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Using Monte Carlo simulations and free-energy calculations, we determine the phase diagram of a

family of truncated hard cubes, where the shape evolves smoothly from a cube via a cuboctahedron to an

octahedron. A remarkable diversity in crystal phases and close-packed structures is found, including a

fully degenerate crystal structure, several plastic crystals, as well as vacancy-stabilized crystal phases, all

depending sensitively on the precise particle shape. Our results illustrate the intricate relation between

phase behavior and building-block shape, and can guide future experimental studies on polyhedral-shaped

nanoparticles.
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Recent advances in experimental techniques to synthe-
size polyhedron-shaped particles, such as faceted nano-
crystals and colloids [1–14] and the ability to perform
self-assembly experiments with these particles [15–22],
have attracted the interest of physicists, mathematicians,
and computer scientists [23–27]. Additionally, predicting
the densest packings of hard polyhedra has intrigued math-
ematicians since the time of the early Greek philosophers,
such as Plato and Archimedes [28,29]. Modern computer
platforms have made it possible to perform simulations of
these systems, which has resulted not only in an improved
understanding of the experimentally observed phenome-
nology in colloidal suspensions of such particles, but also
in improved Ansätze for the morphology of their close-
packed configurations [24,30–35].

The self-assembly of the basic building blocks at finite
pressures may differ substantially from the packings
achieved at high (sedimentation and solvent-evaporation)
pressures. For instance, liquid-crystal, plastic-crystal,
vacancy-rich simple-cubic, and quasicrystalline meso-
phases are stabilized by entropy alone under non-close-
packed conditions of hard anisotropic particle systems
[30–34,36,37]. Predicting the phase behavior from the
shape of the building blocks alone is therefore a major
challenge in materials science and is crucial for the design
of new functional materials. It is thus not surprising that
numerous studies have been devoted to providing simple
guidelines for predicting the self-assembly from the parti-
cle shape alone [32–34].

Recently, Henzie et al. [15] reported the shape-
controlled synthesis of truncated cubes. In their research,
the close-packed crystals of these particles were studied
using sedimentation experiments and simulations. They
created exotic superlattices, and their results also tested
several conjectures on the densest packings of hard poly-
hedra [23,25–27]. However, Henzie et al. did not examine

the finite-pressure behavior of the system. Mapping the
full phase diagram for the system of truncated cubes is
thus important, not only from a fundamental perspec-
tive but also to guide future experimental self-assembly
studies to fabricate new functional materials with these
building blocks.
In this Letter, we investigate the equilibrium phase dia-

gram of a family of truncated hard cubes, which interpolates
smoothly between cubes and octahedra via cuboctahedra.
Our calculations show that the phase diagram exhibits a
remarkably rich diversity in crystal structures that depends
sensitively on the particle shape. We find distinct changes
in phase behavior and crystal structures even for small
variations in the level of truncation. This is an unexpected
result, since the particle shape varies smoothly from that
of a cube to that of an octahedron by truncation. Moreover,
we find that the equilibrium concentration of vacancies,
which is already unusually high for a simple-cubic phase
of cubes [36], increases at a fixed packing fraction �
upon increasing the level of truncation. In this Letter, we
identify and describe in detail the different phases that we
obtained, as well as the nature of the phase transitions
between these phases.
The particles that we investigate are completely speci-

fied by the level of truncation s 2 ½0; 1� and the volume of
the particle; see Fig. 1(a) and the Supplemental Material
[38] for the definition of the truncated cube and additional
details. Two Platonic (cube and octahedron) and three
Archimedean (truncated cube, cuboctahedron, and trun-
cated octahedron) solids are members of this family.
Using the floppy-box Monte Carlo method [39–42] in

combination with a separating-axis-based overlap algo-
rithm [43], we first numerically determined the densest
structure and the corresponding packing fraction; see
Fig. 1(b). Note that the packing fraction ‘‘curve’’ is con-
tinuous but has discontinuities in its first derivative. Cubes
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(s ¼ 0) and truncated octahedra (s ¼ 2=3) are the only
shapes that have space-filling close-packed structures in
the entire s 2 ½0; 1� domain. We analyze our results by
considering the lengths vi of and the angles �ij (i < j ¼ 1,

2, 3) between the three lattice vectors that specify the
unit cell of the densest crystal structure; these quantities
are shown in Figs. 1(c) and 1(d), respectively. Numerical
analysis of the discontinuities in the (first derivative of the)
�, vi, and cos�ij curves allows us to partition the s 2 ½0; 1�
domain into 14 distinct regions.

