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We propose a parameter-free algorithm for the identification of nearest neighbors. The algorithm
is very easy to use and has a number of advantages over existing algorithms to identify nearest-
neighbors. This solid-angle based nearest-neighbor algorithm (SANN) attributes to each possible
neighbor a solid angle and determines the cutoff radius by the requirement that the sum of the solid
angles is 4π . The algorithm can be used to analyze 3D images, both from experiments as well as
theory, and as the algorithm has a low computational cost, it can also be used “on the fly” in simula-
tions. In this paper, we describe the SANN algorithm, discuss its properties, and compare it to both
a fixed-distance cutoff algorithm and to a Voronoi construction by analyzing its behavior in bulk
phases of systems of carbon atoms, Lennard-Jones particles and hard spheres as well as in Lennard-
Jones systems with liquid-crystal and liquid-vapor interfaces. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4729313]

I. INTRODUCTION

In most studies of many-particle systems, one is con-
fronted with the task of determining the nearest neighbors of
a particle, or set of particles. Interestingly, while identifying
nearest neighbors is an important component of various anal-
yses, and is sometimes even needed to evaluate interaction
potentials, there is no unique definition of a nearest neighbor
and, as a result, what one defines as a nearest neighbor is
typically dependent on the question at hand. The two most
common algorithms for determining nearest neighbors are
(1) a fixed-distance cutoff and (2) a Voronoi construction.1

However, many extensions, and other definitions have been
used as well, see for instance Refs. 2 and 3.

A fixed-distance cutoff is the obvious choice in simu-
lations with particles interacting through a short-range po-
tential, where each nearest neighbor is an interaction part-
ner and the cutoff distance corresponds to the interaction
range. Additionally, fixed-distance cutoffs have also been
used in determining nearest neighbors for structural anal-
yses such as calculating bond-order parameters in nucle-
ation studies (e.g., see Ref. 4). However, in these cases, the
“fixed-distance” is not well defined. Arguably, the first min-
imum of the pair correlation function g(r) (also known as
radial distribution function) is a reasonable choice for the
cutoff, as it relates to the neighbors in the first coordination
shell. However, the precise location of this minimum depends
on both the system’s details and thermodynamic conditions
and therefore must be determined every time either one is
changed. Additionally, the cutoff is defined for the entire sys-
tem and, as such, is not appropriate for systems with large
density gradients, such as occur naturally in nucleation stud-
ies, in systems in the presence of gravity or in systems with
interfaces.

In contrast, a Voronoi construction1 is based on purely
geometric constraints and is parameter free. In addition to
identifying nearest neighbors, this method can be used to de-
termine geometric properties such as edges and faces shared
between these neighbors – data that are frequently useful for
structural analysis and classification. Based on the local en-
vironment around a particle, it is more appropriate than a
fixed-distance cutoff in the case of density gradients. How-
ever, there are also a number of inherent problems with a
Voronoi construction, some of which will be discussed in this
manuscript. First of all, the method is computationally expen-
sive and hence is rarely used on-the-fly in simulations. More
importantly, it is not robust against thermal fluctuations. In
a crystal, thermal fluctuations which cause particles to fluc-
tuate around their equilibrium lattice sites can spuriously in-
crease the number of particles which share a small face with
the target particle5, 6 and hence increase the number of par-
ticles identified as nearest neighbors. There exist extensions
to the Voronoi construction which aim to increase the robust-
ness against these fluctuations,5, 7–10 however, they typically
introduce parameters, removing the “parameter free” advan-
tage of the algorithm, and they further increase the computa-
tional cost.

