines
for the binodals at τ = 0.075 (dashed blue lines). We find
that compositions of the solvent in the coexisting fluid and
crystal phases are significantly different. Phase coexistence
extends to regions far from the critical point of the solvent
reservoir which is given by xc = 0.5 and τ c = 0.

4.3. Locus of critical points

As can be seen from Figure 2, the critical point of the
colloid-free solvent is shifted considerably upon adding a
small amount of colloids. It follows that the SM interactions
that arise in the ternary mixture might be very different from
the universal critical Casimir interactions that pertain to a
single pair of colloids, in the dilute limit η → 0, when
the solvent is close to its critical point. In particular the
effective interactions between two colloids at state points in
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0 0.25 0.5 0.75
η

0

0.1

0.2

0.3

0.4

0.5

x

L
G X

τ = 0.025

τ = 0.05

τ = 0.075

Figure 3. Binodals of the ternary ABC mixture as calculated
within mean-field theory plotted in the x vs. η representation, i.e
the solvent composition vs. colloid fraction. We show results for
three fixed temperatures τ = 0.025 (black), τ = 0.05 (green) and
τ = 0.075 (blue). For the binodals at τ = 0.075, we plot a few tie
lines (dashed blue lines) that connect the coexisting phases. The
grey, pale green and pale blue curves correspond to metastable
G-L coexistence.

the vicinity of the critical point of the full ternary mixture
will not be the same as the Casimir interactions. It is of
interest to find where the critical points are located. We
determine the locus of critical points using the following
conditions [34]:

FccFss − F 2
cs = 0

FsssF
2
cc − FcccFssFcs − 3FcssFccFcs + 3FccsFccFss = 0

Here the subscripts s and c denote partial differentiation
of the Helmholtz free energy F, with respect to the number
of solvent (Ns) and colloidal particles (Nc), respectively. In
Figure 4 we show the locus of critical points, together with
the phase diagram of the solvent reservoir, for two different
systems. In the inset of Figure 4 we show the approach
of the loci of critical points to the critical point of the
solvent reservoir. For zcsα = 24, the locus of critical points
approaches monotonically the critical point of the solvent

0.25 0.5 0.75
xr

-0.05

0

0.05

0.1

τ

zcsα = 24

zcsα = 32

0.4 0.5 0.6

Figure 4. Loci of gas–liquid critical points for ternary ABC
mixtures with vc = 1000, and two different values of zcsα. The
inset shows the behaviour of the loci close to the critical point of
the solvent reservoir xr = xc = 0.5, τ = 0. The dotted orange line
is the binodal of the colloid-free AB solvent.

reservoir (τ = 0, xr = 0.5). By contrast, for zcsα = 32,
there is a non-monotonic dependence on the composition
of the solvent reservoir. Note that increasing the coupling
strength zcsα shifts the maximum in the line of critical
points to higher τ , but does not change the composition at
the maximum.

4.4. Aggregation lines

Typically experiments on colloidal aggregation [13,17] are
performed by suspending a fixed number of colloids in a
solvent at a fixed solvent composition xr. The temperature
of the system is then adjusted to (reversibly) induce ag-
gregation. At fixed η and xr, the locus of points at which
aggregation is first observed is called an aggregation line;
for an experimental measurement see figure 3 in [13]. We
compute the aggregation line as follows. Draw a vertical
line at say η = 0.1 in Figure 1. This intersects the binodal
for say, τ = 0.025 at solvent chemical potentials �μI

s and
�μII

s , corresponding to solvent reservoir compositions xI
r

and xII
r . Begin at xI

r , change the temperature infinitesimally,
and travel along the manifold of coexisting states, at fixed
ηI. Thus at τ + δτ , we obtain a new value of solvent reser-
voir composition. The locus of such points plotted in the
τ vs. xr representation gives the aggregation line. This line
serves to demarcate the one-phase region, which lies out-
side the lines, and the region inside where phase separation
can be found. In other words, given a suspension with a
fixed packing fraction η of colloids, with the solvent com-
position fixed, a point on the aggregation line at xr gives
the temperature at which aggregates may be first observed
upon cooling the suspension. Note that on adding a small
amount of colloids, the critical point of the ternary mixture
shifts from that of the solvent reservoir and therefore the
aggregation lines terminate before reaching τ = 0, xr =
xc = 0.5.