We only briefly discuss the different close-packed struc-
tures here, and we refer the interested reader to the
Supplemental Material [38] for visual representations and
more detailed descriptions.We find (distorted) simple-cubic
[(d)sc] phases for s 2 ½0:00; 0:374�. For s 2 ð0:374; 0:40�
and s 2 ð0:40; 0:422�, we observe a large scatter in the
lattice vectors, which we expect to approach a continuous
spectrum for a larger number of simulations. This corre-
sponds to a degeneracy in the densest crystal structures. The
truncated cubes are arranged in a dsc crystal lattice, where
the particles form columns that are interlocked in a diagonal
way. This prevents lateral motion in the plane normal to the

column’s direction but allows motion in the direction of the
columns for the diagonally interlocked sheets; see Ref. [38]
for a visual representation. These structures are referred
to as monointerlocking distorted simple-cubic (MI dsc)
crystals. For s 2 ð0:422; 0:49�, a dsc crystal phase is found
that is interlocking in two directions (BI dsc), while for
s 2 ð0:49; 0:50Þ, a tri-interlocking dsc crystal (TI dsc) is
observed.Multiple instances of interlocking prevent motion
in the crystal, as also follows from the unicity of the results
in these regions in Figs. 1(c) and 1(d). For s 2 ½0:50; 0:54�
and s 2 ð0:63; 0:71�, three different distorted body-
centered-tetragonal (dbct) structures are found, and for
s 2 ð0:54; 0:63�, there is a regular body-centered-tetragonal
(bct) structure. Finally, for s 2 ð0:71; 1:00�, we observe the
Minkowski crystal phase. We thus find a remarkable diver-
sity in close-packed structures that depends sensitively on
the level of truncation. Below, we investigate the repercus-
sions of the 11 distinct close-packed structures on the
behavior at finite pressure.
Using the floppy-box Monte Carlo method results in

combination with regular isothermal-isobaric (NPT) simu-
lations and free-energy calculations, we are able to estab-
lish the phase diagram for hard truncated cubes, as shown
in Fig. 2. For s < 0:5, the particles are essentially ‘‘cubic’’
in shape, and we find high-density simple-cubic-like
phases. The phase diagram for truncated cubes with shape
parameter s 2 ½0:00; 0:35� displays three stable bulk
phases. At very high pressures, we observe a dsc crystal
phase similar to theC1 phase of Ref. [30]. This phase melts
either via a weak first-order or via a second-order phase
transition into a vacancy-rich simple-cubic (sc) crystal
phase. At even lower pressures, the sc crystal is found to
coexist with the fluid phase. For s 2 ð0:35; 0:422�, the
phase diagram exhibits four stable phases separated by
three two-phase coexistence regions. At sufficiently high
pressures, the systems self-assemble into their respective
densest-packed structures, which is the dsc (C1) structure
for s 2 ð0:35; 0:374� and the MI dsc phase for s 2
ð0:374; 0:422�. Upon lowering the pressure, a first-order
transition occurs to the dsc phase with the C0-like mor-
phology of Ref. [30]. By further lowering the pressure, the
dsc (C0) phase melts in all our simulations into a plastic
hexagonal close-packed (phcp) crystal structure, before
finally melting into a fluid phase. We find a dsc (C0)—
phcp—liquid triple point at s � 0:374. For s2ð0:422;0:5�,
we observe higher orders of interlocking of the dsc crystal
phase at sufficiently high pressures: a BI dsc and a TI dsc
crystal, respectively. These phases melt into the phcp phase
and subsequently into the isotropic liquid phase upon
lowering the pressure, again via first-order phase transi-
tions in both instances. Large lattice vector fluctuations and
the degeneracy of the respective crystal structures prohibit
free-energy calculations for s 2 ½0:35; 0:5�.
For s > 0:5 the shape is ‘‘octahedronlike,’’ and we find

bct-like structures at close packing. For s 2 ½0:5; 0:54�, the
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FIG. 1 (color online). (a) Five truncated cubes (Platonic and
Archimedean solids only) for levels of truncation s correspond-
ing to the orange lines from left to right: a cube, a truncated cube,
a cuboctahedron, a truncated octahedron, and an octahedron.
(b) The packing fraction � for the close-packed structures as a
function of s. (c) The length vi (i ¼ 1, 2, 3) of the three lattice
vectors, indicated in red, green, and blue, that span the unit cell
of the densest crystal structure. Not every line is clearly visible,
since there is some overlap. Black and gray dots are used in
regions with a degeneracy in the crystal structures. (d) The
cosine of the angles �ij (i < j ¼ 1, 2, 3) between the three vi

in (b). Gray vertical lines partition the s domain into 14 pieces
with a ‘‘different’’ crystal structure, based on the discontinuities
of vi and cos�ij.
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close-packed dbct phase melts into a plastic bct (pbct)
phase upon lowering the pressure via a first-order
phase transition. At even lower pressures, we find
two-phase coexistence between the pbct and the fluid
phase. Interestingly, although the particles in this pbct
phase rotate almost freely, their orientational distribution
is not isotropic, which gives rise to the pbct rather than a
plastic body-centered-cubic (pbcc) phase; see the movie in
the Supplemental Material [38]. In the region s2
ð0:54;0:636�, we obtain a regular bct phase at high pres-
sures, which undergoes a first-order transition into the pbct
phase for intermediate pressures. For s 2 ð0:636; 0:712�,
we find two different dbct crystal structures (dbct1 and
dbct2 in Fig. 2). The transition between dbct1 and dbct2 is
located at s ¼ 2=3 (the space-filling truncated octahedron
of which all sides are of equal length). Remarkably, this
system exhibits a body-centered-cubic (bcc) crystal struc-
ture, which exists only for this exact value of the truncation
s ¼ 2=3. Surprisingly, the close-packed crystal structures
in the region s 2 ð0:636; 0:712� melt directly into a liquid
phase via a first-order phase transition upon decreasing the
pressure without an intervening plastic-crystal phase.
Further increasing the truncation leads to more octahedron-
like shapes. In the region s2ð0:712;0:95�, we find a
Minkowski crystal [27], which melts into a stable pbcc
phase before melting into a fluid. However, for s 2
ð0:95; 1:0�, we find that the intervening pbcc phase
becomes metastable with respect to the Minkowski

