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We employ Monte Carlo simulations to investigate the self-assembly of patchy colloidal dumbbells
interacting via a modified Kern-Frenkel potential by probing the system concentration and dumbbell
shape. We consider dumbbells consisting of one attractive sphere with diameter σ1 and one repulsive
sphere with diameter σ2 and center-to-center distance d between the spheres. For three different
size ratios, we study the self-assembled structures for different separations l = 2d/(σ1 + σ2) between
the two spheres. In particular, we focus on structures that can be assembled from the homogeneous
fluid, as these might be of interest in experiments. We use cluster order parameters to classify the
shape of the formed structures. When the size of the spheres is almost equal, q = σ2/σ1 = 1.035,
we find that, upon increasing l, spherical micelles are transformed to elongated micelles and finally
to vesicles and bilayers. For size ratio q = 1.25, we observe a continuously tunable transition from
spherical to elongated micelles upon increasing the sphere separation. For size ratio q = 0.95, we
find bilayers and vesicles, plus faceted polyhedra and liquid droplets. Our results identify key param-
eters to create colloidal vesicles with attractive dumbbells in experiments. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4913369]

I. INTRODUCTION

Colloidal self-assembly refers to the self-organisation
process of nano- to micrometer-sized colloidal particles
into larger structures.1 This process can be used for the
fabrication of novel materials2–4 and has potential applications
in, e.g., photonics,5–8 food industry,9,10 and medicine.11–13 The
ability to guide the self-assembly allows for a bottom-up
approach to design and create specific materials. One way
to achieve such guidance is to engineer colloidal particles
with discrete, attractive patches at well-defined locations on
the surface of the particles.14 As several tuning parameters
can, in principle, affect the self-assembly process, computer
simulations provide an invaluable tool to explore the self-
assembly of patchy particles models.

One of the simplest patchy particle models is a sphere
where one half is covered with an attractive patch that
can interact with a similar patch on another sphere. The
self-assembly of these so-called “Janus” particles has been
investigated in computer simulations15,16 and revealed the
spontaneous formation of micelles and vesicles together
with wrinkled sheets and different crystal structures.17–20

In addition to Janus particles, past computer simulations
studies have also investigated the effects of the number
of patches and their surface distribution,21–23 as well as
the patch coverage fraction, patch shape, and interaction
range24–27 on the structure and the phase behaviour of patchy
particles. On the experimental side, patchy particles can be

a)g.avvisati@uu.nl
b)m.dijkstra1@uu.nl

synthesised in a large variety of shapes and with different
patchy properties.28–30 In some cases, the particles are already
used to form complex ordered structures, e.g., clusters18,31,32

and Kagome lattices.33,34

While many patchy particle models have been inves-
tigated so far, most systematic studies have focused on
spherical colloids. Some studies have been performed on
dumbbells with a selective attraction on one of the spheres.
Experimentally, patchy dumbbells can be realised by creating
a variation in the surface roughness between the two spheres.35

By introducing a specific amount of depletant to the system,
a selective attraction between the smooth spheres of the
dumbbells can be created, whereas the rough spheres remain
repulsive. As a result, dumbbells can self-assemble into small
clusters to form a micellar fluid. Previous theoretical works
on attractive dumbbells have confirmed the existence of a
micellar fluid and also reported bilayer formation.36 Bilayer
formation has also been observed in simulations for tangential
hard dumbbells with tunable attraction strength.37,38 However,
spontaneous vesicles formation, which is found in molecular
surfactants,39 remains unobserved at the level of computer
simulations of patchy colloidal dumbbells.

In this paper, we use computer simulations to address the
self-assembly of non-overlapping patchy dumbbells with an
interaction range of half the diameter of the attractive sphere.
This is considerably longer than the interaction range in some
experiments with depletion interactions35,40 but might still be
realistic for, e.g., nanoparticles or other types of interactions.
We show that there are regions in our parameter space where
we observe vesicle formation. Furthermore, we also observe
structures which were previously reported, such as bilayers

0021-9606/2015/142(8)/084905/8/$30.00 142, 084905-1 © 2015 AIP Publishing LLC
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and micelles. The formation of the different structures is
achieved by varying the size ratio and the sphere separation of
the dumbbells, as well as the volume fraction of the system.