In Figure 5 we show our mean-field result for the ag-
gregation lines at fixed colloid packing fractions of η = 0.1
and η = 0.05. Here vc = 1000, and zcsα = 32 are the same
as in Figures 1(a), (2) and (3). For these sets of parame-
ters, the aggregation lines reside on the A-rich region of the
phase diagram, xr < 0.5 and upon increasing the packing
fraction η, aggregation lines are shifted to higher tempera-
tures. Note that these lines extend to the subcritical region
of the colloid-free solvent, τ < 0. However, in this regime
we can expect capillary bridging between colloids to occur
and our simple mean-field description, based solely on ex-
cluded volume considerations, is not expected to account
for this.

In Figure 6(a) and 6(b) we show projections of the phase
diagram (Figure 2) in the τ vs. η plane, i.e. we fix the value
of the composition of the solvent reservoir xr and thus the
ratio �μs/kBT. In Figure 6(a) projections are plotted at two
values of the solvent reservoir composition: xr = 0.495
(green curves) and xr = 0.41 (blue curves). For the first
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0.25 0.5 0.75
xr

-0.05

0

0.05
τ

η = 0.1

η = 0.05

Figure 5. Aggregation lines for a ternary ABC mixture with
vc = 1000, zcsα = 32, at two fixed values of colloid packing
fraction: η = 0.1 and η = 0.05. The dotted orange line is the
binodal of the colloid-free AB solvent. Note that the aggregation
lines terminate at points removed from the critical point of the
solvent reservoir – see text.

composition, with xr close to the critical composition xc =
0.5, we observe a tiny G-L phase coexistence region, located
at small values of τ . At the second composition, further
away from xc, the phase coexistence region broadens (blue
curves), with the G-L coexistence becoming metastable at
sufficiently high τ , with respect to a broad gas–crystal (G-
X) coexistence. In Figure 6(b) we plot the projections for
a solvent composition of xr = 0.418. For this composition,
on reducing τ we first see a G-L coexistence (blue curve)
region near τ = 0.075. Reducing τ further we see a G-X
coexistence (green curve) region between about τ = 0.07
and 0.05, and for even lower values of τ , G-L coexistence
(blue curve) becomes stable again.

4.5. Dependence of phase behaviour on
adsorption strength zcsα

Here we investigate the dependence of the phase behaviour
on α, the coupling strength or wettability of the colloids.

0 0.25 0.5 0.75
η

-0.3

-0.2

-0.1

0

Δμs zcsα = 36

zcsα = 32

zcsα = 24

zcsα = 16

Figure 7. Phase behaviour of the ternary ABC mixture at tem-
perature τ = 0.05, for zcsα = 36 (black curve), zcsα = 32 (green
curve), zcsα = 24 (red curve) and zcsα = 16 (blue curve) in the
solvent chemical potential �μs vs. colloid packing fraction η
representation. The grey and pale green curves correspond to
metastable G-L coexistence.

For α = 0, the colloid prefers neither species of the solvent.
As α increases, the preference of colloids for species B
increases, and this drives phase separation to �μs < 0.
In Figure 7, we fix vc = 1000, zcs = 40 and τ = 0.05, and
present the binodals for several values of α. With increasing
α first G-X coexistence appears and expands for �μs � 0
(see blue and red curves). Upon further increasing α, the
gas–liquid coexistence appears and broadens (see green and
black curves). The trend observed is similar to the change
in phase behaviour found upon changing temperature for
fixed vc and zcsα (see Figure 1(a)). However, we find for
zcsα = 36 (black curve) the G-L envelope extends slightly
into the region �μs ≥ 0. As mentioned earlier, for chemical
potentials �μs > 0, the bulk solvent reservoir is B-rich and
the colloids prefer the same species B. There appears to be
no incentive for phase separation under these conditions,
and therefore these predictions of the theory are somewhat