Looking at the advantages and disadvantages of both the
fixed-distance cutoff and the Voronoi algorithm, we suggest
a list of features which a “good” nearest neighbor algorithm
should have. Specifically, an algorithm should (1) be able
to deal with systems with inhomogeneous density, (2) be
stable against thermal fluctuations, (3) be parameter free and
(4) be computationally inexpensive. In this manuscript, we
propose, with these goals in mind, a simple algorithm for
the identification of nearest neighbors: the solid-angle based
nearest-neighbor algorithm (SANN). This method is based
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on similar principles to a theory used by Corwin et al.11

which used solid angles to predict the number of nearest
neighbors. It is also similar to a Voronoi construction as it
does not require tuneable parameters. However, SANN is
computationally significantly less expensive than a Voronoi
construction. In fact, its computational cost only slightly
exceeds that of a fixed-distance cutoff making it suitable for
on-the-fly use in simulations. In order to compare our algo-
rithm with the fixed-distance cutoff and Voronoi construction,
we apply all three methods to monodisperse hard spheres,
Lennard-Jones liquid, and fcc crystal bulk phases, the 3-fold
coordinated liquid carbon and graphite phases and the 4-fold
coordinated liquid carbon and diamond phases and compare
the set of nearest neighbors obtained with the three methods.
On some liquid/solid systems we also compute bond-order
parameters and discuss the impact different nearest-neighbor
sets have on the bond-order correlator distributions. To con-
clude, we study liquid-crystal and liquid-vapor Lennard-Jones
two-phase systems to test the behavior of SANN at interfaces.

II. METHOD

A. Description of SANN method

As mentioned in the Introduction, there exists no unique
definition of a nearest neighbor. Consequently, it comes as no
surprise that our SANN algorithm introduces a definition that
differs from those of existing algorithms. Yet it has many sim-
ilarities with the definitions of the fixed-distance cutoff and
the Voronoi construction, as it is based on similar concepts.

Consider a dense system with excluded volume, where
we have a particle i located at position �ri surrounded by par-
ticles {j}. The fixed-distance cutoff defines the nearest neigh-
bors of particle i to be all the particles of {j} with a distance to
i smaller than the cutoff-distance. However, as mentioned in
the Introduction, the problem with this definition is in choos-
ing that distance. This is where our SANN algorithm comes
into play. For each particle i SANN determines an individual
cutoff distance R

(m)
i , which we call the shell radius. It de-

pends on the local environment of particle i and includes its
m nearest neighbors. Since the cutoff distance is now a local
property, the algorithm is suitable for systems with inhomo-
geneous densities. For the computation of R

(m)
i SANN uses a

purely geometrical construction, as does the Voronoi tessella-
tion. Thus, the algorithm is parameter-free and scale-free. In
the following we describe the geometrical construction and
how m and R

(m)
i are determined.

First, we assume the particles {j} surrounding i are
known and ordered such that ri, j ≤ ri, j+1 for all j. This relates
R

(m)
i and m in the following manner:

ri,m ≤ R
(m)
i < ri,m+1. (1)

Then, starting with the particle closest to i we associate with
each potential neighbor j an angle θ i, j based on the distance
between the particles ri,j = |�rj − �ri | and the yet undeter-
mined shell radius R

(m)
i as depicted in Figure 1.

SANN defines the neighborhood of a particle i to consist
of the nearest (i.e., closest) m particles {j} such that the sum

θi,j

i,j

(m)
iR

i
r

j

FIG. 1. Definition of the angle θ i, j associated with a neighbor j of particle i.

Here, ri, j is the distance between both particles and R
(m)
i is the neighbor shell

radius.

of their solid angles associated with θ i, j equals 4π , i.e.,

4π =
m∑

j=1

2π [1 − cos(θi,j )] =
m∑

j=1

2π (1 − ri,j /R
(m)
i ).

(2)
We point out that while the number m and the shell radius
R

(m)
i are not known yet, they are not independent: once one is

known it is straightforward to determine the other. Also note
that since the solid angle contribution for a single neighbor is
always less than 2π , m must be at least 3.

To visualize this idea imagine each solid angle as a cone
with its apex point located at particle i and the cone’s base
center located at neighbor j. For a complete set of nearest
neighbors all those cones stack to fill a spherical volume
around i with a radius corresponding to the shell radius R

(m)
i .