II. MODEL AND METHODS

In this section, we introduce the model definition and
the method used to address the self-assembly of dumbbell-
shaped particles. The dumbbells are understood to interact
with one another and hereafter are referred to as “attractive”
dumbbells. The details on how a single dumbbell particle is
built and how the attractive potential is defined are found in
Subsection II A, while the details on the simulation and
analysis methods follow in subsections II B and II C,
respectively.

A. Geometry and interaction potential

Each dumbbell is assembled as follows: one attractive
sphere of diameter σ1 (red sphere in Fig. 1) is placed at
distance d from another non-interacting sphere of diameter σ2
(blue sphere in Fig. 1) which acts as a steric constraint. Thus,
the geometrical parameters are the size ratio, q = σ2/σ1, and
the dimensionless sphere separation, l = 2d/(σ1 + σ2). When
l = 0, we simulate a Janus dumbbell, while for l = 1, we obtain
a dumbbell consisting of tangent spheres. Furthermore, each
dumbbell carries a normalised orientation vector, ε̂, pointing
from the center of the non-interacting sphere towards the
attractive sphere. The interaction between a pair of dumbbells
i and j is the sum of an attractive and a repulsive contribution,

ui j = uatt
i j + urep

i j . (1)

The attractive contribution, uatt, is based on the Kern-Frenkel
potential,41 but here we also take into account the non
spherical particle shape. The final form of the attractive patchy
interaction reads

uatt
i j = uSW(r11

i j ) f (r̂11
i j , ε̂i, ε̂ j), (2)

where r̂11
i j is the normalised vector connecting the attractive

spheres of dumbbells i and j, r11
i j =

�
r j,1 − ri,1

�
denotes

the absolute center-of-mass distance between the attractive
spheres of dumbbells i and j. The square-well interaction in
Eq. (2) is defined as

βuSW(r11
i j ) =




βϵ for σ1 ≤ r11
i j < σ1 + ∆

0 for r11
i j ≥ σ1 + ∆

, (3)

where β = 1/kBT is the inverse temperature, kB, the Boltz-
mann’s constant, ϵ < 0 and ∆ are the square-well (SW)
parameters representing, respectively, the interaction strength

FIG. 1. Graphical representation of the geometry of one patchy dumbbell
particle consisting of an attractive sphere of type 1 (red) and a non-interacting
hard sphere of type 2 (blue).

and range. The orientational part gives directionality to the
attractive potential and reads

f (r̂11
i j , ε̂i, ε̂ j) =




1 if



ε̂i · r̂11
i j ≥ cos δ

and ε̂ j · r̂11
j i ≥ cos δ

0 otherwise.
(4)

The opening angle δ depends on the geometry of the particle
via the relation

cos δ =
1

4dσ1
·
�
σ2

2 − σ
2
1 − 4d2� (5)

and follows from trigonometry by connecting the centre
of mass of the small attractive sphere to the intersection
point between the small attractive sphere and the larger non-
interacting sphere. As a consequence, the attractive spheres
on two different dumbbells cannot interact with each other
through the volume of the non-interacting spheres.

Finally, the repulsive part assures that two dumbbells i
and j do not overlap with each other and reads

urep
i j =


α,β=1,2

uHS(�ri,α − r j, β
�), (6)

where each hard-sphere contribution is given by

uHS(�ri,α − r j, β
�) =




∞ if
�
ri,α − r j, β

�
< σα,β

0 otherwise
, (7)

with σα,β = (σα + σβ)/2 representing the contact distance
between spheres α and β.

A representation of two interacting dumbbells is given in
Fig. 2, for two different values of δ. Note that the attractive
region (in orange) does not intersect with the non-interacting
sphere on the same dumbbell.

