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Recently, we reported the formation of crystalline monolayers consisting of octapod-shaped
nanocrystals (so-called octapods) that had arranged in a square-lattice geometry through drop de-
position and fast evaporation on a substrate [W. Qi, J. de Graaf, F. Qiao, S. Marras, L. Manna,
and M. Dijkstra, Nano Lett. 12, 5299 (2012)]. In this paper we give a more in-depth exposition
on the Monte Carlo simulations in a quasi-two-dimensional (quasi-2D) geometry, by which we
modelled the experimentally observed crystal structure formation. Using a simulation model for
the octapods consisting of four hard interpenetrating spherocylinders, we considered the effect of
the pod length-to-diameter ratio on the phase behavior and we constructed the full phase diagram.
The methods we applied to establish the nature of the phase transitions between the various phases
are discussed in detail. We also considered the possible existence of a Kosterlitz-Thouless-type
phase transition between the isotropic liquid and hexagonal rotator phase for certain pod length-
to-diameter ratios. Our methods may prove instrumental in guiding future simulation studies of sim-
ilar anisotropic nanoparticles in confined geometries and monolayers. © 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4799269]

I. INTRODUCTION

Recent advances in the synthesis of colloids and nanopar-
ticles have made possible the creation of monodisperse sam-
ples consisting of complex particles with anisotropic hard
and soft interactions.1–8 Such samples were used to exper-
imentally study self-assembly and mesophase behavior.6–11

Concurrently, new simulation techniques were developed to
explain the experimentally observed phenomenology and to
tackle the complex numerical problems that such investiga-
tions bring about.8, 12–23 Most of these simulation studies fo-
cussed on convex particles in two- and three-dimensional
(2D and 3D) systems, see Refs. 7, 9, 10, 12–14, 18, and
20–22 among others. However, in only a limited number of
studies the behavior of nonconvex anisotropic particles was
considered.6, 8, 11, 15–17, 19, 23, 24

The phase behavior of particles in 2D or quasi-2D sys-
tems, i.e., 3D particles in a 2D monolayer, is often dissimilar
from that of particles in 3D systems.25, 26 The study of particle
monolayers therefore offers many opportunities for the cre-
ation of new materials with bulk properties that differ substan-
tially from the materials that form by 3D self-assembly.27, 28

This has led to a strong experimental and simulation interest
in the behavior of (anisotropic) particles in (quasi-)2D. The
mesophase behavior of convex anisotropic particles in quasi-
2D, such as rods and polygonal (e.g., square and pentagonal)
particles, has for instance been studied in experiments and by
simulations.29–38
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For rods, theoretical investigations29, 31 suggested a pos-
sible Kosterlitz-Thouless (KT) isotropic-nematic phase tran-
sition, when the aspect ratio exceeded 7.0, and its existence
was confirmed by simulations and experiments.30–32 For hard
squares and rectangles, a tetratic phase with quasi-long-range
orientational order was observed in simulations.34, 36 Contrary
to the simulation results, a hexagonal plastic-crystal (rotator)
phase appeared in experiments of square colloidal particles
under confinement.37 This finding could be explained by the
roundness of particles.38

Despite this strong interest in (quasi-)2D systems, there
are still many unanswered questions, even for a relatively
simple system consisting of monodisperse hard disks. For
this system a two-step continuous solid-liquid phase transi-
tion, via a hexatic phase, is predicted by theory.39–41 However,
other melting mechanisms cannot be excluded.42 The recent
interest in nonconvex particles, such as L- and cross-shaped
particles,17 crescent-shaped particles,23 as well as octapods,8

in quasi-2D geometries, presents further challenges for sim-
ulation studies of these systems. The main problem stem-
ming from the geometric restrictions and the complex in-
teractions that arise between such particles has yet to be
resolved.43

Our group recently reported an experimental and simu-
lation study of the formation − by solvent deposition and
evaporation − of monolayers on a substrate consisting of
octapod-shaped nanocrystals that arranged into a square-
lattice crystal.8 This study was a direct continuation of the
self-assembly experiments in 3D, that showed hierarchical
interlocking-chain and superstructure formation, which was
induced by the octapod’s shape and shape-induced van der
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Waals (vdW) interactions.6 In this paper we give an extensive
overview of the simulation techniques used to analyse the ob-
served crystal structure formation in the quasi-2D monolayers
of octapods.

We considered a simple model for the octapods, con-
sisting of four hard, interpenetrating spherocylinders. These
particles were constrained to move in a planar quasi-2D ge-
ometry, namely that of the monolayers on a substrate ob-
served in the experimental system.8 Using floppy-box Monte
Carlo (FBMC) simulations,16, 44, 45 we constructed the high-
pressure crystal structures for these octapods as a function
of the pod length-to-diameter ratio L/D, with L the length
and D the diameter. Subsequent isothermal-isobaric (NPT)
and isothermal-isochoric (NV T ) Monte Carlo (MC) simu-
lations were used to establish the equations of state (EOSs)
for several conveniently chosen L/D ∈ [0.0, 8.0]. By em-
ploying order parameters and free-energy calculations the
full phase diagram for the hard-octapod model could be
established.

Our results show that the high-density phase is a rhom-
bic crystal (RC) for L/D ∈ [0.0, 1.7], a square-lattice crystal
(SC) for L/D ∈ [1.8, 5.0] ∪ [6.3, 8.0], and a binary-lattice
square crystal (BSC) for L/D ∈ [5.1, 6.2]. These results ap-
pear to be consistent with the experimental observations.8

For L/D ∈ [0.0, 1.7] we found that the RC melted into an
isotropic-liquid (IL) phase, via a hexagonal plastic-crystal
(rotator) phase (HR). In the region L/D ∈ [1.7, 2.0] there ap-
pears to be a three-step phase transition: by reducing the pres-
sure the SC melted into the RC, which subsequently melted
into the HR phase, and finally the HR phase melted into
the IL phase. For specific values of L/D in this region, the
algebraic decay of the bond-orientational correlation func-
tion hints at a possible Kosterliz-Thouless-type (KT-type) IL-
HR phase transition. We confirmed that for L/D > 2.0 the
SC melted into an IL phase via a first-order phase transi-
tion using free-energy calculations and direct (coexistence)
isothermal-isochoric (NV T ) simulations. In the range L/D
∈ [5.1, 6.2] the BSC was found to be stable at high pres-
sures and found to melt into the SC for lower pressures,
which subsequently melted into the IL phase via a first-order
phase transition upon lowering the pressure further. A con-
tinuous phase transition between the BSC and SC was ob-
served, for which only the relative orientations of the parti-
cles in the BSC changed, but the crystal lattice itself remained
unaffected.

