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When calculating the interaction between electric field-induced dipoles, the dipole moments are of-
ten taken to be equal to their polarizability multiplied by the external electric field. However, this
approach is not exact, since it does not take into account the fact that particles with a dipole moment
affect the local electric field experienced by other particles. In this work, we employ the Coupled
Dipole Method to calculate the electric-field-induced dipole pair interaction self-consistently: that
is, we take into account many-body effects on the individual induced dipole moments. We calculate
interactions of particles with nonvanishing dimensions by splitting them up into self-consistently
inducible “chunks” of polarizable matter. For point dipoles, spheres, cubes, rods, and dumbbells,
we discuss the differences and commonalities between our self-consistent approach and the afore-
mentioned approach of pre-assigning dipole moments to either the point dipoles or, in the case of
spatially extended particles, to the chunks making up the particle. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4870251]

I. INTRODUCTION

Electric field-induced self-assembly of colloidal parti-
cles is an area with tremendous potential for technical ap-
plications. Unsurprisingly, therefore, experimental studies in
which electric fields are used to orientationally and/or posi-
tionally organize particles are commonplace today,1–7 as are
simulation studies in this area.8–12 The simultaneous progress
in particle synthesis13, 14 continues to increase the diver-
sity of systems suitable for electric-field induced assembly.
Nowadays, particles of many sizes, materials, and anisotropic
shapes can be synthesized and the problem of theoretically
describing the interaction of these anisotropic particles with
the electric field and with each other under the influence of
the electric field becomes less and less trivial. In fact, as we
will show in this work, even the dipolar interaction between a
pair of spherical particles is nontrivial.

We can roughly distinguish two processes by which an
electric field can induce organization in a system of colloids
that possess no permanent dipole, namely individual align-
ment and interparticle interactions. Individual alignment oc-
curs if a particle has an anisotropic polarizability causing
a potential-energy minimum at orientation(s) where the in-
duced dipole moment is strongest. Interparticle interactions
are the result of interactions between the induced dipole mo-
ments of two or more particles and are often crucial for
electric field-induced formation of spatially ordered struc-
tures. These interparticle interactions are the focus of this
paper.

Theoretically, these interactions have often been de-
scribed by assigning a permanent dipole moment, equal to the
particle polarizability multiplied by the applied electric field,
to each particle and then making use of the well-known ex-

pression for the interaction energy between two electric point
dipoles.15 This approach, which we will refer to as the “sin-
gle permanent dipoles” (SPD) approach, is nonexact for two
reasons. The first is that a particle has a finite size and its po-
larization will therefore be spread out over its volume instead
of concentrated in a point. This problem can be overcome
by splitting up the particle into a sufficiently large number
of “chunks” of matter, assigning to each chunk a (smaller)
polarization, and then summing the interactions between all
chunk pairs.16 We dub this approach the “cluster of permanent
dipoles” (CPD) approach. The second nonexactness arises be-
cause we neglected the influence that the particles have on
each other’s induced dipole moment. Since each particle that
gains a dipole moment produces an electric field, it will af-
fect the local electric field experienced by all other particles,
which is therefore no longer equal to the external (applied)
electric field. Calculating each particle’s (or particle chunk’s)
dipole moment turns out to be a system of linear equations
that can be solved self-consistently within the framework of
the Coupled Dipole Method (CDM).17–20

The CDM was proposed by Renne and Nijboer in the
1960s to self-consistently calculate the eigenmodes of a
system of atoms with inducible dipole moments (Lorentz
atoms) using large-matrix manipulation and, by summing
the frequencies of these eigenmodes, to calculate the van
der Waals (VdW) interaction energy between clusters of
atoms.17, 18, 21–24 Discrete dipoles have also been used for scat-
tering calculations within the Discrete Dipole Approxima-
tion, which involves an incident oscillating electric field.25–28

By considering a permanent electric field instead, the po-
larizability of particles of various shapes has been investi-
gated as well,19, 20, 29 resulting, where comparison was pos-
sible, in good agreement with polarizability calculations
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using continuum theory.30–34 To our knowledge, prior to our
2011 publication,20 a permanent electric field had not been
included in the CDM’s Hamiltonian, but expressions similar
to ours for the electrostatic energy of coupled dipoles in an
external electric field have been published before.35 However,
it would appear that the self-consistent dipole-dipole interac-
tion energy between spatially extended particles in an external
electric field has not been calculated explicitly yet.

To fit in with our naming scheme, we shall dub the ap-
proach that utilizes the CDM the “cluster of self-consistent
dipoles” (CSCD) approach. In the case where each “cluster”
in fact consists of only one dipole and hence the CDM is
applied to only two interacting dipoles, we reserve a sepa-
rate name and acronym: the “single self-consistent dipoles”
(SSCD) approach. The reason for this distinction is that in the
special case of two interacting dipoles, the set of linear equa-
tions can be solved analytically such that, for the SSCD, we
use an analytical expression instead of numerical linear alge-
bra algorithms. We note here that this analytical expression
used in the SSCD approach, though it follows naturally from
the CDM, has been derived before by Buckingham and Pople
when examining the first-order correction to the Clausius-
Mossotti relation for an imperfect gas.36 Further research in
this direction seems to have focused on atomic and molecular
gases and crystals;37–47 in this paper, we wish to concentrate
on interactions between colloidal particles and compare vari-
ous methods for calculating their pair interactions.

In this work, we first introduce the CDM in Sec. II
and generalize its formulation somewhat to allow for the de-
scription of systems split up into chunks of matter that are
not necessarily of atomic proportions. Although we provide
the tools for calculating VdW interactions, in this paper we
concentrate on the results for electric field-induced interac-
tions. In Section III, we discuss the SSCD in some detail. In
Sec. IV, we compare our numerical results for the electric
field-induced interaction energy for various particle shapes,
namely spheres, cubes, rods, and dumbbells, using the var-
ious calculation techniques discussed above, i.e., the SPD,
CPD, SSCD, and CSCD approach (the latter of which we
deem to be the “exact” result if the number of dipoles is large
enough). We also vary the number of dipoles per cluster to
investigate how many dipoles are required for an accurate de-
scription of the interaction energy. We find that the accuracy
of the various approaches depends mainly on the degree of
anisotropy in the particle shape, with the SSCD approach per-
forming well for spheres and cubes, even better than the CPD
approach. For rods, however, both single dipole approaches
(SSCD and SPD) are severely lacking in accuracy and the
cluster approaches (CSCD and CPD) give better results. Here,
an approach that uses clusters of a very small number of self-
consistent dipoles turns out to give very good accuracy. As for
the question of how many dipoles are sufficient to accurately
describe the electric field-induced interaction, we find that the
answer depends strongly on the particle shape, with cubes and
cuboidal rods generally needing a smaller number of dipoles
than spheres do. The reason might be that a spherical shape
is hard to approximate using identical chunks whereas, for
cubes and cuboidal rods, this is trivial even with a very low
number of chunks.