Obviously, cones are not space-filling (i.e., they don’t stack
without gaps), so for the sum of solid angles to equal 4π some
cone overlap does occur.

Combining Eqs. (1) and (2) leads to a condition for the
determination of the neighbor shell radius,

R
(m)
i =

∑m
j=1 ri,j

m − 2
< ri,m+1, (3)

where R
(m)
i refers to the shell radius containing m particles.

To solve this inequality, we start with the smallest number
of neighbors capable of satisfying Eq. (2), m = 3, and in-
crease m iteratively. During each iteration, we evaluate Eq. (3)
and the smallest m that satisfies the equation yields the num-
ber of neighbors Nb(i) with R

(m)
i the corresponding neighbor

shell radius. It is straightforward to show that the algorithm
converges, because the neighbor distance increases monoton-
ically due to the sorting, ri, m+1 ≥ ri, m, and the cutoff radius
R

(m)
i decreases monotonically, R

(m+1)
i ≤ R

(m)
i .

To highlight the differences and similarities between the
geometry of the SANN algorithm and that of the Voronoi
construction, we show in Figure 2, 2D-schematics of both. In
panel (a) we depict the SANN algorithm: the shell radius is
shown as a green circle, and the red lines connect the central
particle to the nearest neighbors determined by SANN, i.e.,
particles B through F. In panel (c) we show the associated
Voronoi construction. We note that it identifies all particles
A to F as neighbors of the center particle. The Wigner-Seitz
cell is indicated with black lines. Neighbor A shares only a
small face and is fragile to thermal fluctuations. To compare
the Voronoi construction to the SANN algorithm, in panel (b)
we make use of the fact that the algorithm is scale free, i.e.,
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FIG. 2. 2D comparison of the SANN and Voronoi algorithms. In all three panels we show a central particle with potential nearest neighbors A through F. In
panel (a) we sketch the SANN algorithm: the green circle shows the shell radius, and particles B through F are identified as nearest neighbors. Note that in all
panels the nearest neighbors are indicated with red lines. To facilitate the comparison between a Voronoi construction and the SANN algorithm, in panel (b)
we make use of the fact that the SANN algorithm is scale free, i.e., ri,j /R

(m)
i = (0.5ri,j )/(0.5R

(m)
i ) where 0.5ri, j is simply the distance from particle i to the

midpoint between i and j, and 0.5R
(m)
i is half the shell radius. In panel (b) the green circles have a radius equal to the half the shell radius of the center particle,

and are centered around each particle; the black lines are constructed by finding the intersection of the green circles and indicate the width of the solid angle
between the center particle and each of its neighbors, respectively. Finally, in panel (c) we show a Voronoi construction for the same set of particles. Note that
the Voronoi construction finds an extra nearest neighbor, i.e., particle A.

ri,j /R
(m)
i = (0.5ri,j )/(0.5R

(m)
i ) where 0.5ri, j is simply the

distance from particle i to the midpoint between i and j, and
0.5R

(m)
i is half the shell radius. In panel (b) the green circles

have a radius equal to the half the shell radius of the center
particle, and are centered around each particle; the black
lines are constructed by finding the intersection of the green
circles and indicate the width of the solid angle between the
center particle and each of its neighbors, respectively. Hence,
one way to picture this method is to picture slowly growing
spheres around each particle. When the intersecting planes
associated with particle i (the black lines in the plot) yield
solid angles summing to 4π , the shell radius of particle i has
been found. This procedure is then repeated for each particle.
In the schematic (Figure 2), particle A is not a neighbor since
there is no overlap between the green circle around particle
A and green circle around the center particle, hence the
fragility problem highlighted in the discussion of the Voronoi
construction is not present here. The black lines indicate the
width of the solid angles and can be compared to the faces
of the Wigner-Seitz cell. However, the faces are not identical
to the real Wigner-Seitz cell. In general the faces are either
larger or smaller than the real Wigner-Seitz faces. Note that,
by definition, SANN extends each face to the shell circle (see
Fig. 1), hence, the black lines in the SANN algorithm overlap
sometimes, i.e., between particle D and E as well as E and F.