This paper is structured as follows. Section II briefly
introduces the experimental observations. In Sec. III, we
present the model and the simulation techniques we use
to study the experimental findings. In Secs. IV and V we
predict the candidate crystal structures for the octapods at
high packing fractions and present the phase diagram that
we obtained using these structures, respectively. Section VI
summarizes the research presented in this paper and gives
an outlook. Finally, we give further details on the free-
energy calculations and the order parameters that we used in
Appendices A and B, respectively. In Appendix C, we present
a free-volume theory for our system, by which we verified
our Monte Carlo simulation results at high densities in the SC
phase.

(a)

(c) (d)

(b)

FIG. 1. High-resolution SEM secondary electron images (SEI) and related
models showing the influence of the length-to-diameter ratio (L/D) on the
organization of the octapods.8 (a) and (c) For L/D = 4.8 only simple square-
lattice crystals were formed, while (b) and (d) for L/D = 5.9 binary-lattice
square crystals were occasionally found, as indicated by the outline in (b).
The scale bars are 100 nm.

II. EXPERIMENTS

The octapod-shaped nanocrystals used in the experiments
were synthesized according to literature procedures.5, 6, 8 A
freshly prepared solution of octapods in toluene was drop-
cast on various substrates, after which the solvent was allowed
to evaporate at room temperature, see Ref. 8 for the full de-
tails. In the samples two types of crystalline monolayers were
found in the inner regions of the area delimited by the cof-
fee stain that resulted from the solvent evaporating. For oc-
tapods with an average pod length-to-diameter ratio of L/D
≈ 4.8, square-lattice crystals (SCs) were observed, see
Fig. 1(a). When the pod length was larger, on average L/D
≈ 5.9, we found evidence of binary-lattice square crystals
(BSCs), see Fig. 1(b), in addition to SCs.

III. SIMULATIONS AND MODEL

To study the experimental findings using Monte
Carlo (MC) simulations, we modelled the octapod-shaped
nanocrystals by four hard interpenetrating spherocylinders.
These spherocylinders intersect in their respective centres and
are oriented along the (±1, ±1, ±1) directions of a standard
Cartesian coordinate frame (the origin is located in the in-
tersection point). The octapod model is completely described
by setting the length-to-diameter ratio L/D, with L the length
(excluding the hemispherical caps) and D the diameter. In the
simulations we set D = 1.0 and let L vary between 0.0 and
8.0. Figure 2(a) shows our definition of L and D and Fig. 2(b)
shows our model for several choices of L/D. Note that for L/D
= 0.0 the model reduces to a sphere.

In order to emulate the quasi-2D geometry of the mono-
layers observed in the experimental system, we constrained
the centres of our octapod models to move in the xy-plane
and imposed that the tips of the pods are coplanar with their
centres. Effectively the octapods are sandwiched between two
frictionless walls, with four tips touching the top and four tips
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FIG. 2. (a) An example of the hard octapod model, which consists of four
interpenetrating spherocylinders with a length-to-diameter ratio L/D = 6.0.
The orange arrows indicate the length L and diameter D definition we used
for our model. (b) The model for several of the values of L/D that we con-
sidered in this paper. (c) An illustration of the octapod model in the quasi-2D
geometry that we used. We constrained the bottom four tips to be in contact
with the substrate; the octapods therefore effectively behave as if they are
trapped between two frictionless walls.

touching the bottom wall (substrate), see Fig. 2(c). The sim-
ulation box has 2D periodicity in the direction of the plane
and is not periodic in the direction perpendicular to it. In
the isothermal-isochoric (NV T ) ensemble we only allowed
translations in the xy-plane and rotations around the z-axis.
For simulations in the isothermal-isobaric (NPT) ensemble we
used the same particle moves and allowed the box to change
its size and shape in the xy-plane.

We define the reduced pressure as P∗ = PD2/kBT where
kB is Boltzmann’s constant, T is the temperature, and P is the
(2D) pressure. We express the density in terms of this area
as well ρ = N/A, with N the number of particles. However,
the volume fraction occupied by the particles is defined as
η = ρVp/h, where h is the distance between the two confin-
ing walls and Vp is the volume of the octapod. We determined
the height h = L/

√
3 + D using simple geometric arguments

and Vp using Monte Carlo integration, for which we achieved
a numerical precision of 4 decimals.

Finally, we mention that we chose not to model the oc-
tapods using the triangular-tessellation mesh of Ref. 16. The
reason for this is that the simpler spherocylinder-based model
enables us to achieve greater computational efficiency and
thereby allows us to study a greater number of particles in a
reasonable amount of time, while still giving a good approxi-
mation for the shape of the particle.

IV. DENSE-PACKING CRYSTAL STRUCTURES

We performed floppy-box Monte Carlo (FBMC) simula-
tions in the spirit of Refs. 16, 44, and 45 to determine candi-
date crystal structures for the octapod models in the quasi-2D
geometry. Our experimental results led us to conclude that the
observed crystal structures were probably induced by the geo-

FIG. 3. Top views of quasi-2D densely packed structures obtained for differ-
ent length-to-diameter ratios (L/D) of the hard octapod model. (a) A rhombic
crystal (RC) for L/D = 1.0. (b) A square crystal (SC) for L/D = 4.0, which
is not interlocking. (c) A binary-lattice square crystal (BSC) for L/D = 6.0.
The different orientations of the particles in the two sublattices are illustrated
by the use of color. Note that the total lattice is again square, hence the name
binary-lattice square crystal. (d) Another SC, for which the octapods are in-
terlocking (L/D = 7.0). (e) A 3D image showing four octapod models in an
interlocking configuration, the octapods are indicated with different colors
for clarity. The inset shows a top view of the 3D image, in which the arms of
the interlocking octapods appear to overlap.

metric constraints that the hard core of the octapods imposed
on the structures these nanocrystals can form.8 We therefore
assumed that the van der Waals (vdW) interactions between
octapods6 are dominated by the aggregation forces that occur
during solvent evaporation, thereby allowing for an accurate
description using a hard-particle model.

