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Two-stage melting induced by dislocations and
grain boundaries in monolayers of hard spheres†

Weikai Qi, Anjan P. Gantapara and Marjolein Dijkstra*

Melting in two-dimensional systems has remained controversial as theory, simulations, and experiments

show contrasting results. One issue that obscures this discussion is whether or not theoretical

predictions on strictly 2D systems describe those on quasi-2D experimental systems, where out-of-

plane fluctuations may alter the melting mechanism. Using event-driven molecular dynamics

simulations, we find that the peculiar two-stage melting scenario of a continuous solid-hexatic and a

first-order hexatic–liquid transition as observed for a truly 2D system of hard disks [Bernard and Krauth,

Phys. Rev. Lett., 2011, 107, 155704] persists for a quasi-2D system of hard spheres with out-of-plane

particle motions as high as half the particle diameter. By calculating the renormalized Young's modulus,

we show that the solid–hexatic transition is of the Kosterlitz–Thouless type and occurs via dissociation

of bound dislocation pairs. In addition, we find a first-order hexatic–liquid transition that seems to be

driven by spontaneous proliferation of grain boundaries.
I. Introduction

Melting in two-dimensional (2D) systems has been debated
heavily since Landau, Peierls, and Mermin showed that thermal
long-wavelength uctuations do not allow for a long-range
positional order in a 2D solid.1–3 According to the Kosterlitz–
Thouless–Halperin–Nelson–Young (KTHNY) theory, the
melting mechanism of 2D crystals proceeds via two consecutive
continuous transitions, which are induced by the formation of
topological defects.4–6 A topological defect in a two-dimensional
crystal with triangular symmetry is dened as a particle that
does not possess six nearest neighbors: a disclination is an
isolated defect with ve or seven nearest neighbours, while a
dislocation is an isolated pair of a 5- and 7-fold defect.
According to the KTHNY theory, the 2D solid melts via disso-
ciation of bound dislocation pairs (5–7–5–7 quartets) into an
intermediate hexatic phase, which is characterized by a short-
ranged positional order, but a quasi-long-ranged bond orien-
tational order. Subsequently, the hexatic phase transforms into
a liquid phase with a short-ranged positional and orientational
order via the unbinding of dislocations (5–7 pairs) into separate
disclinations.4–6 However, the KTHNY theory only predicts when
the system becomes unstable with respect to unbinding of
dislocations and disclinations, and does not rule out the
possibility that these transitions might be preempted by a
single rst-order uid–solid transition7 driven by an alternative
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melting mechanism, e.g., grain-boundary induced melting.8,9

Many computer simulation and experimental studies have been
performed to reveal the melting mechanism for 2D solids with
contrasting support for a two-stage melting scenario via an
hexatic phase as well as a rst-order melting transition.10–23

These results seem to suggest that 2D melting is not universal,
but depends on specic properties of the system, e.g., inter-
particle potential, out-of-plane uctuations, nite-size effects,
etc.

For a 2D hard-disk system, important progress has been
made recently as large-scale simulations conrmed the exis-
tence of an hexatic phase, but found in contrast to predictions
of the KTHNY theory a rst-order liquid–hexatic phase transi-
tion and a continuous hexatic–solid transition.24,25 These
results, conrmed by three different simulation methods in ref.
26, settled a long-standing debate on the nature of 2D hard-disk
melting, which was fueled by conicting results mainly caused
by nite-size effects and poor statistics due to insufficient
computer power in previous studies.27–38