B. Monte Carlo simulations

We perform Monte Carlo simulations in the canonical
ensemble (MC-NVT) with N = 1024 dumbbells in a volume

FIG. 2. Graphical representations of the interaction between a pair of
patchy dumbbells in two different cases. Top panel: dumbbells with size ratio
q =σ2/σ1= 1.25 and dimensionless sphere separation l = 2d/(σ1+σ2)
> 1/3, corresponding to δ > 90◦. Bottom panel: dumbbells with size ratio
q =σ2/σ1= 1.25 and dimensionless sphere separation l = 2d/(σ1+σ2)
< 1/3, corresponding to δ < 90◦ (bottom panel). The attractive spheres are
denoted with red, the non-attractive spheres are denoted with blue. The orange
area represents the interaction range.
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V and temperature T with cubic periodic boundary conditions.
We define the volume fraction φ = ρVDB inside the simulation
box, where ρ = N/V denotes the total number density and
VDB is the volume of a single dumbbell. We employ single
particle translation and rotation moves42 to explore the
configurational phase space. The simulations are 2 − 6 × 107

MC steps long, where a single MC step is defined as N
attempted moves (either translations or rotations). During
the simulation equilibration time (half of the total simulation
length), the maximum displacement and the maximum angular
change are periodically adjusted to obtain acceptance ratios of
30% for both translational and rotational moves. After the
equilibration, the values are fixed.

Summing up, our model possesses a five-fold parameter
space {φ, βε,∆/σ1, l,q}, denoting the volume fraction φ, the
well depth βε, the interaction range ∆/σ1, the dimensionless
distance between the two spheres in the dumbbell l, and the
size ratio between the non-interacting and the attractive sphere
q. Throughout this work, we fix the interaction strength to
βε = −3.58, which is sufficient to observe self-assembly.38

For all our simulations, we set the interaction range∆ = 0.5σ1,
to half the diameter of the attractive sphere in the dumbbell,
similar to the interaction range used previously to study Janus
particles17 and patchy dumbbells.37,38

C. Order parameters

To compare the outcome of computer simulations for
different parameters, we choose a systematic approach to
analyse the final configuration of a simulation. To this
end, we employ a cluster analysis method and use three
order parameters to classify the clusters. This approach
is similar to the one used in Ref. 36, except here we
introduce an additional order parameter in order to deal
with the additionally encountered structures. In Fig. 3,
we show the typical aggregate shapes found for patchy
dumbbells with size ratio q = 1.035: a spherical micelle (a),
an elongated micelle (b), a vesicle (c) and (d), and a bilayer (e)
and (f).

The procedure to identify and classify clusters is the
following. First, we identify particles as interacting neighbours
if they have a mutual bond, i.e., they attract each other
according to Eq. (1). Then, a cluster is defined as a contiguous
set of neighbouring particles. For each cluster found in the final
configuration of a simulation run, we compute three cluster
order parametersM, B, andV defined as

M = 1
Nc

Nc
i=1

cos θi, (8)

B = 2
Nc(Nc − 1)


(i j)

�
ε̂i · ε̂ j

�2
, (9)

V = 1
Nc

Nc
i=1

(1 − sin θi) , (10)

where Nc is the number of dumbbells in the cluster and


(i j)
denotes the sum over all particle pairs in a cluster. The quantity

FIG. 3. Most common self-assembled structures found for patchy dumbbells
with size ratio q = 1.035 at the end of the simulation runs: (a) spherical
micelle l = 0.08, (b) elongated micelle l = 0.13, (c) vesicle l = 0.20, (d)
cut-through of a vesicle, (e) and (f) bilayers l = 0.28.

cos θi is defined as

cos θi = ε̂i ·
rcm − ri
|rcm − ri | , (11)

with rcm denoting the center of mass of the cluster, ri indicating
the center of mass of dumbbell i and ε̂i labelling the orientation
of dumbbell i. For a perfectly spherical micelle, we have
M = 1, whereas B = 1 for a bilayer, i.e., a collection of
dumbbells that are aligned either perfectly parallel or anti-
parallel with respect to each other. To further discriminate
the structures, V detects whether particles are not oriented
perpendicular with respect to the vector connecting them to
the center of mass of the clusters. For infinitely long and
flat bilayers, V would be low as the particles are oriented
orthogonally to the vector connecting them to the center of
mass of the cluster.