We used N = 1, . . . , 6 particles in a unit cell and slow
pressure annealing from a value of P∗ ≈ 0.5, for which the
system behaved liquid-like (η = 0.01), to P∗ ≈ 2,500 to
achieve crystallization. We performed compression runs a to-
tal of 100 times, for roughly 100 values of L/D ∈ [0.0, 8.0].
For each value of L/D we selected the densest packings and
we determined their crystal structure. See Fig. 3 for a vi-
sual representation of the three different high-density crystal
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FIG. 4. (a) Solid blue circles show the “maximum” packing fraction ηc as
a function of L/D < 2.0. Open red circles show the angle θ (in degrees) be-
tween the two lattice vectors in xy-plane that span the unit cell of the crystal
structure. (b) Solid blue circles show the difference in the packing fraction
η2 − η1 between the square crystal (SC, one particle in the unit cell, η1) and
the binary-lattice square crystal (BSC, two particles in the unit cell, η2) as
a function of shape factor L/D. We only observed the BSC phase for L/D
∈ [5.0, 6.3], i.e., η2 − η1 �= 0 in this region. Open red circles show the angu-
lar difference �α (in degrees) between the orientation of the particles in the
two sublattices of the BSC.

structures that we obtained: rhombic crystals (RCs), square-
lattice crystals (SCs), and binary-lattice square crystals
(BSCs). The BSC has the unusual property that the lattice
structure is the same as that of the SC, but that it is decom-
posed into two sublattices, for which the particles have dif-
ferent orientations, see Fig. 3(d). Note that in a top view of
the simulation system (the viewpoint we typically use) the
nonconvex nature of the 3D octapod model in the quasi-2D
system can lead to an “optical illusion” where it seems that
the particles overlap, when they in fact do not. This phe-
nomenon can be explained by a type of interlocking of the
octapods, as is illustrated in Fig. 3(e). This interlocking is
different from the interlocking observed for octapods in the
chains that formed in solution.6 Throughout this paper we re-
fer to the arrangement in Fig. 3(e) as “interlocking.”

We also determined the “maximum” packing fraction ηc,
see Fig. 4(a). The discontinuities in the region L/D ∈ [0.6,
1.0] can be attributed to the nonconvex nature of the octapods;
however, there is only one type of crystal structure in this re-
gion. To aid in establishing the nature of the crystal struc-
tures in the region L/D ∈ [0.0, 2.0] we considered the angle θ

between the lattice vectors in the xy-plane that span the unit
cell, see Fig. 4(a). We found a rhombic crystal (RC) phase for
L/D < 1.7. The RC has a deformed triangular morphology (its
space group is pmm), and the angle between two lattice vec-

tors ranges from 60◦ to 67.5◦. Our results for L/D < 1.7 are
reminiscent of the results obtained in experiments and simu-
lations of rounded square particles.37, 38 This correspondence
can be explained by the shape of the octapods for these val-
ues of L/D, since the particles have an interaction cross sec-
tion that is roughly a rounded square with concave edges. For
octapod-shaped nanoparticles there are also experimental in-
dications that a rhombic monolayer can form when the pod
length-to-diameter ratio is small.46

To determine the range in which the (B)SC structures
are found (at high pressure) we calculated the angular differ-
ence �α between the orientation of neighboring octapods, see
Fig. 4(b). The orientational difference between neighboring
octapods for the particles in the BSC is �α = 22.5◦ ± 1◦, also
see Fig. 4(b), whereas for the SCs �α = 0. Octapods with L/D
∈ [5.1, 6.2] can form both the BSC and the SC phase, but the
BSC phase achieves a higher packing fraction and is there-
fore favoured at higher pressures. By combining the afore-
mentioned results we obtained the following subdivision for
the high-density structures: RCs for L/D ∈ [0.0, 1.7], SCs for
L/D ∈ [1.8, 5.0] ∪ [6.3, 8.0], and BSCs for L/D ∈ [5.1, 6.2].

The SCs that were found for octapods with L/D ∈ [1.8,
5.0] differ from those in the range L/D ∈ [6.3, 8.0]. For L/D
< 5.0 the pods of the octapods in the SC are alongside each
other, i.e., there is no interlocking, whereas for L/D > 6.3
the octapods are interlocking. This is illustrated by the pods
appearing to overlap in Fig. 3(d). This interlocking of the oc-
tapods effectively improves the packing fraction and at the
same time makes it harder for the structure to be deformed.
In the BSC particles are also interlocked with each other.
Finally, it should be mentioned that our SC result for L/D
≈ 4.8 indeed corresponds to the experimental observation, see
Fig. 1(a), and that BSC fragments were also recovered in the
experiments for L/D ≈ 5.9, see Fig. 1(b).

V. PHASE DIAGRAM AND EQUATIONS OF STATE

Using our high-density crystal structures, we were able
to study the phase behavior of our hard octapod models in the
quasi-2D geometry. We used NPT variable-box-shape simu-
lations to obtain the crystal branch of the equation of state
(EOS), as well as any mesophases, by melting the high-
density crystal. We employed regular NPT simulations to es-
tablish the isotropic-liquid (IL) branch of the EOS by com-
pressing from a dilute system of octapods. To obtain accu-
rate results we used 400–900 particles in the simulation box.
We determined the EOS for several conveniently chosen L/D
∈ [0.0, 8.0] and used these to construct the phase diagram.

Figure 5(a) shows the EOS for octapods with L/D = 4.0
in the quasi-2D system, for which there is a first-order IL-
SC phase transition. It proved problematic to accurately es-
tablish the phase boundaries using the EOS only. We did not
observe crystallization from the IL phase because compres-
sion of the octapods from a dilute phase always resulted in
a system that became disordered and jammed (glass-like) at
high pressures. We did observe melting from the SC phase,
but we suspect that the nonconvex nature of the octapods al-
lows the crystal to be significantly superheated before melt-
ing occurs. Therefore, we used free-energy calculations to
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FIG. 5. (a) The equation of state (EOS) near the coexistence region for oc-
tapods with L/D = 4.0 in the planar quasi-2D geometry. Here P∗ = PD2/kBT
is the reduced pressure, with P the (2D) pressure, kB Boltzmann’s constant, T
the temperature, and D the diameter of the pods. We also define η = ρVp/h,
where h = L/

√
3 + D is the height of the octapods and Vp is their volume.