In order to study 2D melting in experiments,14 colloidal
particles were conned between two glass plates, showing
observations consistent with the KTHNY scenario,13,15,16 a rst-
order uid–solid transition,11 and a rst-order liquid–hexatic
and a rst-order hexatic–solid transition.18 It is important to
note that in these experiments the separation between the glass
plates was on the order of 1.2 to 1.5 times the particle diameter,
and hence the particles can move out of plane. An alternative
way to study 2D melting in colloidal systems is to adsorb the
particles at air–liquid or liquid–liquid interfaces, which restricts
signicantly the out-of-plane motion of the particles. Support
has been found in these experimental set-ups for the two-stage
Soft Matter, 2014, 10, 5449–5457 | 5449
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KTHNY melting,10,19–21 but also for a rst-order uid–hexatic
and continuous hexatic–solid transition.22 Clearly, there is no
consensus in simulations and experiments on the nature of the
2D melting transition. These results may suggest that the
melting mechanism depends sensitively on the interparticle
interactions. However, even for particle systems interacting
with short-range repulsive pair potentials conicting results
have been found experimentally.11,13,15 It therefore remains
essential to investigate whether or not out-of-plane uctuations
can alter the melting scenario, and can explain the discrep-
ancies in the experimental results.

In this paper, we focus on particle systems that interact with
excluded-volume interactions. To be more precise, we investi-
gate the effect of out-of-plane uctuations on the melting
mechanism of hard spheres conned between two parallel hard
plates using event-driven molecular dynamics (EDMD) simula-
tions. We nd that the peculiar melting mechanism of a quasi-
2D monolayer of hard spheres is very similar to that of a 2D
hard-disk system25,26 even when the out-of-plane uctuations
are as large as half the particle diameter, and thus experiments
on tightly conned colloids should show a continuous hexatic–
solid transition and a rst-order hexatic–liquid transition
provided the interactions are hard-sphere-like. This result is
highly surprising as a previous simulation study on Lennard-
Jones particles shows that the hexatic phase disappears when
the particles undergo tiny out-of-plane uctuations.39 Similarly,
simulations on attractive colloidal so spheres show that the
KTHNY melting transition in 2D systems can change to a rst-
order transition in quasi-2D systems with out-of-plane uctua-
tions of 1.2s, where s is diameter of particles.14,40 More impor-
tantly, we also provide an explanation for the observed melting
behavior. By calculating the renormalized Young's modulus for
the solid phase, we show that the solid–hexatic transition is of
the Kosterlitz–Thouless (KT) type, and is driven by the forma-
tion of isolated dislocations. However, the melting of the hex-
atic phase proceeds via a rst-order grain-boundary induced
melting transition that intervenes the KTHNY scenario.

II. Model and methods

We performed large-scale event-driven molecular dynamics
(EDMD) simulations of N ¼ 10242 ¼ 1 048 576 hard spheres
with diameter s conned between two parallel hard plates of
area A ¼ LxLy with Lx : Ly ¼ 2 :

ffiffiffi
3

p
to accommodate a crystalline

layer with triangular symmetry, as illustrated in the inset of
Fig. 1(a). In an EDMD simulation, the system evolves via a time-
ordered sequence of elastic collision events, which are
described by Newton's equations of motion. The spheres move
at a constant velocity between collisions, and the velocities of
the respective particles are updated when a collision occurs. All
collisions are elastic and preserve energy and momentum. In
order to speed up the equilibration we divided the simulation
box into small cells in the XY plane, and we used a cell list.41 In
addition, we employed an event calendar to maintain a list of all
future events.41 Three different events are listed in the calendar:
(1) collisions between particles; (2) collisions between particles
with the two walls; and (3) particles that cross the cell boundary.
5450 | Soft Matter, 2014, 10, 5449–5457
The phase behavior of this system was determined as a
function of plate separation H in ref. 42–44. The phase diagram
as determined from free-energy calculations shows a rst-order
phase transition from a uid phase to a crystal phase consisting
of a single triangular layer for plate separations 1 # H/s #

1.53.43 However, the presence of an intermediate hexatic phase
was ignored in this study. We also note that the system reduces
to a 2D system of hard disks for H/s ¼ 1.
III. Results
A. Mayer–Wood loop in the equation of state

We performed EDMD simulations in the NVT ensemble for
varying plate separations 1 # H/s # 1.53. We computed the
reduced 2D lateral pressure P* from the collision rate via the
virial theorem given by

P* ¼ bPs2 ¼ Ns2

A

"
1� bm

2t

1

N

XN
i\j

rij$vij

#
; (1)

wherem¼ 1 is the mass of the particles, b¼ 1/kBT is the inverse
temperature, kB is the Boltzmann's constant, t is the time
interval, and rij and vij are the 2D projections of the distance
vector and the velocity vector, respectively, between particles i
and j.

