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Using Monte Carlo simulations and free energy calculations, we study the phase behavior of hard asymmetric
dumbbell particles with a constituent sphere diameter ratio of 0.5. We find a rich phase behavior with isotropic
fluid, rotator, and periodic NaCl-based and both periodic and aperiodic CrB-based crystalline phases. The rotator
phases found to be stable in this study are similar to those found in systems of snowman-shaped and dumbbell
particles and we investigate the behavior of these phases by comparing their stability ranges, and by looking at
the orientational reorganization of particles. We also find that the NaCl-based crystalline phase can expand its
range of stability by undergoing a slight modification which allows it to pack better. Finally, we see that reducing
the sphere separation results in the aperiodic crystalline phases becoming destabilized as compared to the phase
behavior of snowman-shaped particles.
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I. INTRODUCTION

With the continual progress of techniques for synthesizing
novel anisotropic colloidal particles comes the need to advance
our understanding of the phase behavior of these systems
accordingly. It is now not only possible to synthesize colloids
with simple shapes such as discs [1], rods [2], and cubes [3],
but also more complex morphologies such as raspberry-like
colloids [4] and octopods [5]. However, predicting the collec-
tive system behavior is not trivial, even for simple geometries.

Perhaps the simplest anisotropic particle, which has been
the focus of many theoretical [6–8] and simulation [9–15] stud-
ies, is the dimer. Dimer particles are not only fundamentally
interesting, e.g., as a model for diatomic molecules, but also
have practical applications, e.g., in the production of colloidal
crystals with useful optical properties [16,17]. Dimers consist
of two connected spheres, and they can be synthesized with
a range of different constituent sphere diameter ratios and
separations [4,18–25]. This ability to vary both the diameter
ratio of the constituent spheres and their separation results in a
vast parameter space, even for dimer particles interacting only
via excluded volume.

In a recent publication [15] we used computer simulations
to map out the phase diagram of hard tangential dimer
(snowman-shaped) particles with varying constituent sphere
diameter ratios. We found that the stable structures at high
densities are colloidal crystals analogous to the best packed
structures for equimolar binary hard-sphere mixtures. Specific
orientational organization of particles within a crystal was
found to have no effect on the packing, and as such crystals with
aperiodic ordering of particles are stabilized by the degeneracy
entropy. In these tangential systems, the degeneracy entropy
also stabilizes additional less well-packed crystalline phases
at intermediate densities. For nontangential dimers, however,
periodic ordering of particles can result in better packing than
aperiodic ordering, leading to a more complex competition
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between packing and degeneracy entropy. The effects of
this competition are important for understanding the phase
behavior of these systems since synthesized dimers are often
nontangential, e.g., because one sphere is “grown” onto
another [4] or arising from techniques such as the lock and
key [26].

Dumbbells, which consist of spheres with equal diameters
and different separations, are a nontangential dimer particle
system which has been widely studied using theoretical and
simulation approaches [9–13]. It has been shown that these
particles form aperiodic crystalline phases only for very large
sphere separations and also that the underlying structure of
the close packed crystalline phase does not change as the
constituent sphere separation is reduced [10–12]. We note
that two-dimensional aperiodic colloidal crystals have been
experimentally observed in systems of dumbbell particles [27].

In this work, we address the question of how varying the
sphere separation in systems of hard nontangential dimer
particles with different constituent sphere diameters, which
we will refer to as asymmetric dumbbells, affects the phase
behavior. Hard-core systems are often used as a reference
for systems with more complex interactions as a variety of
colloidal and nanoparticle systems behave as nearly hard
spheres [28,29]. Using Monte Carlo simulations and free
energy calculations, we map out the phase diagram of systems
of asymmetric dumbbells consisting of spheres of diameter
ratio d = 0.5. This d value allows us to study different
aspects of the phase behavior of dimer particles. The tangential
particle phase behavior at this diameter ratio is relatively
simple, with only isotropic and an aperiodic crystalline phase
found to be stable [15]. We can therefore investigate whether
reducing the sphere separation can have the same effect on the
phase behavior as reducing the diameter ratio, i.e., stabilizing
additional crystalline phases. We can also study the range of
stability of aperiodic crystals in a system of nontangential
dimers with a constituent sphere diameter ratio much lower
than that of dumbbell particles.

The outline of this paper is as follows. In Sec. II, we briefly
describe the simulation methods used and we present the
calculated phase diagram in Sec. III A. In Secs. III B, III C,
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III D, and III E, we discuss the behavior and the properties of
the various phases which we predict to be stable. Finally, in
Sec. IV, we present our conclusions and also discuss what we
can infer, based on our results, about the phase behavior of
asymmetric dumbbell particles with other diameter ratios.