The green line and black points show the coexistence pressure and densities
of the square-lattice crystal (SC) and isotropic-liquid (IL) phase. (b) The re-
duced free energy f − ρμc + Pc as a function of volume fraction η. Here f is
the Helmholtz free energy per volume, μc is the coexistence chemical poten-
tial, and Pc is the coexistence pressure. This choice of representation ensures
that the η-axis acts as a common tangent to the free energy.

determine the phase boundaries between the IL and SC phase.
We employed Widom insertion47, 48 to determine the free en-
ergy of the IL phase and Einstein integration49–51 to determine
the free energy of the SC; see Appendix A for further details.
For L/D = 4.0 we found coexistence densities ηI = 0.344
and ηSC = 0.385 using a common-tangent construction, see
Fig. 5(b).

By determining the EOSs for several conveniently
chosen L/D and performing free-energy calculations, as
well as studying order parameters and their associated
susceptibilities, we were able to establish the full phase di-
agram of hard octapods in a planar quasi-2D system, see
Fig. 6. Note that in addition to the IL, RC, SC, and BSC
phase, we also found a hexagonal plastic crystal (rotator)
phase (HR). In the following we will classify the nature of
the phases and phase transitions that we found.

We found a density jump between the IL and SC phase at
coexistence, which is indicative of a first-order phase transi-
tion. To confirm the IL-SC phase coexistence, we performed
NV T simulations for octapods with L/D = 4.0, which are
similar to the direct-coexistence simulations of Ref. 52. We
prepared a SC and an IL phase with an equal number of parti-
cles using the respective coexistence densities ηI = 0.344 and
ηSC = 0.385 that we had determined using our free-energy
calculations. We brought these phases into contact and equi-
librated the system using 3 × 106 Monte Carlo cycles, where
one cycle is understood to be one translation or rotation move
per particle. Figure 7 shows the initial and final configura-
tions of the coexistence NV T simulations. There is a clear
boundary between the SC and isotropic phase. By prepar-
ing equivalent systems with non-coexistence densities, we
could observe the melting of the crystal phase into the liquid.
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FIG. 6. The phase diagram for hard spherocylinder-based octapods in a pla-
nar quasi-2D system. We show the volume fraction η as a function of the
length-to-diameter ratio L/D. The light-grey area indicates the coexistence
region and the dark-grey area indicates the forbidden region above the max-
imum packing fraction (thick black line) of the densest-known crystal. “SC”
denotes the stable square-lattice crystal, “BSC” denotes the binary-lattice
square crystal, “RC” denotes the rhombic crystal, and “HR” denotes the sta-
ble hexagonal plastic crystal (rotator) phase. The blue circles indicate the
isotropic-liquid (IL) phase-coexistence volume fraction, the blue squares the
HR and SC coexistence volume fractions. The solid blue lines are a guide to
the eye. The SC-BSC transition indicated by green stars and thin dotted lines,
the RC-HR transition is indicated by light-blue triangles and thin solid line,
and the RC-SC transition is indicated by red squares and thin dotted line.

This melting occurs at the boundary between the SC and IL
phase, see the integral multimedia movie in the supplemental
material.53

A BSC was observed at high density for octapods with
L/D ∈ [5.1, 6.3]. The stability of this phase at high pressures

FIG. 7. Snapshots of an NV T Monte Carlo simulation for which there is
phase coexistence between the isotropic (right) and square crystal (left) phase
for octapods with L/D = 4.0. (a) Initial configuration for the coexistence sim-
ulation with ηI = 0.344 and ηSC = 0.385 and (b) final configuration for the
coexistence simulation after 3 × 106 Monte Carlo cycles. The color indicates
the orientation of the octapods.
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FIG. 8. (Left column) The angle distribution function (ADF) of the differ-
ence in orientation θ (in degrees) between neighboring octapods with L/D
= 6.0 for several values of the reduced pressure P∗ = PD2/kBT. (Right col-
umn) We also show snapshots and structure factors based on the centres of the
particles (insets) for the systems to illustrate their state: (a) P∗ = 0.230, (b) P∗
= 0.260, (c) P∗ = 0.280, and (d) P∗ = 0.450. The blue dots show measured
values for the distribution and the blue lines show a single or double-Gaussian
fit to the simulation results. The dashed green lines in (b) give the distribution
function obtained by a double-Gaussian fit.

was confirmed by starting a simulation in a SC arrangement
and allowing the system to evolve. In all cases the SC rear-
ranged to form a BSC. By decreasing the pressure/density the
BSC deformed into the SC. The EOS appeared continuous
and we therefore concluded that this solid-solid phase tran-
sition is continuous or very weakly first-order. This was fur-
ther confirmed using free-energy calculations, which showed
a continuous free energy within the error bar. Moreover, crys-
tallographic analysis shows that both the SC and the BSC
phase belong to the same space (wall-paper) group p4. Note
that if only the centres of mass are considered the space group
for both phases would be p4m. Remarkably, only the orien-
tation of the particles changed during the transition, not the
lattice itself. The transition point between the SC and BSC
could be identified using the distribution of the orientation
difference between neighboring particles, see Fig. 8, which
shows four of these distributions for several pressures for oc-
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FIG. 9. Equation of state (EOS) and the packing-fraction (η) dependence
of several order parameters (φ4, �4, �6) and their susceptibilities for oc-
tapods with L/D = 1.0. (a) The EOS for this system, i.e., reduced pressure P∗
= PD2/kBT as a function of η. The isotropic-liquid (IL) phase is denoted by
blue circles, the hexagonal-rotator phase (HR) is denoted by red triangles,
and rhombic crystal (RC) is denoted by green squares. (b) The global 6-fold
bond orientational order parameter �6 (blue circles), the global 4-fold bond
orientational order parameter �4 (red triangles), and the global orientational
order parameter φ4 (green squares). (c) The susceptibility of the 6-fold bond
orientational order parameter χ6 (blue circles), the susceptibility of the 4-
fold bond orientational order parameter χ4 (red triangles), and the suscepti-
bility of the global orientational order parameter χ ′

4 (green squares). We have
added dashed vertical lines to indicate the location of the phase boundaries.
The solid lines in (b) and (c) are guides to the eye.

tapods with L/D = 6.0. In the SC phase (Fig. 8(a)) we ob-
tained a single-peak Gaussian distribution because all parti-
cles have nearly the same orientation. For the BSC phase the
distribution has a double-peak Gaussian nature because
there are two different orientations, one for each sublattice
[Figs. 8(c) and 8(d)]. Near the BSC to SC phase transition the
double-peak merged into a single plateau (Fig. 8(b)). We also
calculated the structure factor based on the centre-of-mass po-
sition of each particle in Fig. 8 (right column), which showed
that the SC structure does not change during the SC-BSC
phase transition.

