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Building a general theoretical framework to describe the microscopic origin of macroscopic chirality
in (colloidal) liquid crystals is a long-standing challenge. Here, we combine classical density
functional theory with Monte Carlo calculations of virial-type coefficients to obtain the equilibrium
cholesteric pitch as a function of thermodynamic state and microscopic details. Applying the theory
to hard helices, we observe both right- and left-handed cholesteric phases that depend on a subtle
combination of particle geometry and system density. In particular, we find that entropy alone can
even lead to a (double) inversion in the cholesteric sense of twist upon changing the packing fraction.
We show how the competition between single-particle properties (shape) and thermodynamics
(local alignment) dictates the macroscopic chiral behavior. Moreover, by expanding our free-energy
functional, we are able to assess, quantitatively, Straley’s theory of weak chirality, which is used in
several earlier studies. Furthermore, by extending our theory to different lyotropic and thermotropic
liquid-crystal models, we analyze the effect of an additional soft interaction on the chiral behavior of
the helices. Finally, we provide some guidelines for the description of more complex chiral phases,
like twist-bend nematics. Our results provide new insights into the role of entropy in the microscopic
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origin of this state of matter. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4908162]

I. INTRODUCTION

“What is the origin of chirality in the cholesteric phase of
virus suspensions?”! With such an intriguing question, which
is to date unanswered, Eric Grelet and Seth Fraden titled their
paper about a decade ago. The link between micro- and macro-
chirality remains elusive not only in virus suspensions but
also in many systems exhibiting liquid crystal phases.? These
thermodynamic states in between the disordered liquid phase
and the (fully) ordered crystal phase consist of anisotropic
particles or molecules featuring long-range orientational order
but no (or only partial) positional order. In this study, we
focus on nematic phases, where the particles are preferentially
aligned along a common direction, identified by a unit vector
called nematic director fi, while keeping their centers of mass
homogeneously distributed in space. Whereas the nematic di-
rector of an ordinary (achiral and uniaxial) nematic phase is
homogeneously distributed throughout the system (Fig. 1(a)),
the cholesteric phase, often called chiral nematic, displays
a helical arrangement of the director field (Fig. 1(b)). The
typical length scale associated to this macroscopic chirality,
that determines the periodicity of such an imaginary helix, is
named cholesteric pitch P. Depending on the twist sense of the
director field around the chiral director ¥, the liquid crystal
phase is denoted right- or left-handed.
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Cholesterics are readily observed in both thermotropic
molecular compounds and lyotropic colloidal suspensions.’
The former class of liquid crystals, in which phase transitions
are mainly governed by temperature, has found wide tech-
nological application in the opto-electronic industry due to
the unique combination of rheological, electrical, and optical
properties conferred by the chiral structure.>~ Derivatives of
cholesterol, the first liquid-crystal-forming systems experi-
mentally observed,”!” belong to this class.

Several lyotropic systems, where the phase behavior is
density-driven,'! such as suspensions of colloidal particles
or polymers, exhibit chiral order as well. Examples range
from biological materials, such as DNA,!>"'* filamentous vi-
ruses, 15719 cellulose and derivatives, 22! chiral micelles,?? to
synthetic polymers, such as polyisocyanates®»>* and polysi-
lanes.”> Suspensions of filamentous viruses are among the
most studied'® colloidal systems in which chirality plays a
major role in self-assembly processes at different levels, lead-
ing to fascinating phenomena.’®?’ At the microscopic level,
charged (protein) subunits self-assemble into supramolecular
helical structures. However, whereas suspensions of fd virus
particles exhibit chirality also at macroscopic scale, thereby
stabilizing a cholesteric phase,'"!3~!7 other virus particles, such
as tobacco mosaic virus?® and Pf1 virus ! particles, with similar
helical charge distributions, form only a uniaxial nematic
phase, thereby challenging the idea that molecular chirality
is a guarantee for macroscopic chirality. Even though in the
latter case the cholesteric pitch is expected to be too large to be
directly observed in experiments, very subtle differences at the

©2015 AIP Publishing LLC
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FIG. 1. Microscopic particle model (left), macroscopic liquid crystalline
phase (cartoon in the middle), and schematic of the nematic director field
(right). (a) Achiral colloids are often modeled as spherocylinders of length
L and diameter D, whose orientation is described by a unit vector . These
rod-like particles give rise to a uniaxial and achiral nematic phase with a
uniform nematic director fi. (b) The hard helix model consists of Ny hard
spheres of diameter o, rigidly fused together to form an helix with molecular
pitch p and radius r. Particle orientation is described by a unit vector &
and an internal angle . Colloidal helices self-assemble into a cholesteric
configuration. The nematic director field fi exhibits a helical arrangement
along the chiral director ¥, with periodicity given by the cholesteric pitch P.

single-particle level can drastically change the macroscopic
self-organization.'”'® Surprisingly, fd virus particles that are
sterically stabilized with a polymer coat so thick that the elec-
trostatic chiral interactions are proved to be fully masked, still
exhibit a cholesteric phase.' These observations, together with
a recent study aimed to map the fd-virus phase diagram onto
that of hard rods,”® suggest that entropy alone could govern
the phase behavior of (some) virus suspensions, including
the stabilization of a cholesteric phase. However, whereas the
phase diagram of the coated fd virus and the nematic order
parameter was independent of ionic strength, the cholesteric
pitch varied surprisingly strongly with ionic strength.!

The underlying competition between steric and electro-
static interactions appears even more evident in suspensions
of another charged filamentous viruses (M13), where a left-
handed cholesteric phase was obtained by right-handed parti-
cles.!” The observed sense of the macroscopic twist could not
be correctly predicted by modeling the particles as hard bodies
without taking into account a soft electrostatic contribution.'”
Cholesterics with opposite handedness with respect to that
of the constituent particles were also observed in solutions
of ultrashort DNA.'**" Surprisingly, a peculiar type of DNA
oligomers showed an inversion in the helical sense of the chole-
steric phase upon changing system concentration, suggesting
that packing arguments could explain in which sense these
systems should twist. However, the cholesteric pitch seemed to
be influenced by other factors as well, such as particle length

J. Chem. Phys. 142, 074905 (2015)

and oligomer sequences, but not, for example, by particle flex-
ibility. As a result, no simple rules could exhaustively explain
the chiral behavior.'* Inversion in the cholesteric handedness
has been reported in other studies as well, often concerning
temperature-driven systems.”3! The list of systems indicating
that the connection between micro- and macro-chirality is far
from trivial, is quite long,?? and difficult to rationalize due to
the different interactions in place.

On the other hand, a recent study seemed to have suc-
ceeded in identifying a chiral system ruled by entropic effects
only.* Indeed, interactions in suspensions of helical flagella
extracted from bacteria can be finely tuned by modifying
solvent properties. In particular conditions, these colloidal
particles can be ultimately considered as hard helices, whose
exact shape can be also precisely regulated.’33* As expected,
when helical flagella self-assemble, the chirality is trans-
mitted to the liquid crystalline state. However, the formed
chiral nematic phase has a different symmetry from the chole-
steric phase and was identified as a conical phase.*3-¢ Why
such a phase should be thermodynamically more stable than
the cholesteric is another question thickening the mystery of
colloidal chirality. An even more complicated mechanism of
chirality propagation from molecular to macroscopic scale has
been observed in thermotropic bent-core liquid crystals.?’ In
peculiar cases, the intricate coupling between twisting and
bending deformations stabilize another chiral nematic phase,
named twist-bend nematic.?® In this instance, the local nematic
director fi is tilted with respect to the chiral director y, resem-
bling, therefore, the conical order.

