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Structural signatures of dynamic heterogeneities
in monolayers of colloidal ellipsoids
Zhongyu Zheng1,2, Ran Ni3,4,5, Feng Wang2, Marjolein Dijkstra3, Yuren Wang1 & Yilong Han2

When a liquid is supercooled towards the glass transition, its dynamics drastically slows

down, whereas its static structure remains relatively unchanged. Finding a structural

signature of the dynamic slowing down is a major challenge, yet it is often too subtle to be

uncovered. Here we discover the structural signatures for both translational and rotational

dynamics in monolayers of colloidal ellipsoids by video microscopy experiments and

computer simulations. The correlation lengths of the dynamic slowest-moving clusters, the

static glassy clusters, the static local structural entropy and the dynamic heterogeneity follow

the same power-law divergence, suggesting that the kinetic slowing down is caused by a

decrease in the structural entropy and an increase in the size of the glassy cluster. Ellipsoids

with different aspect ratios exhibit single- or double-step glass transitions with distinct

dynamic heterogeneities. These findings demonstrate that the particle shape anisotropy has

important effects on the structure and dynamics of the glass.
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T
he nature of the glass transition is one of the major
unsolved mysteries in physics1–3. On approaching the glass
transition, the dynamics becomes not only progressively

slower but also more spatially heterogeneous1,2. Whether such
dynamic heterogeneity (DH) is associated with any structural
change is a central problem and an important theoretical
assumption in glass transition studies2,4–8. Two types of
structure signatures, amorphous order2,4,6,9 and crystalline
order8, have been proposed as responsible for the dynamics
arrest. As an archetypal model of amorphous order, icosahedral
order was often considered to be crucial for vitrification in
systems of spheres9–11, and its percolation was associated with
the glass transition12. On the other hand, the ground-state
crystalline structure, even if avoided, is suggested to be important
for the glass transition8. Recently, crystalline clusters with low
structural entropy were shown to be responsible for the dynamic
arrest in systems of spheres13–15. Despite the intensive search for
the structural origin of slow dynamics in glass transitions, little is
known for systems of anisotropic particles. Here we employ
colloidal ellipsoids that rarely exhibit local crystalline order or
icosahedral order studied in systems of spheres. By identifying the
static glassy particles and determining the local structural
entropies for anisotropic particles, we discover novel structural
signatures of DHs in both experiments and simulations, and
confirmed that the glassy clusters with low structural entropy are
responsible for dynamic arrest not only in translational degrees of
freedom13–15, but also in rotational degrees of freedom.

Colloids are considered as outstanding model systems for glass
transition studies because trajectories of individual particles can
be directly measured by video microscopy16–18. Significant
insights into the glass transition have been obtained from
experiments on colloidal spheres17–20. Anisotropic particles, by
contrast, are much less frequently used as a model system in such
studies21–24, despite the fact that they can better mimic molecules
with anisotropic shapes or interactions. Monodisperse ellipsoids
are excellent glass formers in two dimensions (2D) because their
shape can effectively frustrate crystallization and quasi-long-
range nematic order22,25.

Here we study the glass transitions in monolayers of colloidal
ellipsoids. The quasi-2D sample enables us to better image and
track particle motion. The anisotropic shape of the particles
makes both translational and rotational motion measurable. We
used four batches of polymethyl methacrylate (PMMA) ellipsoids
with aspect ratios P¼ a/b¼ 2.3, 3.5, 6.0 and 9.0, where a and b
are the semi-major and semi-minor axes, respectively. All the
ellipsoids were obtained by stretching spheres with a diameter of
2.0 mm. A monolayer of ellipsoids was dispersed in water between
two parallel horizontal glass walls. For colloids in 2D, the area
fraction f�pabr plays a similar role as the inverse temperature
1/T in molecular systems16,17. Here r is the number density.
About 10 area fractions within 0.20rfr0.86 were studied for
each aspect ratio by video microscopy. During the 3- to 6-h

measurements at each f, no drift flow or density change was
observed. The Brownian motion of B6,000 ellipsoids in the field
of view was typically recorded at one frame per second. The
center-of-mass positions and orientations of individual ellipsoids
were tracked using our image-processing algorithm26.

In this paper, we focus on the development of DH, the
evolution of static structures and their relationships towards
the glass transition at different aspect ratios. First, we characterize
the kinetic phase behaviour at different aspect ratios by
measuring the mode-coupling critical point fc and the ideal
glass transition point f0 from the fits to the structural relaxation
times as a function of density3,22,27. Next, we measure the DHs by
directly visualizing the spatial distribution of fast translational
(FT), fast rotational (FR), slow translational (ST) and slow
rotational (SR) particles and by measuring the four-point
dynamic correlations2,28. Finally, we analyse the static
structures by identifying glassy particles and measuring local
structural entropy. From these analyses in both translational and
rotational degrees of freedom, we find the following structural
signatures of the dynamic slowing down in monolayers of
ellipsoids: the static glassy (that is, high number of neighbours for
translational motion and high nematic order for orientational
motion) clusters correspond to low structural entropy and are
highly correlated to clusters with the slowest dynamics, thereby
suggesting that the kinetic slowing down is caused by a decrease
in the structural entropy and a increase in the size of the glassy
clusters. This indicates that it is the growth of glassy clusters with
low structural entropy that dictates the dynamic arrest rather
than the local crystalline order or particular amorphous order,
which rarely exists in systems of ellipsoids.

Result
Phase behaviour. The equilibrium and non-equilibrium phase
behaviour of ellipsoids in 2D can be qualitatively described as
follows (Fig. 1). When the aspect ratio P¼ 1, monodisperse disks
only form crystals or polycrystals even under the fastest quench
to high density in experiment and simulation. For PC1, ellipsoids
resemble circular disks and form 2D crystals with free rotational
motion owing to the spacing between them (Fig. 1b). This rotator
phase or plastic crystal in 2D has quasi-long-range translational
order and short-range nematic orientational order. As P-N,
ellipsoids would form a nematic phase (Fig. 1e) with quasi-long-
range orientational order and short-range translational order29.
Ellipsoids with intermediate P tend to form local splay structures
at high density (Fig. 1f), so that the system has neither quasi-long-
range translational order nor quasi-long-range orientational
order, that is, a glass. Moreover, glasses with pseudonematic
domains may form at large P (Fig. 1d), and glasses without
domains may form at small P (Fig. 1c). The molecular mode-
coupling theory30 predicts similar glasses for ellipsoids in three
dimensions, including an orientational glass at P\2.5 where
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Figure 1 | Equilibrium and non-equilibrium phases of hard ellipses in 2D. As the aspect ratio P¼ a/b increases, ellipses form (a) a crystal, (b) a rotator

phase, (c) a conventional glass without pseudonematic domains, (d) an orientational glass with pseudonematic domains and (e) a nematic phase.