In Fig. 1(a), we plot P* as a function of the 2D packing
fraction h ¼ pNs2/4A for varying plate separations 1 # H/s #

1.53. For all H/s considered, we observed a Mayer–Wood loop in
the equation of state (EOS) due to interfacial tension effects in
nite systems.45 We determine the coexisting densities using a
Maxwell construction as presented in the ESI.† The presence of
such a loop in the EOS provides support for a rst-order phase
transition. We note however that such loops in the EOS can also
appear due to the nite size of 2D systems.32 We therefore also
veried that the interfacial free energy f obtained from inte-
grating the EOS scales as ff N�1/2, which yields strong evidence
for a rst-order transition from an isotropic uid (also referred
to as a liquid) phase to a more ordered phase.25
B. Finite size scaling of the positional order parameter

To characterize the coexisting phase at high densities, we per-
formed a sub-block scaling analysis to the 2D positional order
parameter in reciprocal space

JG ¼
����� 1N

XN
i¼1

expðiG$riÞ
�����
2

; (2)

where the sum runs over all particles i, ri is the 2D projection of
the position of particle i and G denotes the wave vector that
corresponds to a diffraction peak and equals 2p/awith a being the
averaged lattice spacing. We remark here that the average lattice
spacingmight differ from the lattice spacing of an ideal triangular
lattice due to vacancies and other defects.25 We calculated JG for
varying sub-block sizes LB/L with L ¼ ffiffiffiffiffiffiffiffiffi

LxLy
p

=4 and analyzed the
scaling of ln(JG(Lb)/JG(L)) versus ln(Lb/L). According to the
KTHNY theory, the positional order parameter is expected to
decay algebraically, i.e.,JG(L)f L�awith an exponent 0# a# 1/3
This journal is © The Royal Society of Chemistry 2014



Fig. 1 (a) The reduced 2D lateral pressure P* ¼ bPs2 as a function of the 2D packing fraction h ¼ pNs2/4A for N ¼ 10242 hard spheres with
diameter s confined between two parallel hard walls with varying plate separation H/s as labeled and area A ¼ LxLy as illustrated in the inset. The
gray dashed lines indicate the coexistence regions as obtained from the Maxwell construction. (b) Subblock scaling analysis of the 2D positional
order parameter in reciprocal space JG(Lb) versus Lb for H/s ¼ 1.1 for varying h as labeled. (c) Positional correlation function gG(r) and (d) bond
orientational order correlation function g6(r) as a function of r forH/s¼ 1.1 and varying h as labeled in (b). The slope of the black dashed line in (b)
and (c) corresponds to �1/3, which indicates a hexatic–solid transition at hHS x 0.728 according to the KTHNY theory. The slope of the black
dashed line in (d) is �1/4, which equals the maximum possible slope for a hexatic phase. The solid lines in (c) are fits of gG(r).
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in the solid phase, while in the liquid and hexatic phase the
translational order decays exponentially.46 As we nd similar
results for all plate separations 1 # H/s # 1.53, we only present
results for H/s ¼ 1.1 and refer the reader to the ESI† for other
values ofH/s. In Fig. 1(b) we present the sub-block scaling analysis
for H/s ¼ 1.1. We nd that the positional order decays algebrai-
cally with a slope a < 1/3 for h $ 0.728, which is higher than the
coexisting densities hL ¼ 0.700 and hH ¼ 0.718 of the liquid and
hexatic phase, respectively, as determined from the Maxwell
construction, indicating a small density regime with a stable
hexatic phase. We thus nd evidence for a rst-order uid–hexatic
phase transition as supported by the Maxwell construction and a
continuous hexatic–solid transition at hHS x 0.728.
C. Positional and bond orientational correlation functions