II. METHOD

A. Model and simulation details

We perform Monte Carlo (MC) simulations on systems
of hard asymmetric dumbbell (AD) particles. These particles
consist of two hard spheres with a diameter ratio d = DS/DL,
where DS is the diameter of the smaller sphere and DL is
the diameter of the larger sphere. We define the shape of an
asymmetric dumbbell by the reduced sphere separation L∗ =
(2L + DS − DL)/2DL, where L is the distance between the
centers of the constituent spheres and we have taken DL to be
the unit of length (see Fig. 1). The quantity L∗ can be thought
of as the length by which the smaller sphere is protruding
from the larger one. In the limiting case of L∗ = DS/DL, an
asymmetric dumbbell particle reduces to a hard snowman-
shaped particle, while for L∗ = 0 it becomes simply a hard
sphere. The phase behavior in both of these limiting cases
is known. In this work, we study systems of AD particles
with constituent sphere diameter ratio d = 0.5 and reduced
sphere separations L∗ = 0.1, 0.2, and 0.3, while in the region
of 0.3 < L∗ < 0.5, where the phase behavior becomes more
intricate, we use a higher resolution.

In order to obtain the equations of state (EOS) for all particle
shapes defined by L∗, we perform constant pressure Monte
Carlo (NPT ) simulations on systems of N ∼ 500 AD particles
at pressure P and temperature T . For all L∗ values studied, we
obtain the isotropic fluid branches of the equations of state by
increasing the pressure of a dilute isotropic fluid configuration
in small steps. The solid branches of the equations of state
are calculated in NPT MC expansion runs, where we start
by generating a candidate crystal structure at high pressure
and then we decrease the pressure slowly until the crystal
melts. The crystal structures we consider as candidates are
those which were found to be stable in Ref. [15] for hard
snowman-shaped particles with a constituent sphere diameter
ratio d � 0.5, namely, the structures based on the binary
sphere NaCl and CrB crystals. In order to obtain the AD
particle candidate crystal structures, we begin by generating
the corresponding crystals of snowman-shaped particles in
which the constituent spheres are tangential (L∗ = 0.5), using
the method described in Ref. [15]. We then sink the smaller
sphere of each particle into the larger sphere in small steps,
equilibrating the intermediate configurations, until we reach
the desired L∗ value. We note that the positions of the large
and small constituent spheres of an AD particle will deviate

FIG. 1. (Color online) Asymmetric dumbbell particles with con-
stituent sphere diameter ratio d = DS/DL = 0.5 and reduced sphere
separation L∗ = (2L + DS − DL)/2DL = 0 to L∗ = 0.5, in intervals
of 0.1.

FIG. 2. (Color online) Example configurations of NaCl (top
row) and CrB (middle and bottom rows, shown in two different
planes) crystalline structures for snowman-shaped particles (left-
hand column) and asymmetric dumbbell (AD) particles (right-hand
column). Blue spheres represent the larger constituent spheres, red
represent the smaller ones.

from the ideal lattice positions of the corresponding binary
crystal. To illustrate this, we show examples of the NaCl- and
CrB-based structures for both snowman-shaped particles and
AD particles in Fig. 2.

As in the case of systems of dumbbell particles [12] and
snowman-shaped particles [15], for AD particle systems it is
possible to define three types of ordered structures. These are
rotator phases (RP), periodic crystals, and aperiodic crystals.
In a rotator phase (also referred to as a plastic crystal in the
literature), the particle center of mass positions are on average
located on a lattice but the particles can still rotate. Free rotation
of a particle can be hindered by the surrounding particles,
and at high densities correlations between the instantaneous
particle positions and orientations can develop [17,30]. Pe-
riodic crystals have both periodic positional ordering of the
particle centers of mass and periodic orientational ordering
of the particles’ major axes, and as such both the small
and large constituent spheres are also periodically ordered
even for nontangential AD particles. Finally, for aperiodic
crystalline structures, the orientations of the particles’ major
axes are aperiodically ordered, leading to the centers of mass
of the particles becoming disordered. We note that in the case
of tangential AD particles (snowman-shaped particles) the
constituent spheres in an aperiodic structure sit on a lattice,
however, as L∗ is lowered, the sphere positions will deviate
nonuniformly from the corresponding binary lattice sites.

The equations of state for the rotator and periodic crystal
phases can be obtained from only a single set of expansion
runs each since there is only one representative configuration
of each for a given L∗ value. For aperiodic structures, however,
there are multiple ways in which the particle orientations can
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be distributed. Hence, for each L∗ value, we perform expansion
runs on a number of different aperiodic crystal structures and
average the results to obtain the EOS of each candidate crystal.
For tangential snowman-shaped particles, it was found that
both the aperiodic and periodic structures of a candidate crystal
have the same EOS [15]. However, we do not expect this to
be the case for asymmetric dumbbell particle systems since
orienting the particles periodically can, in principle, increase
the overall density of an AD crystal at fixed pressure.