(f) Three closely packed ellipses tend to have slightly different orientations.
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rotational motion becomes glassy while the translational motion
remains quasi-ergodic31. Simulations about glass of ellipsoids
mainly focused on small aspect ratios in 2D25,32,33. The recent
simulation about ellipses in 2D indicates that the rotational glass
transition should be at a lower density than the translational one
for P43, while at a higher density for Po2 (ref. 34). The
orientational glass has been observed experimentally in quasi-2D
systems of colloidal ellipsoids with P¼ 6 (ref. 22). Here we found
that the 2D orientational glass region shrinks as P decreases and
completely vanishes at PC2.5.

We quantitatively measure the glass transition densities
from the translational and rotational relaxations characterized
by the self-intermediate scattering function Fs q; tð Þ �
h
PN

j¼1 eiq�ðxjðtÞ� xjð0ÞÞi=N and the orientational correlation func-

tion Ln tð Þ � h
PN

j¼1 cos½nðyjðtÞ� yjð0Þ�i=N , respectively25. xj(t)
and yj(t) are the position and orientation of ellipsoid j at time t, q
is the scattering vector, n is a positive integer, N is the total
number of particles and /S denotes the ensemble average. We
chose q¼ qm corresponding to the first peak in the structure
factor at high density and n¼ 3 in Fig. 2. Different choices of q

and n yield the same glass transition points (Fig. 3c,f). At high f,
both Fs(t) and Ln(t) develop a two-step relaxation, a signature
of glassy dynamics. According to the mode-coupling theory,
the long-time a-relaxation follows the Kohlrausch law e� (t/t)b

(ref. 27) and the structural relaxation time t follows

tðfÞ / ðfc�fÞ� g; ð1Þ

where fc is the critical glass transition point, and g is obtained
from fitting the a- and b-relaxations27. Translational tT and
rotational ty obtained from Fig. 2a,b can both be well fitted with
equation (1); (Fig. 2c). The fitted fy

c ¼ fT
c ¼ 0:845 � 0:01 for

P¼ 2.3 indicates a single-step glass transition (supercooled
liquid-glass), while fy

cofT
c for P¼ 3.5, 6.0 and 9.0 (Figs 2c

and 3c,f) corresponds to a double-step glass transition
(supercooled liquid-orientational glass-glass). This agrees
with the observation that ellipsoids form pseudonematic
domains only at P\2.5 such that they no longer rotate but still
glide translationally within the domains, a signature of an
orientational glass22,31.
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Figure 2 | Single-step and double-step glass transitions at different aspect ratios. (a) Fs(qm,t) and (b) L3(t) for ellipsoids with aspect ratio P¼ a/b¼ 2.3.

(c) The translational relaxation time tT (solid symbols) and rotational relaxation time ty (open symbols) fitted with equation (1). (d) tT (solid

symbols) and ty (open symbols) fitted with equation (2). Inset: the fitted fragility index B. (e) The measured fc (equation (1)), f0 (equation (2)), fF

(equation (3)) and fS (equation (4)) for translational (solid symbols) and rotational (open symbols) motion all show a single-step glass transition at

Pt2.5 and a double-step transition at P\2.5. Curves are guides to the eye.
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Figure 2d shows that the relaxation time is also satisfactorily
fitted with the Vogel–Fulcher–Tammann equation

tðfÞ / exp½Bf=ðf0�fÞ�; ð2Þ
where f0 is the ideal glass transition point and B is the fragility
index3,4. Both the fitted f0 and fc shown in Fig. 2e confirm the
single-step glass transition at Pt2.5 and the double-step glass
transition at P\2.5. f04fc because all structural relaxations
cease at f0, while only free-diffusion relaxations become
kinetically arrested at fc (refs 1,3). A smaller B represents a
more fragile liquid whose viscosity or t is more sensitive to a
change in T or f. Fragility is the key concept in the search for a
universal description of dynamic arrest in glass-forming liquids,
but its physical origin is still lacking. Recent experiments by
Mattsson et al.19 have shown that softer colloidal spheres lead to a
stronger (less fragile) glass. Here we observed that a larger aspect
ratio similarly gives a less-fragile glass (inset of Fig. 2d). This
behaviour was observed in recent simulations on rods35, but has
not been tested in experiment before.

We performed kinetic Monte Carlo (kMC) simulations to
mimic the Brownian motion of 5,000 ellipses. The same structural

relaxations, glass transitions and fragility behaviours were
reproduced as shown in Fig. 4. Figure 4e shows the crossover
from the single-step glass transition to the double-step glass
transition at PC1.7, which is lower than the experimental value
2.5. We attribute this to the following two reasons: (1) an ellipsoid
carries a layer of water owing to the stick boundary condition,
making its effective size larger and effective P smaller in
experiments; (2) surface electric charges on spheres tend to
redistribute towards the two ends of the resulting ellipsoids,
which reduces the experimental P.

DHs. DHs arise from the emergence of domains that are rear-
ranged in a correlated manner and at different rates1,2. It is
characterized by the cooperatively rearranging regions (CRRs),
which are closely related to the macroscopic properties of a
glass1,36. CRRs are usually represented by particle clusters with
FT motion, which have been well studied in systems of
spheres18,36–38. But much less is known about CRRs that are
represented by particle clusters with FR22, ST13,15,37 and SR14

motion. Here we directly visualized the spatial distributions of the
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Figure 3 | Translational and rotational relaxations. (a–c) P¼ 3.5; (d–f) P¼ 6.0. (a) Fs(qm,t) at qm¼ 1.9mm� 1. (d) Fs(qm,t) at qm¼ 2.3 mm� 1. (b,e) L4(t).

