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We present a double-charge model for the interaction between parallel polarizable hard spherocylin-
ders subject to an external electric field. Using Monte Carlo simulations and free-energy calculations,
we predict the phase behaviour for this model as a function of the density and electric field strength,
at a fixed length-to-diameter ratio L/D = 5. The resulting phase diagram contains, in addition to
the well-known nematic, smectic A, ABC crystal, and columnar phases, a smectic C phase, and a low
temperature crystal X phase. We also find a string fluid at low densities and field strengths, resembling
results found for dipolar spheres. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4897562]

I. INTRODUCTION

Polarizable colloidal spheres with a dielectric constant
mismatch with the surrounding solvent acquire a dipole
moment in an external electric field. The resulting dipolar in-
teractions between the colloids lead to the formation of string-
like clusters where the dipoles are aligned head-to-toe.1–3 As
a result, the rheological properties of these suspensions can be
tuned by the electric field. Therefore, these so-called electro-
rheological fluids have potential use in industrial applications
such as hydraulic valves, brake fluids, and bullet-proof vests.

To a first-order approximation, the phase behaviour of
these suspensions is well-described by a dipolar interaction
between point dipoles, which are aligned with the applied
field and located in the center of each colloidal sphere. The
phase diagram in this approximation is well studied and dis-
plays a string fluid at low density and high field strength,
a face-centered cubic crystal at high density and vanishing
field strength, a hexagonal close-packed crystal at high den-
sity and moderate to high field strength, as well as a less dense
body-centered tetragonal crystal phase at intermediate den-
sity and high field strength.1, 2 Additionally, a body-centered
orthogonal crystal phase is observed for intermediate field
strength and density in the case of soft repulsive spheres.1–3

The phase behaviour of anisotropic colloidal particles, such as
rods,4–6 dumbbells,7–9 snowman particles,10, 11 and bowls,12, 13

has received significantly less attention, even though great
progress has been made in the synthesis of such particles in
recent times (see, e.g., Ref. 14). Furthermore, it is well known
that electric fields can be used to control not only the rela-
tive position,1, 2 but also the orientation of such anisotropic
particles.7, 8, 15–18 In the present paper, we focus on the phase
behaviour of rod-like colloidal particles in the presence of an
external electric field. The aim of this paper is the construc-
tion of a phase diagram corresponding to experiments recently
carried out on systems of micron-sized silica rods.19

From experiments15, 19 and theoretical calculations,17 we
know that polarizable rods align their symmetry axis in the
direction of a strong external electric field. Here, we assume

that this alignment with the field is perfect, i.e., that all sphe-
rocylinders are aligned in the direction of the field. This
assumption can be largely justified as we expect nematic or-
dering of the rods for (i) sufficiently high packing fractions20

and (ii) sufficiently high field strength.17 In particular, we con-
sider a system of hard parallel polarizable spherocylinders
subject to an external electric field. The spherocylinders are
modeled by a cylindrical part of length L and diameter D, with
both ends capped by a hemisphere. We show that the dipolar
interaction between a pair of such spherocylinders is well ap-
proximated by the interaction of two opposite charges near the
ends of the spherocylinder. We use Monte Carlo (MC) simu-
lations and free-energy calculations to determine the phase
diagram of this model in the plane spanned by the packing
fraction of spherocylinders and the strength of their mutual
dipolar interactions. We also present the equation of state for
different interaction strengths and discuss the possibility of
chain formation.