In order to corroborate our ndings, we also computed the
positional correlation function in reciprocal space

gG(r) ¼ hj*
G(r

0 + r)jG(r
0)i (3)
This journal is © The Royal Society of Chemistry 2014
with jG(r) ¼ exp(iG$r) and G as dened above, and the bond
orientational order correlation function

g6(r) ¼ hj*
6(r

0 + r)j6(r
0)i (4)

with j6ðriÞ ¼
1
Ni

X
j˛Ni

expði6qijÞ, where the sum runs over Ni

neighbors j of particle i. We show exemplarily the correlation
functions in Fig. 1(c) and (d) for H/s ¼ 1.1 at varying packing
fractions h. We observe that in the density regime h ˛ [0.718,
0.728] the positional order gG(r) decays exponentially, while the
bond orientational order is quasi-long ranged which supports
again the presence of a stable hexatic phase and conrms the
liquid–hexatic phase coexistence. We note that the correlation
function g6(r) for h ¼ 0.704 and 0.708 is calculated well inside
the liquid–hexatic coexistence region, which gives rise to an
unphysical upward curvature. For h � 0.728, the positional
order decays algebraically with an exponent �1/3, which
corresponds to a continuous solid–hexatic transition according
to the KTHNY theory. In addition, we nd that the positional
Soft Matter, 2014, 10, 5449–5457 | 5451
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correlation function gG(r) is well-tted by a stretched exponen-
tial function e�(r/x)b in the hexatic phase with a correlation
length x � 20s and 0.2 # b # 1.

D. Effect of out-of-plane uctuations

Employing the same analysis as described above for other
values of H/s (see ESI†), we nd that the two-step melting
behavior persists in the whole range of plate separations 1# H/
s # 1.53, although for H/s ¼ 1.53 the hexatic phase is stable
only in a minute density regime. For H/s ¼ 1.56, we did not
observe a stable crystalline monolayer with triangular
symmetry. We present our results on the phase behavior of hard
spheres conned between two parallel hard walls in Fig. 2 along
with the relevant part of the phase diagram of ref. 43. We nd a
remarkable agreement between the coexisting densities as
obtained from the Mayer–Wood loop in the EOS and those
determined using free-energy calculations for the uid–solid
transition in conned hard spheres.43 We remark that the
system sizes of 200 particles as employed in ref. 43 were too
small to distinguish the hexatic phase from the solid. It is also
important to note that our results on the melting transition for
H/s¼ 1 based on a different method to distinguish the different
phases, i.e., a sub-block scaling analysis, matches with those
obtained for a 2D hard-disk system.25,26 However, our nding of
a stable hexatic phase for plate separations as high as H/s ¼
1.53 contrasts simulations of a conned Lennard-Jones system,
where a stable hexatic phase was only found when the out-of-
plane particle uctuations are less than 0.15s.39 We wish to
remark that the system size of N ¼ 2122 was perhaps too small
Fig. 2 Phase diagram of hard spheres with diameter s confined
between two parallel hard walls as a function of plate separation H/s
and reduced density hs/H ¼ pNs3/4AH. We denote the stable one-
phase regions with the labels “Liquid” and “Hexatic”. The labels “1D”
denotes the crystalline monolayer with triangular symmetry and the
label “Buckled” correspond to the buckling phase consisting of rows
that are displaced in height.43 We also denote the region that is
forbidden as it exceeds the maximum possible packing fraction. The
gray regions denote the two-phase coexistence regions, while the
yellow region denotes the hexatic phase. The solid symbols are the
phase boundaries determined in this work and the open symbols are
obtained from ref. 43. The lines are guides to the eye.
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to identify the hexatic phase here. We also mention that an
integral equation theory of conned hard spheres predicts a
continuous liquid–hexatic phase transition for plate separa-
tionsH/s < 0.4, but a rst-order liquid–solid transition for larger
plate separations.47 Our results thus differ from these theoret-
ical predictions as (i) we nd a rst-order instead of a contin-
uous liquid–hexatic transition for all plate separations 1 # H/s
# 1.53, and (ii) we do not nd a cross-over from a continuous
liquid–hexatic transition to a rst-order liquid–solid transition
at sufficiently large plate separations. We also mention here
that the authors of ref. 47 were not able to exclude a possible
rst-order hexatic–liquid melting transition as they employed a
bifurcation analysis.
E. Topological defects and melting mechanism