We finally comment on our choice of periodic configura-
tions of the candidate crystals we use in this study. As the
AD particle crystals are made from binary sphere crystals
by joining touching large-small sphere pairs, there is clearly
more than one way of obtaining periodic ordering. However,
based on the results of previous studies of similar systems
of dumbbell particles, we assume that, if chosen carefully,
the specific periodic structure used will not affect the phase
boundaries significantly. In Ref. [10] it was shown that three
different types of periodically ordered structures in which
the bonds of neighboring dumbbells are parallel have free
energies that are very close to one another (with a difference
of ∼0.01kBT per particle). Furthermore, in Ref. [13] it
was shown that periodic orderings of dumbbells in which
neighboring particle bonds were orthogonal to one another
have a significantly higher free energy than the stable structure
(up to ∼ 0.7kBT per particle). Hence, the periodic crystalline
structures we study are formed with parallel neighboring
bonds.

B. Free energy calculations

In order to determine which of the candidate crystalline
phases are stable and to find the coexistence regions, we use
free energy calculations. In this section, we outline the method
we use and for a more detailed description we refer the
interested reader to Ref. [15] in which hard snowman-shaped
particles were considered.

We calculate the Helmholtz free energy F of an isotropic
fluid phase from the chemical potential which we obtain using
the Widom particle insertion method [31]. In order to calculate
the free energies of each of the candidate crystal structures,
we use the thermodynamic integration method. This method
involves integrating the free energy change along a reversible
path which links the system of interest to a suitably chosen
reference state for which the free energy is known. As the
reference state we use a noninteracting Einstein crystal with
the same underlying structure [32], and we obtain the lattice
site positions and orientations for this crystal by averaging the
center of mass positions and orientations of all particles using
constant volume MC simulations.

To link the system of interest to the reference crystal, we
tether the particle positions to the corresponding lattice sites
using harmonic springs, and their orientations using a binding
potential. We vary the strength of the tethering such that in
one limiting case the particles are completely fixed to their
lattice sites, while in the other they can move freely. Note that
for rotator phases, only the particle center of mass tethering
is required. In order to complete the transformation from the
crystal of interest to the noninteracting Einstein crystal, we
use a soft potential which allows the particle interactions to

be tuned between the hard-core and the interaction free limit.
The resulting integration path linking the system of interest to
the reference crystal is as follows: The springs are turned on
in stages until the particles are fixed to the lattice sites of the
reference crystal, then the softness of the particles is gradually
increased, through the soft potential, until the system reduces
to a noninteracting Einstein crystal. Integrating over this path
gives us the free energy at a single state point. In order to
account for finite size effects, we calculate the free energy for
various system sizes N at this state point and extrapolate the
results to the thermodynamic limit [33]. Although the original
extrapolation method was designed for hard spheres [33], it
was shown in Ref. [13] that it also works well for systems
consisting of hard dumbbells. Finally, to obtain the free energy
as a function of density, we integrate the free energy change
over the EOS of the structure of interest.

For aperiodic crystalline structures, an additional degener-
acy entropy contribution to the free energy has to be taken into
account since the different aperiodic realizations have the same
free energy. The degeneracy � of a particular crystal structure
is defined as the number of possible configurations of particle
orientations, and for crystalline structures of AD particles
the degeneracy will be the same as for the snowman-shaped
particle crystals that they are based on. For the candidate
crystalline structures considered here, the degeneracy has been
calculated in Ref. [15] by following the series expansion
method given in Ref. [35]. The zeroth order term, which is
equivalent to the Bethe approximation, depends solely on the
number of large-small sphere nearest neighbors (defined as
q), while the higher order terms are calculated specifically
for each lattice. While both the NaCl and CrB lattices have
the same q value, it was found in Ref. [15] that the higher
order terms differ and hence their degeneracies also differ
slightly. For the aperiodic NaCl phase, the degeneracy is given
by ln �/N = 0.8945 and for the aperiodic CrB phase it is
given by ln �/N = 0.8933. Having calculated the equations
of state and the free energies, we determine bulk coexistence
densities by equating the pressure and the chemical potential
of the two coexisting phases.

III. RESULTS

A. Phase diagram

Using the methods described in Sec. II B, we have cal-
culated the free energies of isotropic fluid and candidate
crystalline phases of asymmetric dumbbell particle systems
for a range of reduced AD constituent sphere separations L∗.
Based on the obtained free energies, we have determined the
stable phases, calculated the coexistence densities, and, finally,
we have constructed the phase diagram shown in Fig. 3.