II. THE MODEL

In order to describe the phase behaviour of polarizable
colloidal rods in an external electric field, we require a model
that offers a compromise between accuracy and simulation
speed. To this end, we model the particles by hard, parallel,
polarizable spherocylinders with aspect ratio L/D = 5. The
polarization is modeled by placing two opposite point charges
±q in the hemispherical end caps of the spherocylinders, dis-
placed a distance δz from the center of the hemispheres, see
Fig. 1. In this approximation, the potential between two par-
allel spherocylinders separated by a distance vector r is given
by

βV (r) =
{

βVdc(r), if the rods do not overlap

∞, if the rods overlap
, (1)

where β = 1/kBT, with kB the Boltzmann constant and T the
temperature. The interaction between two rods which do not

0021-9606/2014/141(15)/154903/7/$30.00 © 2014 AIP Publishing LLC141, 154903-1
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FIG. 1. (a) Schematic picture of the double-charge model for spherocylin-
ders of cylinder length L and diameter D. The interaction between parallel
polarizable spherocylinders subject to an external electric field is approxi-
mated by the interaction between pairs of point charges with charge ±q in
each spherocylinder which are displaced by a distance δz ≈ 0.276D from the
centers of their hemispherical end caps. (b) Sketch of two parallel polarizable
spherocylinders. Their relative distance r has a component r‖ parallel to the
electric field and a perpendicular component r⊥.

overlap is given by the double-charge potential

βVdc(r‖, r⊥) = γ

⎛
⎝2D

r
− D√

r2
⊥ + (r‖ + L + 2δz)

2

− D√
r2
⊥ + (r‖ − L − 2δz)

2

⎞
⎠ , (2)

where r⊥ and r‖ denote the distances between the centers of
the spherocylinders in the direction perpendicular and parallel
to the field, and r is the magnitude of r, see Figure 1(b). The
proportionality constant γ is given by

γ = βq2

4πεsolD
, (3)

where εsol is the dielectric constant of the solvent.
In order to relate the proportionality constant γ to the

applied electric field E, we approximate the rod as a uniformly
polarized dielectric with dielectric constant εrod. Within this
approximation, the dipole moment of the rod is given by

prod = αE, (4)

where α is given by the Clausius–Mossotti relation

α = 3vrodεsol

(
εrod − εsol

εrod + 2εsol

)
, (5)

with vrod the volume of the rod. This approximation ignores
variations in the polarization strength and direction inside the
rod, as well as any polarization due to the electric field result-
ing from neighboring rods. Note that the later assumption is
valid when α is small.21

In the double charge model, the dipole moment is given
by

pdc
rod = q(L + 2δz). (6)

Equating the dipole moments prod = pdc
rod, we obtain

q =
(

α

L + 2δz

)
E. (7)

To determine the exact position of the charges inside
the rods, i.e., δz, we compare the potential energy landscape
between two rods within the double charge approximation
(Vdc) to that of two rods within a permanent dipole model
(Vpd). In this permanent dipole model, we model each rod
as Nd ≈ 6100 point dipoles arranged on a simple cubic
lattice of lattice constant a in the shape of a spherocylin-
der. The number of point dipoles was determined by de-
creasing the lattice spacing until we observed convergence
of the interparticle interaction in several configurations, and
then choosing a slightly smaller value of the lattice spac-
ing. We relate the strength of the small dipoles in the per-
manent dipole model to the strength of the charges in the
double-charge model by demanding that the dipole moment
prod equals the total dipole moment of the small dipoles. We
introduce

δv(r⊥, r‖, δz) = |Vpd(r⊥, r‖) − Vdc(r⊥, r‖, δz)|
|Vdc(0, L + D, δz)|

, (8)

as a measure of the relative difference in interaction strength
between the double-charge model and the permanent dipole
model for three typical configurations. A plot of δv(r⊥, r‖, δz)
as a function of δz is depicted in Fig. 2. We find good agree-
ment between the two models when δz ≈ 0.276D.

Figure 3 shows a comparison between Vdc and Vpd as a
function of the relative position of two rods for δz = 0.276D.
As can be seen from Fig. 3, the relative difference between the
two models is typically less than a few percent demonstrating
that the double charge model with δz = 0.276D yields a good
approximation for the potential between the rods. Note that
the “ideal” value for δz varies only slightly depending on the
lattice type and lattice spacing used in the permanent dipole
approximation.