The KTHNY theory suggests a two-step melting scenario where
the unbinding of dislocation pairs (5–7–5–7 quartets) into free
dislocations drives the solid–hexatic transition, and the disso-
ciation of dislocations (5–7 pairs) into free disclinations induces
the hexatic–liquid transition. To investigate whether or not the
melting is mediated by the unbinding of dislocations and dis-
clinations, we calculated the number fractions of topological
defects as a function of h, where we dene a defect as a particle
that does not have six nearest neighbors as determined by a
Voronoi construction. We observed distinct topological cong-
urations for the vacancies, depending on symmetry and the
number of 4-fold, 5-fold, 7-fold and 8-fold defects. Examples are
Fig. 3 (a) Number fraction of free dislocations (squares), free dis-
clinations (triangles), bound dislocation pairs (filled circles) and
vacancies (open circles) versus the 2D packing fraction h ¼ pNs2/4A
for a 2D hard-disk system (H/s ¼ 1). We define the number fraction (in
%) as the number of respective defects divided by the total number of
particles. (b) The total number of defects per particle (open squares)
and the number of defects in defect clusters per particle (open circles)
versus h.

This journal is © The Royal Society of Chemistry 2014



Paper Soft Matter
the split vacancy (SV), a two-fold (V2), three-fold (V3), and four-
fold (V4) vacancy, adopting the notation as in ref. 48. In Fig. 3,
we present results for only hard disks (H/s ¼ 1), but mention
that we found similar results for other values of 1# H/s# 1.53.
More precisely, the results for H/s ¼ 1.1 is indistinguishable
Fig. 4 Typical configurations of hard disks (H/s ¼ 1) in a 100s � 100s
(coexisting hexatic phase), and (d) h¼ 0.699 (coexisting liquid phase). Gre
fold defects, red particles are 7-fold defects, yellow particles are 4-fold d
fold and 7-fold disclination, dislocation pair, isolated dislocation, and a g

This journal is © The Royal Society of Chemistry 2014
from H/s ¼ 1 as shown in Fig. 3, whereas the coexisting
densities and the density of the hexatic–solid transition (the
vertical dashed lines) are shied by less than 0.5%. Fig. 3(a) and
ESI Movie† show that in addition to a minute fraction of free
dislocations and vacancies, the solid contains mainly
sub-box for (a) h ¼ 0.728 (solid), (b) h ¼ 0.722 (hexatic), (c) h ¼ 0.718
en particles are particles with six nearest neighbors, blue particles are 5-
efects and grey particles are 8-fold defects. (e) Schematic picture of 5-
rain boundary.