B. Algorithm

Following the procedure outlined in Sec. II A, we pro-
pose this simple scheme to determine the nearest neighbors
of particle i:

1. Compute distances ri, j to all potential neighbors {j}
from i.

2. Sort possible neighbors {j} by their distance ri, j in in-
creasing order.

3. Start with m = 3 (i.e., the minimum number of
neighbors).

4. Compute R
(m)
i = ∑m

j=1 ri,j /(m − 2).

5. If (R(m)
i > ri,m+1), then increment m by 1 and go back to

step 4.
6. Otherwise, m is Nb(i), i.e., the number of neighbors for

particle i, and R
(m)
i the associated neighbor shell radius.

A C/Fortran implementation of the scheme can be found
in the supplementary material.12

C. Algorithm properties

Before comparing our algorithm to the results from a
fixed-distance cutoff and a Voronoi construction, we first dis-
cuss several inherent properties of our SANN algorithm.

Convergence: Provided there exist enough neighbors {j}
of particle i the algorithm converges, because R

(m+1)
i < R

(m)
i

and all neighbors are sorted such that rm+1 ≥ rm. To prove
this, we express R

(m+1)
i in terms of R

(m)
i :

R
(m+1)
i = R

(m)
i

[m − 2 + ri,m+1/R
(m)
i

m − 2 + 1

]
. (4)

The definition of R
(m+1)
i requires that R

(m)
i > ri,m+1, which in

combination with Eq. (4) leads to R
(m+1)
i < R

(m)
i .

Equal distances neighbors: The algorithm also ensures
that multiple neighbors with equal distance to the center parti-
cle are all identified as neighbors. To prove this we show that
R

(m+1)
i > ri,m+i , which means that the SANN radius is always

larger than each particle distance included. Analogous to the
convergence proof, we express R

(m+1)
i in terms of ri, m+1, the

latest (and largest) distance included:

R
(m+1)
i = rm+1

[R
(m)
i /ri,m+1(m − 2) + 1

m − 2 + 1

]
. (5)

Again, R
(m+1)
i requires that R

(m)
i > ri,m+1, which combined

with Eq. (5) leads to R
(m+1)
i > ri,m+1. Therefore, if multiple

neighbors share the same distance, all are included.
Pair-wise symmetry: For both a fixed-distance cutoff

and the Voronoi construction, the neighbors are symmetric in
the sense that if particle i is a neighbor of j, then j is also a
neighbor of particle i. In SANN, this symmetry is not ensured,
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because every particle has its own neighbor shell radius. Thus
the distance between both particles can be smaller than the
shell radius of particle i and larger than that of particle j at
the same time; hence, asymmetries can occur. However, we
have found that the fraction of asymmetric neighbors is quite
small: below 5% for the systems we studied. Moreover, these
tend to be those neighbors that are far away, i.e., contribute a
small solid angle and are arguably of minor importance for the
neighborhood. Therefore, for many applications this might
not matter. But in case it does we provide two (arbitrary)
ways to make the algorithm “symmetric”: if j is a neighbor
of i but not vice-versa, either (a) remove the asymmetric pair,
i.e. remove j from the list of neighbors of i or (b) complete the
asymmetric pair, i.e., add i to the list of neighbors of j.

Local volume: It is possible to assign a local volume to
each particle. The Voronoi algorithm has as an obvious choice
for the local volume the Wigner-Seitz cell, and by construc-
tion the sum of all local volumes adds up to the total system
volume. For SANN one can think of many different defini-
tions of a local volume, e.g., related to the shell or cutoff ra-
dius, but there is no inherent definition. Consequently, the sum
of such local volumes does not by definition equal the system
volume. Again, if it is important to attribute a volume to each
particle, we can simply (and somewhat arbitrarily) rescale all
volumes, such that their sum equals the total volume.