In view of such a complex and sometimes controver-
sial experimental scenario, it is not surprising that a unifying
microscopic theory is still lacking. The attempt of incorpo-
rating all the interactions present in experiments in a suitable
model for chiral particles is often beyond the limits of current
theoretical tools and computational resources. For this reason,
despite very few exceptions,’” focus was separately given to
the chiral behavior arising from either purely hard-core repul-
sions**? or from soft electrostatic potentials only.*>* Even
with this simplification, the complexity of a chiral interpar-
ticle potential is such that most of these studies resorted to
coarse-grained potentials,*”™*’ in which the microscopic chiral
features are masked into a single pseudo-scalar parameter.*®
By contrast, we decided to build our study in small steps,*’
first improving our understanding of entropy-driven systems,
and only at a later stage introducing further elements into the
particle model.

Beside the particle model, an appropriate theoretical
approach is crucial. Computer simulation methods are limited
by the large number of particles required to accommodate a full
rotation of the nematic director. Despite ad-hoc techniques that
have been developed to try to overcome such an issue,*>! only
few simulation studies, mainly using coarse-grained potentials
tailored to minimize cholesteric pitches, have been dedicated to
the investigation of cholesteric phases.***¢47:32-55 Therefore,
to shed new light on the microscopic origin of the macro-
scopic chirality, we appeal to a suitable microscopic theory.
A successful example of a microscopic theory, often used in
soft matter, is due to Onsager, who was the first in 1949 to
explain the role of entropy on the liquid-crystalline behavior of
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anisotropic particles.’® However, it took until 1976 to describe
the cholesteric ordering, when Straley proposed his approach,
based on theory of elastic deformations.* The seminal work of
Straley has been extensively used in modern studies to predict
the cholesteric pitch of several colloidal systems,30:42:44:45.57-60
Only few exceptions presented alternative methods, limited,
however, by severe analytical assumptions.***! Despite the un-
doubted relevance of Straley’s pioneering work, his approach
is based on two main assumptions. First, the theory is rigor-
ously valid only in the limit of weak macroscopic chirality,
a limit that is anyway usually not far from the experimental
conditions. Second, the theory cannot be solved fully self-
consistently, in the sense that the orientation distribution of
the cholesteric phase equals that of the underlying uniaxial
achiral nematic phase, thereby neglecting the differences in
the local order between the latter and a cholesteric phase. Of
course, this second assumption is consistent with the pertur-
bative treatment of chirality in Straley’s theory. Additionally,
Straley’s approach has been used only for the description of
cholesterics but not extended to the study of chiral nematics
with different symmetries (e.g., twist-bend or conical phases).

We have recently introduced a novel approach to address
these issues.*” Our aim is twofold: by refreshing the theoretical
description of chiral nematics within the density functional
framework, we propose an additional tool to advance our
understanding of this complex state of matter. At the same
time, by applying our theory to hard helices, we provide
new insights into the role of entropy in colloidal cholesterics.
Indeed, such an apparently simple model exhibits a fairly rich
and complex chiral behavior**® that goes beyond simplified
scenarios suggested in earlier studies.?*®"%> Moreover, despite
a thorough simulation study aimed to map out the entire
phase diagram,%~% leading to a newly observed chiral nematic
(screw-like) phase, a question mark is still pending on the
cholesteric phase and a definitive evidence from simulations
is yet to come.

This paper is organized as follows: we dedicate Sec. 11
to readers interested in technical details, where we describe
extensively the theoretical framework used and its numerical
implementation. In Sec. III, we study the cholesteric order in
systems of hard helices. In Sec. IV, we analyze the effect of an
additional soft, short-range interaction on the macroscopic chi-
ral behavior, thereby providing an explicit example of how the
theory can be applied to different particle models. Furthermore,
in Sec. V, we discuss some guidelines to extend the theory to
(more complex) chiral nematic phases of different symmetries
than the cholesteric one, focusing, in particular, on the study of
twist-bend nematics. We conclude our paper with some final
remarks in Sec. VI.

Il. THEORY

A. Revisiting Onsager theory: uniaxial colloids
and nematic order

To introduce our formalism, we first revisit Onsager’s
theory>® within the framework of classical density functional
theory (DFT),% in the simple case of anisotropic rod-like
colloids of diameter D and length L (see Fig. 1(a)).
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The center-of-mass position of a particle with cylindrical
symmetry can be described by a three-dimensional vector r
=(x,y,z) € V, with V the volume of the system, whereas
a unit vector & = (sin @ cos ¢, sin 4 sin ¢, cos 6) represents the
particle orientation, where 6 € [0,7) and ¢ € [0,27) are the
polar and the azimuthal angle with respect to fi. The single-
particle density p(r,«) of a generic phase depends on the
single-particle degrees of freedom and satisfies the normali-

zation condition
/ dr ]{ do p(r,0) = N, )
1%

where N is the total number of particles and the rotation-
invariant measure is dw = d¢ d cos 8. The free energy is a
functional of the single-particle density and can be written as
a sum of ideal and excess contributions, F [p(r,d)] = F;4lp]
+ Fex[p]. The ideal term reads

BFlp] = /V dr f 46> p(r,0) [log V p(r,0) — 1], (2)

where 8 = 1/kgT, with kg the Boltzmann constant and T the
temperature, and V is an (irrelevant) constant thermal volume.
For the excess part, we consider the second-order truncation of
the virial expansion (second-virial approximation)

BFexlp] = _% / drdr’fdc[) do' f(r—r',0,0")
v

x p(r,d)p(r’,d"), 3)

where the interactions between particles are contained in the
Mayer function

O =—1.0,0) = e PV _ )

where U(r — 1/,@,®’) is the pair potential.

In a nematic phase, the positions of the particles are homo-
geneously distributed throughout the system and the single-
particle density can be rewritten as p(r,®) = ny(®), where n
= N/V is the average number density and /(@) is the orien-
tation distribution function (ODF). We choose a Cartesian
reference frame in which the z-axis is parallel to the nematic
director fi. Since the nematic director is the symmetry axis for
global rotations, the ODF is independent of the azimuthal angle
¢ and depends only on the polar angle: /(®) = (). Inserting
this into ¥ and integrating out the spatial and azimuthal de-
grees of freedom, we obtain

1
@ =n(logVn—-1)+ 27rn/ dcos 68y (6) logy(6)

-1
2
+% / dcosdcos§ E@6,0)w(@)w(0), (5

where we identify the three terms associated to translational
entropy, orientational entropy and excess contributions related
to the excluded volume

E0,0) = —/ d¢ de¢’ dr f(r,0,0). 6)

Equation (5) is an exact expression for the free energy of the
nematic phase of infinitely long (aspect ratio L/D — o) hard
rods, as derived by Onsager.’® Subsequently, Parsons®” and
Lee® used the same approach to describe nematics of rods
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with finite L/D, mapping the system free energy to that of
hard spheres at the same packing fraction i = nvy, with vy
= %LD2 + %D3 being the single-particle volume. This correc-

tion introduces a density-dependent prefactor

(1-2n)
(1-n)?

in front of ¥,,. Following the DFT recipe,®® once the free-
energy functional is defined, the next step consists of mini-
mizing ¥ [y] with respect to ¥(6), subject to the normaliza-
tion condition | ddy(d) = 1. In the case of (Parsons-Lee)
Onsager theory, the resulting non-linear equation for ()
reads

G(n) = 7

1 ’
Y(0) = 1 exp (—n G(n) / dcos®’ E@©.9) w(G’)) , (®)
VA -1 2n
where Z is a normalization constant such that 2z foﬂ dfsin 8
¥(0) = 1. Equation (8) can be solved self-consistently at fixed
nand E(6,0’), and the resulting (equilibrium) ODF can be used
to calculate all relevant thermodynamic quantities. An example
on how to solve it numerically by using a discrete grid for the
polar angle 6 in the case of hard rods can be found in Ref. 69.
Theoretical predictions obtained for spherocylinder systems

agree well with simulation results.%

B. Density functional theory for chiral nematics

It is known that a chiral particle cannot be uniaxial.®!62

Biaxiality introduces an additional degree of freedom: the
orientation of a generic rigid body is described by three sca-
lar parameters, (6,,a) € [0,7) x [0,27) X [0,27), known as
Euler angles, or alternatively by a 3 X 3 rotation matrix R.
The rotation matrix R can be parametrized in terms of the
unit vector @, representing the orientation of the main long
axis and the internal azimuthal angle a (cf. Fig. 1(b)). The
single-particle density has to be modified for the extra degree
of freedom and is now subjected to the following normalization
condition:

/ dr ]{ AR p(r.R) = N. ©)
\%

with dR = da d¢ d cos 6. Since the achiral nematic phase is
a homogeneous phase with orientational order only, the cor-
responding single-particle density depends on the orientation
variable only: p(r,R) = ny(R), with [ dRy(R) = 1. In the
most general case, ¥ (R) describes a biaxial phase.