In the remainder of this paper, we study the phase be-
haviour of spherocylinders within the double charge model
with δz = 0.276D using Monte Carlo simulations to-
gether with free-energy calculations. In the simulations, we

FIG. 2. Plot of δv(r⊥, r‖, δz
), the absolute value of the relative difference

between the double-charge potential Vdc and the reference potential Vpd be-
tween two hard parallel spherocylinders for three choices of r⊥ and r‖ as
a function of δz. Note that a is the lattice constant in the permanent dipole
model.
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FIG. 3. Plot of δv(r⊥, r‖, δz
= 0.276D) as defined in Eq. (8) for two parallel spherocylinders with L/D = 5 as a function of their relative distance (r⊥, r‖)

showing deviations between the double-charge model and the permanent dipole model of the order of a few percent at most.

implement the long-ranged interactions between the point
charges using Ewald summations (see Ref. 22 for details).

III. PHASE DIAGRAM

The main objective of this paper is to establish the phase
diagram of parallel hard polarizable rods in an external elec-
tric field. To this end, we first identify possible stable phases.
Second, using thermodynamic integration we calculate the
Helmholtz free energies of these phases. Finally, we use
common tangent constructions to determine the coexistence
regions, and draw the resulting phase diagram.

A. Candidate phases

The phase diagram for parallel hard rods has been exam-
ined in detail previously using computer simulations.23 The
resulting phase diagram consists of a stable nematic, a smec-
tic A, and two crystalline phases with AAA and ABC stacking
of hexagonal layers. Hence, we identify these four phases as
candidate phases for our system. Note that the AAA phase is
essentially a crystalline version of the smectic A phase where
the layers are hexagonally ordered, and the ABC phase is the
rod equivalent of the face-centered-cubic crystal phase for
spheres.

Previous studies of polarizable rods of length L/D = 2 in
an external electric field identified a distinct low-temperature
phase called K2 where the particles were aligned into columns
with the columns hexagonally arranged and staggered in
height from their neighbours by an offset of (L + D)/3 result-
ing in a crystalline phase with C3 symmetry.24 For our sys-
tem, NPT Monte Carlo simulations showed that this structure
melted for all investigated pressures P and temperatures T.
Hence, this structure is clearly not stable for the present set of
parameters. Nonetheless, it seems likely that crystal structures
consisting of staggered columns of rods aligned along the di-
rection of the external field, similar to the K2 crystal struc-
ture, will be stable at low temperatures (high field strength) in
our system. The optimal choices for the offsets of each col-
umn along the field direction may depend on the aspect ratio
of the rods. In order to find candidate crystal structures for
L/D = 5, we therefore investigated a range of these colum-
nar crystal structures, and determined which choices were at
least metastable in NPT Monte Carlo simulations. This search
resulted in three candidate crystal structures (see Ref. 22 for
details). We selected the phase with the lowest free energy
as a candidate phase. A description of how the free energy

was calculated is presented in Sec. III B. For the remainder of
this paper we will refer to this structure as crystal X. Cartoons
of the X structure, as well as the other phases found to be
stable in the phase diagram, can be seen in Fig. 4. We note
here that our study was not exhaustive, and it is possible that
we missed stable crystal structures in our investigations. How-
ever, the structure we find with the lowest free energy has sig-
nificant similarities with the crystals seen experimentally in
this system.19 Moreover, the unit vectors of crystal X,

kX
1 = (D, 0,D),

kX
2 = (−D/2,

√
3D/2,−2D), (9)

kX
3 = (−D/2,−

√
3D/2,D),

build up not only the K2 crystal for L/D = 2 but also the X
crystal for L/D = 5. The two structures X and K2 are therefore
closely related.

B. Free-energy calculations

In the following, we describe the details of the free-
energy calculations for the individual phases of perfectly
aligned rods examined in this study.