II. THE CDM

In previous work,17, 18, 20, 29, 48 when considering physical
systems using the CDM, the atoms are usually modeled as
Lorentz atoms: they are assumed to consist of a nucleus and
one electron bound to it by a harmonic force. In such a model,
the charges making up the induced dipole are ±e, where e
is the elementary charge, and the mass of the vibrating part
of the atom is the electron mass me. If the harmonic force
is defined to have the characteristic frequency ω0, the atomic
polarizability then follows by15, 49

α0 = e2

meω
2
0

. (1)

The Hamiltonian H of a system of N Lorentz atoms in an ex-
ternal electric field E0 can be written as

H ({di}, {ki}) = 1

2me

N∑
i=1

k2
i

+ e2

2α0

N∑
i=1

di · (Iδij − α0Tij ) · dj

− e

N∑
i=1

di · E0. (2)

Here, I is the 3 × 3 identity matrix, ki is the momentum of the
electron associated with atom i, and di is this electron’s dis-
tance vector to the atom nucleus. The matrix Tij is the dipole
tensor

Tij =
{(

3rij rij /r2
ij − I

)
/r3

ij if i �= j,

0 if i = j,

where rij = ri − rj , rij = |rij | and 0 is a 3 × 3 matrix
filled with zeros. We note here that by a canonical trans-
formation ({di}, {ki}) → ({pi}, {k′

i}), where pi = edi and k′
i

= meṗi/e
2, we could write the Hamiltonian (2) such that only

the atomic properties α0 and e2/me would be input parameters.
For simplicity, we will continue to use ({di}, {ki}) as coordi-
nates, but we note that the CDM thus depends on only two
atomic properties (α0 and e2/me).

We wish to model systems where the Lorentz “atoms” in
fact represent “chunks” of matter instead of physical atoms.
For this purpose, we generalize the three atomic properties:
the charge of oscillator i becomes qi, its mass mi, and the po-
larizability becomes αi , which we choose to be a 3 × 3 ten-
sor in order to allow for anisotropic chunk polarizabilities. In
terms of these quantities, the Hamiltonian reads

H ({di}, {ki}) = 1

2

N∑
i=1

ki · m−1
i · ki

+ 1

2

N∑
i=1

di · qi · (
α−1

i δij − Tij

) · qj · dj

−
N∑

i=1

(qi · di) · E0,

where we defined the matrices mi ≡ miI and qi ≡ qiI. We
now introduce 3N-dimensional vectors K, D, and E0, which
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are built up out of the ki , di , and copies of E0, respectively.
Furthermore, we define the 3N × 3N-dimensional matri-
ces M ≡ diag({mi}), Q ≡ diag({qi}), A ≡ diag({αi}), and,
lastly, T , built up out of all the Tij . In terms of these quanti-
ties, the Hamiltonian reads

H (D,K) = 1

2
K · M−1 · K + 1

2
D · Q · (A−1 − T ) · Q · D

− (Q · D) · E0,

and, since all the matrices involved are symmetric, the square
can be completed such that

H = H0 + UE.

Here, H0 is the Hamiltonian of a set of shifted harmonic
oscillators,

H0 = 1

2
K · M−1 · K

+1

2
(D − D0) · Q · (A−1 − T ) · Q · (D − D0),

with D0 a (time-independent) 3N-dimensional vector that de-
scribes the shift of the equilibrium positions, satisfying the
equation

(A−1 − T ) · Q · D0 = E0. (3)

The constant potential energy shift due to the electric field
reads

UE ≡ −1

2
E0 · (A−1 − T )−1 · E0. (4)

We switched the Hamiltonian variable D to D − D0, which is
allowed since K is also D − D0’s conjugate momentum.

The equations of motion that follow from the Hamilton
equations can be combined into:

∂2(D − D0)

∂t2
= −M−1Q · (A−1 − T ) · Q · (D − D0), (5)

which describes oscillatory modes about the shifted equilib-
rium of the form

D − D0 = Ck exp[i�kt], (6)

where Ck is a 3N-dimensional vector of constants and �k is an
angular frequency. Substituting Eq. (6) into Eq. (5), we arrive
at the eigenvalue equation

�2
kCk = S · Ck, (7)

where we defined the 3N × 3N matrix

S ≡ M−1 · Q · (A−1 − T ) · Q. (8)

Because of the dimensions of S, Eq. (7) has 3N solutions
labeled by k = 1, 2, . . . , 3N, each corresponding to a mode
frequency �k. It is worthwhile to note that it can be shown
that the eigenvalues of S are also the eigenvalues of the sym-
metric matrix Ssym = M−1/2 · Q · (A−1 − T ) · Q · M−1/2,
albeit with different eigenvectors. This gives a computational
advantage since Ssym is symmetric, whereas S may not be. As
a further note, if we had chosen to use the ({pi}, {k′

i}) coor-
dinate system, we would have obtained S ′ = F · (A−1 − T ),

or S ′
sym = F1/2 · (A−1 − T ) · F1/2, where F = diag({ q2

i

mi
I}).

Note that S ′ and S ′
sym have the same eigenvalues as S and

Ssym.
As mentioned, the CDM depends on the fractions q2

i /mi

of the CDM-“atoms.” For physical atoms, these quantities
could be obtained from ω0, but if our “atoms” represent mul-
tiple physical atoms, it is not a priori clear which reasonable
value to choose for q2

i /mi . In the supplementary material,50

we argue, using the example of pair interaction between parti-
cles in the simplified case where each chunk is identical, that
the chunks’ characteristic frequency ωd = q2

d/mdαd should
in fact equal the characteristic frequency ω0 of the material
we wish to model.

From a quantum mechanical point of view, the sum of the
normal mode frequencies is the ground-state potential energy
U0 of the Hamiltonian H0,

U0 = 1

2
¯

3N∑
k=1

�k, (9)

where ¯ is the reduced Planck constant. This energy U0 stems
from the zero-point motion of the harmonic oscillators and
contains the VdW interaction energy of the system.