0 0.25 0.5 0.75
η

00

0.1

0.20.2

τ

G

L

F X
xr = 0.41

xr = 0.495

(a)

0 0.25 0.5 0.75
η

00

0.1

0.20.2

τ

G

L

F X

xr = 0.418G-L
G-L - meta
G-X
F-X

(b)

Figure 6. (a) Phase diagram of the ternary ABC mixture for vc = 1000, zcsα = 32, at temperature τ = 0.025, for two different fixed
compositions of the solvent reservoir: xr = 0.495 (green curves) and xr = 0.41 (blue curves) in the temperature τ vs. colloid packing fraction
η representation. The pale blue curve corresponds to metastable G-L coexistence. (b) Same as (a), except for the solvent composition xr =
0.418. The blue, green and purple curves correspond to G-L, G-X and F-X coexistence, respectively. The red curve indicates metastable
G-L coexistence.
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0 0.25 0.5 0.75
η

-0.4

-0.2

0

Δμs

R=12
R=18
R=48

Figure 8. Phase behaviour of the ternary ABC mixture at tem-
perature τ = 0.025, for colloid radius R = 12 (black curve),
R = 18 (green curve), R = 48 (red curve), in the solvent chemical
potential �μs vs. colloid packing fraction η representation. α =
0.3 is fixed – see text. The grey and pale green curves correspond
to metastable G-L coexistence; these terminate at lower critical
points. The two pale red curves correspond to metastable G-L and
metastable X-X coexistence, respectively.

puzzling. Furthermore, in simulations we observed that for
�μs ≥ 0, the colloids always stay solvated by species B.

4.6. Dependence of phase behaviour on colloid
radius R

Finally we study the dependence of the phase behaviour
of the ternary ABC mixture on the size of the colloid.
We fix τ = 0.025, α = 0.3 and compute the binodals for
three different radii R of the colloid. More precisely, the
parameters here are given by vc = πR2, zcs = 2πR. The
resulting mean-field binodals are shown in Figure 8. Upon
increasing R, the G-L and G-X coexistence regions broaden.
However, these also terminate, or merge with the hard-disk
mean-field fluid–solid transition, at higher values of �μs.
The features of the binodals for R = 12 and R = 18 are
very similar to those reported in detail for vc = 1000 and
zcsα = 32 in Figure 1(a). Upon increasing the radius to
R = 48, both the gas–liquid and crystal–crystal transitions
become metastable with respect to the broad gas–crystal
transition. Once again it is intriguing that for radius R =
48 the G-X and the metastable G-L binodals extend beyond
�μs ≥ 0. We suggest this is an artefact of our crude mean-
field treatment.

5. Summary and conclusions

The results presented here show that the mean-field the-
ory, crude as it is, captures all the qualitative features of
the phase diagram of the lattice model, defined by Equa-
tion (1), found in the simulations [19]. We summarise the
main features.

(1) The theory predicts rich colloidal phase behaviour.
In addition to the fluid–solid transition of the bare

hard-disk colloids, incorporated into the theory
via the pure colloid free energy Fc(η, T), the the-
ory predicts upper stable gas– liquid (G-L), lower
metastable G-L coexistence, gas–crystal (G-X) and
crystal–crystal (X-X) phase coexistence.

(2) Gas–liquid coexistence curves, calculated for fixed
temperature, terminate at upper and lower critical
points. The locus of such critical points approaches
the critical point of the solvent reservoir in the limit
η → 0, τ → 0, �μs → 0 – see Figure 2. The precise
shape of the locus of critical points in this limit
depends on zcsα, the value of the coupling strength
between the colloid and the solvent – see Figure 4.

(3) The critical point of the ternary mixture can be
shifted far from that of the colloid-free solvent
when only small amounts of colloid are added.

(4) It is clear from Figure 3 that the composition of
the solvent in the two coexisting colloidal phases
is very different. Any successful effective one-
component approach must be able to describe this
fractionation.

(5) Key results of our study are the aggregation lines
presented in Figure 5. These resemble qualitatively
the experimental results of Beysens [13] referred
to in the Introduction. The aggregation lines are
present in the A-rich region of the phase diagram,
xr < xc as expected, and terminate very close to the
critical composition xc of the solvent. We return to
this below.