Legends in (b,e) are the same as those in (a,d), respectively. (c,f) The translational relaxation time tT (solid symbols) and rotational relaxation

time ty (open symbols) fitted with equation (1) (solid and dashed straight lines).
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FT, FR, ST and SR motions of anisotropic particles (Fig. 5a,b,d,e).
The fastest-moving particles are defined as those with B8% of the
largest displacements during the cage-breaking time t2 measured
from the peak of the non-Gaussian parameter of displacements
Dx: a2(t)¼/Dx4S/(3/Dx2S2)18,22,39. The measured long-time
diffusion coefficient D(f)pt2(f)� 1 holds for all densities and
P’s. Hence t2 corresponds to the diffusion time scale37. The B8%
corresponds to the non-Gaussian long tails of the displacement
distribution. Different percentages of fast and slow particles
yield similar results. The slowest-moving particles are defined as
those with Dr2(tT)oMSD(t�T)/4 for translation motion and
Dy2(ty)oMSD(t�y)/4 for rotation motion, where t* corresponds
to the middle of the mean-square displacement (MSD) plateau.ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MDSðt�Þ
p

can be regarded as a measurement of cage size37,40.
Fast and slow particles formed the largest clusters at the cage-
breaking time t2 (ref. 18) and the structural relaxation time t37,
respectively. Consequently the fastest-moving particles are
defined as those with the largest displacements during t2 since
they dominate diffusion39, while the slowest-moving particles are

defined as those with the smallest displacements during t since
they dominate the structural relaxation37. For the two samples
with the highest f’s, the slow particles are defined at the longest
experimental time because their t are longer than the
experimental time. This leads xS to be only slightly
underestimated at the two highest f’s because the longest
experimental time is on the same order of magnitude as t.
Subsequently, we can identify the FT, FR, ST and SR clusters by
using the criterion that two fast (or slow) particles belong to the
same cluster if they are neighbours. Here we define two ellipsoids
as neighbours when they overlap after expanding by 1.5 times and
no other particles intersect at their closest distance22.

The FT, FR, ST and SR clusters exhibit different novel
correlations at P\2.5 and Pt2.5. In Fig. 5a,b, we labelled the
fastest translational particles in green and the fastest rotational
particles in red. The particles fast in both translational and
rotational motion are labelled in yellow. In Fig. 5d,e, ellipsoids are
similarly labelled for slowest particles. The FT, FR, ST and SR
particles clearly show different positive or negative correlations in
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in simulations all show a single-step glass transition at Pt1.7 and a double-step transition at P\2.5.
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Fig. 5a,d (P¼ 2.3) and in Fig. 5b,e (P¼ 6.0). For P\2.5, the four
types of clusters are all anticorrelated in space and the
anticorrelations become stronger as P increases due to better
developed nematic domains (Fig. 5b,e). For Pt2.5, by contrast,
positive correlations are observed between FT and FR clusters and
between ST and SR clusters as can be appreciated from the fact
that most of the clusters are now coloured yellow in Fig. 5a,d.
Figure 6 is the simulation counterpart of Fig. 5. It shows the same
results of the spatial distribution and correlations of the FT, FR,
ST and SR particles. The slow and fast particles in Fig. 6 cover
about 10% of all particles. The percentage of overlap of fast (or
slow) transitional and rotational particles (that is, the ratio of
yellow to (redþ yellow) particles) is about 20% (410%) at
P¼ 1.5 and 5% (o10%) at P¼ 6.0, which indicates positive and
negative correlations, respectively.

The development of DHs can be characterized by the
increasing sizes of fast and slow clusters. We found that the
characteristic size xF of fast clusters is best fitted with2,38,39:

xFðfÞ �
ffiffiffiffiffiffiffiffiffiffi
hNFi

p
¼ xF0 � ½f=ðfF�fÞ�n; ð3Þ

which diverges at fF (Figs 5c and 6c); while the characteristic size

xS of slow clusters is best fitted with

xSðfÞ �
ffiffiffiffiffiffiffiffiffi
hNSi

p
¼ xS0 � f=ðfS�fÞ; ð4Þ

which diverges at fS (Figs 5f and 6f). NF,S are the numbers of
particles in a fast cluster and a slow cluster, respectively.
Equation (4) is consistent with the scaling argument in ref. 4.
The experimental fitting exponents n¼ 0.72, 0.59 and 0.448 for xT

F
and n¼ 0.75, 0.625 and 0.48 for xyF at P¼ 2.3, 3.5 and 6.0,
respectively, and the simulation n¼ 0.38, 0.345 and 0.29 for xT

F
and n¼ 0.43, 0.385 and 0.33 for xyF at P¼ 1.5, 2.0 and 6.0,
respectively. These trends indicate that the size of CRRs grows
faster in more fragile glassy systems. xF(f) can be better fitted by
a slightly different form, x0F0 � ðfF�fÞ� v , in a broader range of
f, but we fit Figs 5c and 6c with equation (4) since it follows
(Teff�Teff

c )� n in MCT where Teff
c B1/f for colloids. fT;y

F and
fT;y

S obtained from the best fits of equations (3 and 4) are almost
identical to fT;y

c and fT;y
0 , respectively for all P’s (Fig. 2e), in

accordance with the fact that free diffusions dominated by fast
particles become kinetically arrested at the mode-coupling critical
density fc, and structural relaxations dominated by slow particles
cease at the ideal glass transition density f0. Above fFCfc, the
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fast particles dispersed randomly because they were all caged
separately18. Moreover, we observe from the insets of Fig. 5f,i that
the characteristic size of slow clusters xS reflects the length scale
of DHs, which is typically characterized by the dynamic
correlation length x4 obtained from the four-point density
correlation function2,28. The insets of Figs 5i and 6i show that
x4pf/(f0�f)13 is identical to equation (4) since our fSCf0.
Hence xS(f)px4(f) for both translational and rotational motion
and for all P’s.