For L∗ = 0 we recover the phase behavior of pure hard
spheres, with stable isotropic fluid and FCC phases. As we go
towards higher values of L∗, in the range of 0 < L∗ � 0.207,
the asymmetric dumbbells form only stable isotropic fluid and
FCC rotator phases. These rotator phases form spontaneously
in MC compression runs and they are characterized by the
centers of mass of the particles being located, on average, on
FCC crystal lattice sites. At high densities, in order to optimize
the packing, this organization changes to the large spheres of
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FIG. 3. (Color online) Phase diagram of hard asymmetric dumbbell (AD) particles with sphere diameter ratio d = DS/DL = 0.5 in the
L∗ − η representation, with L∗ = (2L + DS − DL)/2DL ranging from 0 (the hard sphere) to L∗ = 0.5 (the tangential snowman-shaped particle)
and η = v0N/V , where v0 is the volume of an AD particle for a given L∗ value and V is the total volume of the system. APC refers to the
aperiodic CrB crystal structure, CrB denotes the periodic CrB crystalline phase, and NaCl denotes the periodic NaCl crystalline phase. Circles
indicate coexisting phases, while the lines are intended to guide the eye. At the top of the plot, we indicate the density of closest packing, with
triangles indicating crossover points from one close packed structure to another. Coexistence densities for L∗ = 0 are taken from Ref. [34] and
for L∗ = 0.5 they are taken from Ref. [15].

the AD particles (instead of the centers of mass of the particles)
occupying the FCC lattice sites, with the small spheres still
moving within the free space. As we approach close packing,
the ADs no longer rotate but become frozen in place.

Moving towards still higher L∗ values, with L∗ in-between
0.207 and ∼0.35, the phase behavior complicates further, with
orientationally periodic NaCl phases found to be stable at high
densities. In this L∗ region, we expect to find stable isotropic
fluid, RP, and periodic NaCl phase with increasing density.
Moreover, we can see from the phase diagram that, as L∗ is
increased within this region, the periodic NaCl phase becomes
increasingly more stable with respect to the rotator phase, as
does the isotropic fluid phase. At L∗ = 0.35, an additional
structure, a periodic CrB crystal, emerges as stable. Hence,
the expected phase behavior from low to high densities for
the system characterized by L∗ = 0.35 is as follows: isotropic
fluid, an FCC rotator phase followed by a periodic CrB, and
finally a periodic NaCl. For 0.35 < L∗ � 0.38, the range
of stability of the periodic CrB phase increases, while the
density ranges in which the rotator and now also periodic
NaCl phases are stable decrease. Finally, at L∗ ∼ 0.38, the
FCC rotator phase vanishes completely and we predict a direct
isotropic fluid-periodic CrB phase transition. At high densities,
a periodic NaCl is still found to be stable, although we note
that the structure has become somewhat modified. This will be
discussed further in Sec. III D.

Slightly increasing the value of L∗ even further, to L∗ ∼
0.4, results in the emergence of a stable orientationally

aperiodic CrB phase, which we will refer to from now on
as APC. The range of stability of this phase grows all the way
up to L∗ = 0.5 at the expense of both the periodic CrB and the
isotropic fluid phase. For L∗ > 0.435, we find that the periodic
NaCl phase is no longer stable; this is also where the CrB crys-
tal becomes the best packed structure. Finally, at the snowman-
shaped particle limit, corresponding to L∗ = 0.5, only stable
isotropic fluid and aperiodic CrB phases are found [15].

B. Stability range of rotator phases

A large portion of the phase diagram in this study is
dominated by rotator phases: they are found to be stable in
the range of 0 < L∗ � 0.38. Such a large range of rotator
phase stability was also found in the similar dimer systems
of snowman-shaped particles (SM) [15] and dumbbells (DB)
[10,11,36]. In this section, we turn our attention to the rotator
phase behavior in these systems.

We discuss the phase behavior of the rotator phases in terms
of two parameters: the end-to-end length x of a particle and the
single particle volume v0. For the AD particles studied here,
the end-to-end length is given by x = DL(1 + L∗), for SM
particles it is given as x = DL(1 + d), while for DB particles
it is given by x = DL(1 + L/DL) where L is the distance
between the centers of the constituent spheres. In Fig. 4, we
illustrate these particles for several x values.

We first note that the particle end-to-end length at which an
isotropic fluid-rotator phase transition is no longer observed,
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FIG. 4. (Color online) Top to bottom: asymmetric dumbbell
(AD), snowman-shaped (SM), and dumbbell (DB) particles with
end-to-end lengths (from left to right) x/DL = 1, 1.25, and 1.5.

and at which a direct isotropic fluid-solid transition is found,
is similar for all of these systems. This can be seen in Fig. 5(a),
where we show, for the three systems, the phase diagram of
the isotropic fluid-rotator and rotator-solid phase transitions
as a function of the particle end-to-end length. Of the three,
the systems of snowman-shaped particles form rotator phases
which are stable for a slightly larger particle end-to-end length
than in the case of the other two systems, both of which are
remarkably close. We also see that the packing fractions at
which isotropic fluid-rotator phase coexistence is predicted are
lowest for snowman-shaped particles (for a given end-to-end
length), followed by the DB and AD particles, while the
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FIG. 5. (Color online) Phase diagram showing the isotropic
fluid-rotator (open symbols) and rotator-solid (filled symbols) phase
transitions in systems of hard dumbbell (DB), hard snowman-shaped
(SM), and hard asymmetric dumbbell (AD) particles, as a function
of (a) reduced end-to-end length of a particle (x − DL)/DL and
(b) particle volume v0/D