Let us now consider a chiral nematic phase of pitch P with
the chiral director y aligned along the y axis (cf. Fig. 1(b)).
The cholesteric pitch P is related to the chiral wave vector ¢
through P = 27/q. The chiral structure implies that the ODF
at arbitrary y can be deduced from that at y = 0 by rotating
by an angle 27y /P = gy around the y-axis. Such a condition
reads

pr,R) = n(To(r)R), (10)

where

Tq(r) =Re(q X - 1) = Ry(qy) (11)
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is a rotation around the chiral director ¥ (that coincides with
the y-axis) by an angle gy. From Eq. (10), we can immedi-
ately verify that chiral nematic phases are characterized by
the inequality p(r,R) # p(-r,R). By explicitly imposing the
parity symmetry p(r,R) = p(-r,—R), based on the assump-
tion that the physics does not change by passing from a right-
handed to a left-handed reference frame and vice versa, we can
rewrite the previous as p(r,R) # p(r,—R). A necessary (not
sufficient) condition for a system of particles to manifest chiral
nematic ordering is that an inversion transformation, i.e., R
— —R, does not transform a particle into itself, as previously
noticed.?*®1:62 It is also interesting to ask what kind of two-
body interaction U(r,R,R’) generates chiral nematic order-
ing. Again, a necessary condition for chirality is U(-r,R,R’)
# U(r,R,R’) or, alternatively, U(r,—R,—R’) # U(r,R,R’).

Equation (10) describes the functional dependence of the
single-particle density of a chiral nematic phase. The corre-
sponding density functional theory, already briefly outlined
in our previous work,* is based on three steps that will be
described in detail here. First of all, we will insert the func-
tional dependence of the chiral phase p(r,R) = p(7,(r)R) into
F Lp(r,R)]. Second, we will rewrite ¥ [p(75(r)R)] in such
a way that the dependence on g and p(R) is disentangled.
In other words, we will construct a functional %, such that
Falp(R)] = F[p(74(r)R)]. Finally, we will minimize the den-
sity functional with respect to /(R) and g. Let p*(R) be the
solution at given g and given number density n, such that
Fy(n) = F4[p*(R)]. The equilibrium value of ¢ (and hence
the equilibrium cholesteric pitch P) at the number density n
corresponds to the minimum in ¢ of the free energy F,(n).

As alemma, let us first see that the ideal part of the free-
energy functional

BFdlp(TOR)] = /V dr }4 AR p(T;(1)R)
X[logVo(T,(r)R) - 1]  (12)

does not contribute to the chiral ordering. By changing the
orientation integration variable from R to Q = 7,(r)R (with
unit Jacobian), we obtain

BFAp(TOR)] = /V dr f dQ p(@)[log V(@) — 1]
-y f dR p(R) [log Vp(R) - 1]. (13)

We can therefore conclude that the ideal term is independent
from q.

We now consider the excess free-energy term ¥, [p] and
we describe an approach to minimize it exactly without recurr-
ing to the second-order g-expansion. The second-virial excess
free-energy functional, with Parsons-Lee correction, for a chi-
ral nematic phase reads

)
X fr =1 ,R,R") p(T4(r)R) p(T4(x)R’).
(14)

ﬁﬁx[p]——@/ drdr’?{ AR dR’
A%
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By transforming the particle position variables and performing
a volume integration, we can rewrite the previous equation as

BFexlpl _ _Gn) ,
v = /Vdr}{deR

X f(r,R.R) p(T4(0)R) p(R). (15)

To extract the g-dependence from the density distribution, we
expand p in rotational invariants. For an achiral nematic phase,
the expansion is

00 1
PRI =D D phunDhn(R), (16)

1=0 m,n=—

where D! (R) are Wigner matrices’’ and the expansion
amplitudes read

;o 2+1
Pmn = 87T2

Similarly, for a chiral nematic phase, we have

74 dRPR)DL, (R). (17

(o] l
PTOR) =D D phunDhn(T®R). (18)

=0 m,n=—

By inserting Eq. (18) into ¥, of Eq. (15), we have

BFexlp]l _ G(n)
v 2

1 U
Emm/nn/(Q)pmnpm’n” (19)
ILm,n l'!,m’,n’
where we introduced the rotational-invariant g-dependent
excluded-volume coefficients

Elide) = [ dr § aRag
X f(r,R,R) D}, (T,(®R)D., AR). (20)

Using Eqgs. (13) and (19), we have thus shown that the free-
energy functional of a chiral nematic phase can, in general, be
written as

7 [p(R
BFlp(R] _ f dR p(R)[log p(RYV ~ 1]

|4
Gn) 1 TN
+ — E e (21

2 l;n l,;n, mmnn (q)pmnpm n ( )
As a result, the g-dependence has been shifted from the ODF
to the excluded volume coefficients. Minimizing with respect
to pl,, and g would allow to obtain the equilibrium properties
of a general chiral nematic phase.

C. Local uniaxiality

Let us now consider the simplest case of a chiral nematic
phase: a phase which at r = 0 is locally uniaxial along the z
direction and is invariant to rotations around the main particle
axis. In this case,

20+ 1
Phin = \ 5 P10m00 0, (22)

where the /-dependent factor is introduced for later conve-
nience. The excess free energy of Eq. (15) can, therefore, be

J. Chem. Phys. 142, 074905 (2015)

expressed as

v Z p1prEn(q), (23)

=0

BFeslp] _ Gn)
-

where Ej/(q) = /2 21,2+'E(l)g00(q), which from Eq. (20)

reads
20+1 [2I7+1
Ejq) = — ; \/ 2+ /dr j{dﬂ dRr’

X f(r,R,R) DL (T (r)R) DL(R). (24)

We can rewrite the rotational invariants in terms of the (stan-
dard) normalized Legendre polynomial #;(x) (with / the de-
gree of the polynomial),

o 20+ 1
Pi(h-0) = TD(I)O(R)' (25)
It follows that
1
o1 = / d(- &) plh - OYPU(h - &), (26)
-1

which allows us to write, for a chiral nematic phase,

20+ 1
2
In the case of a cholesteric phase, in which the chiral director

X L fi(and ¢ || ¥ in our reference frame), we have

Pi(f,(y) - &) = Dl THD)R). 27)

h,(y) =X singy +2cosqy. (28)

Therefore, we obtain

Ell/(q) = —/dl‘ fdﬂ dR’

X f(r,RR)Pi(hg(y) - D)Pi(fy - @), (29)

where fig = fi,(0). The excluded volume coefficients of Eq. (29)
can be directly calculated using numerical techniques, as we
explain in Sec. IT E.