The structure–dynamics relationship. First, we probe the static
structure by identifying the glassy particles and show that the

glassy clusters are highly correlated to the dynamic slow clusters
in both translational and rotational degrees of freedom. Glassy
particles are defined as local static structures with strong cage
effects. We define a particle with NnZ6 nearest neighbours as
translational glassy, and a particle with a local orientational order
Sn ¼

PNn
j¼1 cosð2DyjÞ=Nn � 0:8 as rotational glassy, where Dyj is

the angle difference between the particle and its jth neighbour.
In practice, the glassy particles in Figs 5g,h and 6g,h are
defined from the structures averaged over t for better statistics:

Nn ¼ ½
R tT=2
� tT=2 Nnðt0Þdt0�=tT � 6 for translational glassy particles

and Sn ¼ ½
R ty=2
� ty=2

PNn
j¼1 cosð2Dyjðt0ÞÞ=Nnðt0Þ�=tydt0 � 0:8 for
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Figure 6 | The simulation counterpart of Fig. 5. The spatial distributions of translational (green) and rotational (red) fast (a,b) and slow (d,e) particles.

(g,h) Glassy particles (blue) and slow particles (pink) in translational (g) and rotational (h) motion. Particles that are fast (or slow) in both

translational and rotational motion (a,b,d,e) or that are both slow and glassy (g,h) are labelled in yellow. Ellipsoids are plotted as 0.8 times their real size

(that is, 0.64 times their real area) for clarity. (a,d), (b,e) and (g,h) are taken from the same frame at f¼0.85, P¼ 1.5; f¼0.80, P¼ 6 and f¼0.80,

P¼ 6, respectively. (c) The characteristic sizes of fast clusters (symbols) fitted with equation (3) in the main text (curves). (f) The characteristic

sizes of slow clusters (symbols) fitted with equation (4) in the main text (curves). (i) The characteristic sizes of glassy clusters xg (main panel) and

the four-point dynamic correlation length x4 (inset). Both sets of data are well fitted with equation (4), except for the rotational motion at P¼ 1.5.

The data points in (c,f,i) collapse onto a master curve in the logarithmic plot in the insets. The solid and dashed vertical lines in (c,f,i) mark the onsets

of DHs, below which the data points deviate from the fitting curves.
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rotational glassy particles. Such an average was used in refs 13,14
and is reasonable since slow particles are defined over the
structural relaxation time t. Note that Nn and Sn are still static
quantities after the time averaging. Without time averaging, the
positive spatial correlations can also be resolved, but with a larger
noise. Nn and Sn in Figs 5i and 6i are defined without time
average. Rotational glassy particles have a high local nematic
orientational order, but the translational glassy particles do not
exhibit apparent positional order (see the three typical config-
urations with some splay structures in Fig. 7).

Nn and Sn exhibited broader probability distributions, that is,
more structural disorder and stronger frustration, at larger P. This
observation confirmed the expectation that the lower dynamic
fragility (inset of Fig. 2d) arises from the stronger structural
frustration5,13. The complex local structures in an ellipsoid
system (Fig. 7) make it difficult to identify whether it is
geometrical frustration5 or frustration due to competing
order8,13,14. For geometrical frustration, the slow dynamics
corresponds to the local stable structure (for example,
icosahedral order) that cannot tile the whole space, while the
slow dynamics corresponds to the global stable structure (for
example, crystalline order) in competing-order frustration. In
ellipsoids, however, a local favourable structure is ambiguous. The
close packing of three ellipsoids tends to form a splay structure as
shown in Fig. 1f, but close packing of more ellipsoids will form
different structures (Fig. 7). Hence the observed slow clusters
(Figs 5d,e and 6d,e) contain various complex structures without a
particular crystalline or amorphous order.

The fraction of glassy particles increases with packing fraction
f up to 30% at our highest f, while the fraction of slow particles
remains at around 8%. These particles have strong positive
correlation in space (Figs 5g,h and 6g,h). When P\2.5,
translational and rotational glassy clusters are spatially antic-
orrelated: translational glassy particles are mainly found at
domain boundaries, while rotational glassy particles are mainly
inside one or multiple adjacent nematic domains. The number of
particles in a translational (or rotational) glassy cluster is denoted
as NT

g (or Ny
g ). The mean glassy-cluster size can be well fitted with

xg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ng
� �

¼
q

xg0 � f=ð fj 0 fj Þ (Figs 5i and 6i), except for the

rotational glassy clusters at P¼ 2.3 (Figs 5i and 6i), since this
system lacks nematic domains (Figs 5a,d and 6a,d) and the glass
transition is dictated by translational motion.

The dynamic slowing down is expected to be originated from
the decrease in the number of accessible configurations3,4,8.
Recently, Tanaka et al.13 measured the local structural entropy
arising from the two-body correlation, s2, in translational degree
of freedom in systems of hard spheres. They showed that
crystalline clusters have a lower structural entropy and their sizes
have the same power-law divergence as the correlation length of
DH when approaching the glass transition13. Here we similarly

explore whether glassy clusters are related to low structural
entropy in systems of ellipsoids. s2 of an ellipsoid i comprises the
translational and rotational entropies, s2i ¼ sT

2i
þ sy

2i
, which can be

evaluated as41,42

sT
2i ¼ �pkBr

Z 1
0

giðrÞ ln giðrÞ� giðrÞþ 1½ �:rdr; ð5Þ

sy2i ¼ �
1
2

kBr
Z 1

0
giðrÞrdr

Z 2p

0
giðy jrÞln½giðy j rÞ�dy; ð6Þ

where kB is the Boltzmann constant, r is the number density,
gi(r) is the radial distribution function of centers of mass relative
to particle i, gi(y|r) is the orientational distribution function of the
angular difference between the long axis of particle i and its
neighbouring particle at center-of-mass distance r42. The
free-volume entropies from multiple layers of neighbours are
included in equations (5 and 6) via the weights of gi(r) and gi(y|r).
Both the experiments (Fig. 8a–d) and the simulations (Fig. 9a–d)
show that the static low-structural-entropy particles and the
glassy particles are strongly correlated in both translational
and rotational degrees of freedom. Note that previous
studies found no correlations between DHs and the local free
volume in the nearest layer43,44. By contrast, s2 contains the free-
volume effect from several layers of neighbours instead of only
the nearest layer, and remarkably reveals the correlations
with DHs.