The RC was found to be the stable phase at high pres-
sures for octapods with L/D ∈ [0.0, 1.7]; however, at lower
pressures the phase appeared to persist for L/D ∈ [0.0, 2.2].
Figures 9 and 10 show the pressure, several of the

Downloaded 19 Apr 2013 to 131.211.44.148. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



154504-7 Qi et al. J. Chem. Phys. 138, 154504 (2013)

order parameters, and the susceptibilities, which were used
to establish the location of the phase transitions, as a func-
tion of volume fraction. For L/D = 1.0 the RC transi-
tions into a HR phase upon lowering the pressure, the
EOS is continuous at the solid-solid phase transition point
(Fig. 9(a)). However, the susceptibility of 4-fold bond ori-
entational order parameter χ4 shows divergent behavior, al-
lowing us to locate the phase transition. We also calcu-
lated the 4-fold orientational order parameter φ4 and its
susceptibility χ ′

4. The order parameter φ4 drops from φ4

> 0.8 to nearly 0 in the RC-HR transition, as is to be expected,
since the HR phase has no inherent orientational order. There
is also a peak in the corresponding susceptibility χ ′

4 for this
transition, since the susceptibility should diverge at the tran-
sition. We believe the RC-HR (pmm to p6m) phase transition
to be continuous, because in Ref. 38 a similar RC-HR tran-
sition in a 2D system of hard squares was found to be con-
tinuous and, as we mentioned earlier, there are strong analo-
gies between both systems for L/D < 2.0. However, within the
present level of accuracy of our simulations we were not able
to verify this property. The HR phase melted into an isotropic
(liquid) phase by further lowering the pressure. We demon-
strated that this phase transition is first order. The coexistence
volume fractions were located by free-energy calculations.
Moreover, the susceptibility of 6-fold bond orientational or-
der χ6 diverges at the coexistence density.

For octapods with L/D = 2.0 the densest structure is a SC.
The SC melted into a RC at lower pressures, which melted
into a HR phase and eventually into the IL phase. At the SC-
RC phase transition point, the 6-fold bond orientational or-
der parameter �6 decreased from 0.9 to nearly 0.0 because
there are no 6-fold bonds in the SC. We used the suscepti-
bility of the global 4-fold (Fig. 10(c)) and 6-fold (Fig. 10(b))
orientational order parameters (�4 and �6), respectively, to
determine the location of the other phase transitions. Because
we did not observe a density jump (Fig. 10(a)), this phase
transition is likely continuous, possibly weak first order, since
there appears to be a discontinuity in ∂P/∂η. However, it is at
this time impossible to determine with certainty what type this
transition is, because of the numerical limitations of our algo-
rithm and the finite-size effects that play a role in the regime
we can access.

For L/D = 0.0, the octapod model is the same as a hard
sphere. Moreover, due to the confinement in the planar quasi-
2D geometry the system can be mapped onto one consisting
of monodisperse hard disks. The crystal phase is the hexago-
nal (rotator) phase. For hard disks, there is a possible hexatic
phase between the crystal and liquid phase.42 In our simu-
lations, we also found indications of such a hexatic phase,
but as we were constrained by the system size, we were not
able to draw definite conclusions that such a phase is indeed
present. By analysing the 6-fold bond orientational correla-
tion function g6(r) for various densities we attempted to char-
acterize the IL-HR phase transition for L/D = 2.0, see Fig.
11. We found that the bond orientational correlation func-
tions exhibited an algebraic decay with slope near to 1/4 for
η ≈ 0.5, which hints at a KT-type transition as predicted by
KTHNY theory.39–41 However, for the relatively small system
sizes we considered, it is not possible to exclude that there is
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FIG. 10. The packing-fraction (η) dependence of several order parameters
and their susceptibilities for octapods with L/D = 2.0. (a) The EOS for this
system with P∗ = PD2/kBT the reduced pressure. We labelled the square crys-
tal phase using “SC,” the rhombic crystal phase using “RC,” the hexagonal
rotator phase using “HR,” and the fluid phase using “IL.” (b) The global 6-
fold and 4-fold bond orientational order parameter �6 (blue circles) and �4
(red triangles), respectively. (c) The susceptibility χ6 (blue circles) and χ4
(red triangles) as a function of the packing fraction. The packing fractions
corresponding to peaks in the susceptibilities (dashed vertical lines) give the
location of the phase transitions. The solid lines in (b) and (c) are guides to
the eye.
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FIG. 11. The 6-fold bond orientational correlation function g6 as a function
of the radial distance r from the centre of an octapod for several packing
fractions η and L/D = 2 (a) and L/D = 1 (b), respectively. Results for different
values of η are indicated by different colors. The thick red dashed line has a
slope of 1/4 and corresponds to the power-law decay predicted by KTHNY
theory.
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coexistence via an intermediate hexatic phase. For L/D = 1.0
free-energy calculations showed that the HR-IL phase transi-
tion is first-order. However, due to finite size effects, the NV T

simulations for this system also showed that g6(r) decays with
a power law and an algebraic index close to 1/4 in the coex-
istence phase. Therefore, further studies are required to es-
tablish whether KT-transitions occur in the region L/D ∈ [0,
2].

In conclusion, we mapped out the full phase diagram of
hard octapods in a planar quasi-2D system using free-energy
calculations and an analysis based on several order parameters
and their corresponding susceptibilities. We found a first-
order phase transition from a fluid to a HR or SC phase, de-
pending on the aspect ratio. Additionally, we find a weak first-
order or continuous HR-RC phase transition for L/D < 2.2.
More surprisingly, we find three different phase transitions,
i.e., fluid-HR, HR-RC, and a RC-SC, with increasing
packing fraction for hard octapods with an aspect ratio
L/D 
 2.