1. Free energy of the nematic phase

We determine the free energy per particle of the nematic
phase, f by integrating the measured equation of state P(ρ)
from the low density limit ρ → 0, where ρ = N/V is the
density. In this limit, the free energy reduces to that of the
ideal gas,25 and at finite ρ we have

βf (ρ) = βfid (ρ) +
∫ ρ

0
dρ ′

(
βP (ρ ′) − ρ ′

ρ ′2

)
, (10)

with fid the free energy per particle of a noninteracting three
dimensional gas of a finite number of rods in the double-
charge model,

βfid (ρ) 	 log ρ	3 − 1 + 1

2N
log 2πN

− γD
1

L + 2δz

, (11)

with 	 the thermal de Broglie wavelength of a rod. Note
that the second last term corrects for the finite system size
up to order 1/N and the last term denotes the self-energy of
each rod. For higher interaction strengths, we obtain the free
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A AA C CC

AAA AAA HSC HSCHSC

XX XX

ABAB ABCABC

FIG. 4. Typical configuration of the observed phases in a system of N = 864 hard parallel spherocylinders with L/D = 5 in the double-charge model with δz= 0.276D.

energy from the nematic in the zero-field limit by thermody-
namic integration. Specifically, if we know the free energy
of the nematic at coupling strength γ 1, and if we are able to
construct a smooth path to another coupling strength γ 2, then
the free energy of the nematic at γ 2 is given by

βf (γ2) = βf (γ1) + 1

N

∫ γ2

γ1

dγ
〈βU 〉γ

γ
, (12)

where N is the number of particles, 〈 · 〉γ denotes an ensemble
average taken at interaction strength γ , and

βU = 1

2

∑
i �=j

βVdc(ri − rj ) (13)

is the pairwise interaction energy due to the polarization of
the rods.

2. Free energy of the crystal phases

The free energy of the crystal phase at a fixed density
can be obtained through thermodynamic integration from an
Einstein crystal. We consider a potential energy function of
the form

Ũ (rN, λ) = U
(
rN

0

) +
(

1 − λ

λmax

) [
U (rN ) − U

(
rN

0

)]

+ λ

N∑
i=1

|ri − r0,i |2
D2

, (14)

where r0,i denotes the lattice position of rod i and U (rN
0 ) the

corresponding electrostatic energy of the undisturbed crystal
as a whole. Note that when λ = 0 the system interacts purely
through electrostatics and the hard cores and for λ = λmax we
recover the Einstein crystal. We can then determine the free
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energy of our system by considering25

βf = βf Ein + 1

N

∫ λ=0

λ=λ
max

dλ

〈
∂Ũ (rN, λ)

dλ

〉
λ

= βf Ein (15)

+ 1

N

∫ 0

λ
max

dλ

〈
N∑

i=1

|ri − r0,i |2
D2

− U (rN ) − U
(
rN

0

)
λmax

〉
λ

.

For a d-dimensional system, the free energy of the Ein-
stein crystal plus center of mass corrections is given by26

βf Ein = βU
(
rN

0

)
N

− d(N − 1)

2
ln(π/λmax)

+ log ρ	3 − d

2
log N. (16)

Once the Helmholtz free energy at a specific density ρ1
is known, we can then use a second thermodynamic integra-
tion to calculate the Helmholtz free energy per particle as a
function of the density ρ. In particular,

βf (ρ) = βf (ρ1) +
∫ ρ

ρ1

dρ ′ βP (ρ ′)
ρ ′2 . (17)

3. Free energy of the columnar phase

To calculate the free energy of the columnar phase, we in-
tegrate the internal energy from the low temperature X crystal

according to Eq. (12). We note that the integration path was
smooth and no hysteresis was observed along the integration
path.