We measure the spatial correlation of s2, Cs2ðr ¼ ri� rj

�� ��Þ ¼
s2iðriÞs2jðrjÞ
� �

, and fit it with the 2D Ornstein–Zernike
correlation function Cs2ðrÞ ¼ r� 1=4expð� r=xs2Þ13,45 to obtain
the correlation length xs2. xs2 in Figs 8e and 9e are averaged over
b-relaxation time tb.tb is fitted from the critical-decay law
Fsðq; tÞ ¼ f c

q � hqðt=tbÞ� a in the b-relaxation, where the
nonergodicity parameter f c

q and the amplitude hq are
constant27. Averaging over tb was also performed when
defining static crystalline structures for better statistics in
ref. 46 and was shown to be short enough to avoid possible
mix up of the static and the dynamic effects. Figure 8e shows
that xs2 has the same scaling as Fig. 5f,i and the inset of Fig. 5i
for all P’s, hence xs2(f)pxg(f)pxS(f)px4(f), with all the
proportionality prefactors around 1 for both translational
and rotational motion. Consequently the Vogel–Fulcher–
Tammann equation t(f)pexp[Bf/(f0�f)]¼ exp[Bxs2/xs20]¼
exp[Bxg/xg0] indicates that the kinetic slowing down is related to
the decrease in the local structural entropy and the increase in the
size of the glassy clusters.

Discussion
Our experiments and simulations show that the correlation
lengths of the local structural entropy, glassy clusters, slow
clusters and the four-point dynamic correlation length are all of
the same order, xs2(f)pxg(f)pxS(f)px4(f), with the
same power-law divergence at f0 in both translational and
orientational degrees of freedom. This set of static-dynamic
relations and strong spatial correlations of the corresponding
clusters in Figs 5, 6, 8 and 9 suggest that the static glassy clusters
(xg(f)) corresponding to the static low structural entropy (xs2(f))
should be the cause of the slow dynamics (xS(f)) and the
increasing DHs (x4(f)) rather than a series of coincidences.
This may suggest that the glass transition has a thermodynamic
origin rather than a purely dynamic origin. The power-law
divergence of the static correlation length with exponent � 1
suggests that the glass transition is probably a 2D Ising-type
critical phenomenon8,13,15,47,48 rather than a random first-order
transition scenario2, in which the dynamical correlation
length grows much faster than the static correlation lengths.

a b c

Figure 7 | Typical configurations with splay structures. a, b and c exhibit

some splay structures around a translational glassy particle (in orange)

with high number of nearest neighbours.
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Moreover, the random first-order transition theory concerns
positional order and not orientational order8, while the scaling
of our orientational Sn is more consistent with critical
behaviour.

In addition, we observed for the first time the crossover from a
single-step to a double-step glass transition in a system of
anisotropic particles. The glass transitions for translational and
rotational motion occur at the same density when the aspect ratio
Po2.5, but at different densities when P42.5 where local nematic
domains start to develop. The translational and rotational CRRs
exhibit different correlations at Po2.5 and P42.5. Moreover,
ellipsoids with a larger aspect ratio lead to stronger frustration and
a reduced fragility. All the experimental results are confirmed by
kMC simulations of hard ellipses in 2D. These results show that

the shape anisotropy of the particles has important effects on the
phase behaviour and dynamics of the resulting glasses.

A monolayer of uniformly sized ellipsoids is arguably the
simplest glass. Note that uniformly sized hard disks can only form
crystals in 2D. This simple yet versatile glass-forming system with
measurable translational and rotational dynamics at the single-
particle level serves as a valuable test bed on which new insights
into glass transitions in molecular systems can be derived. The
observed glassy structure and the corresponding CRRs at
different aspect ratios cast new light on some novel phenomena
such as photomechanical effects, shape memory and excess
scattering in molecular, polymeric and liquid-crystal glassy
systems49–52, where local orientationally ordered domains play
an important role. Our results pave the way towards a deeper
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Figure 8 | Spatial distributions and correlations of local structural entropy. (a–d) The same frame of ellipsoids with aspect ratio P¼ 6 at f¼0.74.

(a) The spatial distributions of (a) the number of nearest neighbours Nn, (b) the local nematic order Sn, (c) the translational structural entropy sT
2

and (d) the orientational structural entropy sy2. a and c exhibit similar distributions, as do b and d. (e) The correlation length of sT;y
2 fitted with

xs2¼ xs20 �f/(f0�f). Only the rotational motion for ellipsoids with P¼ 2.3 deviates from the fitting curve as in Fig. 5i. (a–d) are not time averaged,

while (i) is time averaged over the b-relaxation time for lower noises.
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understanding of the glass transition in molecular systems. We
expect to find similar results in molecular glasses composed of
non-spherical particles.

Methods
Ellipsoids fabrication. We fabricated ellipsoids by stretching non-cross-linked
PMMA spheres (microparticles GmbH, Berlin) in air using a previously described

method26,53 that is upgraded from stretching spheres in hot oil54. Briefly, PMMA
spheres (0.5% by weight) were added to an aqueous solution of polyvinyl alcohol
(PVA) (12% by weight) in a Petri dish. After water evaporation, the solid PVA film
was taken out of the Petri dish and stretched at 130 �C, which is above the glass
transition temperatures of PVA (Tg¼ 85 �C) and PMMA (Tg¼ 105 �C). The
PMMA spheres embedded in the PVA film were thus stretched into ellipsoids.
After cooling to room temperature, the PVA was dissolved and washed away with
deionized water. The cleaned ellipsoid suspension was stabilized with 7 mM
sodium dodecyl sulphate. The Debye layer was thin and the surface charges had
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Figure 9 | The simulation counterpart of Fig. 8. (a–d) The same frame of ellipsoids with aspect ratio P¼6 at f¼0.80. The spatial distributions of

(a) the number of nearest neighbours Nn, (b) the local nematic order Sn, (c) the translational structural entropy sT
2 and (d) the orientational

structural entropy sy2. a and c exhibit similar distributions, as do b and d. (e) The correlation length of sT;y
2 fitted with xs2¼ xs20 �f/(f0�f). Only the

rotational motion for ellipsoids with P¼ 1.5 deviates from the fitting curve as in Fig. 6i. (a–d) are not time averaged, while (i) is time averaged over

the b-relaxation time for lower noises.
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minor effects. From the 2D Gaussian fitting of the images of 4200 isolated
ellipsoids in a dilute monolayer, we obtained the semi-major axis a and semi-minor
axis b as fitting parameters. We made four batches of ellipsoids with aspect ratios
P¼ a/b¼ 1.76 mm/0.77 mm¼ 2.3, P¼ 2.33 mm/0.67 mm¼ 3.5, P¼ 3.33 mm/
0.56 mm¼ 6.0 and P¼ 4.39mm/0.49 mm¼ 9.0. The polydispersity of the aspect
ratio was 5–6% for all P’s.