In conclusion, starting from Eq. (21), valid for a generic
chiral nematic phase, we have assumed local uniaxiality and
independence of the distribution on rotations around the main
particle axis, to obtain an explicit functional for the cholesteric
phase, that we can rewrite as

1
ﬁ?‘q/_["l’] =n(logVn-1)+ 47r2n/ d cos 8y (0) logy ()
-
ZG i
+ 2 2(77) Z YiprEn(q), 30)

1,I’=0

where, in analogy with the uniaxial case (cf. Eq. (5)), we kept
only the dependence on the polar angle 6 by defining the ODF
¥ (0) = p(R)/n and its expansion coeflicients

1
z,bl:/ d cos 8y (cos 6)P;(cos ) . 3D
-1

Once the excluded volume coefficients Ej;(q) defined by
Eq. (29) are known, the equilibrium ODF is obtained, in
complete analogy with Sec. II A, by solving the following
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equation:

1 - Eudg)
W(cos9) = 7 SXP|-n G(n) ,%0 FPI(COS Oyr|, (32)

with Z the normalization constant. The minimization proce-
dure is performed by using a very fine grid for the angles 6 to
obtain the solution (8), at fixed number density n and fixed
chiral wave vector g. For each density, the value of ¢ that
corresponds to the minimum value of the free energy is the
equilibrium one and the corresponding equilibrium pitch of the
cholesteric phase reads P = 27/q.

D. Limit of weak chirality: Straley’s theory

The expression obtained by Straley for the cholesteric
pitch of weakly chiral, infinitely long hard helices*® can be
easily assessed within our theoretical framework. Let us
expand a general functional # [p(7;(y)R)] to second-order
ing,

F Le(T4()R)] _
1%

TIORL | KelpR)lg

1
+ sz[P(R)]QZ +0(¢%),  (33)

where we introduced the constants

dFex[p(T,(y)R
Krlp(R)] = %W (34)
q=0
and
dzﬁx T (y)R
Kalp(R)] = [’Z,(qf(y il (35)
q=0

K7 is usually called the chiral strength since it must differ
from zero to have macroscopic chiral order. K is the twist
elastic constant.>*® According to Straley’s theory, the phase
is homogeneous with respect to the internal angle, implying
that the non-cylindrically symmetric character of the parti-
cle is averaged out. The equilibrium cholesteric pitch is P
=2n/q = -27K,/Kr. Since, in general, K, > 0, the handed-
ness of the cholesteric phase depends on the sign of Ky. The
explicit expression for K depends on the theoretical frame-
work adopted, see, for example, Refs. 44 and 58, and within
the second-virial approximation, it reads

n2
Krz—E/drj{daA)d(D'
X f(0,0,0) y 0.yl @) (i @), (36)

where w, = @ - Xand ¥/ (x) = Oy (x)/0x indicate the derivative
with respect to the function argument. By using Eqs. (34)
and (35), we will assess quantitatively Straley’s approach for
hard-helix systems. Moreover, we will compare our results
with those presented in Ref. 58, where a sophisticated imple-
mentation of Straley’s approach has been used.

E. Numerical procedure

As input for our theory, we need to evaluate the excluded-
volume coefficients defined in Eq. (29). To perform these
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calculations, we use a Monte Carlo (MC) integration scheme
that has several advantages. First of all, it is a very general
approach suitable for several particle models.”'~’® Moreover,
MC integration is a robust method for functions with discon-
tinuities and for integration regions with complicated bound-
aries,”’ as in this study where we integrate the Mayer function
of complex shaped particles. In general, it is also computation-
ally more efficient than standard quadrature methods for the
evaluation of high-dimensional integrals and it is intrinsically
parallelizable since it consists of uncorrelated calculations.
Furthermore, by determining the associated statistical errors
(that decay as ~1/+/nasc, with nps¢ the number of MC steps),
it is easy to control the accuracy of the calculations, as we will
show below in Fig. 2(b). Finally, we point out that we use the
simplest brute-force method for now; the implementation of
more sophisticated schemes could be beneficial’®8! but this is
left for future studies.

Assuming the first particle in the origin, the procedure
consists of repeating np;c times the following steps: (i)
generate uniformly the random variables r = (x,y,z) € V,
0,0’ € [0,n) and ¢,¢’,a,a’ € [0,27) to obtain a random
two-particle configuration; (ii) compute the Mayer function

(a) Bo’ [F(a) - FO)]/V
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FIG. 2. Example of typical output of the theory applied to a system of hard
helices with molecular pitch p =80, outer radius r =0.40, contour length
L. =100, and number of beads (of diameter o) N =15 (see Fig. 1(b)).
(a) Free-energy diftference F(17,q)— F(17,0) between cholesteric and achiral
nematic as a function of cholesteric wave vector g and packing fraction 7.
The white dashed line indicates the free-energy minimum, thereby identifying
the equilibrium g for each 7. (b) Density-dependence of the cholesteric
wave vector g and associated statical errors computed over 8 independent
runs of nprc=1x10° (black solid line), npsc =1x10'° (red dotted), and
narc =5x10'9 (green dashed) MC steps. As expected, error bars are smaller
for increasing number of integration steps nasc.
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f(r,R,R’) that in case of hard bodies consists of checking for
particle overlaps; (iii) for each /, I, and g under consideration,
compute the Legendre polynomials P;(fi,(y) - @), Pr(cos 6)
and combine them with f(r,R,R’) according to Eq. (29). The
coefficients E;;(q) are therefore calculated as

Endq) = —vol(f(r,R,R)Pi(fy(y) - &)

X PyAcos §) sin 0 sin 6" ;¢ (37)
where for hard bodies the MC average (.),;c reduces to an
average over overlapping configurations, and vol is the integra-
tion domain volume. For example, if positions are generated
within a sphere of maximum radial distance rpy.x, We have
vol = (4/3)nr} . (167%). Coefficients up to [yax = 20 are suffi-
cient to ensure convergence, as also reported for spherocylin-
ders.3? Calculations are sped up by using recursion formulas
for P; and the number of coefficients Ej;» can be reduced in case
of additional symmetries. For example, up-down symmetric
particles have only even coefficients Ey;p;r # 0. After evaluat-
ing E;;(q), we can iteratively solve Eq. (32), at fixed number
density n and chiral wave vector g, by using a discrete grid for
the polar angles 6 (cf. Ref. 69). The resulting ODFs are used
to obtain a full free-energy landscape in the (g,7) plane like
the one shown in Fig. 2(a). Locating the free-energy minimum
among the g-values studied at every packing fraction 7 al-
lows us to calculate the density-dependence of the equilibrium
cholesteric pitch P. Pressure and chemical potential are derived
from the free energy, and coexistence between isotropic and
nematic phases is located by imposing equal pressure and equal
chemical potential conditions. The most significant source of
numerical errors in this procedure is caused by the limited

(@) 1500 — : ——
A p/c rlc
\ (5 03
1000 . 44225 04
o
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b
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accuracy due to a low number of n,,¢ steps in evaluating the
excluded-volume coefficients. However, by considering inde-
pendent runs (that can subsequently be averaged to increase
the accuracy), it is possible to carefully estimate the associated
statistical errors. Fig. 2(b), for instance, shows the equilibrium
cholesteric wave vector g as a function of packing fraction n
for a system of hard helices, determined after the numerical
calculation of the excluded volume coefficients with different
number of MC steps nysc. As a general trend, upon increasing
the packing fraction 7, errors become bigger since excluded-
volume coefficients are coupled with density (see Egs. (5) and
(32)), with higher-/ coeflicients (with poorer statistics) becom-
ing increasingly important for the stronger peaked distributions
at higher n7. However, nj;¢ can be increased in order to reach
the desired accuracy. In the remaining, we will show the error
bars only in a few cases, when we need to quantify our statis-
tical accuracy before drawing conclusions on the physics of the
system. The main drawback of the procedure is that a fine grid
in g-values is computationally expensive and it is advisable to
perform a shorter run in advance to define the optimal g-mesh.