crystal-to-liquid phase transition (see also Ref. [31]),
such that at s ¼ 0:95, an isotropic liquid—pbcc—
Minkowski crystal triple point appears in the phase dia-
gram. Typical configurations of plastic crystals and
vacancy-rich simple-cubic phases can be found in the
Supplemental Material [38]. The straight lines separating
the phase boundaries for s 2 ½0:374; 0:712� at high
packing fractions are a continuation of the subdivision
that follows from the distinct crystal structures at close
packing. Several simulations close to the boundaries
(on either side) are performed, to show that within the
numerical accuracy, there is no deviation from the
vertical.
Now that we have described the phase diagram, let us

return to the vacancy-rich sc phase for s 2 ½0:00; 0:374�.
We define the vacancy concentration � as the fraction of
unoccupied sites in the sc crystal lattice. To determine
the equilibrium vacancy concentration, we calculated the
free energy (per particle per kBT) fð�Þ as a function of �
for s ¼ 0:05, s ¼ 0:15, and s ¼ 0:25, at packing fraction
� ¼ 0:56 using the method as described in Ref. [36].
Surprisingly, Fig. 3 shows that the minimum in fð�Þ shifts
to higher � upon increasing the level of truncation s at a
fixed packing fraction. This is unlike the behavior observed
for parallel cuboids (smooth-edged, parallel-aligned cubes)
[37], which exhibit a constant vacancy concentration with
increasing roundness at fixed �. The vacancies are delo-
calized along rows in the crystal lattice, in accordance with
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FIG. 2 (color online). Phase diagram for the family of truncated hard cubes in the packing fraction � versus the level of truncation s
representation. In the dark-gray area, � exceeds the maximum packing fraction. The light-gray areas indicate the two-phase
coexistence regions. The solid square symbols denote the bulk coexistence densities as obtained from free-energy calculations, while
the open circles indicate those derived from the equations of state. Coexistence lines that follow from free-energy calculations are
represented by solid lines, and those that connect equation-of-state-derived points are given by dashed lines. The numbers that follow
the dbct label signify that these dbct phases are distinct. The two dsc phases have different morphologies: one is C0-like, and the other
is C1-like. Finally, the two white arrows in the forbidden region connect the label TI dsc to the small region between the green and
purple dashed lines and the label bcc with the turquoise line, respectively.
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the results of Ref. [36], since the particles can easily move
with respect to each other and fill up the vacated space.

The free energy of a system with vacancy concentration
� at a constant packing fraction � and for a given trunca-
tion level s is fð�Þ ¼ fcombð�Þ þ fdefð�Þ, where fcombð�Þ
accounts for the combinatorial entropy to place n � N �
NL vacancies at NL lattice sites, and fdefð�Þ is the free
energy of the crystal system that contains n ¼ �NL vacan-
cies. In accordance with the observations of Ref. [36], we
find that fdefð�Þ ¼ fdefð0Þ þ �f1 represents the data accu-
rately, suggesting weak interactions between vacancies.
Here, fdefð0Þ is the free energy of a system with no vacan-
cies and f1 > 0 is the free-energy cost to create a single
vacancy. We observe that f1 decreases with s at fixed �,
thereby explaining the increase in vacancy concentration
with the level of truncation by the reduced free-energy cost
to create a vacancy; see the Supplemental Material [38].

It is interesting to compare the present phase diagram
to that of hard superballs [30,31] for which the shape
interpolates also from cubes to octahedra, but via spheres
instead of cuboctahedra. Although there are similarities
between the two phase diagrams, such as stable plastic-
crystal phases in the center of the phase diagram, there
are also striking differences. (i) The stable plastic-crystal
regimes are much smaller for polyhedral particles than for
superballs. (ii) The phase boundaries of hard superballs
change continuously as a function of the shape parameter,
whereas the phase boundaries for truncated cubes exhibit
sharp transitions. These observations lead to the idea that
the more spread-out local curvature of the superballs
tends to favor the formation of rotator phases and overall
smoother phase behavior, whereas the polyhedral particles
with flat faces and sharp edges prefer to align the flat faces

to form crystals, which leads to sharp transitions even
though s varies smoothly.
Summarizing, we calculated the full phase diagram for

a family of truncated cubes, which interpolates smoothly
from a cube via a cuboctahedron to an octahedron. The
phase diagram shows a remarkable diversity in crystal
structures, despite the shape parameter changing smoothly.
Of particular interest is the discovery of a fully degenerate
crystal phase for certain levels of truncation (s � 0:4), in
which diagonally interlocked sheets of particles can move
with respect to each other in only one direction. In addition,
the latter system is remarkable since it exhibits a fluid
state and three different bulk crystals upon increasing the
pressure. Both of these qualities may make similarly
shaped nanoparticles suitable for the creation of highly
tunable functional materials, for which optical, electrical,
and rheological properties vary strongly with the bulk
pressure of the system. Finally, we showed that the equi-
librium vacancy concentration, which is already unusually
high for a system of cubes [36], increases even further by
truncation at a given � in contrast to the result for parallel
cuboids [37].
Although it is tempting to define general guiding rules