(6) We studied the dependence of the phase behaviour
on colloid size and adsorption strength (wettability)
– see Figures 7 and 8. No new features appeared in
the topology of the phase diagrams . However, for
large values of the coupling strength zcsα at fixed
radius R and large values of R at fixed zcsα, the
colloidal G-L coexistence extends to �μs > 0, i.e.
very slightly into the B-rich region of the solvent
phase diagram. This could be an artefact of our
mean-field approach.

(7) We have performed a few calculations in D = 3
using the same form of free-energy (Equation (4))
but with the equations of state appropriate to hard
spheres [35,36]. The topology of the mean-field
phase diagrams is unaltered from D = 2 but the de-
tailed shape and numerical values depend strongly
on the parameters R and αzcs. Given our theory is
a mean-field one, this is not surprising!

In drawing conclusions from our study we must recog-
nise that most of the results presented are for an empirical
choice of parameters: vc = 1000 and zcsα = 32. These do
not correspond to the actual values of R and α set by the
underlying Hamiltonian equation (1), and therefore, those
values used in the simulations. Our aim was rather to ask
whether a physical choice would yield phase diagrams that
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are overall similar to those of the simulations and then
investigate the underlying details of the phase behaviour.
Clearly our mean-field treatment allows us to do this and
to investigate the trends in phase behaviour that could be
expected on changing R and α. Recognising our approach
is mean-field and therefore cannot capture properly the ef-
fects of fluctuations, particularly strong in D = 2, we cannot
hope to do better.

Finally we return to aggregation lines. Part of the mo-
tivation for our study was to re-address the origin of the
aggregation lines found in experiment. We take the view
that aggregation corresponds to the onset of colloidal phase
separation in the full ternary mixture, as is represented in
Figure 5. The shape of our aggregation lines is similar to
those found in the original experimental study of Beysens
and Estève [13] – see their figure 3. Of course one must
transcribe to their system of silica colloids in a WL solvent
which has a lower critical point. Our model has an up-
per critical point. Making the appropriate transcription one
finds that the aggregation lines found in the present treat-
ment lie on the appropriate side of coexistence and curve
towards the solvent critical point, see figures 3 and 5(b) of
[13] – in the same way as the experimental lines.

It is probably not appropriate to attempt quantitative
comparisons. We should bear in mind that the length scales
studied in theory and in the simulations [19] are rather
different from those pertinent to the experiments. For ex-
ample, in [13] the packing fraction of the silica colloids
is very small and the aggregation line lies ∼0.4 K below
the solvent binodal. This corresponds to τ ∼ 1.3 x 10−3

and the ratio of correlation length to colloid radius, ξ /R,
is about 0.2. By contrast, if we consider Figure 5 and take
τ ∼ 0.03 this ratio is about 3. It is also interesting to consider
the recent experiments of Nguyen et al. [17], who investi-
gate poly-n-isopropyl acrylamide (PNIPAM) particles in a
quasi two-component solvent consisting of 3-methyl pyri-
dine, water and heavy water; the packing fraction of the
particles is ∼0.02. Aggregation is first observed on heat-
ing to 0.3 K below the solvent (lower) critical temperature,
corresponding to τ ∼ 0.9 x 10−4 and ξ /R is about 0.2. In
[17] liquid-like aggregates are first observed. On raising
the temperature by a further 0.1 K the particles inside the
aggregates form an fcc crystal. We can ask whether this sce-
nario is found in our theory. In Figure 6(a) we find for xr =
0.41 lowering the temperature towards the solvent critical
temperature yields first G-X coexistence which is followed
by G-L coexistence for τ � 0.025. For a slightly different
solvent composition xr = 0.418, see Figure 6(b), we observe
G-L coexistence followed by G-X coexistence as in [17].
However, on lowering τ even further we find stable G-L
coexistence; this is not reported in [17]. Our study points
to the wide variety of phase behaviour that might occur in
systems of this type. Indeed it suggests that nanoparticles
immersed in a binary solvent near criticality might exhibit
very rich phase diagrams and aggregation phenomena.
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