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We present experimental and theoretical results on suspensions of silica rods in DMSO-water, subjected to
an applied electric field. The experimental results indicate that, if the electrode used for generating the electric
field is in direct contact with the suspension, a fraction of the rods close to the electrode surface does not
stand parallel to the field but instead lies flat on the electrode when the field is switched on. To explain these
results theoretically, we modify the coupled dipole method to include “image dipoles”, and find that a rod
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close to the electrode experiences not only the expected global potential energy minimum at an orientation
parallel to the electric field, but also a local minimum several times the thermal energy in depth for orienta-
tions parallel to the electrode surface. Additionally, we indicate how the magnitude of the potential energy
depends on the electric field strength and include results not only for negatively polarizable (which corre-
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1 Introduction

Manipulation of colloidal dispersions with applied electric fields is
a research subject with important technological applications. By
polarization of the particles, an electric field introduces not only a
preferred orientation for anisotropic particles, but also interparticle
interactions that can allow the particles to assemble into ordered
structures." In this way, one can “switch on” order in a system by
switching on an electric field, and switch off the order by switching
off the electric field and allowing Brownian motion to destroy the
ordered structure. For this reason, the subject receives a large
amount of attention nowadays, both from the experimental®” as
well as the simulational®™* perspective.

Recently, a synthesis strategy for fluorescent silica rods was
developed in our group by Kuijk et al,'>'® and the bulk phase
behavior of these particles,'”” as well as their behavior in an
external electric field was studied.’®'® One finding that we will
concentrate on in this work is that if the suspension of silica rods
is in direct contact with the electrode used to generate the electric
field, a fraction of the rods will, once the electric field is turned
on, lie flat on the electrode while the others stand up straight,
with no intermediate orientations observed. The flat-lying rods
are still able to move and rotate freely in-plane with the electrode
surface, which opens the perspective of creating an experimental
two-dimensional system of silica rods, which is left for future work.
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spond to the aforementioned experimental system), but also for positively polarizable rods.

In this paper, we concentrate on the experimental finding itself and
its theoretical explanation, which is based on the so-called coupled
dipole method (CDM).**® In this work, we will modify the CDM to
allow for “image dipoles”, in analogy with image charges.

2 Experiment

Two systems of fluorescent rod-like silica particles were synthe-
sized according to the method of Kuijk et al.'>'® The first
system consisted of particles with an average length /= 3.6 pm
(0 = 11%) and diameter d = 660 nm (0 = 11%), with ¢ the
polydispersity (standard deviation over the mean). These parti-
cles had a gradient of fluorescein isothiocyanate (FITC) dye
along their main axis.'® Fig. 1(a) shows a transmission electron
microscopy (TEM) image of the particles. The second system
consisted of particles with an average length / = 3.3 um (6 = 10%)
and diameter d = 550 nm (0 = 11%). These particles were
fluorescently labeled with an FITC-dyed shell. Both particle systems
were dispersed in an index-matching mixture (7> = 1.45) of 10: 1
mass ratio dimethylsulfoxide (DMSO) and ultrapure water.'®

To apply an electric field to the suspended particles, sample
cells were built with two conductive indium tin oxide (ITO)-coated
glass coverslips (30-60 €, Diamond Coatings) functioning as
electrodes. The two electrodes were on the inside of the cell, in
direct contact with the suspension, as shown in Fig. 1(b). They were
separated by either glass coverslip spacers (No. 0, Menzel Glazer) or
a thin layer of UV-glue (Norland No. 68), which resulted in a
separation of approximately 100 um and 15 pum respectively.
Thermocouple alloy wires (diameter 50 pm, Goodfellow) were
connected to the ITO layers with silverpaint (SPI-paint). The ends
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Fig. 1 Observation of bi-directional electric field alignment of colloidal
silica rods. (a) Transmission electron microscopy (TEM) image of the silica
rods with length [ = 3.6 um and diameter d = 660 nm. (b) Experimental setup.
The height between the two indium tin oxide (ITO) coated glass slides was
approximately 100 pum. (c and d) Confocal microscopy images of the
particles suspended in an index-matching mixture of DMSO-water. The
images were taken at the bottom of the sample, just above, and parallel with,
the ITO electrode. The scale bars are 10 um. Schematic drawings are shown
at the bottom of the image. (c) Without an applied field, particles were
randomly oriented. (d) When an electric field was applied (E = 0.05 V um™3),
the majority of the particles aligned with the field direction, however, a
significant number of particles was found to lie flat on the electrode. Notice
that, due to the synthesis procedure, the particles had a gradient of
fluorescent dye along their main axis,® as indicated in the schematics.