for the self-assembly of shape-anisotropic particles, the
shape sensitivity revealed by the present study shows
that one has to be cautious. After all, this also implies
that the effect of experimentally inevitable size and shape
polydispersity calls for further developments to analyze the
stability of structures, e.g., along the lines of Refs. [44,45].
Our present results provide a solid basis for future studies
of anisotropic particle systems and pave the way for a
full understanding of the recent experimental studies per-
formed on systems of nanoscopic truncated cubes.
We would like to thank F. Smallenburg and L. Filion for

providing data for hard cubes and for useful discussions.
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I. DEFINITION OF THE FAMILY OF
TRUNCATED CUBES

We define our family of truncated cubes using a simple
mathematical expression for the location of the vertices.
The line segments that connect these vertices can only
be assigned in one (unique) way to obtain a truncated
cube. The vertices of a truncated cube may be written
as a function of the shape parameter s ∈ [0, 1]:

{v(s)} =



(
1− 4

3s
3
)(−1/3) PD (± ( 12 − s) ,± 1

2 ,±
1
2

)T
s ∈

[
0, 12
]

(
4
3 − 4λ3

)(−1/3) PD (±(1− λ),±λ, 0)
T

λ ≡ 1− s ∈
[
0, 12
]

,

(1)
where PD is a permutation operation that generates
all permutations of each element in the sets of 8 and
4 vertices spanned by the ±-operations, respectively.
All duplicate vertices are removed after letting PD act.
The ‘T ’ indicates transposition. The prefactors ensure
that the truncated cubes are normalized to unit volume.
As mentioned in the main text, several Platonic and
Archimedean solids are members of this family: s = 0
a cube, s = (2 −

√
2)/2 ≈ 0.292893 a truncated cube,

s = 1/2 a cuboctahedron, s = 2/3 a truncated octahe-
dron, and s = 1 an octahedron; these are depicted in
Fig. 1a.

II. METHODS

A. Determining the Close-Packed Structures

The simulations by which the close-packed struc-
tures were derived, are based on the floppy-box Monte
Carlo (FBMC) method [1, 2] in combination with the
separating-axis-based overlap algorithm [3]. We obtained

∗Electronic address: A.P.Gantapara@uu.nl
†Electronic address: M.Dijkstra1@uu.nl

the densest crystal structure and the corresponding pack-
ing fraction φ as a function of the level of particle trunca-
tion s by considering 1,000 equidistant points in s ∈ [0, 1].
For each point we prepared systems of truncated par-
ticles in a dilute phase, typically with packing fraction
φ ≈ 0.001. We increased the reduced pressure in 100
steps according to a geometric series from p = 1 to
p ≈ 105 over 4 · 106 Monte Carlo (MC) cycles in order
to compress these systems to a high-density crystalline
state. This pressure increase was typically applied a to-
tal of 1,000 times for N = 1 particles in the unit cell and
for each shape. We restricted ourselves to N = 1 parti-
cles in the unit cell, because the truncated cubes are all
centrosymmetric. We only considered N = 2, . . . , 6 for
14 conveniently chosen values of s, located in the cen-
ter of the regions indicated in Fig. 1, as will be justified
shortly. For these N > 1 systems we obtained roughly
the same value of φ and also the same crystal structures.
The densest crystal-structure candidate was selected and
allowed to compress further for another 106 MC cycles at
p = 106 to achieve 5 decimals of precision in φ. In prac-
tice, these final cycles of compression did not improve
the packing fraction substantially. Figure 1b shows φ as
a function of s. Note that the packing fraction ‘curve’
is continuous, but has discontinuities in its first deriva-
tive. To double check our result, we considered another
set of FBMC runs. We used several of the 1,000 densely-
packed crystals as our initial configuration and we varied
s around these points at high pressure to study the evo-
lution of their structure. Steps of 10−5 in s were used
and for each step the system is expanded to remove any
overlaps, before re-compressing it at p ≈ 105. The pack-
ing fractions we obtained showed good correspondence
with our original result, but this correspondence failed
for a transition between two crystal structures. The con-
secutive method would often become stuck in the lower
density structure that corresponded to the morphology
of the crystal phase it came from.