VI. CONCLUSION AND OUTLOOK

We examined by simulations the experimental ob-
servations of the formation of crystalline monolayers
consisting of octapod-shaped nanocrystals, which arranged
in a square-lattice crystal, by drop-casting a suspension of
octapods on a substrate and allowing the solvent to evaporate.
In the experiments square-lattice crystals were found for
a pod length-to-diameter ratio (L/D) of 4.8, whereas for
L/D ≈ 5.9 binary-lattice square crystals were observed in
the samples in addition to square-lattice crystals. These
experimental results could be explained using Monte Carlo
simulations, in which we described the octapod-shaped
nanocrystals by a hard-particle model consisting of four
interpenetrating spherocylinders. Our model is completely
determined by the length-to-diameter ratio (L/D) of the
spherocylinders, with L the length and D the diameter. By
constraining these octapod models to move in a planar
quasi-2D geometry, namely that of the monolayers observed
in the experiments, the formation of crystals could be studied.
We determined the high-density crystal structures using
floppy-box Monte Carlo simulations16, 44, 45 and subsequently
established the equations of state (EOSs) for various values
of L/D. This enabled us to construct the full phase diagram as
a function of L/D and establish the nature of the various phase
transitions, using free-energy calculations, as well as global
bond-orientational order parameters and their associated
susceptibilities.

In addition to the isotropic liquid (IL) phase, we found
a variety of crystal phases: a rhombic crystal (RC), a square-
lattice crystal (SC), a binary-lattice square crystal (BSC), and
a hexagonal plastic-crystal (rotator) phase (HR). Our results
appear to be consistent with the experimental observations,8

that is, we found a high-density SC phase for L/D ∈ [1.8,
5.0] ∪ [6.3, 8.0] and a BSC phase for L/D ∈ [5.1, 6.2].
For L/D ∈ [0.0, 1.7] we observed that the RC melted to an
isotropic phase, via a hexagonal plastic-crystal (rotator) phase
(HR). In the region L/D ∈ [1.7, 2.0] there appears to be a
three-step phase transition; by reducing the pressure the SC

melts into the RC, which subsequently melts into the HR
phase, and finally the HR phase melts into the isotropic liq-
uid phase. In this region, for specific values of L/D the al-
gebraic decay of the bond-orientational correlation function
in the HR phase indicates the possibility of a KT-type transi-
tion to the IL phase. We confirmed that for L/D > 2.0 the SC
melted into an IL phase via a first-order phase transition using
free-energy calculations and direct (coexistence) isothermal-
isochoric (NV T ) simulations. In the range L/D ∈ [5.1, 6.2]
the BSC is stable at high pressures and melts into the SC for
lower pressures, which subsequently melts into the isotropic
phase via a first-order phase transition upon lowering the pres-
sure further. A continuous phase transition between the BSC
and SC was observed, for which only the relative orientations
of the particles in the BSC changed and the crystal lattice re-
mained unaffected.

The results gained by our simulation studies show that
RC, SC, and BSC monolayers may be prepared in future ex-
periments by tuning the pod length-to-diameter ratio. More-
over, the present work can be used as an initial step toward
a better understanding of the (out-of-equilibrium) formation
of crystalline monolayers of branched nanocrystals. These in-
sights might help the optimization of the experimental condi-
tions to achieve large and defect-free crystalline monolayers.
These larger 2D assemblies might be of use in device appli-
cations. The techniques introduced and used in this paper are
also of significant interest to future simulation studies, since
they can also be applied to investigate the behavior of other
types of (nonconvex) nanoparticles on substrates, or air-liquid
as well as liquid-liquid interfaces, e.g., binary nanoparticle
superlattices,54, 55 truncated cubes,56 tetrapods, and nanostars.
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APPENDIX A: FREE-ENERGY CALCULATIONS

In this appendix we explain in detail the way in which
we determined the free energy of the various (plastic) crys-
tal phases using Einstein integration.49–51 In the Einstein inte-
gration method the positions of the particles, as well as their
orientations, are coupled to the respective positions and ori-
entations of the particles in the Einstein crystal by Hookian
springs. These springs are described by the external potential

βU (λ) = λ

N∑
i=1

[(
r i − r0

i

)2

D2
+ (1 − cos 4ψi)

]
, (A1)

where N is the number of particles, β = 1/kBT is the inverse
thermal energy, λ is the coupling constant, r i is the position
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Ψi Ψi
(a) (b)

FIG. 12. Illustration of the definition of the minimum angle ψ i ∈ [−π /4,
π /4]. The grey octapod indicates the Einstein-crystal reference frame and
the red octapod shows the orientation of the octapod of interest. The blue
lines indicate the cylinder centres. We consider two clockwise rotations of
the octapod, a small one by less than π /4 (a) and a larger one by slightly more
than π /4 (b). For the former we obtain a positive ψ i < π /4 value, whereas for
the latter we use the symmetry to map the rotation on a negative ψ i > −π /4
value.

of the ith particle’s centre, r0
i is the position of the lattice site

associated with the ith particle’s centre in the Einstein crys-
tal, and ψ i is the minimum angle that gives the difference in
orientation of the four spherocylinders comprising the octa-
pod model and the orientation of this model in the Einstein
crystal, see Fig 12.

It is possible to use different coupling constants for the
positional and orientational parts, but we chose not to do this
here, because this may introduce artefacts. The coefficient 4
in the cos term accounts for the fourfold symmetry of oc-
tapods. In the BSC phase, we required different orientational
springs for the two sublattices. When the spring constant λ

is sufficiently high, the particle positions and orientations are
bound so tightly to the lattice sites and particle orientations
in the Einstein crystal that the particles effectively no longer
interact. The system therefore behaves as an noninteracting
Einstein crystal. We denote the cut-off value for which the
system is effectively noninteracting by λm. By decreasing the
spring constant from this noninteracting state to the state of
interest it is possible to determine the free energy of that state
by thermodynamic integration.

The free energy of the quasi-2D noninteracting Einstein
crystal with a centre-of-mass correction, from which we inte-
grate to the desired state, is given by

βFEin

N
= −N − 1

N
log

π

λm

− log A

N
+ βFori

N
, (A2)

where log is the natural logarithm, A is the area of the xy-
plane enclosed by the simulation box, and Fori is the ori-
entational free energy of the noninteracting Einstein crystal,
which may be written as

βFori

N
= − log

{
1

2π

∫ 2π

0
exp [−λm(1 − cos 4ψi)] dθ

}
,

(A3)
where the integral is taken over all possible orientations of a
single octapod. It is easily verified that cos 4ψ i = cos θ for
this integration, where ψ i is the minimum angle as before and
the factor 4 indicates that the configurations are 4-fold degen-
erate when θ changed from 0 to 2π .