3
L. η denotes the packing fraction; DL is

the unit of length. Data for DB particles are taken from Ref. [36] and
for SM particles from Ref. [15].

packing fractions at which rotator-solid phase coexistence is
predicted are lowest for the DB particles, followed by the
SM and AD particles. Consequently, the snowman-shaped
particles have the largest packing fraction range for which
the rotator phases are stable. This indicates that snowman-
shaped particles, which are the only particles consisting of
tangential spheres, favor the rotator phase significantly more
than the other two systems, in which the constituent spheres
are overlapping. The AD particles studied here have an
intermediate sized region of stability, while the dumbbells
have the smallest. These observations can be understood in
terms of the geometry of the different particle shapes. For a
given end-to-end length, the dumbbell has the largest volume,
which will clearly lead to more interactions between particles
at high packing fractions, making free rotation unfavorable.
Conversely, the snowman-shaped particles, which have the
largest range of the rotator phase stability, are the ones with
the smallest volume. In Fig. 5(b), we show the isotropic fluid-
rotator and rotator-crystal phase transitions as in Fig. 5(a), but
now as a function of the volume of a single particle v0 instead
of its end-to-end length x. From this, we can clearly see that the
volume of dumbbell particles forming rotator phases is much
larger than the volumes of the dimer particles in the rotator
phases of the other two systems.

In conclusion, we find that the key factor in determining
when the rotator phase of a dimer particle system stops being
stable is the particle end-to-end length, while the particle
volume determines the packing fraction range of stability.

C. Orientational reorganization

The presence of aperiodic and rotator phases in the
phase diagram of asymmetric dumbbell particles is a direct
consequence of the AD particles having orientational degrees
of freedom. Both of these types of phases are characterized by
a degree of orientational disorder which results in an entropy
gain that stabilizes them. As discussed previously, for L∗
values below ∼0.207, the only stable ordered structures are the
rotator phases, while above this L∗ value the stability range of
the rotator phases shifts to mid-densities and the NaCl phase
emerges as the stable structure at high densities. Thus, we see
from the phase diagram that as L∗ is increased, the stability
range of the rotator phases decreases.

In the case of aperiodic structures, the scenario is reversed.
They are stable only for large L∗ values and their range of
stability grows with L∗, until finally at L∗ = 0.5 the aperiodic
structures completely replace the other solids. In these systems,
the particles are localized both positionally and orientationally,
although the particle orientations are not arranged in any
particular way (they form a disordered set) and this is where the
gain in entropy, compared to a periodic structure, comes from.

Our aim in this section is to investigate the orientational
behavior of the AD particles in rotator and aperiodic phases.
To do this, we calculate the first and second order orientational
correlators for a single, randomly chosen particle, over a
long MC simulation run. These time correlation functions are
given as

P1(t) = 〈cos θ (t)〉, (1)

P2(t) = 1
2 〈3 cos2 θ (t) − 1〉, (2)
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where θ (t) is the angle between the initial orientation of the
particle and its orientation at time t (given in units of MC
cycles) and 〈. . .〉 denotes the ensemble average. P1(t) takes
values in the range of −1 to 1, where 1 corresponds to perfect
alignment and −1 corresponds to a head-to-tail arrangement.
P2(t) takes values from −0.5 to 1, where 1 again corresponds
to perfect alignment and −0.5 indicates an orthogonal
arrangement. Generally, we expect both correlators to have a
high value for any solid phase and to decay to 0 very quickly
for isotropic fluid phases, and we expect the attained values in
both of these cases not to change in time. We note here that the
rotational motion of nontangential dimers has previously been
studied in dilute suspensions using combined experimental
and theoretical techniques [37,38].

We plot P2(t) for rotator phases with L∗ = 0.1, 0.3, and
0.35 in Fig. 6(a). The simulated systems are in all cases at a
packing fraction of η ∼ 0.64 which is well inside the stable
rotator phase regime. For L∗ = 0.1, we see that the correlation
function decays rapidly to 0, indicating that the particles are
rotating freely. For the intermediate value of L∗ = 0.3, we see
an initial drop in P2(t) to below 0, followed by fluctuations
around 0 until the correlation function finally settles to a value
close to 0. The negative value of P2(t) indicates that the particle
is aligned roughly orthogonal to its initial orientation. As the
centers of mass of the AD particles are positioned on average
on an FCC lattice, and as for L∗ = 0.3 only one small AD
constituent sphere can fit in each of the gaps in-between
the larger spheres, there are six directions along which an
AD particle is on average mostly oriented. Each of these
six directions is orthogonal to the neighboring ones, hence,
when a particle reorients its new orientation is most likely
to be perpendicular to the previous one. The decay to zero
of the correlation function at longer times indicates that the
particle does not favor any of these directions in particular. For
L∗ = 0.35, the effect is more pronounced. The jagged decay
of the P2(t) line towards 0 indicates that a particle keeps its
orientation for a longer time before reorienting again. Further
confirmation of this can be seen in the inset of Fig. 6(a), where
we show the instantaneous value of [3 cos2 θ (t) − 1]/2. As we
can see, the values this function takes are mostly close to −0.5
and 1, which correspond to perpendicular orientations of the
particle. Clearly, the distribution of orientations of a single
particle in a rotator phase become increasingly nonuniform,
i.e., rotation becomes more hindered with increasing L∗, until
the rotator phase finally becomes unstable at L∗ ∼ 0.38.