Sample cells. A monolayer of ellipsoids was dispersed in a thin sample cell
composed of two parallel glass plates. Glass surfaces of the sample cell were
rigorously cleaned in a 1:4 mixture of hydrogen peroxide and sulphuric acid by
sonication. Then the glass was thoroughly rinsed in deionized water. To prepare a
2D sample, a 0.5-ml droplet of the suspension was placed on a glass slide and then a
coverslip was placed over it. The droplet spread into a thin film by capillary forces.
The ellipsoids did not stick to the surfaces. The sample cell was sealed with epoxy
glue. The area fraction was set by holding the cells up vertically for several hours to
1 day so that particles slowly drifted downwards under gravity. When the desired
area fraction was reached in the Bmm2 chosen area, the cells were laid flat on the
microscope stage for 2–3 h for equilibration. Two-hour and 24-h equilibration
resulted in almost the same area fraction, thus the systems were in metastable
equilibrium. We monitored the central B(0.3 mm)2 area for 3–6 h at each density.
The area fraction remained constant during the whole observation period. For each
aspect ratio, we measured 3–5 densities in one sample cell and a total of 12
different densities in three cells. The wall separation was a constant for different
densities in one cell because we chose a fixed observation area. The wall separations
in different cells were almost the same since dilute ellipsoids have the same dif-
fusion coefficients. Under the strong confinement, the heavy ellipsoids always
stayed in the focal plane and the fluctuation in the z direction was very weak. The
tips of ellipsoids occasionally overlapped, which shifts the glass transition points to
o2% area fraction higher. For brevity, we use the term 2D instead of quasi-2D in
the main text. The center-of-mass positions and the orientations of individual
ellipsoids were tracked using our image-processing algorithm26. The angular
resolution was 1�, and the spatial resolutions were 0.12 and 0.04 mm along the long
and short axes, respectively. We projected each step of displacement measured in
lab frame to the body frame, then connected all steps into a trajectory along the
long and short axes53 so that transverse motion and longitudinal motion can be
separately tracked.

x4(t). We calculated the dynamic correlation length x4(t) from the four-point
density correlation function as follows. The four-point correlation function
of the overlapping particles is defined as g4ðr; tÞ ¼ 1

Nr h
P

ij dðr� rj 0ð Þþ ri 0ð ÞÞ�
wð jri 0ð Þ� ri tð Þ jÞ � wðjrj 0ð Þ� rj tð Þ jÞi, where r is the number density. The
overlapping function w|r1� r2| is unity if |r1� r2|r0.2a for translation and
|y1� y2|r0.1p for rotation and zero otherwise. We calculated the four-point
structure factor of overlapping particles as the Fourier transform of g4(r,t):
S4(q,t)¼

R
g4(r,t)exp[� iq � r]dr. To extract x4 at t¼ t, we fitted S4 with

S4(q,t)¼ S0/[1þ (x4q)2]28. The fitted x4’s are shown in the insets of Figs 5i and 6i.

Simulation. We performed kMC simulations to mimic the Brownian motion of
5,000 ellipses. In each kMC step, we randomly generated three types of trial
moves: translational displacement along the long axis da, translational displacement
along the short axis db and rotational displacement dy. da follows the uniform
random distribution in [�Da,Da]. db and dy were similarly generated. The
maximum displacements D satisfy

D2
a : D2

b : D2
y ¼

Da

pðdaÞ
:

Db

pðdbÞ
:

Dy

pðdyÞ
; ð7Þ

where P(da), P(db) and P(dy) are the acceptance ratios for the displacements da, db

and dy, respectively. We employed the algorithm in ref. 55 to check the extent of
overlap of two hard ellipsoids and obtained the acceptance ratios from the
simulation. The ratios between the short-time diffusion coefficients Da, Db and Dy
were adopted from the experiments. We also performed simulations with different
ratios and further confirmed that the short-time dynamics of individual particles
does not affect the dynamics of the system close to the glass transition points. After
NMC MC steps, we have NMC � d2

aðdaÞ ¼ 2DaDt and D¼ (DaþDb)/2, thus the
duration of each MC step Dt in the unit of the Brownian time tB can be derived as

Dt=tB ¼ DtD=b2 ¼ NMC � 1þ Db

Da

� �
d2

a pðdaÞ
4b2

; ð8Þ

where tB is the time taken for an ellipsoid to diffuse a distance b in an infinitely
dilute suspension.

References
1. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu.

Rev. Phys. Chem. 51, 99–128 (2000).
2. Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L. & van Saarloos, W.

Dynamical Heterogeneities in Glasses, Colloids and Granular Materials (Oxford
Univ. Press, 2011).

3. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass
transition. Nature 410, 259–267 (2001).

4. Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the
dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40,
1045–1054 (1989).

5. Tarjus, G., Kivelson, S. A., Nussinov, Z. & Viot, P. The frustration-based
approach of supercooled liquids and the glass transition: a review and critical
assessment. J. Phys. Cond. Matter 17, R1143–R1182 (2005).

6. Biroli, G., Bouchaud, J. P., Cavagna, A., Grigera, T. S. & Verrocchio, P.
Thermodynamic signature of growing amorphous order in glass-forming
liquids. Nat. Phys. 4, 771–775 (2008).

7. Corwin, E. I., Jaeger, H. M. & Nagel, S. R. Structural signature of jamming in
granular media. Nature 435, 1075–1078 (2005).

8. Tanaka, H. Bond orientational order in liquids. Eur. Phys. J. E 35, 113 (2012).
9. Spaepen, F. Five-fold symmetry in liquids. Nature 408, 781–782 (2000).
10. Charbonneau, B., Charbonneau, P. & Tarjus, G. Geometrical frustration

and static correlations in a simple glass former. Phys. Rev. Lett. 108, 035701
(2012).

11. Frank, F. C. Supercooling of liquids. Proc. R. Soc. Lond. 215, 43–46 (1952).
12. Tomida, T. & Egami, T. Molecular-dynamics study of orientational order in

liquids and glasses and its relation to the glass transition. Phys. Rev. B 52,
3290–3308 (1995).