of the wires were wrapped around standard electronic wires that
in turn were connected to the electrical setup.

For the electrical setup we used a function generator (Agilent
33120A) to generate a sinusoidal signal with a frequency of
1 MHz and an amplitude of 2.0 V (peak-to-peak). This signal
was sent to the sample via a wide-band amplifier (Krohn-Hite,
7602 M) used to vary the field strength in the sample. We
applied a high-frequency AC field to prevent polarization of the
electric double layers of the particles® and the electrode.
Because the electrodes are in direct contact with the suspen-
sion, the electric field strength is simply given by E = AV/d with
AV the applied voltage and d the distance between the electro-
des. The field strength is given in units Vpyg pm™.

The fluorescent particles were imaged using an inverted
confocal microscope (Leica SP2) and a 63x/1.3 oil immersion
objective (Leica). We estimated the shortest distance between a
silica rod and the conducting ITO plate by direct measurement
of xz confocal microscopy images acquired in combined reflec-
tion and emission mode. The resulting distance of 176 £+ 27 nm
is close to twice the estimated thickness of the electric double
layer of the particle (k' ~ 95 nm)."”

The confocal microscopy image in Fig. 1(c) shows that in the
absence of an electric field, the particles formed a sediment on
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the bottom electrode. The orientations of the particles were
mainly parallel to the electrode, yet a distribution of other
orientations existed due to thermal motion.'” The particles of
the first system (shown in the figure) had a gravitational length
Iy ~ 0.45 um, and those of the second system had [, ~ 0.7 um.
These gravitational lengths are based on the particle dimen-
sions that were obtained from TEM measurements.

When an electric field was applied (E = 0.05 V um '), the
majority of the particles aligned with the field direction; however,
a significant number of particles (approximately 10%) were found to
lie flat on the ITO electrode with an orientation perpendicular to the
electric field, as shown in Fig. 1(d). These flat-lying particles were
still able to perform (two dimensional) translational and rotational
Brownian motion. This alignment effect was not observed when the
electrodes were on the outside of the cell, ie., not in direct contact
with the suspension. In that case, all the particles aligned as
expected with the direction of the electric field.

3 Theory

The CDM models particles as built up out of Lorentz atoms (LAs)
with polarizability oy. These LAs do not necessarily reflect
physical atoms, but rather “chunks” of matter that gain a dipole
moment proportional (via o) to the locally experienced electric
field. One can determine o, using the Clausius-Mossotti relation

o (2 )

em 4T &p/em +2

where ¢, and ¢, are the dielectric constants of materials compos-
ing the medium and the particle, respectively, and n is the
number density of LAs. We note that the Clausius-Mossotti
relation may lead to negative as well as positive values for o,.

Since a polarized LA will induce an additional electric field in
its surroundings, each LA influences the local electric field felt
by, and therefore the dipole moment of, all the other LAs. Within
the CDM, the resulting many-body effects can be accounted for
by large-matrix manipulation. We note that, within the CDM,
these interatomic interactions are the reason that particles line
up with electric fields: without interactions, the polarizability of
the particle would be isotropic and hence the energy in the
electric field would be independent of the orientation.