Soft Matter, 2014, 10, 5449–5457 | 5453
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dislocation pairs (x0.1%) that increases slightly with
decreasing h. A typical conguration of the solid phase with
mainly dislocation pairs is presented in Fig. 4(a). It is also
interesting to note that the dislocation pairs can move freely in
the solid phase without destroying the positional and bond
orientational order of the 2D lattice, see ESI Movie.† At the
hexatic–solid transition, the number fraction of free disloca-
tions starts to increase to �0.2% with decreasing h, suggesting
that the solid–hexatic transition is induced by the formation of
free dislocations. However, the number fraction of dislocation
pairs also remains increasing upon decreasing h in the hexatic
phase. Fig. 4(b) shows a typical conguration of the hexatic
phase. In addition, we found that the number fraction of free
dislocations, free disclinations, and vacancies increases with
decreasing h but remains always below 1% even in the liquid
phase, while the fraction of dislocation pairs seems to become
constant in the coexistence region and the liquid phase. More
importantly, we found that many defect particles could not be
identied as an isolated dislocation pair, a free dislocation or a
disclination, but were part of much larger defect clusters, which
tend to be small and compact in the hexatic phase, but become
string-like in the coexistence region and the liquid phase, see
Fig. 3(b). In Fig. 4(c) and (d) and ESI Movies,† we present typical
conguration of both the coexisting hexatic and liquid phase.
The fraction of particles that belonged to these string-like defect
clusters (grain boundaries) with number fractions as high as
20% outweighs the number fractions of bound dislocation
pairs, free dislocations, and disclinations, indicating that the
melting seems to be induced by spontaneous proliferation of
grain boundaries instead of unbinding of dislocations and
disclinations. It is also worth mentioning that both the uid
and the hexatic phase exhibit clear crystalline patches consist-
ing of a few hundred particles, which are surrounded by string-
like defect clusters. In the case of the hexatic phase, the crys-
talline patches are still correlated and the bond orientational
order is preserved, while in the liquid phase the crystalline
domains seem to be uncorrelated, thereby destroying the bond
orientational order. ESI Movies† show a time evolution of these
defect structures.
F. Elastic constants

According to the KTHNY theory, a continuous solid–hexatic
phase transition occurs via spontaneous proliferation of dislo-
cations when the dimensionless Young's modulus K of the two-
dimensional solid equals 16p:4–6

K ¼ 8ffiffiffi
3

p
rkBT

ðlþ mÞm
lþ 2m

¼ 16p: (5)

Here l and m denote the 2D Lamé elastic constants, respectively,
and r ¼ ð2= ffiffiffi

3
p Þa�2 is the density of the 2D triangular solid with

a being the lattice spacing. However, a rst-order solid–liquid
transition driven by the spontaneous proliferation of grain
boundaries may preempt the solid–hexatic transition when the
core energy Ec of a dislocation is less than 2.84 kBT.7,8 In order to
compare the density at which the solid melts into an hexatic
phase according to our analysis of the positional and bond
5454 | Soft Matter, 2014, 10, 5449–5457
orientational order, we calculated the Lamé elastic constants
from the strain uctuations as described in ref. 49 and
compared the results with the predictions of the KTHNY theory.
To this end, we dene the displacement vector u(t) ¼ r(t) � R,
where r(t) denotes the instantaneous and R is the ideal lattice
position of a particle. The instantaneous Lagrangian strain
tensor 3ij is then given by

3ij ¼ 1

2

�
vui

vRj

þ vuj

vRi

þ vui

vRk

vuk

vRj

�
: (6)

We measure the strain uctuations S11 ¼ h3xx3xxi and S12 ¼
S21 ¼ h3xx3yyi in EDMD simulations of N ¼ 16 384 hard disks,
and calculate the bulk and shear Lamé elastic coefficients
using40

bm ¼ 1

4ðS11 � S12Þ � bP

bl ¼ r

�
vbP

vr

�
� bm; (7)

where we used the equation of state as measured in Section IIIA.
The elastic constants are determined for a perfect defect-free
solid without any vacancies or dislocations. A previous simu-
lation study showed that the elastic constants are essentially
unaffected by the presence of a low concentration of vacancies.50