Re-examining the trial solution of Eq. (6), we note that
the equilibrium (“average”) electron-nucleus distance is not
zero, but D0. Physically, this means that each chunk’s (ground
state) electron cloud is shifted by a distance given by its asso-
ciated 3-dimensional vector contained in D0, such that the av-
erage position of the electrons no longer coincides with their
nucleus. This gives rise to an average chunk dipole moment
P = Q · D0 that satisfies, from Eq. (3),

(A−1 − T ) · P = E0. (10)

Thus, in terms of P , the electrostatic energy UE as defined in
Eq. (4) is

UE = −1

2
P · E0, (11)

which is consistent with the form of the energy of an in-
duced dipole in an electric field; note that the factor 1

2 arises
from the fact that the dipole is induced, not permanent.15 We
can simplify Eq. (11) further by reverting to 3-dimensional
vectors:

UE = −1

2
ptot · E0,

where ptot is the total polarization of the N chunks:

ptot =
N∑

i=1

pi ,

where pi is the polarization of chunk i. As a final step, we
note that, as long as E0 is spatially homogeneous, it turns out
that ptot can always be written in terms of a 3 × 3 matrix and
the applied electric field:

ptot = α · E0.

We call the matrix α the polarizability matrix of the atom clus-
ter. Mathematically, it is given by α = ∑

ij Bij , where Bij are
3 × 3 blocks of the matrix (A−1 − T )−1. However, since ma-
trix inversion is computationally more expensive than finding
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the solution to a linear system such as Eq. (10), it is in prac-
tice more efficient to infer α by calculating the three ptot ’s
that result from applying the electric field in each of the three
Cartesian directions. In terms of α, UE can be written as

UE = −1

2
E0 · α · E0. (12)

Closely related to the polarizability matrix is the enhancement
factor matrix, which we define as

f =
(

N∑
i=1

αi

)−1

α.

The enhancement factor quantifies the influence of chunk-
chunk interactions on the overall polarizability, since

∑N
i=1 αi

is the polarizability one would expect if one were to ig-
nore these interactions. Note that if each chunk has the same
isotropic polarizability αi = α0I, the enhancement factor re-
duces to αi/Nα0, which is the familiar expression used in
Refs. 19, 20, and 29.

A. Interactions between particle pairs

The energies U0 and UE of Eqs. (9) and (12) are total
potential energies and, thus, contain the interactions between
all atoms, including each atom’s self-energy, i.e., the energy
that the atom would have if there were no other atoms in
the system. In this work, we are mainly interested in interac-
tions between colloidal particles, which we treat as clusters of
atoms. To obtain the interaction energy between two clusters
of atoms, we calculate, for a given separation and orientation
of the clusters, the total potential energies U0 and UE and sub-
sequently subtract the energy that the clusters would have if
their separation were infinite. This is equivalent to subtracting
each cluster’s self-energy, i.e., the cluster’s energy as if there
were no other clusters. We can write the two-cluster interac-
tion energy V

(2)
E as48

V
(2)
E = U

(2)
E − U

(1)
E,1 − U

(1)
E,2,

V
(2)

0 has a similar expression. Here, U
(2)
E is the total poten-

tial energy of this system of two clusters of atoms and U
(1)
E,1

and U
(1)
E,2 are the self-energy of cluster 1 and 2, respectively.

In this work, we only consider pair interactions and intend
to compare the results of various calculation techniques. For
clarity, we therefore now modify the notation somewhat, so
that the pair interaction between clusters of atoms with self-
consistent dipole moments will from now on be referred to
as V

(CSCD)
0,X (for VdW) and V

(CSCD)
E,X (for electric field-induced

interaction), where we replace “X” by the cluster type that we
are considering (i.e., “sphere”, “cube,” or “rod”). The pair in-
teraction in the special case where the “clusters” of atoms in
fact consist of only one atom each, is denoted by V

(SSCD)
0 (for

VdW) and V
(SSCD)
E (for electric field-induced interaction). The

acronym in the superscript refers to the method of calcula-
tion. In the results presented in this work, we only consider
the electrostatic interaction energy VE . An outline of how the
VdW interaction V0 can be calculated using the CDM is given
in the supplementary material.50

We now discuss some more assumptions and notation
that will be used in the remainder of this paper and in the sup-
plementary material.50 The interaction energy between pairs
of particles will be investigated as a function of the relative
position of the second particle with respect to the first. This
relative position can either be expressed as polar coordinates,
where r is the center-to-center distance between the particles
and θ is the angle between the applied electric field E0 and
the line connecting the particle centers, or as Cartesian co-
ordinates, where r‖ is the position along the direction of the
electric field and r⊥ is the position along the direction perpen-
dicular to it. Note that we only consider two dimensions.

In this work, we only consider pairs of identical particles,
although, for rods and cubes, we do consider a case where one
particle is rotated with respect to the other. When modeling
the particles as clusters of multiple Lorentz atoms (“chunks”),
we only consider modeling schemes where all Lorentz atoms
are identical and have an isotropic polarizability αd = αdI,
with αd a scalar constant. The number of Lorentz atoms per
cluster is indicated by Nd/p. The value of αd is determined
by assigning a certain scalar “target” polarizability αp to the
cluster. The chunk polarizability αd is then tuned such that the
cluster’s actual polarizability αc is very close to αp; i.e., we
find the root of the function αc (αd ) − αp by using Ridder’s
bracketing algorithm.51 In the special case where each cluster
consists of only one Lorentz atom, we can instead simply set
αd = αp. We note that only isotropically polarizable particles
have a scalar polarizability; for rods and dumbbells (which
do not have an isotropic polarizability), αp and αc are chosen
to correspond to the polarizability along the particle’s “long”
Cartesian axis.

The electrostatic interaction energy depends only on the
inverse of the matrix (A−1 − T ). This inverse can in princi-
ple be calculated analytically for any number of dipoles, but
this calculation already becomes infeasible when the number
of dipoles exceeds two. Therefore, if the number of dipoles
per particle Nd/p > 1, we solve Eq. (10) numerically for P
and take its inner product with E0 [Eq. (11)] (this circumvents
having to calculate α). On the other hand, if each particle is
modeled as a single dipole (Nd/p = 1), we can simply insert
αd = αp into the analytical expressions of Section III.