In Fig. 6(b), we plot P1(t) for a system of AD particles
with L∗ = 0.45, which forms a stable aperiodic CrB crystal
at intermediate densities and a periodic CrB crystal at high
densities. The periodic structure is stable above η = 0.701,
the aperiodic structure is stable in the region of η = 0.641
to 0.690, while the isotropic fluid phase is stable below
η = 0.592. The P1(t) curves plotted here correspond to four
different densities: a very high density where the stable phase
is a periodic CrB (at η = 0.714), a lower density where we
predict a stable aperiodic CrB (at η = 0.648), a density within
the aperiodic CrB-isotropic fluid phase coexistence region (at
η = 0.611), and a density where the system is an isotropic
fluid (at η = 0.501). The correlation function for the system
in the isotropic fluid phase decays rapidly to P1(t) ∼ 0 as
expected. In the periodic and aperiodic crystal structures, the
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FIG. 6. (Color online) (a) Second order orientational correlation
function P2(t) plotted as a function of simulated time t for asymmetric
dumbbell (AD) particle systems with L∗ = 0.1, 0.3, and 0.35, at
packing fraction η ∼ 0.64, at which the systems form stable rotator
phases. Inset: [3 cos2 θ (t) − 1]/2 as a function of simulated time for
the system with L∗ = 0.35. (b) First order orientational correlator
P1(t) as a function of simulated time for a system with L∗ = 0.45 at
four densities: CrB here indicates periodic CrB phase, APC indicates
aperiodic CrB phase, coex denotes the system in the APC-isotropic
fluid phase coexistence region, and Iso indicates isotropic fluid phase.
(c) P1(t) for a system with L∗ = 0.3 at two densities: NaCl indicates
periodic NaCl phase at η = 0.74, and coex denotes the system in the
NaCl-rotator phase coexistence region at η = 0.685.

orientations of particles are fixed and the correlation functions
decay to a constant, high value. This value is slightly lower for
the aperiodic structure than for the periodic structure since the
APC is at a lower density, which leaves more free space for
fluctuations in the positions and orientations of the particles.

For the system within the aperiodic CrB-isotropic fluid
phase coexistence region, we see a slow reorganization of
particles, as the P1(t) value does not remain constant but
instead decays gradually. This metastable structure does not,
however, melt completely into the isotropic fluid phase, as the
particle orientations remain correlated. Once the orientations
of particles within an aperiodic crystal structure are no longer
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FIG. 7. (Color online) Example configuration of the modified
NaCl crystalline structure of asymmetric dumbbell (AD) particles
with L∗ = 0.3. Blue spheres represent the larger constituent spheres,
red represent the smaller ones. Large constituent spheres along the
dashed line denoted by a are slightly separated, while those along the
dashed line denoted by b are touching.

fixed, the crystal can no longer be considered as aperiodic and
hence it loses the degeneracy entropy contribution to the free
energy. We also see a similar process of orientational reor-
ganization of particles for a system with L∗ = 0.3 within the
periodic NaCl-rotator phase coexistence region, as shown in
Fig. 6(c). We note that we only see orientational reorganization
of the particles within crystals in the density regions where we
have predicted them to be unstable.

D. Modified NaCl structure

We now turn our attention to the modified NaCl crystal
structures found to be stable at very high densities in the
reduced sphere separation range of 0.207 � L∗ � 0.435, as
mentioned in Sec. III A. The periodic crystal structures we
consider are those in which neighboring AD particles are
parallel with constituent sphere bonds oriented at 180◦ to one
another since we find that these structures can pack better than
those with parallel bonds oriented at 0◦. In an unmodified
NaCl structure, each large constituent sphere has 12 large
sphere nearest neighbors at high density (4 in each plane).
However, in the range of 0.207 � L∗ � 0.435, we find that the
NaCl structure can, at high pressure, achieve better packing
by modifying such that each large sphere now has 6 large
sphere nearest neighbors (2 in each plane). This is illustrated
in Fig. 7. Here, the large spheres along the line denoted by
a become slightly separated, to fit the small spheres better,
while those along the line denoted by b remain touching.
The transformation from unmodified to modified NaCl when
compressing a system, as well as from modified to unmodified
when expanding, does not result in a noticeable effect on
the equation of state. We note that a similar modification
was observed in systems of snowman-shaped particles with
diameter ratios d > 0.414 [15].