However, the elastic constant values are reduced considerably
by the presence of dislocations, and should therefore be
renormalized.5,6,40,49,51 In order to renormalize the Young's
modulus by the presence of dislocations, one should rst
determine the core energy Ec of a dislocation. The core energy
can be calculated from the probability density pd to nd a
dislocation pair per unit area using the relationship51

pd ¼ 16
ffiffiffi
3

p
p2

K � 8p
I0

�
K

8p

�
exp

�
K

8p

�
exp

��2Ec

kBT

�
; (8)

where I0 and I1 are modied Bessel functions and pd is as
obtained from Fig. 3(a). According to the KTHNY theory,5,6 the
renormalization of the Young's modulus K and the fugacity of
dislocation pairs y can be determined by using the recursion
relationships

dK�1ðlÞ
dl

¼ 3

4
py2ðlÞe

KðlÞ
8p

�
2I0

�
KðlÞ
8p

�
� I1

�
KðlÞ
8p

��
;

dyðlÞ
dl

¼
�
2� KðlÞ

8p

�
yðlÞ þ 2py2ðlÞe

KðlÞ
16p I0

�
KðlÞ
8p

�
;

with l being the coarse-graining length scale or the renormal-
ized ow variable. The thermodynamic values of K and y are
obtained in the limit l/ N. We use the bare Young's modulus
K(l ¼ 0) for a defect-free solid as obtained from the strain
uctuations and y(l ¼ 0) ¼ e�Ec/kBT as the initial values for the
renormalization recursion relationships. In Fig. 5(a), we show
the trajectories in the y–K plane for varying packing fractions as
obtained from solving the recursion relationships. The arrows
This journal is © The Royal Society of Chemistry 2014



Fig. 5 (a) Renormalization of the Young's modulus K(l) and the
fugacity of dislocation pairs y(l) for a system of hard disks. Each line
corresponds to a packing fraction as labeled starting from the initial
values y(0) ¼ exp(�Ec/kBT) and the bare unrenormalized Young's
modulus K(0) (Gray dots). The arrows point to the direction of l / N
corresponding to the equilibrium values of K(l) and y(l). The red lines
indicate the flows of the renormalization group equation at the solid–
hexatic transition point. (b) Renormalized and unrenormalized Young's
modulus, KR and K(0) respectively, as a function of packing fraction h.
Lines are guides to the eye.

Fig. 6 The core energy Ec of a dislocation as a function of packing
fraction h. The blue line denotes a fit of the data. The dashed line
indicates the solid–hexatic phase transition point. The black solid line
indicates the core energy Ec > 5.35kBT for all packing fraction in the
solid phase.
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point to the direction of l/N. Fig. 5(a) shows that for h > 0.724
the dislocation fugacity y(l) /0 for l / N, which corresponds
to a solid phase without any dislocations. For h ¼ 0.724, the
dislocation fugacity y(l) / N for l / N, and hence the solid
melts into an hexatic phase due to spontaneous proliferation of
dislocations. In Fig. 5(b), we plot the bare K(0) and renormalized
Young's modulus KR as a function of h, and we nd that KR

changes from 16p to zero at h x 0.724, thereby providing
support for a KT-type solid–hexatic transition induced by the
unbinding of dislocation pairs. This result agrees well with the
increase in the number fraction of free dislocations at the solid–
hexatic transition in Fig. 4(b), and the density at which the
solid–hexatic transition was predicted on the basis of the global
positional order and the decay of the positional and bond
orientational correlation functions as shown in Fig. 1. We also
note that a t of the bare Young's modulus K(0) tends to 16p at a
packing fraction h x 0.716. Surprisingly, this packing fraction
agrees well with the melting density of the hexatic phase as
obtained from a Maxwell construction to the equation of state,
where we observed a proliferation of grain boundaries. In
summary, we thus nd that the solid melts via unbinding of
dislocation pairs into a hexatic phase via a KT-type transition,
and subsequently the hexatic phase melts via a rst-order
This journal is © The Royal Society of Chemistry 2014
transition into a uid phase, which seems to be driven by
proliferation of grain boundaries. It is worth mentioning that in
the solid phase the core energy Ec of a dislocation exceeds
2.84 kBT for all packing fractions as shown in Fig. 6, and hence a
rst-order uid–solid transition does not preempt the KT-type
solid–hexatic transition. We nally note that the core energy Ec
can only be determined in the solid phase, where the Young's
modulus remains nite (see Fig. 6). It is therefore not possible
to investigate whether or not Ec reaches a value of 2.84 kBT at the
uid–hexatic phase transition. We also wish to remark here that
the disclination core energy may be estimated from the Boltz-
mann distribution of particles that belong to a disclination.
However, both the elastic energy contribution of a single dis-
clination and the renormalization by the presence of other
defects are neglected here. As the fraction of particles that
belong to defect clusters is about 100 times larger that the
fraction of disclinations at the hexatic–liquid transition, it is
doubtful if the disclination core energy can be estimated from a
simple Boltzmann distribution.
IV. Conclusions