Starting off with a set of N LAs indexed by i =1, 2,..., N, we
denote the location of atom i as r; and its dipole moment as p;.
We note that the electric field E; experienced by atom i is given
by the sum of the applied electric field and the electric field
produced by all the other atoms:**

1
E =E +—
8/‘)1 i

N
Tj-p;
J=1

where T; is the dipole-dipole tensor:
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where r; = r; — 1;. Substituting E; = p;/o, and rearranging, we
obtain the set of equations

N
Tlf/ P = oo Eo. (2)
j=1

%o
Pi——
Em =

Note that the inclusion of ¢, into these equations constitutes a
slight generalization with respect to earlier work on the CDM;>* 2
it represents the fact that the atoms are no longer “suspended” in a
vacuum but in a medium with (relative) dielectric constant &,.
The set of p; can be obtained by numerically solving eqn (2); the
potential energy Ug then follows from>>

1 N
Ug = *Egpi‘EO- 3)

Here, the subscript “E” indicates that Ug is an electrostatic
potential energy, present only if an external electric field is
applied. If the external field E, is spatially homogeneous, we
can define a 3 x 3 cluster polarizability tensor «. such that

N
Zpi =0 - E07
i=1

and Ug can be rewritten as

Ug = —3Eo-%c-Eo.

Note that «. is symmetric if each LA has the same polarizability.>
The cluster polarizability «. obtained from the CDM has, for several
cluster shapes, been compared with predictions obtained using
continuum electrostatics,”® > resulting in excellent agreement.>

The method of images® is a useful application of the unique-
ness theorem of electrostatics, which states that a volume contain-
ing a given charge distribution and a given set of boundary
conditions will have a uniquely defined electric field in its interior.
This means that even if two systems are different outside a certain
volume of interest, their electric fields inside this volume are
identical if the boundary conditions on the surface of the volume
and the charge distribution inside the volume are the same. Thus, if
we encounter an electrostatic problem that seems difficult to solve,
it is sometimes possible to solve a different, simpler problem
instead, provided the same boundary conditions hold. The solution
to the simpler problem will then also be the solution for the
original, difficult problem.

The best-known example of the method of images is the
problem of calculating the force on a point charge g a distance r
from a conducting half-space at zero potential, as shown in
Fig. 2(a). This problem may at first seem difficult to solve: since
the field inside a conductor is zero, the conducting plate will
accumulate a charge distribution at its surface to exactly
compensate for the electric field due to the charge g and this
charge distribution will subsequently exert a force on the point
charge. We can solve the problem by looking at a different
analogous setup. In a system where we have a charge g and a
charge —q separated by a distance 2r [Fig. 2(b)], the plane in the
middle (i.e., a distance r from both charges) will have zero
potential. Thus, in these two problems, the half-space that

This journal is © the Owner Societies 2014

View Article Online

Paper

@ ¢ by T4

T T
r
*—q
(©) d; (d) 1 -d;
T T
T

Fig. 2 Setup of the best-known example of the method of images: a
point charge q is placed a distance r from a conducting half-space at zero
potential (a). In the upper half-space, the resulting electric field is identical
to the electric field in a setup where the conducting half-space is replaced
by a single charge —q placed exactly opposite to the original charge g (b),
because the charge distribution and the boundary condition (zero
potential at the dividing surface between the lower and upper half-
space) are identical in both upper half-spaces. Since this reasoning can
be applied to any number of charges, the interaction of an electric dipole
d; with a conducting half-space can be inferred a similar manner [panels (c)
and (d)]. In these figures, the gray area is the conducting half-space and the
horizontal line indicates the dividing plane between the upper and lower
half-space and is at zero potential. It is dashed in panels (b) and (d) to
indicate that there, it is not a physical surface.

contains the charge g has the same charge distribution
(a single point charge ¢g) and boundary condition (zero potential
at its edge), hence the electric field in the half-space that
contains g is the same in both problems. Thus, the force on
the charge g in both problems would be —g*/4r* (in CGS). Note
that the solutions in the other half-space, i.e., the one that in
the original problem contains the conductor and in the sim-
plified problem contains charge —g, will not be the same.