The unit cell for N = 1 truncated cubes can be speci-
fied by three vectors vi (i = 1, 2, 3) that are implicitly s
dependent. The structure spanned by these three vectors
can also be described by the length vi = |vi| of the vec-
tors and the angles θij (i < j = 1, 2, 3) between them.
Note that we ignored the orientation of the particle with
respect to the unit cell here. In order to give an unbi-
ased comparison of the different vectors we used lattice
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Figure 1: (a) Five examples of truncated cubes (Platonic and Archimedean solids only) for levels of truncation s corresponding
to the orange lines: s = 1 a cube, s = (2 −

√
2)/2 ≈ 0.293 a truncated cube, s = 1/2 a cuboctahedron, s = 2/3 a truncated

octahedron, and s = 1 an octahedron. (b) The packing fraction φ for the close-packed structures as a function of s. The values
for the five solids shown in (a) are given by red dots. (c) The length vi (i = 1, 2, and 3) of the three lattice vectors, indicated in
red, green, and blue, that span the unit cell of the densest crystal structure as a function of s. Not every line is clearly visible,
since there is some overlap. In the region where the black and gray dots are used (s ∈ [0.37, 0.40] and s ∈ [0.40, 0.42]), there
appears to be a degeneracy in the crystal structures, as is explained in the text. (d) The cosine of the angles θij (i < j = 1,
2, and 3) between the three vectors that span the unit cell as a function of s. Gray vertical lines partition the s-domain into
14 pieces with a ‘different’ crystal structure, based on the discontinuities shown in the vi and cos θij results. These regions
are numbered with roman numerals in (b); only those regions large enough to accommodate a label are numbered, but the
numbering can be continued from left to right, in the unnumbered regions.

reduction [4] to ensure that for each unit cell the surface
to volume ratio is minimal. These numerical results are
shown in Fig. 1(c,d). By analyzing the vi and θij , as
well as the location of the kinks in the φ-curve, we were
able to partition the s ∈ [0, 1] domain into 14 distinct
regions. This is the reason behind our choice of 14 ver-
ification points for N > 1 simulations. For a discussion

of the crystal structures in the different regions, we refer
the reader to Sec. IV.
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B. Equations of State and Mesophase Structures

We used the close-packed crystal structures obtained
from the FBMC calculations as initial configurations
for variable-box-shape isothermal-isobaric (NPT ) Monte
Carlo simulations, to study the phase behavior at in-
termediate pressures. Initial configurations of 300 to
600 particles were prepared and melted to determine the
equations of state (EOSs) for the various phases. Typical
equilibration and production times were around 1.2 · 106

and 2·106 Monte Carlo Sweeps (MCS), respectively. One
MCS is defined as N Monte Carlo trial moves (transla-
tion, rotation, volume change, or deformation of the box,
respectively), where N is the number of particles in the
system. We sampled the lattice vectors, as well as the
average positions and orientations of the particles as a
function of packing fraction and truncation parameter
s. The sampling was done on an interval of 100 MCS
to avoid correlated configurations. Using these results
we set up regular NPT simulations (possibly with a tri-
clinic box shape) to more accurately sample the EOSs
for all phases with larger system sizes of 1,000 to 2,000
particles, including the liquid phase. In addition, we em-
ployed these results to set up the Einstein crystal [5] for
the free-energy calculations.

Several typical configurations of crystalline phases
slightly above fluid coexistence are displayed in Fig. 2
to give an impression of the mesophases that occur in
the systems we studied. We have also added a movie
file to the supplemental information ‘pbct.mpg’, which
shows the plastic-body-centered tetragonal (pbct) phase
for truncation s = 0.546 and pressure p∗ = 11.0, to illus-
trate that a bct structure can be present for particles that
rotate. On the top-left corner the entire simulation box
is shown for an NPT simulation containing 512 particles.
An enlarged pbct unit cell is shown from the front (top-
right corner), from the bottom (bottom-left corner), and
from the side (bottom-right corner); with all the neigh-
boring particles hidden. The change in the color of the
particles is related to the orientation of the particles, the
more the particle is aligned with the lattice vectors of the
Einstein crystal, the more bright green the color is; the
more the particle is misaligned, the more it tends to a
blue color.

C. Free-Energy Calculations and Confining
Potentials

We obtained the dimensionless free energy per parti-
cle f = βF/N as a function of packing fraction φ (or
equivalently the density ρ) for the entire density range
by thermodynamic integration [6] over the EOS, from
reference density ρ0 to the density of interest ρ:

f(ρ) = f(ρ0) +

∫ ρ

ρ0

βP (ρ′)

ρ′2
d ρ′. (2)

Here f(ρ0) ≡ βµ(ρ0) − βP (ρ0)/ρ0 is the reduced
Helmholtz free energy per particle at density ρ0, with
β = 1/kBT , T the temperature and kB Boltzmann’s con-
stant, µ(ρ0) the chemical potential, and P (ρ0) the pres-
sure. The Helmholtz free energy at reference density ρ0
was obtained as follows.

• In the fluid phase we used Widom’s particle inser-
tion method [7] to obtain the free energy. This
method was employed at relatively low densities to
obtain small error bars. We performed the calcula-
tions at φ ≈ 0.2. We note that there were no finite
size effects within the computational accuracy for
the particle insertion method.