lll. RESULTS

A. Cholesterics of hard helices: handedness, (double)
sense inversion, and length dependence

We study the cholesteric order arising in systems of
colloidal hard helices. A hard helix is modeled as N hard
spheres of diameter o, rigidly fused together to form an helix
of contour length L., microscopic pitch p, and radius r (see
Fig. 1(b) and Refs. 49 and 63). In Figs. 3(a)-3(c), we report
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FIG. 3. Cholesteric pitch P as a function of packing fraction 77 for right-handed helices consisting of N =15 fused hard spheres with diameter o-, contour
length L. = 100 and varying microscopic pitch p and radius r as labeled, stabilizing cholesteric phases with same (a), opposite (b), or both (c) handedness. (d)
State diagram for helices with L. =100 and N =15 in the p —r representation. Open symbols indicate parameters for which statistics is not sufficient for an

accurate classification. Boundary lines are guides-to-the-eye.
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the density dependence of the cholesteric pitch P for right-
handed helices with L. = 100 and Ny = 15. We focus on the
range of packing fractions for which the nematic phase is stable
with respect to the isotropic phase, and we choose an upper
limit of 1 = 0.5 since at higher densities, smectic phases are
expected.®3-6>% Depending on the microscopic parameters r
and p, we observe three different cases. In Fig. 3(a), we report
the pitch P of helices manifesting cholesteric phases with the
same handedness of the constituent particles (positive pitch
corresponds to right-handed twist). The magnitude of P varies
from hundreds to thousands of sphere diameters o, depending
on particle shape and system density, and it is monotonically
decreasing upon increasing 7. The step-like feature is an
artifact due to the use of a discrete mesh for the g-values (see
Sec. II E) and a smooth curve would be obtained by decreasing
mesh-size and increasing statistics. Fig. 3(b) shows helices
developing cholesterics with opposite handedness. The density
dependence of P appears to be more complex in this case but it
is still possible to observe a few common trends. For instance,
|P| seems to exhibit a minimum for some 7, and at fixed p,
helices with a larger radius r lead to a shorter cholesteric
pitch P. It is worth noting that for some shapes, |P| < 1000,
suggesting that these particle models would be good candidates
for (direct) simulations of cholesteric phases (under twisted
boundary conditions). In Fig. 3(c), we report cases in which the
handedness of the cholesteric phases depends on the thermo-
dynamic state of the system. For these peculiar helical shapes,
a left-handed twist is preferred at the isotropic-cholesteric
transition. However, upon increasing packing fraction, the
cholesteric pitch P becomes longer and longer, and passing
via an achiral state (infinite P), eventually changes sense of
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twist. The packing fraction at which inversion occurs depends
on the particle shape, and, in general, the inversion occurs at
higher density for larger p and r. Comparing these results with
a recent study*” that reported pitch inversion for long and soft
(Yukawa) helices using Straley’s approach, we observe that the
nematic order parameter S at which the inversion occurs can be
much lower for the particles in the present study. Indeed, soft
long helices*? exhibit sense inversion only for a high degree
of alignment (S > 0.9), whereas for our short hard helices,
inversion can occur very close to the isotropic-cholesteric
transition (S ~ 0.65). If the corresponding packing fraction at
which the inversion takes place becomes too high, it is possible
that another phase (e.g., smectic) becomes stable, thereby
preventing such an inversion. To summarize our results, we
report in Fig. 3(d) a state diagram using the molecular pitch p
and radius r as axes of our representation. Depending on the
functional behavior of P vs n, we identify three regions that
will be referred as same, opposite, and mixed. Open symbols
represent cases for which our statistical accuracy is not enough
for a precise classification. Uncertain points are also found
for helices with very small p and r (e.g., p = 20, r = 0.10).
For these parameters, the particle shape resembles a rod with
protrusions rather than a proper helix, making the computation
of the excluded volume more demanding and suggesting that
very small changes in the shape give rise to complicated inter-
locking effects.

In Fig. 4, we study the dependence of the (inverse) pitch on
particle contour length L, for selected particle shapes belong-
ing to the three different classes (same, mixed, opposite). In
Fig. 4(a), we report the cholesteric wave vector g = 2m/P for
helices of fixed geometry (p = 20 and r = 0.407) and different
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FIG. 4. Density dependence of the cholesteric wave vector g for helices of fixed radius r = 0.40" and different contour lengths L. (N = %Lc /o) with particle
pitches (a) p =20 (b) p =30 (c) p =40 (d) Radius r-pitch p state diagram for helices with contour length L. =200 and N = 30, with regions indicating
the same, mixed, and opposite handedness regimes. Boundaries are shifted (upwards) with respect to the state diagram presented in Fig. 3(d).
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length. We observe that an increase in L. corresponds to
a decrease in ¢, therefore, to a longer cholesteric pitch P
and a weaker cholesteric character. Upon increasing particle
length, weaker cholesteric phases are also observed for helices
undergoing handedness inversion (mixed case), as reported in
Fig. 4(b). The same effect is also observed in helices stabilizing
opposite cholesteric phases (see Fig. 4(c)). We notice that L.
does not only influence the magnitude of the cholesteric pitch
but eventually also the sign and therefore the qualitative chiral
behavior, even if the particle geometry is fixed (cf. also discus-
sion on inclination angle in Ref. 58). We summarize our results
for helices of L. = 200 in the state diagram of Fig. 4(d), where
we, indeed, observe an overall upward shift to higher values of
p of the boundaries delimiting the three different regimes with
respect to Fig. 3(d). Also in this case, the undulatory nature of
the boundaries and the presence of unclear cases for small p
and r reflect the sensitivity of the macroscopic chiral behavior
on subtle changes in particle shape. We notice that neither the
theoretical results obtained for long helices,>*¢! predicting that
P ~ L2 nor experimental observations on coated fd viruses,!
for which P ~ L7025 are consistent with our study. Indeed,
the richer scenario of short helices does not allow to deduce a
clear scaling relation between cholesteric pitch P and particle
length L (notice that L « L, for fixed p,r, see Eq. (39)).

To further emphasize that the chiral behavior of a sys-
tem depends sensitively on the precise details of the single-
particle properties, we conclude this section by speculating
on a possible non-trivial cholesteric behavior as a function of
particle length. In Fig. 5, we show the cholesteric wave vector
q as a function of packing fraction n, for helices with p = 20,
r =0.30, and various particle lengths. For L. = 100, we
observe the (single) handedness inversion as described above.
Surprisingly, upon increasing the particle length by a few o, a
second twist inversion seems to occur at higher packing frac-
tion. However, we notice that large statistical errors are present
at large 1. Upon further increasing the particle length (L.
= 160), the first inversion disappears. Therefore, in contrast
with the previous case, the chirality inversion involves a transi-
tion from same to opposite handedness, upon increasing pack-
ing fraction. Finally, for helices with L. = 180, no inversion
is present and only cholesterics with the same handedness
are stable in the range of 5 studied. Even though the large
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FIG. 5. Cholesteric wave vector g as a function of packing fraction n for
helices with fixed geometry (p =20, r =0.30") and different contour length
L. (Ng= %LC /o). Despite the large statistical error bars for large 77, we will
see in Fig. 7(c) that this trend is, in principle, possible.
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statistical uncertainty seems to undermine the conclusiveness
of our observations, we will see in Sec. III B that this behavior
is consistent with our interpretation of the chiral order in terms
of minimization of the excluded volume. However, it is not
possible to exclude that another phase (e.g., smectic) would
be more stable than the cholesteric at large 7, preventing, in
particular, the second inversion to occur.

B. Competition between shape
and particle-particle correlations

In this section, we try to interpret our results on the
collective chiral behavior in terms of a microscopic param-
eter. Harris, Kamien, and Lubensky (HKL) proposed®!®* a
pseudoscalar ¢y ; to measure the internal chiral strength
of a molecule, and showed that ¥y g is proportional to the
macroscopic chiral strength K7, defined in Eq. (34). The sign
of Yy k1 determines the handedness of the cholesteric phases.
Ref. 61 (see Table I therein) reports an explicit expression of
Yk for an helix of uniform density, in the limit that the
particle length is much larger than the particle radius. In our
notation, it reads

4
VHKL X — 3L 1- 24 , (38)

3 2
@r5) 1 (=F)

where L is the Euclidean length, which is a function of the

contour length L., the microscopic pitch p, and the radius r

given by

pL.