It is not hard to see that we can apply the method of images to
any charge distribution near a planar conductor. By placing image
charges with the opposite sigh and a mirrored position on the
“conductor side” of the dividing plane, we ensure that the
potential on the surface of the half-space of interest is zero. By
picturing electric dipoles as a pair of charges of opposite sign a
certain distance apart, we can work out what an image dipole
should look like; explicitly, if the surface of the conductor is in the
x-y plane and we have a point dipole p; at location r;, the image
dipole should have a dipole moment p_; and location r_; given by

-1 0 0 1 0 O
P, = 0 -1 0 P, Tr-i= 0 1 0 r;. (4)
0 0 1 0 0 -1

Here, we work in a fixed Cartesian (x, y, z) frame, and we adopted
a notation where image dipoles are labeled by negative indices
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i= -1, —2,...,—N, such that each (“real”) LA with index i > 0,
dipole moment p; and location r; has an image dipole p_; located
at r_,;. The method of images as applied to a dipole is pictured in
Fig. 2(c) and (d). Proceeding to incorporate image dipoles in the
CDM, we note that the “real” LAs still follow the relation p; = oE;
where E; is the local electric field at r;, whereas the image dipoles
gain their dipole moments not due to any external electric field:
instead, their dipole moments are supposed to follow from p; by
eqn (4). For positive i, we now have that the electric field at site i is
given by the external electric field plus the contributions from the
real as well as the image dipoles:

1 & ,
E,=Ey+— > T;-p; (i>0),
om =N

where T is the dipole-dipole tensor if i # j, and T; = 0. We now
plug in the proportionality of p; with E; and rearrange the terms,

N
Ol .
p,—— T;-p;=%E (i>0),
N

Em
m‘/:_

and then eliminate the part of the sum that runs over negative
indices:

N
%o .
—2NTS, - p; = aE, 0), 5
P smizzl i P Go Lo (l> ) ()
where

-1 0 O
S,‘/ = Tg/' + T[A,/ 0 -1 0 . (6)

0o 0 1

Note that S; # 0, since in addition to T; = 0, it has a
contribution from T; _; which is nonvanishing. The structure
of eqn (5) is, of course, identical to that of eqn (2) and it can
thus be solved using exactly the same numerical methods,
with the only difference that the 3 x 3 interaction matrices are
somewhat modified. We calculate Ug via eqn (3), where we
take note not to sum over negative indices. The interaction
energy Vg between the cluster of Lorentz atoms and the
conducting plate is obtained by subtracting from Ug the
potential energy that would follow if there were no conducting
plate present.

4 Results and discussion

A simple example system is one where a single LA with
polarizability o, is a distance r away from a conducting half-
space, and an electric field of strength E, is applied in the
direction perpendicular to the surface of the half-space, defined
here as the z-direction. The interaction energy of this problem
can be found analytically. S;; [as defined in eqn (6)] has to be
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calculated only for i =j = 1, meaning that its first term vanishes;
the remaining term gives

1 0 0

Si :L 010
83

0 0 2

Inverting I — 04S;1/en, and multiplying by «oEoZ gives

oo Eo .

PL=1C oco/4£mr3z'

Taking the dot product with —1EyZ gives us Uy, from which we
subtract Ug(r —» o) = —luoE,” to obtain the interaction energy
1 OC()E02

Ve = 2 demrdfog — 1 )

For large distances, the interaction energy goes as

(r3/oc0 > 1), (8)

which is identical to the potential energy of a permanent dipole
ooE¢Z a distance r from a conducting plate; this energy is half
that of two aligned permanent dipoles a distance 2r from each
other because in our case the image dipole is induced by the
real dipole, resulting in an extra factor 1/2. From eqn (7), we see
that at short distances, the interaction is either enhanced or
reduced, depending on the sign of o,. Also, in the case where
oo > 0, a polarization catastrophe occurs at distances e,r*/oy <
1/4 (or r{em/o)Y® < 0.63) and the result is no longer valid. Both
for positive and negative o, we plot VE/(%ocoEoz) as a function of
the dimensionless distance 7 = r|en/uo| ", as well as the large-
distance approximation eqn (8) (in which case the sign of o, is
irrelevant), in Fig. 3.