• In the crystal phase we used the Einstein integra-
tion method [6, 8, 9]. The reduced Helmholtz free
energy per particle f = βF/N of a crystal is given
by:

f(ρ) = fEinst(λmax)−
1

N

∫ λmax

0

dλ

〈
∂βUEinst(λ)

∂λ

〉
, (3)

where fEinst denotes the reduced free energy per
particle of the ideal Einstein crystal, which is given
by:

fEinst(λmax) = −3(N − 1)

2N
log

(
π

λmax

)
+

log

(
Λ3
tΛr
vp

)
+

1

N
log
( vp
V N1/2

)
−

1

N
log

{
1

8π2

∫
dθ sin (θ)dφdχ ×

exp

[
−λmax

kBT
(sin2 ψia + sin2 ψib)

]}
,

with vp the volume of a particle. UEinst(λ) denotes
the harmonic potential that fixes the particles to
the respective Einstein lattice positions:

βUEinst(λ) =

λ

N∑
i=1

[(ri − ri,0)2/v2/3p + (sin2 ψia + sin2 ψib)], (4)

with (ri − ri,0) the displacement of particle i from
its position in the ideal Einstein crystal. The an-
gles ψia and ψib are the minimum angles between
vectors, a and b, describing the orientations of the
particles in the ideal Einstein crystal and the equiv-
alent vectors that describe the orientation of the
particle in the actual crystal, respectively. When λ
is large the particles translational and orientational
displacements are frozen, while at lower λ’s the par-
ticles freely displace and rotate. They thereby not
only explore the possible states, but also the un-
derlying degenaracy coming from the symmetry of
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(c)

(b)(a)

(d)

Figure 2: Several snapshots of our isothermal-isobaric (NPT ) simulations showing the various crystal structures that form in
our family of truncated cubes. (a) Equilibrium vacancy-rich simple cubic crystal for a truncation of s = 0.25 at packing fraction
φ = 0.56. The simulation was performed for N = 3,235 particles. In this system the vacancy concentration was found to be
α = 0.032. (b) Plastic hexagonal-close-packed (PHCP) phase for s = 0.411 and φ = 0.6 in a box containing N = 216 particles.
(c) Plastic body-centered-tetragonal (pbct) phase for s = 0.607 and φ = 0.58 in a box containing N = 512 particles. (c) Plastic
body-centered-cubic (PBCC) phase for s = 0.900 and φ = 0.52 in a box containing N = 250 particles. The coloring used here
indicates the level of alignment of these particles with the lattice vectors of the Einstein crystal, as explained in the text.

the particle itself. The translational and rotational
thermal wavelengths Λt and Λr are set to 1 in our
calculations. We mostly used the same system sizes
of 700 to 1,500 particles to compute the free en-
ergies for the (plastic) crystal phases. We found
that finite-size scaling (FSS) was only necessary
in the octahedron regime, i.e., s ≈ 1, to establish
the phase diagram. For such high levels of trunca-
tion the free-energy differences between the various

phases at coexistence proved to be very small, see
Ref. [5]. For the other phase transitions the free en-
ergies obtained without FSS proved to be sufficient
to accurately determine the phase boundaries.

• For the free-energy calculations of a plastic-crystal
(rotator) phase, we followed the approach of the
authors of Ref. [10], who introduced a method,
which allows for a continuous transition from a non-
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interacting plastic-crystal to an interacting plastic-
crystal phase of hard truncated cubes. We used a
tunable soft-to-hard interaction potential between
the particles

ϕ(i, j) =

{
γ[1−A(1 + ζ(i, j))] if ζ(i, j) < 0

0 otherwise
,

(5)
where ζ(i, j) is the overlap potential defined in
Ref. [11], which is negative when two particles i
and j overlap and positive otherwise, and γ is the
integration parameter, which runs from γ = 0 (non-
interacting) to γ = γmax, for which the system in-
teracts fully. In our calculations we used A = 0.9
following Ref. [12]. The dimensionless Helmholtz
free energy per particle f = βF/N of the plastic
crystal is given by:

f(ρ) = fEinst(λmax)−
1

N

∫ λmax

0

dλ

〈
∂βUEinst(λ)

∂λ

〉
γmax

+

1

N

∫ γmax

0

dγ

〈
∂
∑N
i 6=j βϕ(i, j)

∂γ

〉
λmax

.

• We calculated the free energy of a solid with a fixed
vacancy concentration α = (NL −N)/NL, with N
the number of particles and NL the number of lat-
tice sites, according to the procedures outlined in
Ref. [13]. The dimensionless free energy per parti-
cle fvacEinst of a non-interacting Einstein crystal with
vacancies is given by:

fvacEinst(λmax) = fEinst(λmax) + fcomb, (6)

where fcomb is the combinatorial entropy associated
with placing N particles on NL lattice sites:

fcomb = − 1

N
log

(
NL!

N !(NL −N)!

)
. (7)

For more details about the implementation of the
free-energy calculations, we refer to the methods
section of Ref. [13]. We used NL = 153 = 3,375 for
the free-energy calculation at φ = 0.56.

III. FREE ENERGY OF VACANCIES

We calculated the free energies for a simple cubic (sc)
crystal phase of truncated hard cubes with a shape pa-
rameter s = 0.0, 0.05, 0.15, and 0.25 and packing frac-
tion φ = 0.56 as a function of the vacancy concentration
α = (NL − N)/NL as described in Sec. II C. In Fig. 3,
we present the dimensionless free energy per particle fdef
as a function of α without taking into account the com-
binatorial entropy, i.e., fdef(α) = f(α) − fcomb(α). In
accordance with the observations of Ref. [13], fdef vs.
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Figure 3: The reduced free energy per particle fdef(α) as a
function of vacancy concentration α for a simple cubic crystal
phase of truncated cubes with shape parameter s = 0, 0.05,
0.15, and 0.25 and packing fraction φ = 0.56. fdef(α) does not
account for the combinatorial entropy, i.e., fdef(α) = f (α)−
fcomb(α).