13. Tanaka, H., Kawasaki, T., Shintani, H. & Watanabe, K. Critical-like behaviour
of glass-forming liquids. Nat. Mater. 9, 324–331 (2010).

14. Shintani, H. & Tanaka, H. Frustration on the way to crystallization in glass.
Nat. Phys. 2, 200–206 (2006).

15. Leocmach, M. & Tanaka, H. Roles of icosahedral and crystal-like order in the
hard spheres glass transition. Nat. Commun. 3, 974 (2012).

16. Anderson, V. J. & Lekkerkerker, H. N. W. Insights into phase transition kinetics
from colloid science. Nature 416, 811–815 (2002).

17. Hunter, G. L. & Weeks, E. R. The physics of the colloidal glass transition. Rep.
Prog. Phys. 75, 066501 (2012).

18. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-
dimensional direct imaging of structural relaxation near the colloidal glass
transition. Science 287, 627–631 (2000).

19. Mattsson, J. et al. Soft colloids make strong glasses. Nature 462, 83–86 (2009).
20. Zhang, Z. et al. Thermal vestige of the zero-temperature jamming transition.

Nature 459, 230–233 (2009).
21. Yunker, P. J. et al. Rotational and translational phonon modes in glasses

composed of ellipsoidal particles. Phys. Rev. E 83, 011403 (2011).
22. Zheng, Z., Wang, F. & Han, Y. Glass transitions in quasi-two-dimensional

suspensions of colloidal ellipsoids. Phys. Rev. Lett. 107, 65702 (2011).
23. Kramb, R. C., Zhang, R., Schweizer, K. S. & Zukoski, C. F. Glass formation and

shear elasticity in dense suspensions of repulsive anisotropic particles. Phys.
Rev. Lett. 105, 55702 (2010).

24. Mishra, C. K., Rangarajan, A. & Ganapathy, R. Two-step glass transition
induced by attractive interactions in quasi-two-dimensional suspensions of
ellipsoidal particles. Phys. Rev. Lett. 110, 188301 (2013).

25. Pfleiderer, P., Milinkovic, K. & Schilling, T. Glassy dynamics in monodisperse
hard ellipsoids. Europhys. Lett. 84, 16003 (2008).

26. Zheng, Z. & Han, Y. Self-diffusion in two-dimensional hard ellipsoid
suspensions. J. Chem. Phys. 133, 124509 (2010).

27. Gotze, W. & Sjogren, L. Relaxation processes in supercooled liquids. Rep. Prog.
Phys. 55, 241–376 (1992).

28. Lacevic, N., Schroder, T. B., Starr, F. W. & Glotzer, S. C. Spatially heterogeneous
dynamics investigated via a time-dependent four-point density correlation
function. J. Chem. Phys. 119, 7372–7387 (2003).

29. Bates, M. A. & Frenkel, D. Phase behavior of two-dimensional hard rod fluids.
J. Chem. Phys. 112, 10034–10041 (2000).

30. Schilling, R. & Scheidsteger, T. Mode coupling approach to the ideal glass
transition of molecular liquids: linear molecules. Phys. Rev. E 56, 2932–2948
(1997).

31. Letz, M., Schilling, R. & Latz, A. Ideal glass transitions for hard ellipsoids. Phys.
Rev. E 62, 5173–5178 (2000).

32. Schreck, C. F., Xu, N. & O’Hern, C. S. A comparison of jamming behavior in
systems composed of dimer- and ellipse-shaped particles. Soft Matter 6,
2960–2969 (2010).

33. Shen, T., Schreck, C. F., Chakraborty, B., Freed, D. E. & O’Hern, C. S. Structural
relaxation in dense liquids composed of anisotropic particles. Phys. Rev. E 86,
041303 (2012).

34. Xu, W.-S., Li, Y.-W., Sun, Z.-Y. & An, L.-J. Hard ellipses: equation of state,
structure, and self-diffusion. J. Chem. Phys. 139, 024501 (2013).

35. Zhang, R. & Schweizer, K. S. Dynamic free energies, cage escape trajectories,
and glassy relaxation in dense fluids of uniaxial hard particles. J. Chem. Phys.
133, 104902 (2010).

36. Stevenson, J. D., Schmalian, J. & Wolynes, P. G. The shapes of cooperatively
rearranging regions in glass-forming liquids. Nat. Phys. 2, 268–274 (2006).

37. Starr, F. W., Douglas, J. F. & Sastry, S. The relationship of dynamical
heterogeneity to the Adam-Gibbs and random first-order transition theories of
glass formation. J. Chem. Phys. 138, 12A541 (2013).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4829 ARTICLE

NATURE COMMUNICATIONS | 5:3829 | DOI: 10.1038/ncomms4829 | www.nature.com/naturecommunications 11

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


38. Keys, A. S., Abate, A. R., Glotzer, S. C. & Durian, D. J. Measurement of growing
dynamical length scales and prediction of the jamming transition in a granular
material. Nat. Phys. 3, 260–264 (2007).

39. Glotzer, S. C. Spatially heterogeneous dynamics in liquids: insights from
simulation. J. Non-Cryst. Solids 274, 342–355 (2000).

40. Weeks, E. R. & Weitz, D. A. Properties of cage rearrangements observed near
the colloidal glass transition. Phys. Rev. Lett. 89, 095704 (2002).

41. Baranyai, A. & Evans, D. J. Direct entropy calculation from computer
simulation of liquids. Phys. Rev. A 40, 3817–3822 (1989).

42. Costa, D., Micali, F., Saija, F. & Giaquinta, P. V. Entropy and correlations in a
fluid of hard spherocylinders: the onset of nematic and smectic order. J. Phys.
Chem. B 106, 12297–12306 (2002).

43. Conrad, J. C., Starr, F. W. & Weitz, D. A. Weak correlations between local
density and dynamics near the glass transition. J. Phys. Chem. B 109,
21235–21240 (2005).

44. Widmer-Cooper, A. & Harrowell, P. Free volume cannot explain the spatial
heterogeneity of Debye-Waller factors in a glass-forming binary alloy.
J. Non-Cryst. Solids 352, 5098–5102 (2006).