We found the following criteria appropriate to classify
the shape of the clusters (more details can be found in the
Appendix), where the symbols will be used later. According
to this classification, clusters cannot fall under multiple
categories. Furthermore, when two or more symbols are found
together, it means that at least 20% of the clusters belonged to
the corresponding category.

Although we rely on the automated classification method,
we also use direct visual inspection as a consistency check.
If we find disagreement between the two methods, visual
inspection will be preferred. This case happens rarely and
it will be explicitly mentioned in the captions of the following
figures.

Using the depicted classification scheme, we can now map
out, for varying size ratio q, the self-assembly state diagrams
for patchy dumbbells in the sphere separation l–volume
fraction φ representation.
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TABLE I. Criteria used to identify and label different clusters. An ellipsis
means the corresponding order parameter was not used for that particular
label. If the clusters do not match any of the first five criteria, then they are
classified as “other.”

Label Symbol M B V

Spherical micelle ≥0.9 . . . . . .

Elongated micelle <0.9 <0.4 . . .

Vesicle <0.5 . . . > 0.5

Bilayer <0.5 ≥0.4 . . .

Liquid droplet <0.5 . . . ∈ [0.3,0.5]
Other

III. RESULTS

We have investigated the self-assembly of patchy dumb-
bells for three different size ratios, q = 1.035, q = 1.25, and
q = 0.95. For each case, we have classified the structures
according to the order parameters introduced in Table I.

For q = 1.035, we observe a remarkably rich self-
assembly behaviour, including the formation of micellar
structures ranging from spherical to non-spherical shape. In
addition, we also find vesicles and bilayers (see Fig. 4). Note
that for the micelles (Fig. 4 top panels), the attractive spheres
point inwards, whereas for the vesicles and the bilayers, the
dumbbells form a double-layer where a part of the attractive
spheres points inwards and the other part of them outwards.

The self-assembly state diagram for patchy dumbbells
with size ratio q = 1.035 as a function of volume fraction φ

FIG. 4. Typical simulation snapshots for patchy dumbbells with size ratio
q = 1.035 for different values of volume fraction φ and sphere separation l .
Top left: spherical micelles at (φ = 0.03, l = 0.05). Top right: elongated mi-
celles at (φ = 0.03, l = 0.14). Bottom left: vesicles at (φ = 0.035, l = 0.175).
Bottom right: bilayers at (φ = 0.008, l = 0.34).

FIG. 5. State diagram of patchy colloidal dumbbells for size ratio q = 1.035,
interaction strength βε =−3.58, and interaction range ∆= 0.5σ1 in the
sphere separation l = 2d/(σ1+σ2)-volume fraction φ representation. The
green-shaded circles indicate the state points chosen to investigate the sta-
bility of the vesicles with respect to the bilayers.

and dimensionless sphere separation l is shown in Fig. 5.
We find that the transition from one regime to the other
is fully determined by the sphere separation l: micelles are
observed for small separations l when the attraction is more
directional, whereas bilayers are found for large separations
l, i.e., when the patchy interaction is less directional and the
steric constraint by the non-interacting sphere of the dumbbell
becomes more apparent. For intermediate separations, we find
vesicles which are favoured due to a delicate balance between
the directionality of the attraction and the geometric anisotropy
of the particle.

For two state points [(l = 0.23, φ = 0.007) and (l = 0.19,
φ = 0.14)], we find that both bilayers and vesicles form in the
simulation box. On increasing simulation time, we observe
that the vesicles are not stable when the size of the cluster
is well below Nc = 90 and that in this case, they open up to
become small bilayer sheets. On the contrary, if the size of
the vesicles is above Nc = 90, they do not break up. However,
as this behaviour is inferred by analysing configurations in
the MC-NVT simulations, it might be interesting to check
the observation with explicit free-energy calculations using
grand-canonical Monte Carlo simulations in single clusters as
used in Refs. 20 and 35. To understand the relevance of the
observed structures, it is worth mentioning that vesicles can be
employed as drug containers in drug delivery processes,43–45

while the bilayers offer the possibility of building large two-
dimensional colloidal structures from very simple building
blocks, which can be useful for application in photonics.46