We now turn our attention to the colloidal rods discussed in
Section 2. We model a rod by placing LAs on a face-centered
cubic (fcc) lattice and deleting any LAs that are located outside
of a pre-defined spherocylinder shape, thus ending up with a
cluster of LAs approximately spherocylindrical in shape. The
cluster is then rotated and translated into the desired location
and orientation with respect to the conductor surface. Note that
the actual particle shape achieved this way will depend slightly
on the lattice spacing chosen for the fcc lattice, because of the
discrete nature of the lattice. In the following example, we
chose a lattice spacing that (judging by eye) seemed to approx-
imate the desired shape best. Additional numerical calcula-
tions (not shown here) using identical system parameters but
different lattice spacings produce interaction energies that
differ by up to 10% from the ones presented here. We will
discuss here the example of a single rod of length / = 3.6 pm and
width d = 0.66 um, which we model as a cluster of 1413 LAs,
spaced a distance a, = 1/36.39 ~ 98.9 nm apart. To mimic the
described experiments, we choose ¢, = 50 and &, = 4.5; plugging
this into eqn (1), we find oyn/ey, & —0.104, which, assuming
n=+v2/as, leads to a dimensionless lattice constant of a =
ao|£m/oc0|1/3 ~ 2.39. For comparison, we also show results
for a rod with positive polarizability in the same solvent

This journal is © the Owner Societies 2014
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Fig. 3 The interaction energy VE/(%aOEOZ) of a Lorentz atom (LA) with
polarizability «g with a conducting half-space at zero potential, as a
function of the dimensionless distance rlem/aol> between the LA and
the half-space, in the presence of an external electric field of magnitude Eg
and direction normal to the surface of the half-space. Plotted is the case
oo > O (blue dashed line), oo < O (yellow dotted line), as well as the large-
distance approximation (solid line), for which the sign of og is irrelevant.
The vertical dashed line at rlem/oolY® ~ 0.63 corresponds to the polariza-
tion catastrophe that occurs for positive polarizabilities.

(with e, = 50), with ¢, tuned such that aon/e,, ~ 0.104 (this
would be achieved for &, ~ 166). We place the tip of the rod at a
certain distance r from the x-y plane and orient the rod such
that it makes an angle 0 with the z-axis. The setup is depicted in
Fig. 4, from which it can be seen that the smallest allowed
distance between the tip and the plate is d/2, suggesting that we
define a gap length h = r — d/2, which vanishes if the rod is
touching the plate. From the figure, we also see that the
maximum allowed 6 is ©/2. We apply an electric field of E, =
0.05 V um™ " in the z-direction, as in the experiments, and
calculate the potential energy of the rod. We then subtract the
energy that the rod would have if it were an infinite distance
away from the plate and oriented in the direction of the electric
field (0 = 0) to obtain the interaction energy Vi of the rod with
the plate. The results are plotted in Fig. 5 for several gap sizes &
as a function of 6. Some numerical data are given in Table 1.

The orientation and distance dependence as well as the
strength of the observed interaction energy shown in Fig. 5 are
similar for positively and negatively polarizable rods. In both
cases, the configuration where the rod is pointing in the
Z-direction (6 = 0) is energetically the most favorable, and for
small distances a local minimum is observed at 0 = /2, where
the rod is oriented in the x-y plane.