27412 + (%)2

In Fig. 6, we report the state diagram for helices at fixed
L. =100 and L. =200, based on the analysis of the sign
of Yukr(r,p), in analogy with Figs. 3(d) and 4(d). Clearly,
the mixed region where sense inversion occurs cannot be ex-
plained by the pseudoscalar ¢y k1, as itis density independent.
Nevertheless, a qualitative trend can be captured with this
purely geometric interpretation. We clearly find that the sign of
Y ik L overestimates significantly the value of the microscopic
pitch p for the boundary from same to opposite handedness, but
describes correctly that this boundary shifts to higher p upon
increasing L. More over, the pseudoscalar approach predicts
that the cholesteric pitch scales as P oc L2, which we have

L= (39)
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FIG. 6. State diagrams based on the sign of the pseudo-scalar ¢ i x 1.01:62 ()
Hard helices with fixed contour length L. = 100 (cf. Fig. 3(d)). (b) L. =200
(cf. Fig. 4(d)). Notice the different scales on the vertical axes.
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already shown not to be always the case for short helices.
We can therefore conclude that single-particle properties are
not sufficient to completely describe the observed non-trivial
macroscopic chiral behavior and, as already noticed,%" % par-
ticle correlations must be taken into account as well.

As shown in our previous study,*® in order to explain the
stability of chiral ordering, we analyze the excluded volume
associated to right/left-handed pairs of particles and the hand-
edness of the resulting cholesteric phase. A pair of helices is
in a right-handed configuration if (r — r’) - (& X @®’) > 0. Vice
versa, if the latter is negative, it is in a left-handed configu-
ration. Therefore, we can define a right/left-handed excluded
volume as

. 7 da dao’
E;La(a)-w)——/d(Ar)/o > o
X f(Ar,R,R") O(xAr - (® X O")),

(40)

with ®(x) the Heaviside step function and « the internal
angle (cf. Sec. I B). If AE = Egx — E; > 0, a left-handed
configuration is preferred, and if AE < 0, a right-handed one.
It is worth noting that AE is a microscopic property of a
pair of helices, while Yy k. is a single-particle property. For
convenience, we define a normalized AE* = (Egr — E;)/(ER
+ Er). In Figs. 7(a)-7(c), we report AE* for several helical
shapes (all right-handed), as a function of the angle formed
by the main axis of the two helices y = arccos( - @’). In the
case that AE™ has the same sign for all values of the angle v,
we can predict undoubtedly the handedness of the cholesteric
phase. For example, in Fig. 7(a), we report helices with fixed
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radius r = 0.30 and length L. = 100 and different p (moving
on a vertical line in the state diagram of Fig. 3(d)). For large p,
AE* > 0Vy, consistently with the stabilization of a left-handed
cholesteric (opposite case). The magnitude of the cholesteric
pitch P is also qualitatively related to the magnitude of |AE™|.
On the other hand, for helices with smaller p, we observe
that AE* < O for small angles y. In this case, the handedness
of the liquid-crystalline phase cannot be predicted a priori.
In fact, for this range of parameters, we have shown (cf.
Fig. 3(d)) that the cholesteric handedness depends on packing
fraction, i.e., it depends on the local alignment (mixed case).
The pitch inversion can be qualitatively interpreted as follows.
At low packing fraction, the average angle y between helices
is relatively large and since the corresponding AE™ > 0, an
opposite-handed phase is stabilized. Increasing the packing
fraction, the average y becomes smaller and eventually AE*
< 0, giving rise to a same-handed phase. The subtle balance
between excluded volume and local alignment can also
be appreciated in Fig. 7(b), where we show results for
helices with fixed internal pitch p =20~ but different r
(horizontal line in Fig. 3(d)). Analyzing the state diagram,
we find upon increasing r: an (uncertain) opposite case (r
= 0.10), mixed cases (r/o = 0.2,0.3), and same-handedness
cases (r/o = 0.4,0.5). Observing that AE* > 0 Vv for helices
with r/o = 0.1, we can confirm the opposite handedness in
the state diagram. Such a behavior seems an anomaly in the
state diagram but, as already mentioned, the helical shape in
this region (small p and small r) has complex features that
can give rise to a non-ordinary behavior. We notice that also

(b) p=26 L=100 N=15
‘ T ‘ T ‘ T

I *—r1/0=0.1
—=r/6=0.2

1/6=0.3
—r1/6=0.4
1/6=0.5

0.0051

AE*

-0.005

035 0.4 045 05

FIG. 7. Difference in excluded volume between right- and left-handed pair configurations AE*=(Er— Er)/(Er+ Er) as a function of the angle between the
two helices y = arccos(d - @’). (a) Right-handed helices of length L. = 100-, N = 15, fixed radius r = 0.30-, and different microscopic pitch p. (b) Right-handed
helices of length L. = 100, fixed pitch p =20, and different radius r. (c) Right-handed helices with fixed geometry p =20, r =0.30, and different length L.
Error bars are calculated over 5 independent runs of 2x 10'° MC steps. (d) Thermodynamic average of the excluded volume difference AF v as a function of
n for helices of length L. =100 (Ng=15), r =0.40, and different p. The trends of AF, match qualitatively with the density dependence of the cholesteric

wave vector g (cf. Fig. 4).
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in the analysis of the maximum packing fraction performed
in Ref. 64 (cf. Fig. 3 therein), no clear trend can be observed
for helices with small p and small r (e.g., helices with p = 1o
r = 0.20 represent a local minimum in the maximum 7). The
angular dependence of AE* for r = 0.20 is already described
above and explains the mixed case. A double inversion seems
also possible in the case of r = 0.30- and it will be described
in detail in Fig. 7(c). For helices with r/o = 0.4,0.5, we also
observe two regions for AE*, but in these cases, the range
of angles y with AE* <0 is larger than the (mixed) case
of r/o=0.2, and AE* > 0 is only for vy values that are so
large that they are not expected to contribute to the nematic
order. Moreover, AE™ takes also values more negative. As a
consequence, the stabilized phase has the same (right-handed)
handedness of the constituent helices. The dependence of
AE*(7y) on particle length for p = 20~ and r = 0.30, reported
in Fig. 7(c), is consistent with the observations made for the
chiral behavior shown in Fig. 5. In all cases, we observe for
increasing vy the sequence positive-negative-positive for AE*
suggesting the possibility of a double inversion for all particle
lengths. However, the depth of the region in which AE* < 0
is larger for longer helices and is caused by the different
chiral behavior for particles with different lengths, as already
seen before. These observations manifest the intricate link
between microscopic and macroscopic chirality. This indicates
that although the calculation of AE* is a powerful tool, and
computationally faster than the full minimization, it cannot
always be considered as an exhaustive analysis, which is to
be expected as this type of analysis is based on geometrical
two-body properties only, which do not take into account the
thermodynamic state point. In order to do so, we introduce
the ODF ¢(6) to explicitly account for the local alignment
in the system. We therefore thermodynamically average the
difference in the excluded volume, introducing a quantity that
mimics the functional form of the excess second-virial free
energy®’

AF 2
Bk *:—”—}[d@fdca'
v 2

X oy - Do - ONAE(D - @), (41)

with Yg(fig - ©’) the ODF in the achiral limit. In Fig. 7(d), we
report AF, for three representative cases of helices with L.
=100, r = 0.40 and p = 20 (same), p = 30~ (mixed) and p
= 40 (opposite). By comparing with the density dependence
of g in Fig. 4 (black lines in panels (a)-(c), respectively),
we observe that all the three regimes are captured by AF,,
including a good agreement on the packing fraction at which
the sign inversion is obtained. We can therefore conclude that a
solely geometric interpretation is not sufficient to describe our
results and that the degree of local alignment must be taken into
account by weighting the excluded volume difference AE* with
the ODF.