Independence of space dimension: Although designed
for three-dimensional space, we point out that the algorithm
is valid without modification for any space-dimension with
d ≥ 2 (and for d = 1, it is obviously not needed). In par-
ticular in higher-dimensional space, e.g., when studying the
packing of hyper-spherical particles, easy-to-implement algo-
rithms that go beyond the fixed-distance cutoff are scarce and
SANN might be an attractive procedure.

Next-nearest neighbors: In principle, the algorithm can
easily be extended to yield a set of next-nearest neighbors,
e.g., neighbor particles with a distance corresponding approx-
imately to the second peak of the pair correlation function
g(r). For this task the algorithm is performed twice as follows:
in the first run, the nearest neighbors are computed without
any modifications. Then all these nearest neighbors are dis-
carded from the list of possible neighbors, and the algorithm
is run a second time. Because the algorithm is scale-free, no
modification to the algorithm is required, and the next-nearest
neighbor shell is obtained. Note that simply increasing the to-
tal solid angle to 8π in Eq. (2) does not work, as the solid
angle contribution of the nearest neighbors would dominate
due to the large shell radius R

(m)
i . As we shall see later in the

paper, in practice this extension does not work particularly
well for finding next-nearest neighbors.

III. SIMULATION DETAILS

Below, we briefly describe the systems and the simula-
tion methods used to produce the test configurations studied
in this paper. Moreover, we provide details about the library
used for the Voronoi construction and the implementation of
our SANN algorithm. At the end of this section we briefly re-
view the bond-order correlators that we use later to perform a
structural analysis on some of the systems.

In what follows, we denote the temperature by T, the
pressure by P and the (number) density by ρ. The packing
fraction is defined as φ = π

6 ρd3, where d is the particle’s di-
ameter. In what follows, σ will be the unit of length for both
the hard-sphere and the Lennard-Jones systems whereas for
carbon we will express the length in Å. All distances pre-
sented in the manuscript will be expressed in the appropriate
length units.

A. Sample preparation

Monodisperse hard-sphere configurations were prepared
using an event-driven molecular dynamics simulation in an
NVT ensemble with N = 86 400 particles in a cubic box with
periodic boundary conditions and with temperature T = 1,
mass m = 1 and diameter d = 1. The system was prepared
at a packing fraction (φ = 0.54) within the solid-liquid coex-
istence region (φf = 0.492 and φs = 0.543 (Ref. 13)) and at
a higher packing fraction (φ = 0.61) beyond the hard-sphere
glass-transition packing fraction (φg = 0.58). In both config-
urations only 1% of the particles are labeled as solid-like with
a q6 bond order criterion; note that the q6 criterion will be dis-
cussed later in the text. For more details on these simulations,
we refer the reader to Refs. 14 and 15.

The carbon phases were simulated using the LCBOPI+

potential16 at the same conditions as the study on diamond nu-
cleation in Ref. 17, namely P = 30 GPa and T = 3750 K for
the 3-fold coordinated liquid and graphite, and P = 85 GPa
and T = 5000 K for the 4-fold coordinated liquid and di-
amond phases. Both conditions correspond to 25% under-
cooling with a nucleation free-energy barrier equal to or larger
than �G = 25kBT (with kB Boltzmann’s constant) preventing
spontaneous crystallization of the metastable liquid phase. All
systems contained N = 1000 particles, with the exception of
the graphite crystal which had N = 960 particles. More details
on the simulation methods and the semi-empirical interaction
potential are given in Ref. 16.