As we turn to size ratio q = 1.25 for which the state
diagram is shown in Fig. 6, we observe that, with respect to
the size ratio q = 1.035, the micellar region has grown at the
expense of the vesicle and bilayer regime. Additionally, for
small sphere separations, we observe a regime where the total
number of aggregated particles is smaller than the number of
free monomers (denoted with crosses in the figure). The size
of this regime decreases upon increasing the volume fraction.
The bilayers can only be found at high volume fractions and
high sphere separations. However, we do observe elongated
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FIG. 6. State diagram of patchy colloidal dumbbells for size ratio q = 1.25,
interaction strength βε =−3.58, and interaction range ∆= 0.5σ1 in the
sphere separation l = 2d/(σ1+σ2)-volume fraction φ representation. The
crosses indicate the regime where aggregation is not relevant.

micelles which have bilayer-like characteristics, close to the
points where bilayers are observed.

We additionally compute the cluster size distribution for
q = 1.25 for different values of sphere separation l, but all at
the same number density ρσ3

1 = 0.1 (note however that the
volume slightly changes as the two spheres of the dumbbell
become more separate upon increasing l). This is defined as
number of clusters with size Nc, nNc, divided by the box
volume V . The cluster size distributions as shown in Fig. 7
for patchy dumbbells with a size ratio q = 1.25 are strongly
peaked, with the peak shifting to higher cluster sizes upon
increasing the sphere separation l. Indeed, in this regime where
micellar clusters form, the radius of curvature of a cluster
becomes larger as the particles become more elongated, in turn
allowing the clusters to grow larger. It is interesting to compare
our results to Ref. 36. The size ratio here considered, q = 1.25,
is the closest value we have to the lowest value considered in
that work (q = 1.4), while their sphere separation in terms
of l = 2d/(σ1 + σ2) reads l = 0.53. For these conditions, our
estimate of the average cluster size ⟨Nc⟩ is 30 times higher than
the one in Ref. 36. The reason for this large difference is two-
fold: first, the size ratio considered in Ref. 36 is already 12%
larger than ours, second–and more importantly–the interaction
range considered in this work (∆ = 0.5σ1) is three times as

FIG. 7. Cluster size distribution ρ(Nc)≡ nNc/V as a function of the number
of particles Nc in a cluster for patchy colloidal dumbbells with size ratio
q = 1.25, interaction strength βε =−3.58, interaction range ∆= 0.5σ1, and
varying sphere separation l and volume fraction φ as labelled.

large as the one considered in Ref. 36. Indeed, when we
performed simulations with q = 1.4 and shorter interaction
range (∆ = 0.15σ1) similar values were obtained for the
average cluster size, being ⟨Nc⟩ ∼ 9 in this work and ⟨Nc⟩ ∼ 7
in Ref. 36.

For size ratio q = 1.035 and q = 1.25, and for small values
of the sphere separation l, a comparison can be made with the
case of spherical patchy particles with low surface coverage.19

In view of this context, the size ratio q = 1.035 and the
sphere separation l < 0.1 would correspond to a patch surface
coverage of χ = 0.4. In this case, our model and the one in
Ref. 19 yield the same self-assembled structures, i.e., micelles,
on all the volume fractions investigated in this work.

Finally, we have also investigated patchy dumbbells
with size ratio q = σ2/σ1 = 0.95, where the non-interacting
sphere is smaller than the attractive sphere. The corresponding
state diagram for different values of φ and l is given in
Fig. 8. The formation of bilayers is observed for most sphere
separations. For larger separations, the formation of vesicles
is observed. Note that this region is located at a different
range of separations with respect to the size ratio q = 1.035.
While the size of the vesicles for size ratio q = 0.95 is up to
10 times larger than the one found for q = 1.035, both fall
into the correct classification category, given by the V order
parameter.