III. INTERACTION BETWEEN A PAIR OF IDENTICAL
LORENTZ ATOMS

For two Lorentz atoms in the electric field E0, the poten-
tial energy, as calculated from Eq. (12), is

U
(SSCD)
E = αdE

2
0
r̃3(−r̃3 + 2 − 3 cos2 θ )

(r̃3 − 2)(r̃3 + 1)
,

where r̃ = r/α
1/3
d is the dimensionless distance between the

dipoles. This expression is equivalent to the one derived in
Ref. 36. The energy at infinite separation is −αdE

2
0 , which is

reasonable physically, since both particles in this case are in-
duced dipoles with dipole moment αdE0 and, thus, they each
have energy − 1

2αdE
2
0 . Subtracting the energy at infinite sepa-

ration from UE, we arrive at the interaction energy

V
(SSCD)
E (r̃ , θ ) = αdE

2
0
r̃3 − 2 − 3r̃3 cos2 θ

(r̃3 − 2)(r̃3 + 1)
. (13)
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This is the self-consistent interaction energy between a pair
of Lorentz atoms in an external electric field where, by “self-
consistent,” we mean that the dipoles have a dipole moment
equal to their polarizability αd multiplied by the local electric
field (the external electric field plus the electric field due to the
other dipole). A simpler and more commonly used approach
to calculating the interaction energy of two Lorentz atoms in
an electric field is to impose upon each atom a “permanent
dipole” moment αdE0 and use this setup to calculate the well-
known dipole-dipole interaction energy,15 resulting in

V
(SPD)
E (r̃ , θ ) = αdE

2
0

1 − 3 cos2 θ

r̃3
. (14)

As it turns out, V (SPD)
E (r̃ , θ ) is the first-order approximation of

V
(SSCD)
E (r̃ , θ ) for small r̃−3: Taylor expanding Eq. (13) yields

V
(SSCD)
E (r̃ , θ )

E2
0αd

� V
(SPD)
E (r̃ , θ )

E2
0αd

− 1 + 3 cos2 θ

r̃6

+O([r̃−3]3).

We note that the first correction term is always nega-
tive, indicating that V

(SSCD)
E (r̃ , θ ) has a larger attractive re-

gion than V
(SPD)
E (r̃ , θ ). Indeed, the angle θ

(SSCD)
0 at which

V
(SSCD)
E (r̃ , θ (SSCD)

0 ) = 0 is given by

θ
(SSCD)
0 (r̃) = arccos

√
r̃3 − 2

3r̃3
,

whereas this angle for V
(SPD)
E (r̃ , θ ) is the limit θ

(SSCD)
0 (r̃

→ ∞), which is the well-known “magic” angle θ
(SPD)
0

= arccos
√

1/3 ≈ 54.7◦. We note that θ
(SSCD)
0 (r̃) increases as

r̃ decreases, with as limiting value θ
(SSCD)
0 (r̃ → 21/3) = π/2,

indicating an attractive interaction for all angles except π /2.
This limiting case coincides with the occurrence of the
“polarization catastrophe”: V

(SSCD)
E (r̃ → 21/3, θ ) diverges for

all θ except θ = θ
(SSCD)
0 (in which case the limiting value is

αdE
2
0/3). We deem the values produced by V

(SSCD)
E for

r̃ ≤ 21/3 unphysical. A further difference between
V

(SSCD)
E (r̃ , θ ) and V

(SPD)
E (r̃ , θ ) is the relative strength of

the attraction and repulsion for θ = 0 and θ = π /2. The
ratio between these two is a constant in the SPD approach,
V

(SPD)
E (r̃ , 0)/V

(SPD)
E (r̃ , π/2) = −2, but in the self-consistent

(SSCD) case it is given by

V
(SSCD)
E (r̃ , 0)

V
(SSCD)
E (r̃ , π/2)

= −2
r̃3 + 1

r̃3 − 2
. (15)

For large distances, Eq. (15) goes to the constant −2, while
for r̃ → 21/3 it goes to −∞, which reflects the fact that
V

(SSCD)
E (r̃ → 21/3, 0) diverges but V

(SSCD)
E (r̃ → 21/3, π/2)

does not.
Figure 1 is a contour plot of V

(SSCD)
E (r̃ , θ ) as a function

of the location of the second dipole, with the first being kept
at the origin. Also plotted in the same figure are the contours
of V

(SPD)
E (r̃ , θ ), as well as the line denoting the 54.7◦ magic

angle. In this case, trivially, the V
(SPD)
E (r̃ , θ ) = 0 contour co-

incides with this line. We see that for small separation, the
V

(SPD)
E (r̃ , θ ) contours are very different in shape and location

FIG. 1. Contour plot of the interaction energy V
(SSCD)
E /αdE2

0 , as given in
Eq. (13), of a pair of Lorentz atoms with polarizability αd subject to an ex-
ternal electric field E0 that points along r‖ (the vertical axis of the plot), as
a function of the location (r⊥, r‖) of the second Lorentz atom. The dipole
moments are calculated self-consistently (see text). The contour lines of the
function V

(SPD)
E /αdE2

0 of Eq. (14), which is the result of the single permanent
dipole (SPD) approach where each dipole has a fixed dipole moment equal
to αdE0, are shown as see-through lines. The hatched area is excluded from
the plot: at distances r/α

1/3
d ≤ 21/3 ≈ 1.26, a polarization catastrophe occurs

and V
(SSCD)
E (r̃ , θ )/αdE2

0 is no longer valid.

than their V
(SSCD)
E (r̃ , θ ) counterparts. For large separation, the

contours start to coincide more, as expected, since the first-
order approximation dominates the Taylor series for large
distances.

It is also possible to analytically calculate the interaction
energy of particles with anisotropic polarizability. The sim-
plest example of such particles are particles with a diagonal
polarizability matrix with only two independent entries, αxx

and αzz. All particles with at least a 4-fold rotational symme-
try axis have a polarizability of this form; examples include
rods, dumbbells, platelets, and bowls.20 In the following, we
assume that the electric field is pointing in the z-direction
and that both particles are perfectly aligned with it. Thus, the
Cartesian coordinate system is defined by the electric field
direction and not the symmetry axis of the particles. In fact,
rods and dumbbells align their rotational symmetry axis along
the electric field (i.e., in the z-direction), whereas bowls and
platelets align their rotational symmetry axis perpendicular to
the electric field (i.e., in the x-y plane),20 meaning that for
rods and dumbbells, αyy = αxx, but for bowls and platelets,
αyy = αzz. However, as the value of αyy turns out to be irrele-
vant for the mathematical expression of the interaction energy,
the result is valid in both cases. Keeping the first particle at
the origin and parametrizing the position of the second by the
distance r and the polar angle θ (the angle between the elec-
tric field and the line connecting the particles), the interaction
energy is

V
(SSCD)
E, anistropic(r̃ , θ, ηα)

= E2
0αzz

(r̃3 − 2ηα − 3r̃3 cos2 θ )

(r̃3 + 1)(r̃3 − 2ηα) − 3(1 − ηα)r̃3 cos2 θ
, (16)
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FIG. 2. Contour plot of the interaction energy V
(SSCD)
E /αzzE

2
0 , as given in

Eq. (16), of a pair of Lorentz atoms, each with anisotropic polarizability
αd = diag(αxx, αyy, αzz) satisfying αxx/αzz = 0.44, subject to an external
electric field E0 pointing in the z-direction, as a function of the location of the
second Lorentz atom relative to the first in the x-z plane. Note that restrict-
ing ourselves to this plane makes the value of αyy irrelevant for V