C. Phase behaviour

To examine the stability of the candidate phases, we per-
formed NPT Monte Carlo simulations of N = 864 rods. The
simulations were carried out by starting in the ABC, AAA, and
X phases at high density with a subsequent expansion of the
system at fixed pressure, and in the nematic, smectic A, and
string fluid phases with subsequent compression of the sys-
tem. All simulations were carried out for at least 400 000
MC cycles, half of these for equilibration and the other half
for sampling. Changes of the box dimensions were attempted
separately for each spatial direction. The equations of state
for four representative interaction strengths, e.g., γ = 0, 0.05,
0.25, and 1, are shown in Fig. 5. The phase diagram in the
plane spanned by the interaction strength γ and the pack-
ing fraction η, which summarizes all of our results, is shown
in Fig. 6. The colored dots indicate points where equation
of state calculations were performed. Metastable points and
points in the coexistence regions are not plotted. The coexis-
tences were calculated using free energy calculations in com-
bination with common tangent constructions. The thin lines
indicate approximate boundaries between phases, such as the
smectic A and smectic C phases which will be discussed fur-
ther below.
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FIG. 5. Equations of state for (a) γ = 0, e.g., the hard rod case, (b) γ = 0.05, (c) γ = 0.25, and (d) γ = 1, with pressure P ∗ = βpvrod. Different colors
indicate different phases as indicated. The distinction between the nematic and smectic phases were made based on visual inspection of simulation snapshots.
For the other transitions, the coexistence densities were determined using free energy calculations, and the black dashed lines indicate the two-phase coexistence
regions. Note that the equations of state of the nematic, smectic, and AAA crystal associated with γ = 0 (panel (a)) are consistent with those in Ref. 23.
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FIG. 6. The phase diagram of a system of N = 864 hard, parallel, sphero-
cylinders subject to an external E-field, in the plane spanned by the interac-
tion strength γ and the packing fraction η.

The equations of state and the phase diagram display a
variety of stable phases, including a nematic (string) fluid,
smectic A, and smectic C phases, a columnar phase and
four crystal phases denoted AAA, HSC, X, and ABC. In
Secs. III C 1–III C 3, we will discuss a number of these phases
individually.

1. String fluid and smectic phases

As seen both in the phase diagram and the equations
of state, at low densities and low γ we find a nematic fluid
phase. Upon increasing the interaction strength, the rods self-
assemble into strings in the direction parallel to the field di-
rection. Interestingly, a similar model studied in Ref. 24, with
freely rotating rods of aspect ratio L/D = 2 and δz = 0 did
not exhibit a string phase. For our system, i.e., L/D = 5 and
with δz = 0.276D, the head-to-toe configuration is clearly the
energetically most favorable one for two hard parallel sphe-
rocylinders, while δz = 0 yields only a weakly pronounced
minimum at this position. This might explain why Rotunno
et al.24 did not observe string formation of spherocylinders,
as one would expect on the basis of earlier studies on dipolar
spheres.1, 2

As we increase the density, we find that the nematic
(string) fluid transforms via a weakly first order phase tran-
sition into a smectic A or smectic C phase, depending on
the interaction strength γ . We observe effectively no hystere-
sis between the nematic and smectic phases (see Figs. 5(a)–
5(c)) and the distinction between these phases is determined
via visual inspection of the snapshots in the simulations. As
these phase boundaries are based on observations in contrast
to free-energy calculations, we denote the boundary between
these phases via thin lines in the phase diagram. At interac-
tion strengths larger than γ ≈ 1, the smectic phases disappear
completely. Note that the value of γ for which the smectic
A transforms to a smectic C and the one at which the smec-
tic phases disappear altogether are approximate. Their accu-
racy is determined by the values of γ where we performed
equation of state calculations (as indicated by the points in
the phase diagram).

At high field strengths, a huge density gap opens up that
separates a dilute gaseous state from a dense crystalline X
state, where we note that we were unable to completely equi-

librate the dilute nematic phase. As a result, the coexistence
points for high γ (γ > 5) were determined using the ideal
gas free energy of rods and the crystal X. We point out here
that for high γ the density of the gas coexisting with the crys-
tal approaches zero, and hence the ideal-gas approximation is
valid.