Interestingly, we also observe the formation of faceted
polyhedra (see Fig. 9), which were also found in Refs. 36
and 47. In addition, we observe the formation of liquid drop-
lets47–disordered, liquid-like, aggregates of particles which is
to be expected as in the limit l → 0 and q → 1, the system
reduces to a square-well fluid at a state point that lies well-
inside the two-phase gas-liquid coexistence region.48

From the order parameter analysis, liquid droplets and
faceted polyhedra look very similar. To distinguish between
them, we calculate the orientational probability distribution
function P(ε̂i · ε̂ j), for a set of neighbouring particles i and
j, all belonging to the same cluster (Fig. 10). While it is

FIG. 8. State diagram of patchy colloidal dumbbells for size ratio q = 0.95,
interaction strength βε =−3.58, and interaction range ∆= 0.5σ1 in the
sphere separation l = 2d/(σ1+σ2)-volume fraction φ representation. The
green-shaded region signals, for the state points inside it, the presence of
faceted polyhedra in addition to the reported structures. The classification of
five state points in the diagram has changed due to visual inspection.
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FIG. 9. Typical final configurations for patchy colloidal dumbbells with a size ratio q = 0.95, interaction strength βε =−3.58, and interaction range ∆= 0.5σ1.
Left panel: Liquid droplets at packing fraction φ = 0.005 and sphere separation l = 0.06. Middle panel: faceted polyhedra at packing fraction φ = 0.028 and
sphere separation l = 0.08. Right panel: vesicles at packing fraction φ = 0.008 and sphere separation l = 0.46.

apparent that pairs of dumbbells inside faceted polyhedra and
vesicles have a strong tendency to be aligned or counter-
aligned with respect to each other, the liquid droplets display a
more isotropic distribution as the dumbbells are oriented more
randomly with respect to each other.

Upon increasing the sphere separation, at low volume
fractions, we observe a transition from liquid droplets to
faceted polyhedra to bilayers that is similar to what has been
reported in a previous work on amphiphilic spherical Janus
colloids.47 For small sphere separations, this comparison is
justified, since in both cases the particles are approximately
spherical. However, as the sphere separation increases the
shape of our dumbbells becomes very different from spheres,
explaining why the vesicles are not found in Ref. 47.

Finally, comparison with the state diagrams for q = 1.035
and q = 1.25 suggests that bilayers are the most frequently
encountered structures for size ratio q = 0.95. For size ratio
q = 1.035, the bilayers already become less dominant at the
cost of other structures such as vesicles and spherical micelles.
For size ratio q = 1.25 the bilayers are only present in a
small range of volume fractions, leaving more room for the
formation of elongated and spherical micelles.

FIG. 10. Orientational probability distribution function for the representative
aggregate type: faceted polyhedron, vesicle and liquid droplet. While faceted
polyhedra and vesicles show similar degree of orientational ordering of the
neighbouring particles, the disordered liquid droplets exhibit a more isotropic
distribution. The solid lines are least-square fits to a double exponential
function.

IV. CONCLUSIONS

We have performed Monte Carlo simulations on patchy
colloidal dumbbells consisting of one hard attractive sphere
and one hard non-interacting sphere. To model the patchy
interactions between the attractive spheres, we have extended
the Kern-Frenkel potential to the case of non-spherical
particles. In particular, we have investigated the effect of
varying the size ratio q = σ2/σ1 between the two spheres of
the dumbbell, and the distance between them, characterised
by the sphere separation l. Starting from a fluid, we have
observed the formation of spherical and elongated micelles,
vesicles, and bilayers. In order to compare the outcome of the
simulations for our whole parameter space, we have employed
order parameters to identify and distinguish the clusters inside
the simulation box.

To summarise, we have investigated the effect of changing
the sphere separation l for three different size ratios q = 1.035,
q = 1.25, and q = 0.95 and for volume fractions ranging
between 0 and 0.25.

For size ratio q = 1.035, we have observed the largest
variety of structures. While micelles form for small sphere
separations and bilayers for high sphere separations, the
formation of vesicles is limited to a very limited region of
sphere separations. We speculate that this is due to a balance
between interaction directionality and particle geometry and
it would be interesting to study this further using free-energy
calculations.