Physically, this local minimum arises from a competition
between dipoles lying head-to-toe and side-by-side with respect
to each other. Fig. 6 depicts a simplified version of the situation
for 0 close to m/2. When in a horizontal position, the rod
experiences, in addition to side-by-side interactions between
its composing dipoles, significant attractions from the head-to-
toe interactions between its composing dipoles and their image
dipoles. When the rod is rotated slightly away from the hor-
izontal position (i.e., to a somewhat lower 0), the side-by-side
interactions are almost unaltered, while the dipoles in the tip
being rotated away from the plate (the left tip in Fig. 6)
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Fig. 4 Dissection of the setup for which the electrostatic interaction
energy is calculated and plotted in Fig. 5. A spherocylindrical rod consisting
of 1413 LAs is positioned near a conducting half-space at zero potential,
while an electric field Eq is applied normal to the surface of the half-space.
The rod's position and orientation are defined by the distance h between
its tip and the surface of the conducting half-space and the angle 0
between the director of the rod and the line normal to the surface of
the half-space.

experience much less attractive interaction with their image
dipoles because of the increased distance. Mathematically
speaking, the rod’s “self-energy” (i.e. the energy of the rod if
no surroundings are present except an external electric field)
goes (using our current definitions) as*® oc sin’0, a nearly
constant function near 0 = ©/2, while the interaction between
the rod dipoles and their images is more complicated but can
be expected to be akin to an inverse power law in /cos 0. Near
0 = m/2, the former contributes only a constant term, while the
latter contributes a negative term that quickly becomes less nega-
tive as 0 decreases. The result is that Vj increases when 0 is lowered
from n/2. One tip of the rod (the right tip in Fig. 6), however, is
always kept at a constant distance to the plate, such that additional
rotation towards even lower 0 will have decreased effect on the
image attractions, while the effects on the side-by-side interactions
become more and more appreciable. Mathematically, this corre-
sponds to the ocsin®6 self-energy of the rod becoming less
constant, and the image interaction term becoming more constant
because the parts of the rod whose positions depend most on 0
have already been rotated away from the plate, such that their
interaction contribution has dwindled. Eventually, the oc sin®
self-energy of the rod (which decreases as 0 decreases) overcomes
the effect of decreased image attraction, resulting in a reversal
of the trend in Vg (ie., Vi will start to decrease as 0 decreases).
The angle where this reversal occurs is the 0-location of the
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Fig. 5 Interaction energy between a rod suspended in a medium with
&m = 50 and a conducting half-space (as depicted in Fig. 4) as a function of
the angle 0 between the rod director and the line normal to the surface of
the half-space, for gap lengths h = 0 um, 0.1 pum, 0.175 um, 0.25 pm and
0.4 um. Two cases are depicted, namely (a) a negatively polarizable rod
with dielectric constant ¢, = 4.5 and (b) a positively polarizable rod with
&, & 166. In both cases, the applied electric field strength is Eg = 50 V pum~?
and the temperature is T = 293 K.

Table 1 Relevant numerical data associated with the graphs in Fig. 5. For
each gap length h, the angle 0y at which the maximum occurs is given, as
well as the depth 4 of the potential energy well at 6 = /2, in units of kgT
where T = 293 K. Table (a) pertains to negatively polarizable rods (e, = 4.5)
and (b) to positively polarizable rods (e, ~ 166)

A (um) Oo/m AlkgT
(@)

0.0 0.439 12.80
0.1 0.450 6.73
0.175 0.456 4.23
0.25 0.462 2.70
0.4 0.472 1.16
(b)

0.0 0.460 10.07
0.1 0.469 3.32
0.175 0.474 1.76
0.25 0.479 0.99
0.4 0.486 0.34

maximum of Vg, which we shall denote by 6,. The rest of the
graph (i.e., 0 < 0,) is dominated by the interaction between rod
dipoles, i.e., the sin” )-dependence; in this region (0 < 0), the
interaction between rod dipoles and their image dipoles is nearly
constant since the only significant contribution to that interaction
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Fig. 6 Simplified depiction of the physical situation discussed in the text:
a rod is close to an electrode and near horizontal orientation. For the
purposes of the physical (qualitative) discussion, we only need to consider
a low number of composing dipoles (represented here as arrows). These
dipoles interact among each other as well as with the electrode. Pictured
inside the conductor is also the image of the rod: the interaction of the real
rod with the electrode is identical to the interaction of its composing
dipoles with the image dipoles.

comes from the tip closest to the plate (the right tip in Fig. 6),
which does not change position with changing 6.