(SSCD)
E . The

dipole moments are calculated self-consistently (see text). The contour lines
(see-through) of the function V

(SPD)
E /αdE2

0 of Eq. (14), which is the result of
the single permanent dipole (SPD) approach where each dipole has a fixed
dipole moment equal to αzzE0, are shown as well. The hatched area, within
which a polarization catastrophe occurs and V

(SSCD)
E is no longer valid, is

excluded from the plot.

where r̃ = r/α
1/3
zz and ηα = αxx/αzz, which always satisfies

ηα < 1. This function is plotted for ηα = 0.44 in Fig. 2,
along with the contours of its first-order approximation, which
equals V

(SPD)
E (r̃ , θ ) with αd = αzz. Here, the choice of ηα

= 0.44 was made because it coincides with the observed ηα

of the particular (cuboidal) rod-shaped particles that we con-
sider in this work.50 The plot looks similar to the one that was
shown in Fig. 1, albeit squished together along the horizontal
(r⊥-)axis.

IV. INTERACTION BETWEEN CLUSTER PAIRS

We now proceed to numerically calculate the induced-
dipole interaction energy between pairs of clusters of atoms,
which we model to represent micron-sized particles. Before
presenting results, we discuss the applied methods in practi-
cal terms, which are the same for each cluster shape we con-
sider. In the body of this paper, we include detailed numerical
results for spheres but, for brevity, we leave out the details for
cuboidal and spherocylindrical rods, cubes, dumbbells, and
misaligned particles. A more detailed discussion can be found
in the supplementary material.50

A. Methods

To infer the positions of the dipole chunks, we first decide
on a desired particle size, the number of dipole chunks Nd/p we
will use to model each particle, and the lattice type to arrange
the dipole chunks on. We then infer the lattice spacing a of
the dipoles to determine the positions of the dipoles. Then
we proceed to tune the dipoles’ polarizability αd such that the

polarizability αc of the cluster of dipoles is close to the desired
polarizability αp of the particle we wish to model.

In choosing the polarizability αp, it is important to
beware of the polarization catastrophe. As αd increases, the
dimensionless lattice spacing ã = a/α

1/3
d decreases, and αc

increases until, for a certain ã, the polarization catastrophe
occurs, with αc diverging into a (ã − ãcat)−1-like peak, where
ãcat is the dimensionless lattice spacing at which the polariza-
tion catastrophe occurs. For ã < ãcat, the function αc is char-
acterized by many of these divergences, with ranges between
the divergences where αc seems well-behaved but where the
values for computed physical quantities such as V

(2)
E cannot

be trusted. Another point of interest is that the exact value of
ãcat is dependent on the number of dipoles in the system and
their arrangement with respect to each other. Therefore, even
though the first divergence in theory makes it possible to cre-
ate a cluster of dipoles with an arbitrarily high cluster polariz-
ability (by choosing an αd such that ã is only just above ãcat),
when two of these clusters are allowed to interact, ãcat may
increase, such that the system’s dimensionless lattice spacing
becomes ã < ãcat. This could easily remain unnoticed, since
αc is well-behaved between its divergences, but the numerical
results are not reliable in this case. Therefore, it is prudent to
choose αc such that the resulting αd is low enough and, thus,
ã is high enough to be comfortably above ãcat.

Having thus determined the properties of the dipoles and
the lattice, we place a copy (or, in the case of the misaligned
clusters, a rotated copy; these are discussed in Subsection IV
C and, in more detail, in the supplementary material50) of the
cluster at a certain relative position of the cluster and numeri-
cally compute the total electrostatic potential energy U

(2)
E and

each cluster’s self-energy U
(1)
E,1 and U

(1)
E,2 (these are equal in

the case of identical clusters that are not rotated with respect
to each other), and subtract this from U

(2)
E to gain the interac-

tion energy V
(CSCD)
E at that relative position. We then modify

the relative position to calculate a new V
(CSCD)
E , and repeat this

process until the desired sample points have been run through.
To generate a contour plot, we additionally have to interpo-
late in order to gain approximate values for locations between
sample points. This occasionally creates slight artefacts in the
plots and so, generally, features in the plots smaller than the
distance between the sample points should be ignored. The
interpolation method is always a 2nd-order spline, chosen be-
cause it smooths out the function the best (judged by eye).

We can contrast the CDM’s self-consistent manner (i.e.,
the CSCD approach) of calculating the induced-dipole in-
teraction energy with the more usually applied method, in
which each dipole is assigned a permanent moment pd

= αpE0/Nd/p, and the total interaction energy can be calcu-
lated by summing over pairs of dipoles that are not in the same
cluster:

V
(CPD)
E = α2

pE2
0

N2
d/p

∑
(ij )

1 − 3 cos2 θij

r3
ij

, (17)

where rij is the length of the vector rij = (ri − rj ), θ ij is the
angle between rij and E0, and the sum, as mentioned, is as-
sumed to run over the appropriate pairs (there are N2

d/p/2 of
these pairs).
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Another method (for spherocylinders and dumbbells) that
we will test the accuracy of is the “double charge” (DC)
method. In this method, we place near the two ends of the
particle a positive and a negative point charge ±q, dependent
on their separation s by the restriction qs = αc · E0, i.e., they
form a dipole with a dipole moment equal to the dipole mo-
ment that the particle would have if modeled using the CDM.
The interaction energy between a pair of particles can then
be obtained by simply summing the Coulomb interactions
between the charges. We tune the separation s between the
charges (while simultaneously tuning the charge magnitudes
such that the dipole moment they form remains the same) to
gain the best possible results.

In Subsection IV B, as well as in Subsection IV C and the
Supplementary Material,50 we will be comparing numerical
results of various methods of calculation. Apart from qualita-
tive comparisons, we also wish to compare the methods in a
quantitative way. Suppose we wish to compare a numerically
computed function g(r⊥, r‖) to another function h(r⊥, r‖). We
can then define a relative deviation

σ [g, h] =
√∫

S
dr[g(r⊥, r‖) − h(r⊥, r‖)]2∫

S
dr[h(r⊥, r‖)]2

, (18)

where S is some integration area and dr = dr⊥dr‖ is an in-
finitesimal area element, as a measure of how “wrong” g is,
compared to h. If g is very close to h for all locations in S, σ [g,
h] will be much smaller than unity, whereas σ [g, h] will be of
the order of unity or greater if g is off by amounts that are of
the same order as h itself. Of course, σ [g, h] has some limita-
tions, such as the fact that, even if g is wrong in only a small
area, it may still receive a high σ [g, h] if its discrepancy in this
area is large enough. Also, σ [g, h] does not work well if h has
divergences that g does not. For example, if S is taken to be an
infinite plane of which a disk of radius R around the origin is
excluded, σ [V (SPD)

E , V
(SSCD)
E ] goes to unity as R/α

1/3
d ↓ 21/3.