For size ratio q = 1.25, upon increasing the sphere
separation l, the structures change from spherical micelles to
elongated micelles, and ultimately, at sufficiently high volume
fractions, to bilayers. In this case, no vesicle formation was
observed, suggesting that the system is sensitive to small
changes in particle geometry.

Finally, for the last investigated case, where the size
ratio q = 0.95, we found bilayer formation on a wide range
of sphere separations and volume fractions. We also found
hollow structures such as vesicles and faceted polyhedra and
occasionally droplet-like structures where the particles are
clustered together with random particle orientations. Compar-
ison with the state diagrams for q = 1.035 and q = 1.25
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suggests that the size ratio is an important factor in stabilising
the bilayers with respect to vesicles and micelles.

In another paper on patchy Janus particles,47 a transition is
reported from liquid droplets to faceted polyhedra to bilayers,
which is similar to what we observe for size ratio q = 0.95
and small sphere separations, while Ref. 36 gives an estimate
for the average cluster size consistent with ours, once we use
similar geometric and interaction parameters.

This paper illustrates how a variety of different structures,
some of them particularly relevant for applications46,49–51 such
as hollow vesicles and bilayers, can be formed starting from
patchy dumbbells with attractive interactions. The work also
shows that many of these structures can be well characterised
using cluster order parameters. It also suggests that in
experiments the structures might be very sensitive to variations
in particle geometry, which is the case in, for example,
polydisperse systems. In particular, this information is useful
when designing particles that can form hollow vesicles, which
can be useful in drug delivery or colloidal surfactants. It would
be interesting to perform a more detailed study focusing on
this topic, ideally combined with experiments. Finally, in this
paper, we have focused on relatively low volume fractions
where no crystallisation takes place. The formation of crystals,
some of which might have interesting photonic properties,
could also be topic of a follow-up study.
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APPENDIX: STRUCTURE RECOGNITION

In order to identify and classify the self-assembled
structures obtained for patchy dumbbells, we employ the order
parametersM,V , andB as defined in Eqs. (8)–(10). In Fig. 11
we show the space of the order parameter values (M,V ,B)
for clusters of patchy dumbbells for all the size ratios q,
all the sphere separations l, and all the packing fractions φ
that we considered in this study. Here, we consider all the
results together for classification purposes. In the x − y plane,
we have the (V ,M) parameters, while the B parameter is
used to colour code the markers. Additionally, marker of three
different sizes (small dots ∈ [0,75], medium dots ∈ [76,260],
large dots ∈ [261,1024]) have been used to encode the cluster
size information in the plot, in order to enhance its readability.
We complement the plot in Fig. 11 with insets containing
snapshots of the typical configurations in different regions
of the diagram. We partition the diagram in different areas
according to the values of the cluster order parameters, and we
label them from “(a)” through “(e).” The three main regions
in the diagram, form the vesicle (a), the micellar ((b), (c),
and partially (d)), and the bilayer regime (d). The micellar
regime transforms continuously from elongated micelles at

FIG. 11. Scatter plot of the values of the order parameters in the (V,M) plane for all the different size ratios considered in this work (q = 1.035, q = 1.25,
q = 0.95). Colour code and marker size stand for, respectively, the B parameter and the size of cluster (see text). The following main structures can be identified:
vesicles (region “a”), elongated micelles (region “b” and “d”), spherical micelles (region “c”), and bilayers (region “d”). Faceted polyhedra and liquid droplets
fall both into region “e” of the diagram.
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low M to more spherical micelles with increasing M and
is identified by the main sequence in the diagram. Here, we
have used a threshold value of M ≥ 0.9 to label aggregates
as spherical micelles. The low-V , low-M area (d) encloses
large aggregates with high degree of orientational order (B
parameter), the bilayer-like aggregates, as well as smaller
elongated micelles with low value of B. Somewhat in between
the vesicles and the bilayer regimes, liquid-like droplets as
well as faceted polyhedra are observed (partition (e)). Note
that, as Fig. 11 is a cumulative diagram, not all the structures
are present in every size ratio considered, but rather each size
ratio contributes differently to the areas in the diagram. While
we could make as many diagrams as size ratios considered, we
prefer to have a global and unique way of detecting different
kinds of aggregates.
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