2. AAA, HSC, X, and columnar phases

For intermediate densities, with γ = 0 we find an AAA
crystal phase in accordance with the hard-rod results of
Ref. 23. As the interaction strength is increased, the AAA
phase begins to compete with the HSC phase, and our simu-
lations oscillate between the two phases. We suspect that this
is due to finite size effects, but due to computational difficulty
we are unable to determine this with certainty. As the inter-
action strength is further increased to approximately γ ≈ 0.2,
the system forms a columnar phase, and finally at γ ≈ 10 the
columnar phase is replaced by an X crystal. In our phase di-
agram, we depict the transition between the columnar phase
and the X crystal phase with a thin line that is approximately
half way between the points where each phase is observed.
The transition from the nematic and smectic phases at low
densities to the columnar and crystalline phases are all first-
order, and marked by a clear density jump in the equations of
state, as seen in Fig. 5.

We would like to note here that columnar phases are dif-
ficult to study in simulations due to finite size effects. In fact,
early studies of hard, parallel, spherocylinders identified a
columnar phase at intermediate densities instead of the AAA
as a result of finite size effects.23 In our simulations (with
N = 864), in the region where the columnar phase is identi-
fied, we only observe a columnar phase, and see spontaneous
melting of the AAA and HSC crystals. However, as the long
range nature of the interactions prohibits the study of signif-
icantly larger system sizes, we cannot exclude the possibility
that some, or all statepoints, of the columnar branch are crys-
talline in the infinite system limit.

3. ABC phase

At sufficiently high densities, the system always forms an
ABC crystal as this is the closest packed structure for this sys-
tem. In the ABC crystal phase, the rods are not positioned in
head-to-toe configurations, in contrast to the X, and columnar
phases. As a result, the potential energy of the ABC crystal is
significantly higher. Thus, the density for which this phase
sets in depends highly on the interaction strength, starting
around η = 0.7 for low interaction strength and increasing al-
most to close packing at high interaction strength. Note that in
all cases, this transformation to the ABC crystal phase occurs
via a first order phase transition, as illustrated by the density
jumps in Fig. 5.

D. Experimental comparison

A complete comparison between this phase diagram and
experimental observations on colloidal silica rods suspended
in a mixture of dimethylsulfoxide (DMSO) and water is
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presented in Ref. 19. Using the experimental parameters, we
can relate the interaction strength γ to the experimental field
strength via γ = 1692.17E2, where E is measured in V/μm.
Here, we give a short summary.

To start, the main difference between the simulations and
the experiments is the presence of an isotropic phase at low
field strengths and low densities. This phase cannot occur in
our simulations as the rods are explicitly restricted to be par-
allel. However, at slightly higher field strengths, the isotropic
phase turns into a nematic phase similar to what we predict
in our phase diagram. The experiments also observe a smec-
tic phase and a single crystalline phase. Importantly, confo-
cal images of cuts through the crystalline phase are consistent
with the X crystal predicted here, supporting our model. We
should remark here that the experiments did not observe a
columnar phase, nor AAA, HSC, ABC crystal phases. How-
ever, this might simply be a result of the limited number
of state points studied experimentally. Specifically, the ABC
crystal phase is unlikely to be observed in experiments due to
the high densities, or equivalently high pressures, needed to
access this phase.

IV. CONCLUSION

We have introduced and studied a model system for
polarizable spherocylinders of aspect ratio L/D = 5 in an ex-
ternal electric field. In our model, we represented the polar-
izable spherocylinders by parallel spherocylinders with two
opposite point charges located near the opposite ends of the
rods (Fig. 1), which we called a double charge model. By
comparing with a permanent dipole model, we were able
to establish a good location for the point charges. By as-
suming that the rods were a uniformly polarized dielectric
we were able to connect the interaction strength of the dou-
ble charge model to the strength of the applied field assum-
ing the dielectric constants of the rod and the solvent were
known.

Using our double charge model, we have predicted the
phase diagram for polarizable spherocylinders of aspect ratio
L/D = 5 in an external electric field. We find regions of stabil-
ity of a nematic (string) fluid, a columnar phase, two smectic
phases, as well as the crystal phases AAA, HSC, X, and ABC.
Our results at zero field, i.e., zero interaction strength, agreed
well with previous simulations studies. In an additional study,
we demonstrate that our results show good qualitative agree-
ment with experiments on colloidal silica rods in an external
electric field.19
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