C. Chiral order vs uniaxial order: Weak chirality limit
and comparison with Straley’s approach

We have shown in Sec. I D that we can recover the theory
proposed by Straley® by expanding the full free-energy func-
tional for small g. An interesting difference between Straley’s
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FIG. 8. ODF ¥(0) for uniaxial nematic phase (V) and cholesteric (N*) for
helices with p =80, r =0.40, L. = 100", N5 =15 at the isotropic-nematic
transition (17 ~0.29). The inset shows the difference between the ODF of a
chiral (V*) and an achiral (N) nematic phase, Ay (8) =y n+(0) - N(0), as a
function of € for different packing fraction 7.

small-g expansion with coefficients evaluated in the achiral
limit (¢ = 0) and the present study involves the effect of ¢
on the ODF which is taken into account here and ignored
in Straley’s approach. In Fig. 8, we show an example of the
difference between the ODF corresponding to the achiral limit
(¢ = 0) and that at ¢ # 0 for which the free energy has actually
a minimum (helices with p = 80, r = 0.40, L. = 150, N;
= 15). We observe a more peaked ODF associated to the chiral
order (N*) than the achiral one (N). In the inset, we see that
this difference becomes more pronounced upon increasing the
packing fraction since the liquid crystal phase becomes more
chiral (smaller ) for this kind of helices. Even though the
difference can be small, it is yet reflected in the free energy
(cf. Fig. 2(a)) and in the nematic order parameter S that can
differ by a few percent.

In Straley’s method,* the uniaxial ODF is then used to
compute the chiral strength K7 and the twist elastic constant
K,. Subsequently, the equilibrium cholesteric wave vector
in the second-order expansion approximation is obtained via
qr1 = —Kr/K,. In our case, from the calculated free energy
landscape, by using Egs. (34) and (35), we are able to obtain the
density dependence of these two constants. In Fig. 9, we assess
quantitatively Straley’s method by plotting g;; obtained from
second-order expansion and g obtained by the minimization
of the full functional, for selected helical shapes (the ones
studied in Ref. 58). We observe that for the helices in Fig. 9(a),
the difference is very small. Since the macroscopic chiral
behavior for these particles is very weak (cf. Sec. III A),
we expected that a second-order approximation would not be
too off. However, in case of cholesterics with shorter pitch,
we find an appreciable difference, as can be observed from
Fig. 9(b) in which we report the case for helices with p = 8o, r
= 0.40. Since the higher-order terms can be positive or nega-
tive (without any clear correlation with the chiral behavior),
we cannot conclude that Straley’s method under/overestimates
the results systematically. In Table I, we compare our results
with Ref. 58, in which a sophisticated implementation of
Straley’s method was used. Surprisingly, we observe that for
very long cholesteric pitch P, where we expected the second-
order approximation to be more accurate, the values differ the
most. This is probably due to the fact that K7 is very small,
and therefore, a large precision in estimating such a quantity is
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FIG. 9. (a) Difference in the cholesteric wave vector gyy—¢ as a function
of 17 obtained by expansion of the free-energy functional gy (see Egs. (34)
and (35)) and by minimization of the full functional g, for selected helices
of length L.=100 and varying microscopic pitch p and radius r. (b)
The cholesteric wave vector g as a function of 77 for helices with p =80,
r=0.40, L.=100.

needed to prevent a huge discrepancy in the cholesteric pitch.
We can thus confirm that the overall scenario seems to be well
captured by Straley’s approach. However, we cannot exclude
that subtleties in the numerical implementation could lead to
quantitative discrepancy for the value of the cholesteric pitch P
in some particular cases (for example, cf. helices with p/o = 2
in Table I).

We conclude our analysis, by noting that in the limit of
weakly chiral long helices, several studies predicted various
scaling relations for the main quantities regulating the chi-
ral liquid-crystalline behavior. Despite the relatively small 7-
regime of interest here, much smaller than a decade, which
limits the meaning of exponents, we briefly discuss these scal-
ings anyway for comparison with our results. For example, in
his original work,* Straley proposed that K> ~ n?, resulting
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in a cholesteric pitch P o« 1/S%. However, experiments often
show a different density dependence of the elastic constant
(for example, in the thermotropic PBLG,® K, ~ 1%-%%). Subse-
quently, Odijk® suggested that P ~ n~! for rigid hard helices
and P ~ =>/3 for flexible hard helices. Scaling relations are
also measured in experiments, for example, some fd viruses!
show P ~ ~!4, while P ~ '3 is observed for PBLG.® In
contrast, we find that none of these relations apply uniquely to
the short hard helices studied here. Indeed, in Fig. 10(a), where
we plot K, as a function of 7 for several helical shapes, we
observe that the functional form of the twist elastic constant K,
computed from Eq. (35) depends on the different helical shape
considered and cannot be described by a simple power law
relation, at least not for the present parameter set. Analogously,
in Fig. 10(b), we plot P vs i for very weakly chiral helices
(p = 200) along with the best fits of the expected power laws in
these regimes. Due to the poor mutual agreement of the expo-
nents, we tend to conclude that also the density dependence
of the cholesteric pitch P of short helices does not obey any
general power law.

IV. TOWARDS MORE REALISTIC PARTICLE MODELS:
SOFTER COLLOIDS

In this section, we modify the particle model to study
the effect of an additional soft interaction on the macroscopic
chiral behavior. The helical shape is still described by the
parameters Ny, L., p, and r (see Sec. III A), but spheres of
different helices now attract or repel each other via the follow-
ing short-range potential (cf. cartoon in Fig. 11(a)):

0 TIii2j 2O

ﬁU(”lizi) =1 Be

0 Fli2j 2 Tsoft

0 < rii2j <Tsoft (42)

where ry;5; is the distance between sphere i of helix 1 and
sphere j of helix 2, and 7, determines the range of the poten-
tial. For Be > 0 (< 0), we obtain a repulsive square shoul-
der (attractive square well) potential, whereas for Se = 0, we
recover the hard-core potential studied above. Even though
the computation of the excluded volume coefficients becomes
more expensive, we are still able to obtain reliable results
(cf. error bars in Fig. 11) using the simple procedure described
in Sec. IL E.

In Fig. 11(a), we report the density dependence of g
for helices with p = 80, r = 0.20", which interact via a very

TABLE I. Comparison between the method described here and Straley’s approach as implemented in Ref. 58. Our results are obtained by averaging 16 runs of
10'°MC steps for the excluded volume integration (only significant digits are reported). K7 and K> are calculated using Eqgs. (34) and (35) and the cholesteric
pitch P by minimizing the full functional. All the quantities are in reduced units with kg7 =1and o =1.

SIN* 10* Kr K> P
N~

Helix Here Here Ref. 58 Here Ref. 58 Here Ref. 58 Here Ref. 58 |AP|/P (%)
r=02p=2 0.300 0.699 0.64 4.27 4.83 0.199 0.154 -2990 —2008 30
r=02p=4 0.274 0.677 0.66 473 41.36 0.194 0.177 -260 -268 3
r=0.2p=8 0.258 0.690 0.68 42.3 -29.03 0.203 0.184 =310 -399 28
r=04p=2 0.403 0.612 0.60 -10.7 -3.83 0.160 0.153 965 2509 160
r=04p=4 0.340 0.622 0.61 110 98.35 0.150 0.152 -93 -97 4
r=04p=8 0.282 0.619 0.61 115 110.13 0.136 0.159 -90 -90 0
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short-ranged potential (75, = 1.507) that can be either attrac-
tive or repulsive. We observe that the effect of an additional
attraction (repulsion) enhances (reduces) the macroscopic chi-
ral behavior with respect to the purely hard helices. In fact,
upon increasing the attractive well from Se = 0 (hard case)
to |Be| = 0.07, the cholesteric pitch can be decreased by
hundreds of o, depending on 7 as well. The opposite effect
is obtained when the soft interaction is repulsive, as can be
also observed in Fig. 11(b). In this case (p = 8o, r = 0.40),
the soft repulsion with a range of ry,; = 1.50- masks partially
the molecular chiral features producing an effective shape that
resembles more achiral rods. In Fig. 11(c), we study at fixed
interaction strength Be = 0.03 the effect of the interaction
range of the repulsion 7y, for the same helices. Analogously,
increasing the interaction range produces a longer cholesteric
pitch, whose equilibrium value depends less sensitively on the
density. Such an effect is also observed for helices manifesting
both right- and left-handed phases (mixed case), as reported
in Fig. 11(d). In this particular case (p = 30, r = 0.40), the
transition between the two types of cholesterics becomes less
abrupt for increasing interaction range, eventually making it
hard to identify within our statistical accuracy.