In the previous paragraph (as well as elsewhere in this paper)
we have discussed the physics in terms of interaction between
the rod dipoles and their images. It should be emphasized that
this is slightly inaccurate: it would be correct to say that the
interaction occurs between the dipoles and the electrode, and is
equal to the interaction that would occur in an analogous setup
where the electrode is replaced by a half-space that is empty
except for image dipoles placed at the appropriate locations.

Both 0, and the depth of the local minimum at 6 = n/2,
depend on the distance to the plate; for negatively polarizable
rods at contact it is located at 8, &~ 0.439n and for positively
polarizable ones it is found at 0, & 0.4607. The local minimum
at contact is about 12.8kgT deep in the case of negatively
polarizable rods, and 10.07kgT in the case of positively polariz-
able rods. In the experiments, the rods never physically touch
the plate but rather “float” at a certain distance above it due to
a screened-coulomb interaction with the plate. This minimum
gap between the rod and the plate has been determined to be
roughly 175 nm; in that case, the depth of the local minimum is
only 4.23kgT and 1.76kgT for negatively and positively polariz-
able rods, respectively, and the maximum has shifted to
(slightly) higher 0, being located at 0.456m and 0.474w for
negatively and positively polarizable rods, respectively. For
even larger gaps the local minimum quickly becomes negli-
gible compared to kT (for the chosen electric field strength)
and the maximum shifts to an even higher 6. We thus see that
rods at contact are retained in the local minimum (the
horizontal, “lying-down” position) relatively easily, but that
in the more realistic case where the gap is 2 = 175 nm, a
positively polarizable rod cannot be kept in the horizontal
position for a long time. A negatively polarizable rod can be
retained somewhat longer but will eventually overcome the
potential energy barrier as well, and will then align (vertically)
with the electric field.
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From the graphs, we also see that an applied electric field
will pull the rods close to the plate either towards a horizontal
or vertical position, depending on which orientation they start
with. Roughly speaking, for rods at the minimum distance of
175 nm the fraction of rods ending up in a horizontal position
can be expected to be the fraction of rods starting out with an
orientation such that 0 > 0, (where 0,, as introduced earlier,
is the orientation where the interaction energy exhibits a
maximum at fixed %). Assuming a completely random starting
configuration with an isotropic distribution of the orientations
of rods, this fraction is simply the fractional surface area of a
“belt” representing ¢ > 0, around the equator of a unit hemi-
sphere, ie., f(0y) = ‘g({zde sinf = cos 6y, which, for 0, =~
0.456m, amounts to f ~ 0.14. This estimate is comparable in
magnitude to the fractions of horizontal particles observed in
the experiments.

We conclude that, qualitatively, the theoretical results as
presented above, including the existence of a local minimum at
the horizontal (“lying-down”’) position and a global one at the
vertical (“standing-up”) position, as well as the magnitude of
interaction energies observed, agree well with experiments. We
are therefore confident that our theory provides a valid quali-
tative explanation for the experimental observations. There is,
however, a number of factors that likely impede the quantita-
tive accuracy of the theory, apart from the aforementioned
effects due to the arbitrariness when choosing an fcc lattice
spacing for modeling the rod, which we will now list.

An experimental complication is that the local minimum at
the horizontal position is shallow (smaller than 10kgT except at
contact), so that the percentage of horizontally lying particles
measured in an experiment depends on how much time has
passed between turning on the electric field and imaging the
sample.