In conclusion, we performed large-scale EDMD simulations of
hard spheres conned between two parallel hard walls and
showed that the two-stage melting scenario as observed for 2D
hard disks25,26 persists for quasi-2D systems of hard spheres
with plate separations 1 # H/s # 1.53, which is of immediate
importance for experiments. Consequently, the hexatic phase
sustains out-of-plane uctuations as high as half the particle
diameter, and is stable for the whole range of plate separations
where a crystalline monolayer with triangular symmetry is
stable. Furthermore, we show that the Young's modulus
renormalized by dislocations, KR, equals 16p at the solid–hex-
atic transition in accordance with the predictions of the KTHNY
theory. We thus nd a KT-type solid–hexatic transition
Soft Matter, 2014, 10, 5449–5457 | 5455
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mediated by the unbinding of bound dislocation pairs. Subse-
quently, the KTHNY theory predicts a continuous hexatic–liquid
phase transition induced by the unbinding of dislocations into
disclinations. However, our simulations strongly indicates that
the KT-type hexatic–liquid transition is preempted by a rst-
order transition as demonstrated by the Mayer–Wood loops in
the equation of state, and seems to be driven by the formation
of string-like defect clusters or grain boundaries.

Comparing our results with experiments, we nd that the
available experimental data depends sensitively on the precise
details of the interaction potentials between the particles.
Experiments on colloidal spheres conned between two glass
plates seemed to show a rst-order uid–solid transition in the
case of silica spheres, but as only a few densities were studied
the hexatic phase could have been missed here very easily.11 For
short-repulsive microgel and dipolar spheres a liquid–hexatic
and hexatic–solid transition were reported but the accuracy of
the data was insufficient to determine the order of the transi-
tions.12,13,16 An alternative way to study 2D melting in colloidal
systems is to adsorb particles at air–liquid or liquid–liquid
interfaces. Support has been found for a two-stage melting
scenario for the dipolar and long-range repulsive spheres,10,52

but the order of the transition was again not established.
However, more recent experiments on dipolar spheres show
compelling evidence for two consecutive continuous transi-
tions in agreement with the KTHNY theory based on a careful
analysis of the elastic constants.19–21 Finally, a rst-order uid–
hexatic and a continuous hexatic–solid transition were
observed for particles interacting with so repulsions.22,53

However, the nature of the 2D melting transition for colloidal
hard spheres remains elusive, and hence there is an urgent
need to investigate in experiments and theory what the effect is
of interparticle potentials, e.g. range of repulsions,17 attrac-
tions18,54 or temperature-dependence, on the quasi-2D melting
mechanism. However, it should be noted here that our calcu-
lations show that the hexatic phase is only stable in a minute
density regime in the case of hard spheres, which can be
missed very easily in both simulations and experiments.
Additionally, the order of the transition is difficult to ascertain
due to nite-size effects. We hope that our analysis, i.e., rst
establishing the coexistence region (if present) and then
analyzing the decay of the positional and bond orientational
order of the stable phases, can guide future experimental and
simulation studies to establish the nature of the melting
mechanism.
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