V. TOWARDS MORE COMPLEX CHIRAL PHASES:
TWIST-BEND NEMATICS

Cholesteric order is the simplest chiral arrangement for
a nematic phase, in which the twist axis is perpendicular
to the local nematic director. In general, the local nematic
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=3 [ e—hard
~—Be=0.03
0.1+
| +Pe=0.07
-0.125(
0.25 0.3 0.35 0.4 0.45
n
(d) p=306 r=0.46 Be=0.03
eehard ' ‘ T ‘ T
L earq=1.250 1
0.01F “—Teor=1.50
| a—arq=2.00
ok T4ofi=2-50
©
o
-0.01
-0.02
| | |
-0.03 035 0% 0.45 0.5

FIG. 11. Density dependence of the cholesteric wave vector g for selected cases of short-ranged soft helices of length L. =100. (a) Effect of attraction
(B e <0, dashed lines) and repulsion (B€ > 0, dotted lines) with respect to the hard case (full line) of helices with a microscopic pitch p =80, radius r =0.20,
and interaction range ry; = 1.50". Inset: cartoon of the particle model. (b) Effect of interaction strength Be for short-range (ry,; = 1.50) repulsive helices. (c)
Effect of interaction range r, for helices with p =80, r =0.407, and interaction strength Se =0.03 stabilizing an opposite-handed cholesteric. (d) Effect of
interaction range rs,p; on helices (p =30, r =0.40, f€=0.03) exhibiting handedness inversion.
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(c)

BF/ o

FIG. 12. (a) Schematic of a twist-bend nematic phase. The local nematic director h twists around the chiral director ¥ with a fixed bending angle . (b)
Free-energy landscape in 6 —q plane, at fixed packing fraction 77 =0.35 for helices with p =40, r =0.40, and L. =100. The green circle indicates the
free-energy minimum. (c) Minima of free energy in 17 — g — & space for helices of length L. =100, r =0.40- and p =20 (red circles), p =30 (green crosses),
p =40 (blue squares). All the lines belong to the plane § = /2, indicating that bending is not favorable.

director can be inclined by an angle ¢ with respect to the chiral
director (see Fig. 12(a)), leading to the following functional
dependence of the director field:

n,(y) =X sindsingy +§ cosd +Zsindcosqy. (43)

In Eq. (43), we keep on assuming the y-axis to be the chiral
director. When 0 < ¢ < m/2, the phase is named twist-bend
or conical. This phase could even display additional hexatic
order’®? that will not be taken into account here. The case
of the simpler cholesteric is recovered for 6 = m/2, whereas
for 6 =0, we have an achiral uniaxial nematic. By insert-
ing Eq. (43) (instead of Eq. (28)) into the expression for the
excluded volume coefficients (Eq. (29)), our theory can be
used to discriminate between cholesteric and conical phases.
By implementing a 2D grid for the chiral wave vector ¢ and
the angle ¢, we compute the excluded volume coefficients and
calculate the free-energy landscape that now depends on an
additional parameter, the angle ¢ (cf. Fig. 12(b)). In analogy
with the cholesteric case, we are able to locate the free-energy
minimainthen — g — ¢ space and obtain the equilibrium chiral
properties characterizing the nematic phase. In Fig. 12(c),
we report the results for helices of contour length L. = 100,
r =0.40, and p/o = 2,3,4. We recover the three regimes for
the cholesteric handedness (same, mixed, opposite) and we
find that the angle 6 = /2 Vn, indicating that bending in the
system is not favorable. Therefore, we conclude that for these
helical shapes, the cholesteric phase is stable with respect to a
twist-bend or conical phase. Nevertheless, a thorough analysis
should be performed, since evidences of a conical phase are
reported in experiments on colloidal helical flagella,'” but none
about a stable cholesteric phase, that could be hidden in the
large isotropic-conical phase coexistence region. Clearly, the
simple model presented in this paper might not be suitable
to describe the experimental conditions of Ref. 17. In partic-
ular, we notice that quite a large degree of polydispersity is
observed, thus suggesting that deviations from the present
monodisperse analysis might be found. Moreover, a screw-like
nematic phase has been observed in simulations of hard heli-
ces® that differs from the conical one since the chiral arrange-
ment refers to the short axis of the particles. However, due to
the periodic boundary conditions used in the simulations, the
stable cholesteric phase was not obtained, and therefore, the
competition between cholesteric and screw-like phases could

not be examined. Indeed, the screw-like order could be seen as
a partial manifestation of a biaxial chiral nematic phase. It will
be intriguing to explicitly take into account the biaxial order
in the second-virial theory described in this paper. Finally, the
study of twist-bend order can be useful to give new insights into
the intricate mechanisms governing liquid crystals formed by
bent-core mesogens.>’

VI. CONCLUDING REMARKS

We have developed a second-virial density functional the-
ory for the chiral order in nematic phases. We setup a theo-
retical framework to obtain the equilibrium cholesteric pitch,
eliminating (some of) the assumptions of Straley’s approach.*’
The use of MC integration as numerical method for the calcu-
lation of the effective excluded volume renders the theory fast,
easy to implement and suitable for a wide range of particle
models. We apply our theory to study the cholesterics of short
hard helices, an apparently simple colloidal model that dis-
plays a richer chiral behavior than expected when consider-
ing long weakly chiral helices. In particular, we focus on the
handedness of the cholesteric phase and we find a non-trivial
dependence on particle shape and length, leading to a possible
double sense inversion in some cases. We interpret our results
as a competition between the geometric properties and the
tendency of local alignment, resulting in a thermodynamic
average of the difference in the excluded volume associated
to right- and left-handed pairs. We also provide a quantitative
comparison with Straley’s theory, confirming that the most
important features of the macroscopic chiral behavior can be
captured with that method as well. Our results provide new
insights into the role of entropy in the link between micro- and
macro-chirality, suggesting that entropy should not be over-
looked in experiments on colloidal liquid crystals since most of
the unexpected chiral phenomena could be ascribed to entropic
effects only. However, the limited aspect ratio of our particles
and the lack of other important features, for example, flexi-
bility, have to be considered to fully analyse the phase behavior
of some fd viruses.’®%*37 By incorporating short-range soft
interactions into the hard helix model, we have shown that
it is possible to assess the macroscopic chiral behavior also
beyond non-purely hard-core colloids. However, it is likely that
in order to deal with more complex inter-particle potentials, a
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more sophisticated implementation of MC integration should
be considered.

The theoretical description of the chiral phase can also be
improved. Since the biaxial order is expected to be strongly
coupled to the chiral order,%"428889 future studies based on an
orientation distribution function that explicitly accounts for the
local biaxial arrangement would provide new insights into the
problem. Nevertheless, we have already shown that more com-
plex chiral nematic phases, such as twist-bend nematic, some-
times called conical phase, can be straightforwardly studied
within our theoretical framework. Additionally, introducing
local biaxiality would allow us to better understand the compe-
tition in systems of hard helices between the cholesteric phase
and the recently discovered screw-like phase.*% Furthermore,
our theory can easily be extended to mixtures, addressing other
fundamental questions such as the doping of achiral nematic
phases and the chiral behavior of racemic mixtures, topics on
which we are currently working. Finally, the recent progresses
in chemical synthesis and in controlling the colloidal self-
assembly processes, resulting in chiral superstructures, suggest
that the number and variety of chiral building blocks will be
soon enlarged.’®°7 Our approach will be useful to describe the
macroscopic chiral behavior of these new colloids.
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