To elucidate what the role of this modification is in the
stability of the NaCl phase, we calculate the free energy of both
the modified and the unmodified NaCl structures at a range of
densities. We obtain the unmodified structure at the desired
density by simply generating an NaCl configuration at this
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FIG. 8. (Color online) (a) Free energy per particle F ∗ = βF/N

as a function of packing fraction η for both modified (red squares) and
unmodified (green circles) NaCl structures for a system of asymmetric
dumbbell (AD) particles with L∗ = 0.3. Shaded region indicates
the predicted rotator-modified NaCl coexistence region. (b) Density
at close packing of the modified (long-dashed black line) and the
unmodified (solid red line) periodic AD NaCl structures as a function
of L∗. Dashed-dotted line with circles indicates the NaCl melting line.
Unshaded region represents the range of predicted NaCl stability. We
also include the line of close packing for the periodic CrB structure
(short-dashed light blue line). Black triangle indicates the L∗ value
at which the CrB phase becomes better packed than the unmodified
NaCl structure.

density, while to obtain the modified structure we uniformly
expand an equilibrated close packed modified configuration to
the same density. We then calculate the free energies at each
of these state points, and show the results for a system with
L∗ = 0.3 in Fig. 8(a).

What is immediately apparent is that in the density region
for which the NaCl phase was found to be stable, the free
energy of the unmodified structure for L∗ = 0.3 is significantly
higher than that of the modified structure. At lower densities,
the free energies become closer, but only below the coexistence
region. For L∗ = 0.35, we also find that the free energy of the
modified NaCl structure is lower than that of the unmodified
NaCl in the region of stability. This implies that the stability of
the periodic AD NaCl phase is significantly enhanced by this
modification, as a higher free energy (corresponding to the
unmodified NaCl structure) would result in the coexistence
regions being predicted at higher densities.

Furthermore, when we consider the best packings that the
unmodified NaCl structures can achieve in the context of
the predicted stability range of the NaCl phase, we see that
these are only slightly higher than the packings at which the
NaCl phases first become stable. This is shown in Fig. 8(b).
Additionally, it can be seen that the L∗ value at which the
periodic CrB phase becomes better packed than the NaCl phase
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is also lower for the unmodified NaCl structure. Hence, while
we would still expect the NaCl phase to be present in the
phase diagram in the absence of the modification, its range of
stability would be significantly smaller.

E. Destabilizing aperiodic structures

In contrast to the phase behavior predicted for tangential
snowman-shaped particles [15], where all stable crystal struc-
tures are orientationally aperiodic, for AD particle systems
aperiodic structures have only a very small range of stability.
A tangential particle system at high density can be thought of
as an equimolar binary sphere mixture with certain pairs of
touching spheres connected, therefore the constituent spheres
in a crystal of snowman-shaped particles will have the same
positions in both periodic and aperiodic realizations. What is
different is that there are many more ways of constructing
the aperiodic crystals, which results in these having a higher
entropy and with that a lower free energy. However, as we
lower L∗ below 0.5 (the snowman-shaped particle limit),
the constituent sphere positions in the resulting crystals
will diverge more and more from their positions on the
corresponding ideal binary lattice. For periodic crystals, this
distortion of the lattice will be uniform, while for aperiodic
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FIG. 9. (Color online) (a) Equations of state for the periodic and
three aperiodic structures for the AD CrB-based crystal with L∗ =
0.45. P ∗ = βPD3

L denotes the reduced pressure and η = ρv0 is the
packing fraction, where v0 is the volume of an AD particle. (b) Free
energy per particle F ∗ = βF/N as a function of packing fraction η

for periodic and aperiodic structures of the CrB-based crystal with
L∗ = 0.45. CrB denotes the free energy of the periodic and APC
the free energy of the aperiodic phase. APC′ denotes the free energy
of the aperiodic phase without the degeneracy entropy term: F ∗ =
(βF + ln �)/N .

structures it will be nonuniform and, as a consequence, the
way the particles are oriented will influence the packing.

As an illustration of this behavior, in Fig. 9(a), we plot
the equations of state for both aperiodic and periodic CrB
AD particle crystals with L∗ = 0.45. As we can see, the EOS
curves of the three aperiodic structures lie on top of each
other (within statistical error), while the EOS of the periodic
structure shows higher packing for a given pressure at all
densities. From the phase diagram (Fig. 3) we see that, for
the system with L∗ = 0.45, the APC structure is stable at
densities in the range of 0.65 < η < 0.69, even though it is
less well packed than the periodic structure in this density
range. This indicates that the aperiodic structure in this region
is stabilized by degeneracy, i.e., the entropic gain associated
with the aperiodicity of the particle orientations outweighs the
loss in packing. The importance of the degeneracy can also
be seen in Fig. 9(b), where we show that the free energy per
particle is lower at all densities in the periodic CrB phase than
in the APC phase if the degeneracy entropy term is removed,
while if it is included, the free energy of the aperiodic phase is
lower up to η ∼ 0.7.