FIG. 13. Finite size scaling for the free energy per particle βF/N obtained
by Einstein integration for a system of hard octapods with a packing fraction
η = 0.40 and a pod length-to-diameter ratio of L/D = 4.0. The blue dots
show the results of Monte Carlo simulations for N = 64, 100, 121, and 400
particles. The dashed red line shows a linear fit to the data, by which it is
possible to determine the free energy of this phase. In the limit N → ∞ we
obtain βF/N = 5.073.

We used the above equations to determine the free energy
of a system at fixed L/D and packing fraction η. In our simu-
lations, we found that a value of λm = 3,000 sufficed to obtain
a noninteracting system. To determine the free energy of the
bulk phase we used finite-size scaling,57 by which we extrap-
olated our results from finite N to N → ∞. This procedure is
illustrated in Fig. 13.

APPENDIX B: ORDER PARAMETERS
AND CORRELATION FUNCTIONS

In this appendix, we briefly introduce the various order
parameters and correlation functions we used to distinguish
between different phases and by which we were able to locate
the packing fractions and pressures at which the (continuous)
phase transitions occurred.

� The global n-fold bond orientational order
parameter:25, 40

�n =
〈

1

N

N∑
j=1

1

Nb

Nb∑
k=1

exp (inθjk)

〉
, (B1)

where i is the imaginary unit, N is the number of par-
ticles, Nb is the number of nearest neighbors, θ jk is the
angle between the bond of two neighboring particles
(j and k) and an arbitrary reference axis, and 〈 · 〉 in-
dicates ensemble averaging. The nearest neighbors are
defined by using a Voronoi construction. In our stud-
ies we used the 4-fold and 6-fold bond orientational
order parameter �4 and �6, respectively. This choice
is based on the ability of these parameters to de-
termine the level of square and hexagonal order, re-
spectively, present in the system. This makes the pa-
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rameters suited to study the hexagonal rotator phase–
rhombic crystal phase (HR-RC) transition.

� The nth order bond orientational correlation function
is defined as

gn(r) = 〈φn(r0)φn(r0 + r)〉, (B2)

where φn(r) = N−1
b

∑Nb

k=1 exp (inθjk(r)) is the nth or-
der local orientational order parameter, r is the radial
distance from the central octapod, and r0 is position of
the central octapod. This parameter quantifies the ex-
tent to which orientational order is maintained in the
direction of the nearest neighbor bonds in the crystal.
The nature of the decay in this parameter can there-
fore give some insight into the possible presence of
a Hexatic phase, which is characterized by power-law
decay of the 6-fold bond orientational correlation func-
tion (with power 1/4 as predicted by KTHNY theory),
rather than exponential decay.

� The global 4-fold orientational order parameter is
given by

φ4 =
〈

1

N

N∑
k=1

exp (i4θk)

〉
, (B3)

where θ k is the angle any pod of the octapod makes
with an arbitrary reference axis. This parameter mea-
sures the level of orientational order in the system,
i.e., to what extend the octapods are aligned on av-
erage. It can therefore be used to differentiate be-
tween states with high order, such as crystalline and
nematic/tetratic phases, and states with orientational
disorder, such as isotropic liquids and rotator phases.

� The susceptibility of the n-fold bond order parameter is
determined by calculating the fluctuations of the bond
order parameters

χn = 〈
�2

n

〉 − 〈�n〉2 . (B4)

The susceptibility of the orientational order parameter
is defined as

χ ′
4 = 〈

φ2
4

〉 − 〈φ4〉2 . (B5)

Effectively, the susceptibilities give information on the
location of the phase boundaries in our system, since
the susceptibility is divergent near such a boundary.

To determine these order parameters using Monte Carlo
(MC) simulations, we typically used the following strategy.
First we performed 106 MC steps in the NPT ensemble using
variable-box-shape MC simulations with N = 400 octapods.
The final configuration was then used in a MC simulation in
the NVT ensemble, where we used 2 × 106 MC steps for equi-
libration and 5 × 105 MC steps for production.

APPENDIX C: FREE-VOLUME THEORY

We compared our Monte Carlo simulation results for the
EOS of the SC phases with the results of a free-volume (or
rather area) theory based on a cell-model approach.58 In this
cell model, it is assumed that the central particle is caged by
its four neighbors in an expanded SC geometry and that these

FIG. 14. Top view of the cell model for a central octapod (red) that is only
allowed to translate in the xy-plane, surrounded by four neighboring position-
ally and orientationally fixed octapods (grey), which are arranged accord-
ing to the square-lattice crystal (SC) structure. The SC structure has been
expanded uniformly to achieve a desired volume fraction η. The length-
to-diameter ratio L/D = 4.0 in this case. The centre-to-centre vector be-
tween the central octapod and its top-left neighbor is given by r ≡ OA

= √
OB2 + AB2, with AB = lx and OB = ly. The parameter � gives the

size of the gap between neighboring particles. The grey square identifies the
area in which the centre of the central octapod is free to move, i.e., its free
area (volume).

neighbors are positionally and orientationally fixed, i.e., we
use a mean-field approximation. In order to explain how the
free area can be calculated we start from a simplified situation,
before we consider the full cell model. Let us first consider the
situation in which the central octapod can only translate in the
xy-plane; rotations are not allowed. Later we will extend this
result to the situation where rotations of the central octapod
around the z-axis are also allowed.

Figure 14 shows the top view of the cell model for a cen-
tral octapod which is only allowed to translate in the xy-plane.
In the close-packed SC configuration the centre-to-centre dis-
tance between two octapods is rcp. It proves convenient to
decompose rcp into its x- and y-components, which we de-
note by r

cp
x and r

cp
y , respectively. From the dense-packed con-

figuration, it is obvious that r
cp
y is equal to D. However, r

cp
x

depends on the length of octapods. The analytical expression
for r

cp
x is given by

r
cp
x

D
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
3L∗+

√
12−2

√
6L∗−L∗2

3
√

2

√
6

2 ≤ L∗ ≤ 5
√

6
2

L∗+
√

(2
√

6−L∗)L∗√
6

L∗ ≤
√

6
2

3 5
√

6
2 ≤ L∗ ≤ 8,

(C1)

where L∗ = L/D is the reduced length of octapods, and the
upper bound of L∗ = 8 is the point up to which we could
numerically verify our result.
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In the cell model, we assume that the SC structure does
not change with the volume fraction. We therefore expand the
SC configuration uniformly to achieve the desired value of η.
This expansion can also be expressed in terms of the param-
eter �, which gives the size of the gap between neighbor-
ing particles. In the expanded SC-configuration the centre-
to-centre distance vector is denoted by r, and its x- and y-
components are denoted by lx and ly, respectively. For the
noninterlocking SC phase, i.e., L∗ < 5, the centre-to-centre
distance between two octapods can be expressed in terms of
rcp and � as

r2 = l2
x + l2

y,

= 2�2 + (rcp)2 + 2�
(
rcp
x + rcp

y

)
. (C2)

The area Af in which the octapod is free to move (the
grey area in Fig. 14) is given by Af = 4�2. This area can
be determined by solving Eq. (C2) for � and the expression
reads

Af = 4�2,

= 2r2
c

⎡
⎣ r2

(rcp)2
+ C1 − C2

√
2

r2

(rcp)2
− 1 + C1

⎤
⎦ ,

(C3)

with

C1 = 2
r

cp
x r

cp
y

(rcp)2
,

C2 = r
cp
x + r

cp
y

rcp
.