Table I: The dimensionless free energy per particle for a simple
cubic crystal of truncated cubes with shape parameter s = 0,
0.05, 0.15, and 0.25 and packing fraction φ = 0.56. From left
to right we specify the truncation parameter s, the free energy
for a system with zero vacancies f(0) and the free energy
cost to create a single vacancy f1 (without the combinatorial
contribution) as obtained by Monte Carlo simulations.

s f(0) f1
0.00 7.5077 4.52640
0.05 7.4354 4.36892
0.15 7.2762 4.06024
0.25 7.1788 3.81633

α in Fig. 3 shows a linear behavior suggesting that the
vacancies are only weakly interacting. Assuming the va-
cancies to be non-interacting, as explained in the main
text, one can write the free energy of a crystal phase as

fdef(α) = f(0) + αf1 (8)

where f(0) is the dimensionless free energy per particle of
a crystal with no vacancies and f1 > 0 is the reduced free
energy cost to create a single vacancy (without the com-
binatorial component). Fitting the results as displayed in
Fig. 3 with Eq. 8, we determined f1 for truncated cubes
as a function of shape parameter s. The results are tabu-
lated in Table I. Surprisingly, we found that the free en-
ergy cost to create a vacancy f1 decreases with increasing
s at packing fraction φ = 0.56. Hence, the equilibrium
vacancy concentration increases with particle truncation
s, also see the main text.

In the phase diagram of truncated cubes, shown in Fig.
2 of the manuscript, we did not take into account the shift
in the coexistence densities effected by the high vacancy
concentrations in the sc phase. Smallenburg et al. have
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shown that the coexistence densities for the phase dia-
gram change by only a few percent if the vacancies are
taken into account for the high-vacancy phases [13]. We
therefore feel justified in this omission, since the influence
in the vacancies leads to a minute change in the loca-
tion of the phase boundaries for the sc-fluid coexistence
densities. There is no indication that the other phases
suffered from such high vacancy concentrations and any
phase boundaries determined for these coexistences can
therefore be taken as precise within the numerical uncer-
tainty.

IV. DENSE PACKINGS AND CRYSTAL
STRUCTURES

In this section we discuss the properties of the close-
packed structures that are obtained using the methods
described in Sec. II A. Figure 5 shows the crystal struc-
ture in the center of each of the 14 regions that we found
in Fig. 1. There is a strong difference between the do-
mains s < 1/2 and s > 1/2. Geometrically the cubocta-
hedron (s = 1/2) is the transition point between shapes
which have a more cube-like nature and shapes which
have a more octahedron-like nature. It is therefore not
surprising that the crystal structures in the two regions
(s < 1/2 and s > 1/2) appear to have a deformed sim-
ple cubic (dsc) symmetry and a deformed body-centered
tetragonal (dbct) symmetry, respectively. We illustrate
this in Fig. 5 where we show the most orthorhombic unit
cell: N = 1 for s < 1/2 and N = 2 for s > 1/2. A
remarkable result is the stability of the Minkowski crys-
tal [14], which is the densest-packed Bravais-lattice struc-
ture for octahedra [15], under variations in s. For all
s ∈ [0.71, 1], we find a Minkowski crystal in the dense-
packed limit, which can be inferred from the horizontal
cos θij lines in Fig. 1d. The scaled length of the vectors

viφ
−1/3 is also constant on this domain.

Let us now examine the crystal structures in the 14
regions identified by the discontinuities in the vectors of
the unit cell. In literature it has become commonplace to
assign atomic equivalents to structures observed in sim-
ulations or experiments. For example, this is done for
binary mixtures of spheres [1, 16], a family of truncated
tetrahedra [17], several faceted particles [18], and sys-
tems of nanoparticles [19, 20]. We attempted to follow
suit by determining the symmetry group of the struc-
tures in Fig. 5 using FindSym [21] and by subsequently
assigning an atomic equivalent [22]. However, we found
that a description in terms of atomic equivalents inade-
quately captures the richness in crystal structure, since
particle orientation is not taken into account. Moreover,
for many of our structures we are unable to determine
a nontrivial space group using FindSym. We therefore
resorted to visual analysis and we used this to group the
14 regions in Fig. 1 based on similarities between the
respective structures.

• I In this region (s ∈ [0.00, 0.37]) we obtained a con-

(a) (e)(c)

(b) (d) (f)

Figure 4: A visual representation of the degenerate crystal
structure; we consider the value s = 0.387 in this figure. Pairs
of truncated cubes, for which the octahedral faces are aligned
(columns), are color-coded. Different viewpoints are displayed
for a piece of crystal consisting of 8 particles: (a) Bird’s eye
view, (b) side view, (c), front view, and (d) top view of this
structure. In (c) we use a magenta circle to indicate that
the blue column is interlocking with the green column in a
diagonal way. (e) A diagonal view of the crystal structure,
where the red columns have been removed. Magenta circles
show the interlocking. (f) The two red columns are not inter-
locking with the blue and green column, allowing for freedom
of motion in the direction of the magenta arrows. The green
column is made translucent to better illustrate the properties
of this crystal structure.

tinuous and uniform distortion of the simple cubic
structure for cubes. For s = 0 the particles form a
sc crystal, which has the same morphology as αPo
(α-Polonium) [22]. The uniformly deformed simple
cubic (udsc) structure we found for s > 0 is simi-
lar to that of βPo [22]. We verified this deformed
quality for values as low as s = 10−5.