45. Ivanov, D. Y. Critical Behavior of Non-ideal Systems (Wiley-VCH, 2008).
46. Leocmach, M., Russo, J. & Tanaka, H. Importance of many-body correlations in

glass transition: an example from polydisperse hard spheres. J. Chem. Phys.
138, 12A536 (2013).

47. Tanaka, H. Importance of many-body orientational correlations in the physical
description of liquids. Faraday Discuss. 167, 9–76 (2013).

48. Langer, J. S. Ising model of a glass transition. Phys. Rev. E 88, 012122 (2013).
49. Fischer, E. W. Light scattering and dielectric studies on glass forming liquids.

Physica A 201, 183–206 (1993).
50. Fang, G. J. et al. Athermal photofluidization of glasses. Nat. Commun. 4, 1521

(2013).
51. Yang, Z., Huck, W. T. S., Clarke, S. M., Tajbakhsh, A. R. & Terentjev, E. M.

Shape-memory nanoparticles from inherently non-spherical polymer colloids.
Nat. Mater. 4, 486–490 (2005).

52. Yu, Y., Nakano, M. & Ikeda, T. Photomechanics: directed bending of a polymer
film by light. Nature 425, 145 (2003).

53. Han, Y. et al. Brownian motion of an ellipsoid. Science 314, 626–630 (2006).

54. Ho, C. C., Keller, A., Odell, J. A. & Ottewill, R. H. Preparation of monodisperse
ellipsoidal polystyrene particles. Colloid Polym. Sci. 271, 469–479 (1993).

55. Ni, R., Gantapara, A. P., de Graaf, J., van Roijb, R. & Dijkstra, M. Phase diagram
of colloidal hard superballs: from cubes via spheres to octahedral. Soft Matter 8,
8826–8834 (2012).

Acknowledgements
This work was supported by grants GRF601613, PRC11SC04 and NSFC11374248 (Y.H.),
the ERC advanced grant 267254 (R.N.), NSFC grants 11104286, 11372314, 51071166 and
NBRP grant 2011CB710901 (Y.W. and Z.Z.).

Author contributions
Z.Z. and Y.H. conceived and designed the research plan. Z.Z. carried out the experiment.
R.N. performed the simulation. Z.Z. analysed the data with contributions from R.N. and
F.W. Y.H. and Z.Z. wrote the manuscript with contributions of all authors. Y.H., M.D.
and Y.W. supervised and supported the work. All authors discussed the results.

Additional information
Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://www.npg.nature.com/
reprintsandpermissions/

How to cite this article: Zheng, Z. et al. Structural signatures of dynamic heterogeneities
in monolayers of colloidal ellipsoids. Nat. Commun. 5:3829 doi: 10.1038/ncomms4829
(2014).

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. The images or

other third party material in this article are included in the article’s Creative Commons
license, unless indicated otherwise in the credit line; if the material is not included under
the Creative Commons license, users will need to obtain permission from the license
holder to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-sa/3.0/

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4829

12 NATURE COMMUNICATIONS | 5:3829 | DOI: 10.1038/ncomms4829 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.npg.nature.com/reprintsandpermissions/
http://www.npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.nature.com/naturecommunications

	title_link
	Result
	Phase behaviour

	Figure™1Equilibrium and non-equilibrium phases of hard ellipses in 2D.As the aspect ratio P=asolb increases, ellipses form (a) a crystal, (b) a rotator phase, (c) a conventional glass without pseudonematic domains, (d) an orientational glass with pseudone
	Figure™2Single-step and double-step glass transitions at different aspect ratios.(a) Fs(qm,t) and (b) L3(t) for ellipsoids with aspect ratio P=asolb=2.3. (c) The translational relaxation time tauT (solid symbols) and rotational relaxation time tautheta (o
	DHs

	Figure™3Translational and rotational relaxations.(a-c) P=3.5; (d-f) P=6.0. (a) Fs(qm,t) at qm=1.9thinspmgrm-1. (d) Fs(qm,t) at qm=2.3thinspmgrm-1. (b,e) L4(t). Legends in (b,e) are the same as those in (a,d), respectively. (c,f) The translational relaxati
	Figure™4The simulation counterpart of Fig. 2.(a) Fs(qm,t) and (b) L4(t) for ellipsoids with aspect ratio P=asolb=1.5. (c) The translational relaxation time tauT (solid symbols) and rotational relaxation time tautheta (open symbols) fitted with equation™(1
	Figure™5Fast, slow and glassy clusters.Spatial distributions of translational (green sim8percnt) and rotational (red sim8percnt) fastest (a,b) and slowest (d,e) particles, and of translational (g) and rotational (h) glassy (blue sim30percnt) and slowest (
	The structure-dynamics relationship

	Figure™6The simulation counterpart of Fig. 5.The spatial distributions of translational (green) and rotational (red) fast (a,b) and slow (d,e) particles. (g,h) Glassy particles (blue) and slow particles (pink) in translational (g) and rotational (h) motio
	Discussion
	Figure™7Typical configurations with splay structures.a, b and c exhibit some splay structures around a translational glassy particle (in orange) with high number of nearest neighbours
	Figure™8Spatial distributions and correlations of local structural entropy.(a-d) The same frame of ellipsoids with aspect ratio P=6 at phi=0.74. (a) The spatial distributions of (a) the number of nearest neighbours Nn, (b) the local nematic order Sn, (c) 
	Methods
	Ellipsoids fabrication

	Figure™9The simulation counterpart of Fig. 8.(a-d) The same frame of ellipsoids with aspect ratio P=6 at phi=0.80. The spatial distributions of (a) the number of nearest neighbours Nn, (b) the local nematic order Sn, (c) the translational structural entro
	Sample cells
	Simulation

	EdigerM. D.Spatially heterogeneous dynamics in supercooled liquidsAnnu. Rev. Phys. Chem.51991282000BerthierL.BiroliG.BouchaudJ.-P.CipellettiL.van SaarloosW.Dynamical Heterogeneities in Glasses, Colloids and Granular MaterialsOxford Univ. Press2011Debenede
	This work was supported by grants GRF601613, PRC11SC04 and NSFC11374248 (Y.H.), the ERC advanced grant 267254 (R.N.), NSFC grants 11104286, 11372314, 51071166 and NBRP grant 2011CB710901 (Y.W. and Z.Z.).Author contributions
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