IV. CONCLUSIONS

We have investigated the phase behavior of systems of hard
asymmetric dumbbell particles with a fixed constituent sphere
diameter ratio of d = 0.5, using Monte Carlo simulations
and free energy calculations. The particle shapes studied here
range from the snowman-shaped particle to the hard sphere.
At the snowman-shaped particle limit, only isotropic fluid and
aperiodic CrB phases were predicted to be stable. Reducing
the separation of the constituent spheres of the AD particles
results in the phase behavior becoming more complex, as we
now find stable isotropic fluid, FCC rotator, periodic NaCl and
both periodic and aperiodic CrB phases.

For low sphere separations, we predict FCC rotator phases
to be stable for a large region of the phase diagram. We
compare this region to the ranges of stability of the rotator
phases in systems consisting of hard snowman-shaped and
dumbbell particles, as these three shapes belong to the same
class of hard-sphere dimer particles. We find that the particle
end-to-end length at which the rotator phases are no longer
present in the phase diagram is similar in all cases. This
indicates that the end-to-end length is more important for
destabilizing the rotator phases of dimer particles than the
individual particle volumes since these vary greatly between
the three systems. We also see that, as the sphere separation of
the AD particles is increased, free rotation of the particles
in a rotator phase becomes increasingly hindered by the
surrounding particles until the rotator phase finally becomes
destabilized.

For intermediate values of the sphere separation, we predict
a periodic NaCl phase to be stable at high densities. However,
the observed crystal structure is not the standard, but instead a
slightly modified NaCl crystal, and we find that the origin of
this modification lies in the tendency of the system to optimize
its packing, i.e., in this way the NaCl phase achieves better
packing at very high pressures. The modification extends
significantly the range of stability of the NaCl phase. We
confirm this by calculating and comparing the free energies
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of the modified and unmodified NaCl structures, and also by
comparing the best possible packing of the unmodified NaCl
to that of the modified NaCl and CrB structures.

At high values of the asymmetric dumbbell constituent
sphere separation, as we approach the snowman-shaped parti-
cle limit, we find a region in which aperiodic phases are stable.
We note that the range of stability of the aperiodic crystals of
asymmetric dumbbells is significantly smaller than in the case
of snowman-shaped particles, where all predicted crystalline
phases are orientationally aperiodic. This suppression of ape-
riodicity in systems of asymmetric dumbbells (as compared to
the phase behavior of snowman-shaped particles) is due to the
positions of the constituent spheres deviating from the crystal
lattice sites as the sphere separation is reduced. The density is
no longer invariant to the orientation of the particles and the de-
generacy entropy is not always sufficiently large to overcome
the free energy gain arising from the better packing of periodic
structures.

Finally, we discuss what we can infer from our results about
the general phase behavior of asymmetric dumbbell particles.
Based on this work and previous studies of snowman-shaped
and dumbbell particles, we would always expect a rotator
phase to be present in the phase diagram of systems of dimers

with small diameter ratios and/or sphere separations. We would
also expect that reducing the sphere separation, compared to
tangential particles with the same sphere diameter ratio, will at
first destabilize the aperiodic structure, as the periodic ordering
of particles will give better packing. This will not be the case
for d < 0.414, as the NaCl structure predicted to be stable for
tangential dimers in this d range will have the same packing for
periodic and aperiodic structures as the separation is reduced.
It is also possible that as the sphere separation is reduced, the
best packed crystalline phase will change relative to that of
the corresponding tangential particle system. This can lead to
the appearance of an additional stable phase at high densities,
although we note that for dumbbell particles no additional
structures were found to be stable, indicating that this will be
the case only for certain sphere diameter ratios.
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MILINKOVIĆ, DENNISON, AND DIJKSTRA PHYSICAL REVIEW E 87, 032128 (2013)

[33] J. M. Polson, E. Trizac, S. Pronk, and D. Frenkel, J. Chem. Phys.
112, 5339 (2000).

[34] C. Vega and E. Noya, J. Chem. Phys. 127, 154113
(2007).

[35] J. F. Nagle, Phys. Rev. 152, 190 (1966).

[36] C. Vega and P. Monson, J. Chem. Phys. 107, 2696 (1997).
[37] M. Hoffmann, Y. Lu, M. Schrinner, M. Ballauff, and L. Harnau,

J. Phys. Chem. B 112, 14843 (2008).
[38] M. Hoffmann, C. S. Wagner, L. Harnau, and A. Wittemann, ACS

Nano 3, 3326 (2009).

032128-10

http://dx.doi.org/10.1063/1.481102
http://dx.doi.org/10.1063/1.481102
http://dx.doi.org/10.1063/1.2790426
http://dx.doi.org/10.1063/1.2790426
http://dx.doi.org/10.1103/PhysRev.152.190
http://dx.doi.org/10.1063/1.474626
http://dx.doi.org/10.1021/jp806765y
http://dx.doi.org/10.1021/nn900902b
http://dx.doi.org/10.1021/nn900902b