• II & III For these two regions (s ∈ [0.37, 0.40]
and s ∈ [0.40, 0.42]) we found that there is a de-
generacy in the crystal-structure candidates that
achieve the densest-known packing. Although cer-
tain structures appear favored over others, there
is no clear relation between the structure and s.
However, the packing fraction φ of the close-packed
crystals is continuous in these regions. The ob-
served degeneracy can be explained by the forma-
tion of sheets consisting of diagonally-interlocked
columns, which can slide up or down (in the di-
rection of the columns) with respect to each other,
as shown in Fig. 4. For s = 0.387, the truncated
cubes are arranged in a dsc crystal lattice, where
the particles form columns that are interlocked in
a diagonal way. These structures are referred to
as mono-interlocking distorted simple cubic (MI
dsc) crystals. This diagonal interlocking together
with the close-packing condition prevents lateral
motion in the plane normal to the column’s direc-
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Figure 5: Visual representations of the crystal structures obtained for the first 7 regions (left) and the last 7 regions (right) of
Fig. 1. From left to right each entry (row) contains a bird’s eye view, the front view, the side view, and the top view of this
structure. The Roman numeral in the top-left corner gives the relevant domain in Fig. 1. The truncation parameter s for these
structures is given in the bottom-right corner.

tion. However, since the system is not fully inter-
locked, motion in the direction of the columns is
possible for the diagonally interlocked sheets. We
refer to these structures as mono-interlocking dis-
torted simple cubic (MI dsc) crystals. This degen-
eracy is different from the degeneracy that occurs in
structures consisting of cubes or hexagonal prisms
for instance, since such systems allow lateral free-
dom of movement of columns or (perpendicular to
the columns) of sheets of aligned particles. That
is, there is possible freedom of motion in three di-
rections, albeit not necessarily at the same time.
The interlocking nature of the MI dsc phase only
allows for movement in one direction only, namely
parallel to the columns, which may lead to strong
rheological differences between this structure and,
e.g., the sc structure for cubes.

• IV For this region (s ∈ [0.42, 0.49]) we find a dsc
phase that is interlocking in two directions: a bi-
interlocking dsc (BI dsc) phase. For each instance
of interlocking two degrees of translational motion
are frozen out. This implies that the BI dsc struc-
ture is completely fixed, which is confirmed by the
unicity of the vi and θij results in Fig. 1(c,d).

• V In this region (s ∈ [0.49, 0.50]) we observed a
tri-interlocking dsc (TI dsc) phase.

• VI - VIII Here (s ∈ [0.50, 0.51], [0.51, 0.52], and
[0.52, 0.54]) we found structures that are best de-
scribed by a distorted body-centered tetragonal
(dbct) structure. The truncated cubes in these
crystals are not aligned with the axes of the unit
cell. It is unclear to what extent structures in re-
gions VI, VII, and VIII are the same. The smooth
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flow of the φ-curve (Fig. 1b), as well as their ap-
pearance, s implies continuity, but the jumps in the
values of vi and θij [Fig. 1(c,d)] suggest otherwise.

• IX - XI These structures (s ∈ [0.54, 0.56],
[0.56, 0.59], and [0.59, 0.63]) have a body-centered
tetragonal (bct) morphology, for which the parti-
cles are aligned with the lattice vectors of the unit
cell. It is surprising that the structures in region
XII exhibit a dbct morphology, since regions IX -
XII share the same smooth piece of φ-curve, see
Fig. 1b. This leads us to conclude that a smooth
dependence of φ on s is not indicative of uniformity
in crystal structure. The strong similarity between
the crystal structures in regions IX - XI and the ap-
parent smooth transition between structures from
region IX to X and from X to XI, also leads us
to conclude that discontinuities in the properties of
unit cell are not indicative of discontinuities in the
properties of the crystal structure.

• XII & XIII These two dbct structures (s ∈

[0.63, 0.67] and s ∈ [0.67, 0.71]) are different from
the dbct structures in regions VI - VIII, since the
particles appear to be aligned with the lattice vec-
tors of the unit cell. Moreover, crystals in region
XIII are unusual, since there are large ‘voids’ in
the structure. That is, for all other structures we
found that the largest facets of a particle are al-
ways in contact with a facet of another particle.
This is not the case in region XIII, because there
is a substantial gap between some of the hexagonal
facets.

• XIV The Minkowski crystal of region XIV (s ∈
[0.71, 1.00]) is also peculiar. It is the only struc-
ture which does not undergo some form of reorga-
nization upon varying the level of truncation. It is
worthwhile to study the origin of this apparent sta-
bility, which sharply contrasts with the immediate
distortion found around s = 0. However, this goes
beyond the scope of the current investigation.
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