We can therefore not use σ to compare V
(SSCD)
E and V

(SPD)
E ,

because the obtained value would depend strongly on R. How-
ever, most of the results that follow do not contain such diver-
gences, such that σ is a useful comparison tool.

As a final remark before moving on to the numerical re-
sults, we note that even though, from the theory, αpE2

0 is a
naturally occurring unit of measure for VE , we have chosen
to measure the interaction energy in the familiar units of kBT
at room temperature (T = 293 K) instead, and have chosen
specific experimental parameters, including an electric field
strength of E0 = 300 V mm−1, in order to gain numerical val-
ues for the energy. Since VE is exactly quadratic in E0, the
obtained numbers can be straightforwardly adapted to other
electric field strengths. Moreover, we note that VE is an ex-
tensive quantity, that is, if we multiply all distances by a value
λ1/3 and, simultaneously, the polarizability of the particles αp

by λ, the resulting interaction potential is scaled by the same
factor. To see this, we note that the polarizability of the system
is α = Nαd f({ri/α

1/3
d }), where f is the enhancement factor of

the system, only dependent on the dimensionless coordinates
{ri/α

1/3
d } of the Lorentz atoms. Multiplying the dipole chunk

polarizability αd by λ and the coordinates ri by λ1/3, we note
that the dimensionless coordinates, and hence the enhance-

ment factor of the system, remain invariant. Less trivially, we
note that the enhancement of each individual particle (clus-
ter of dipole chunks) also remains the same, such that we
must have αp ∝ αd (for constant {ri/α

1/3
d }). We note that our

scaling scheme has kept the polarizability per unit volume of
the particles constant. A less trivial dependence appears when
we scale αp or the dimensions of the particle individually. In
general, we can say that the lower the particles’ polarizabil-
ity per unit volume, the closer the CSCD interaction energy
gets to the CPD interaction energy, which scales quadratically
in αp.

B. Numerical results for spheres

For spheres of diameter l, we put the dipoles on a face-
centered cubic (fcc) lattice and remove any dipoles that are
more than a distance l/2 away from the origin. If Nd/p is large
enough, this will produce an approximately spherical cluster
shape, while if it is smaller, the resulting cluster will be more
faceted. In Fig. 3(a), we plot the interaction energy V

(CSCD)
E,sphere

between a pair of spheres as a function of the position of
the second sphere, with the first being kept at the origin.
The spheres have a diameter l = 1 μm and a polarizability
αp = 0.1 μm3. The number of dipoles in each sphere is Nd/p

= 959 (i.e., there are 1918 dipoles in the system), the electric
field is E0 = 300 V mm−1, and the energy is scaled with the
thermal energy at room temperature (T = 293 K). In Table I,
we give the maximum and minimum of the interaction energy
for the various approaches, and also give the relative devia-
tion σ of each approach compared to the CSCD approach. As
integration area for σ , we use a disk of radius 2.075l (which is
also the plotted range), with an excluded region that is a disk
of radius l around the origin.

In Fig. 3(b), we plot the single self-consistent dipole po-
tential V

(SSCD)
E , while the contour lines of V

(CSCD)
E,sphere are shown

in the same plot. We note that the single-dipole approximation
V

(SSCD)
E is remarkably accurate, especially at angles perpen-

dicular to the electric field. The accuracy also increases with
the distance between the spheres, a distance of 2l already ex-
hibiting an excellent agreement for all angles. The approxima-
tion is worst near the zero-contour, i.e., the boundary between
the attractive and repulsive regions of the plot. While both cal-
culation methods predict a θ0 greater than the magic angle of
54.7◦ (also denoted in the plot), the V

(SSCD)
E result seems to

consistently underestimate θ0, its zero-contour at contact be-
ing about halfway between the zero-contour of V

(CSCD)
E,sphere and

the 54.7◦-line. From Table I, we see that the SSCD approach
gives a good approximation for the maximum repulsion but
underestimates the maximum attraction strength.

In Fig. 3(c), we judge the accuracy of V
(SPD)
E by plotting

it together with the contour lines of V
(CSCD)
E,sphere. We note that

the contour lines of V
(SPD)
E coincide less well with those of

V
(CSCD)
E,sphere than do the contour lines of V

(SSCD)
E in every region

of the plot. From Table I, we see that the SPD approach un-
derestimates attractions even more than the SSCD does, while
also overestimating repulsions. Its σ -value is almost a factor
2 higher than that of the SSCD approach.
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FIG. 3. The interaction energy VE/kBT , at T = 293 K, of spherical particles with diameter l = 1 μm and polarizability αp = 0.1 μm3, in an external electric
field E0 = 300 V mm−1 along the r‖-axis, as a function of the location of the second particle with respect to the first, calculated using (a) CSCD with 959
dipole chunks per sphere, (b) SSCD, (c) SPD, and (d) CSCD with 225 dipole chunks per sphere (each approach is discussed in the text). Each plot uses the
same contour lines and color coding provided in the legend. The dashed lines represent the 54.7◦ “magic angle.” The contour lines of (a) are reproduced as
see-through lines in panels ((b)-(d)). A cross-section of the 959-chunk sphere is displayed in the center of panels ((a)-(c)), and that of a 225-chunk sphere in
panel (d). The hatched area, within which the spheres overlap, is excluded from the plots. The dots in panels (a) and (d) represent the sample points at which
the interaction energy was explicitly calculated.

Next, we compare our calculations using Nd/p = 959
spheres with those using Nd/p = 225 spheres. In Fig. 3(d),
we plot V

(CSCD)
E,sphere for Nd/p = 225, while showing the contours

of V
(CSCD)
E,sphere with Nd/p = 959 in the same figure. We see that

the agreement is in general very good for large distances and
depends on θ . The agreement is bad for θ = 0 at close dis-
tances but improves as θ increases, with the best agreement
at roughly θ ≈ π /4 for close distances and θ ≈ π /6 for large
distances. For values of θ beyond the zero-contour, the agree-
ment gradually deteriorates again but remains much better
than the θ = 0 case at close distance. This approach yields
a σ -value that is about half of that of the SSCD approach, but
still underestimates attractions.