A number of complications were ignored when calculating
f(0o). First of all, the assumption of a random, isotropic starting
configuration is problematic, because the mass of the rods will
influence the statistics of the configuration (heavier rods will
tend to lie horizontally more often). We note here that the mass
of the rods is only expected to be important for the starting
configuration: once the field is switched on, the rods are clearly
observed to either lie horizontally or stand vertically, indicating
that the electrostatic potential dominates the dynamics. The
presence of a wall might in some cases also influence the
statistics through excluded volume interactions. A second
ignored complication when calculating f(6,) is that its reason-
ing does not hold for rods that do not start out at the minimum
distance of 175 nm. Once the field is turned on, rods that are
far enough from the plate will probably first rotate to an aligned
(vertical) position and then arrive at the plate, thus lowering the
percentage of horizontally lying rods. We note here that, inter-
estingly, rods that do not have time to rotate to a standing-up
position may end up lying down even if, initially, their orienta-
tion was such that 6§ < 6,. This is because, while translating
towards the plate, the location of 0, shifts significantly to lower
values. For instance, a negatively polarizable rod starting at z =
0.4 mm, with orientation 6 = 0.467n (which is below 0, for this /)
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might translate towards smaller % before it rotates significantly,
shifting its 0, to values below its 0, and hence ending up in the
lying down position even though it started out with 0 < 0,.

Although our theory is capable of dealing with interparticle
electric field-induced dipolar interactions, we have chosen to
consider only the interaction between a single particle and its
image in this paper, thus ignoring interparticle interactions.
The presence of other particles will influence the interaction a
rod has with its image, but this effect is probably minor. More
significant effects are, for dense systems, excluded-volume
interactions and, for all but the most dilute systems, the
aforementioned interparticle electric field-induced dipolar
interactions. For a pair of rods lying head-to-toe, parallel to
the electric field and far away from the conducting half-space,
the interaction energy at the assumed minimum gap length of
175 nm and for the aforementioned experimental parameters
amounts to about —2.6kgT for negatively, and —7.8kgT for
positively polarizable rods. A comparison with the values
quoted in Table 1 thus reveals that, for negatively polarizable
rods, dipolar interactions can have an appreciable influence on
the system, while for positively polarizable rods, dipolar inter-
actions will dominate and the system will exhibit string for-
mation rather than rods lying flat on the electrode. To get an
estimate of the percentage of horizontally lying rods predicted
by our theory better than the rough sketch given above,
simulations will have to be performed taking into account the
various complications listed.

The magnitude of the interaction energy depends quadrati-
cally on the electric field strength, such that lower electric field
strengths create more shallow local potential minima, while
higher field strengths will make the minima deeper. This
means that stronger electric fields will be better able to retain
rods in the horizontal position. The aforementioned time-
dependence arising from the shallow minimum at horizontal
positions, could be eliminated in this way. We note here that
experimentally, we have observed that at high field strengths,
not only do the rods either stand up or lie down, they also tend
to form structures where several rods are standing on top of a
single rod that lies horizontally on the electrode. In Fig. 7 we

Fig. 7 Rods with length [ = 3.3 um and diameter d = 550 nm in an electric
field E = 0.5V pm™™. The spacing between the electrodes was approxi-
mately 15 pm. (@) Rods on the bottom electrode oriented parallel to the
electrode surface (flat). The rods still performed (in plane) rotational and
translation motion. (b) First layer of rods standing on top of the flat rods.
(c) A side-view shows that several layers of rods were positioned on top of
the flat ones. The scale bars are 5 um.

Phys. Chem. Chem. Phys., 2014, 16, 22575-22582 | 22581


http://dx.doi.org/10.1039/c4cp02799j

Published on 29 August 2014. Downloaded by Universiteit Utrecht on 02/10/2014 16:26:52.

Paper

show an example of such a configuration for field strength
E=0.5Vum . To explain this behavior, interactions between
the rods have to be taken into account, which is beyond the
goals of the present paper. The experimental system that was
highlighted in this paper (e.g., Fig. 1(d), where E = 0.05 V um ™"
was used) did not exhibit such stacked structures, and the
presentation and explanation for the stacking behavior as seen
in Fig. 7 will be left for further study.
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