Since the centre-to-centre distance vector between two
neighboring octapods is also the lattice vector of the crystal
structure in the SC phase, the volume fraction η of the ex-
panded SC configuration can be written as Vp/(hr2), where
Vp is the volume of an octapod. In the dense-packed configu-
ration ηc = Vp/(h(rcp)2). Therefore, we may write

r2

(rcp)2
= ηc

η
. (C4)

Using the relation in Eq. (C4), the free area Af is rewritten as

Af = 2(rcp)2

[
ηc

η
+ C1 − C2

√
2
ηc

η
− 1 + C1

]
. (C5)

The partition function for the 2D system in the free-area
(mean-field) approximation takes the form

Qt = AN
f

�2N
, (C6)

where � is the De Broglie wavelength. The Helmholtz free
energy per particle is therefore given by

f = −kBT

N
log Qt

= kBT [2 log � − log Af ]. (C7)
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FIG. 15. The reduced pressure P∗ = PA/kBT as a function of the packing
fraction η for the rotating and non-rotating octapod free-volume model with
length-to-diameter ratio L∗ = 4.0 that follow from our theoretical calculations
and from our NPT Monte Carlo (MC) simulations, respectively. Solid lines
give the free-volume theory results and the dots indicate the results from our
MC simulations. The inset shows 2Ptr/3Pt − 1 (red line) as a function of η,
where Ptr is the reduced pressure for the NPT Monte Carlo system, in which
the octapods can rotate, and Pt is the reduced pressure for the NPT Monte
Carlo system, in which the octapods can only translate. The blue dashed line
indicates the ideal situation for which Ptr ≡ 3Pt/2; the red line indicates the
fractional deviation with respect to this scaling.

The equation of state is obtained by using the standard ther-
modynamic relations

βPt (η)D2 = −βD2 ∂F

∂A
= −βD2 ∂F

∂η

∂η

∂A

=
1 − C2√

C1−1+2 ηc
η

C1 + ηc

η
− C2

√
C1 − 1 + 2 ηc

η

, (C8)

where Pt is the pressure in the non-interacting SC phase ac-
cording to the cell model that only allows translations of the
octapods. The values of C1, C2, and ηc

η
can be determined

from the value of rcp and r
cp
x .

We compared the results from the free-volume (area) the-
ory to the results of our Monte Carlo simulations, see Fig. 15,
which shows this comparison for non-rotating octapods with
L/D = 4.0. As can be seen from Fig. 15 the results of our
free-volume theory closely follow the results of the rotation-
ally constrained isothermal-isobaric (NPT) simulations.

Let us now consider the model in which the central parti-
cle can rotate around the z-axis and translate in the xy-plane,
see Fig. 16. The angle the central octapod makes with its
neighbors is indicated by φ. The free area is now a function of
this angle, i.e., Af (φ). The partition function for the cell model
that allows translations and rotations is given by

Qtr = 1

�2N

[∫
exp (−βU ) drxdrydφ

]N

,

= 1

�2N

[∫ φM

φm

Af (φ)dφ

]N

,

= 1

�2N
�N, (C9)
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FIG. 16. A top view of the cell model, in which the central octapod (red)
is allowed to rotate and translate with respect to its neighbors (black). We
used a length-to-diameter ratio L/D of 4.0 here. The angle which the central
octapod makes with its fixed neighbors is given by φ.

where � is the thermal wavelength, β ≡ 1/kBT is the inverse
thermal energy, U is the hard-interaction potential between
the central octapod and its neighbors (U = 0 when there are
no overlaps and U = ∞ when there are), and φm and φM are
boundaries to the domain for which Af (φ) �= 0. � is the in-
tegration of Af (φ) from φm to φM. When φ is 0, Af (0) = Af.
However, the general expression for Af (φ) is nontrivial, and
therefore � could only be determined using Monte Carlo in-
tegration techniques. In our Monte Carlo integration we al-
lowed the central particle to explore non-overlapping config-
urations to approximate both the shape and size of the free
area; four-decimal precision could be obtained for Af (φ). In
Fig. 17, we show the numerically determined Af (φ) as a func-
tion of φ, from which we determined the partition function for
the freely rotating octapods.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Δ f

φ

φt

φm φM

FIG. 17. The length �f (φ) = √
Af (φ) of the square that delimits the free

area available to the central octapod (L/D = 4), when it makes an angle φ

with its neighbors. Note that for φ < φm and φ > φM �f (φ) = 0. The value
of φ for which �f (φ) assumes its maximum is denoted by φt.

It is desirable to obtain an analytic result for �, the inte-
gral over Af (φ), despite the difficulties in determining Af (φ).
As can be appreciated from the inset of Fig. 15, the difference
in pressure between the NPT Monte Carlo simulation results
for the system in which the octapods are allowed to rotate and
the system in which only translations are allowed, is a scale
factor of 3/2 (when η is fixed). We obtained a fractional de-
viation of this ideal scaling of less than 5% (less than 2% for
most data points) in the crystal branch of the EOS, up to ηc

− η < 0.007. We are therefore justified in forgoing a full
analytic calculation of � and using the approximation �

∝ A
3/2
f . This leads to the following free-volume expression

for the EOS of the octapods that are allowed to rotate: Ptr(η)
= 3Pt(η)/2. We have therefore obtained an analytic expression
for the EOS of the octapods confined in a quasi-2D square-
lattice crystal phase, which is consistent with the results of
our simulations for the entire crystal branch up to a high
numerical accuracy.
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