When we compare V
(CPD)
E,sphere to the single permanent

dipole approximation V
(SPD)
E , it turns out that, perhaps

surprisingly, the contours coincide so well that it makes
more sense to show the comparison by a difference plot
(V (CPD)

E,sphere − V
(SPD)
E ), which is done in Fig. 4. For the exper-

imental values chosen, the difference between V
(CPD)
E,sphere and

V
(SPD)
E is much smaller than kBT for all values of r and θ ,

and σ [V (SPD)
E , V

(CPD)
E,sphere] ≈ 0.00095. This implies that model-

ing a sphere by a number of dipoles and using the perma-
nent dipole approximation to calculate the interaction energy
is equivalent to simply modeling it as one dipole, i.e., using
V

(SPD)
E . We note, though, that both approximations are more

or less wrong, depending on r and θ , and that V
(SSCD)
E is a
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TABLE I. Numerical quantities associated with the various calculation tech-
niques for the interaction energy between two spheres, as plotted in Fig. 3.
VE,min and VE,max refer, respectively, to the minimum and maximum value
achieved by the calculation technique mentioned in the leftmost column. σ is
the relative deviation, as defined in Eq. (18), where h is always V

(CSCD)
E,sphere and g

is the VE associated with the technique given in the leftmost column. The last
entry, “CSCD(225),” refers to the CSCD approach with spheres composed of
225 dipole chunks each, instead of 959.

σ
VE,min

kBT

VE,max

kBT

CSCD 0 − 81.2 20.5
SSCD 0.15 − 61.8 22.5
SPD 0.28 − 49.4 24.7
CSCD(225) 0.086 − 67.12 21.3

better approximation than both, while it is only slightly more
complicated to compute than V

(SPD)
E .

For further illustration, we also plot V
(CSCD)
E,sphere and V

(CPD)
E,sphere

as a function of θ for various r in Fig. 5(a), and as a function of
r for various θ in Fig. 5(b). We again note the bad agreement
for small distances; e.g., from Fig. 5(a), we see that at contact
and at θ = 0, V

(CPD)
E,sphere underestimates the interaction energy

by about a factor 1.6, corresponding to about 30kBT for the ex-
perimental values used. V (CPD)

E,sphere also underestimates the angle
at which the crossover from attraction to repulsion occurs, as
noted before. The agreement becomes better as the distance
increases, as evident by the curves coinciding more and the
crossover being more localized to 54.7◦ in the inset graph. In
Fig. 5(b), the interaction energy is plotted as a function of r
for θ = 0, 0.3π (an angle close to the magic angle) and 0.5π .
As expected, V

(CPD)
E,sphere at θ = 0.3π is almost exactly zero for

all distances, whereas its V
(CSCD)
E,sphere counterpart displays a sig-

nificant attraction for close distances, up to roughly 14kBT.
In conclusion, for spheres, it seems unnecessary to use

the SPD (or CPD) approach, since the SSCD approach gives a
better result and is not (significantly) more expensive compu-
tationally. The CSCD approach with 225 polarizable chunks
per sphere gives a better approximation than the SSCD ap-
proach but is also more computationally expensive and still

FIG. 4. A comparison of the SPD and CPD approaches for calculating the
sphere interaction energy of Fig. 3. Plotted is the difference between the CPD
and the SPD result, in units of kBT.

FIG. 5. The sphere interaction energy V
(CSCD)
E,sphere (solid lines) and V

(CPD)
E,sphere

(dashed lines) of the setup described in Fig. 3: (a) as a function of the angle θ

between the electric field and the line connecting the sphere centers, for vari-
ous center-to-center distances (indicated to the left, as multiples of the sphere
diameter l = 1 μm), and (b) as a function of the center-to-center distance r,
for various angles θ , indicated in the plot.

underestimates attractions at close distances, making it im-
practical for most applications. We conclude that, for spheres,
the SSCD approach is therefore usually to be preferred over
the other approaches.

C. Numerical results for cubes, cuboidal rods,
spherocylinders, dumbbells, and misaligned particles

For brevity, we do not explicitly include the numerical
results for cubes, cuboidal rods, spherocylinders, dumbbells,
and misaligned particles in the body of this paper but instead
refer the reader to the supplementary material50 for additional
details.

For cubes, neither the SSCD nor the SPD approach are
very accurate: the former significantly overestimates attrac-
tions and also overestimates repulsions somewhat, and the lat-
ter underestimates attractions and significantly overestimates
repulsions. The CPD approach gives results of comparably
poor accuracy, but has as an added drawback its increased
computational cost. Better results can be obtained by CSCD
approaches where the number of chunks is reduced. Depend-
ing on the number of chunks chosen, these have relatively low
computational cost and good accuracy.

For cuboidal rods with aspect ratio 1:5, reasonable re-
sults can only be obtained using techniques that employ mul-
tiple chunks per rod. Of the tested approaches, the CPD with
5 dipoles per rod is computationally cheapest but has as
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drawback that it significantly overestimates repulsions. The
accuracy of the CPD does not improve with increasing num-
ber of chunks per rod. Better accuracy can be obtained by
using the CSCD approach with 5 chunks per rod.

For spherocylinders, the double charge approach dis-
cussed in IV A works very well, even outdoing some of the
permanent dipole approaches. This could be of use in sim-
ulations, since it only uses four pair interactions per pair of
spherocylinders.52

For dumbbells, the permanent dipole (CPD) approach
and the double charge approach give results comparable
in accuracy, with the double charge approach being bet-
ter at estimating the maximum attraction and repulsion, and
the CPD better at approximating the shape of the contour
lines. As before, for increased accuracy the CSCD dou-
ble dipole approach can be used. A significant disadvan-
tage to the double charge method is, however, the fact that
the Coulomb interaction is longer-ranged than the dipole-
dipole interaction, which might complicate and slow down
the simulations due to the more extensive Ewald summation it
necessitates.

So far, we have only discussed particles that are perfectly
aligned with the electric field and/or each other. For rods this
is reasonable for strong enough electric fields, but might be
problematic if the field is weaker. Cubes have been shown
to not prefer any orientation in an electric field at all,20 and
hence a configuration of interacting nonaligned cubes is very
reasonable to consider. Introducing the orientations of the par-
ticles into the problem, however, makes the parameter space
extremely hard to systematically explore and, therefore, we
restrict ourselves here to particles that are “as misaligned as
possible.” For rods, this means that one of the rod points along
the field but the other lies perpendicular to it and for cubes, we
consider a situation where, at θ = 0, the corner of one cube
points into the face of the other.

For misaligned rods of aspect ratio 1:5, similarly to
aligned ones, the single-dipole approaches SSCD and SPD
do not give good results and we therefore need to split up
the particles into multiple chunks. Using the CPD will give
fair results and is cheap if not many dipoles are used (which,
as mentioned, has little influence on accuracy). However, the
CPD has the problematic property that the location of maxi-
mum repulsion is situated in slightly the wrong place. If more
accuracy is needed, the CSCD with 5 dipoles seems the best
option. If long-range interactions are more important than
short-range ones, it is advisable to include an extra correc-
tion factor to compensate for the fact that a 5 × 1 × 1 cuboid
has a different transverse polarizability than a 25 × 5 × 5
one (the longitudinal polarizability being fixed), but this will
negatively affect the accuracy at (very) short range.

For misaligned cubes, while all the approximations did
relatively well, the self-consistent approaches clearly pro-
duced better results than their permanent-dipole counterparts.
In particular, the SSCD did remarkably well, especially con-
sidering its relatively weak performance for aligned cubes.
The CSCD approaches with low dipole numbers also did very
well but we note that, because of the SSCD’s excellent per-
formance, the former seem necessary (for rotated cubes) only
if a high level of precision is required.

V. CONCLUSION

We have introduced and generalized the Coupled Dipole
Method (CDM) to include polarizable matter units that are
not necessarily of atomic proportions. We used the CDM to
derive an expression, identical to the one derived by Bucking-
ham and Pople in 1955,36 for the self-consistent interaction
energy for two Lorentz atoms with isotropic polarizability and
then proceeded to do the same for atoms with anisotropic po-
larizability. We compared these expressions to the commonly
used method of pre-assigning dipole moments to calculate
the interaction energy. We found that the expression derived
for the latter method is a first-order Taylor approximation in
r−3 of the “full” expression obtained using the self-consistent
method.

We then proceeded to numerically evaluate the accuracy
of various techniques for calculating the electric-field inter-
action energy of various particle shapes. The techniques con-
sidered were the “single permanent dipoles” (SPD) approach,
where the particles are treated as point dipoles with pre-
assigned dipole moments, the “single self-consistent dipoles”
(SSCD) approach, where the particles are still treated as point
dipoles but have self-consistent dipole moments, the “clus-
ter of permanent dipoles” (CPD) approach, where the parti-
cles are split up into chunks with pre-assigned dipole mo-
ments, and the “cluster of self-consistent dipoles” (CSCD) ap-
proach, where the chunks instead have self-consistent dipole
moments, calculated using the CDM. The particle shapes
considered were spheres, cubes, rods, and dumbbells. For
cubes and rods we considered the case where the particles
are aligned with respect to each other and the electric field,
and the case where the particles were “as misaligned as possi-
ble.” For each shape and technique, the CSCD with the most
dipole chunks was considered to be the “exact” result and the
other techniques were judged according to their agreement
with it.

We found that, for spheres, the SSCD approach does bet-
ter than the other techniques, except the CSCD approach with
a reduced number of dipoles. However, the latter is compu-
tationally expensive for the limited improvement it provides.
The SPD and the CPD were found to give almost identical
results, such that, if the permanent dipole approximation is
used, there is no point in splitting up the sphere into multiple
chunks.

For aligned cubes, neither the SSCD, SPD, nor CPD gave
very satisfactory results. In this case, the SPD and CPD ap-
proaches do not give identical results, but the CPD approach
is not more accurate than the SPD, such that, if using a perma-
nent dipole approach, splitting up a cube into multiple chunks
is not advisable. If using a self-consistent dipole approach,
however, splitting up the cube into multiple chunks does im-
prove the accuracy significantly, with a 3 × 3 × 3 cube al-
ready giving decently accurate results (when compared to a
10 × 10 × 10 cube). For misaligned cubes, the SSCD did
better than the SPD and CPD (where, again, the latter is not
more accurate than the former).

For rods, the CPD can be worthwhile. For cuboidal rods,
splitting up the particle into multiple chunks is absolutely
crucial for gaining accurate results, regardless of whether a
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permanent or a self-consistent dipole approach is used. How-
ever, if using the CPD, the lowest possible number of chunks
that gives the correct aspect ratio should be preferred, because
splitting up the rod into more chunks does not significantly
improve the accuracy of the CPD. With the CSCD, we saw
good agreement even if using the lowest possible number of
chunks. For spherocylindrical rods, we also examined a “dou-
ble charge” (DC) approach, where a positive and a negative
charge are placed at the ends of the rod. This approach pro-
duced slightly worse results when compared to a CPD ap-
proach with a high number of chunks, but slightly better re-
sults than CPD approaches with low numbers of chunks; its
relative simplicity therefore makes it an interesting candidate
for use in simulations.

For dumbbells, the DC approach was also tried. Here, it
again achieved accuracy comparable to CPD approaches, but,
in this case, the CPD approach only needs two dipoles per
dumbbell. Since dipolar interactions are shorter-ranged than
Coulomb interactions, the latter method might therefore be
preferable computationally. A CSCD approach with only two
Lorentz atoms per dumbbell produced better results than both
the DC and CPD approach.

Speculating on the effects of using the interaction en-
ergy obtained from the SSCD approach instead of the re-
sult from the usual SPD for simulations, we note that the
SSCD approach in general gives stronger attractions and
weaker repulsions, especially at close distances. Therefore,
it seems not unreasonable to assume that the SSCD would
result in a widening of the parameter regime for which
crystal phases such as body-centered tetragonal and body-
centered orthorhombic lattices, which are based on shifted
strings,8–10, 12 are stable. On the other hand, because repul-
sions are weaker, it becomes less important for a string to be
shifted exactly half a unit cell with respect to its neighbors.
As a consequence, we might also see more stable string flu-
ids, where the particles form strings in the direction of the
electric field, but where the strings are positionally disordered
with respect to each other. Another interesting direction of
research might be to study one of the interaction energies re-
sulting from the CSCD or CPD.53 The most obvious particle
shape to investigate this for is the rod, since the effect of split-
ting up this particle into multiple chunks is significant even
if the number of chunks is low, given the very bad agreement
between the single dipole approaches (SSCD and SPD) and
the CSCD result and the comparatively good accuracy of the
cluster approaches (CPD and CSCD with a low number of
chunks).

We note here that the SSCD and CSCD approaches,
though they use self-consistent dipole moments, have, in this
work, only been used to study interactions between particle
pairs in the absence of other particles. It is of interest to in-
vestigate what effect the presence of other particles would
have on these interactions; in other words, to study the many-
body interactions between polarizable particles in an external
electric field. This might be done in simulations, although the
large-matrix manipulation involved in the CDM would make
such simulations rather cumbersome with present-day com-
puter power, but the many-body effects might also be inves-
tigated by, for example, simply studying the interaction be-

tween a pair of particles in the presence of a third particle.
This is left for future study.
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