In our discussions of all Lennard-Jones systems, we de-
note with T* and P* the temperature and pressure in reduced
units (T* = kBT/ε and P* = Pσ 3/ε), with ε the Lennard-Jones
well-depth, and ρ* = ρσ 3 the density in reduced units. To
construct configurations of the Lennard-Jones fcc crystal
and liquid phases we performed Monte Carlo simulations
in the isothermal-isobaric ensemble for particles interacting
via a truncated and shifted Lennard-Jones pair potential18, 19

with a cutoff distance of 2.5. For both phases, a system of
N = 4000 particles was prepared at the reduced temperature
T* = 0.92 and pressure P* = 5.68. Under these conditions,
which correspond to 20% under-cooling with respect to
coexistence, the liquid phase is metastable with respect to the
fcc crystal phase. However, a nucleation free-energy barrier
of �G ≈ 20kBT prevents spontaneous crystallization on
simulation time scales.20 The two-phase liquid-crystal system
was simulated using the same Lennard-Jones potential at the
same conditions, but with N = 8000 particles. The equili-
bration was biased with a quadratic potential on the number
of solid-like particles to prevent the further growth of the
crystal phase. See Ref. 18 for details on biased Monte Carlo

Downloaded 27 Aug 2012 to 131.211.116.18. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



234107-5 van Meel et al. J. Chem. Phys. 136, 234107 (2012)

simulations and Ref. 4 on how to identify solid-like particles.
The two-phase liquid-vapor configurations were prepared
using the same Lennard-Jones potential and equilibrated
using NV T Monte Carlo simulations at reduced temperature
T* = 1.0, number density ρ* = 0.3, and a system size of
N = 5000 particles. In order to study the liquid-vapor inter-
face, the simulation box was elongated along the x axis such
that the box length in the x direction was 2.5 times as long
as the y and z directions. As a result of this simulation box
geometry, the resulting liquid-gas interface was perpendicular
to the x axis.

B. Voronoi and SANN implementation details

To compute the Voronoi construction, we used the Open
Source Computational Geometry Algorithms Library (CGAL
(Ref. 21)), version 3.7. However, we were only interested in
the set of nearest neighbors and not in the additional Voronoi
information such as the volume, faces, edges, etc. of the
Wigner-Seitz cell. Therefore, it was sufficient and computa-
tionally cheaper to perform a Delaunay triangulation, which
is the dual of the Voronoi construction. Either construction
can be transformed into the other and both yield identical
nearest-neighbor sets. We used CGAL’s “exact predicates in-
exact construction” kernel and included eight periodic copies
of each particle to emulate periodic boundary conditions. Al-
though CGAL does support 3D Delaunay triangulation with
3D periodicity, it turned out that the run-time was significantly
worse. The particles were inserted sequentially to map CGAL
vertex handles and our particle ids.

To speed up the SANN algorithm we made use of a Ver-
let list18 with a long cutoff distance to determine the set of
possible neighbors for each particle. Although this method in-
volves a cutoff parameter, we could have chosen a parameter-
free algorithm such as a binary space partitioning tree or an
octree.22 In general, any domain-decomposition method suf-
fices as long as it provides enough particles for the algorithm
to converge.

C. Bond-order correlator

In order to identify solid-like particles in some of the
systems, we used local bond-order parameters according to
Ref. 4. The original order parameter described by Steinhardt
et al.23 is based on the idea of expanding the neighborhood of
each particle in a system in terms of a specific set of spherical
harmonics, e.g., expanding in terms of the spherical harmon-
ics with l = 3, l = 4, or l = 6, depending on the local sym-
metry. The algorithm was later refined by ten Wolde et al.4

for the study of nucleation, and has proven to be a useful tool
even in the case of higher-dimensional systems.24, 25

To compute the bond-order parameter each particle i is
assigned a (2l + 1)-dimensional complex vector �ql(i) whose
mth component is defined by,

qm
l (i) = 1

Nb(i)

∑
j

Ylm(�̂rij ), (6)

where Nb(i) denotes the number of nearest neighbors, Ylm(�̂rij )
is the set of spherical harmonics of order l with components
−l ≤ m ≤ l, �̂rij is the unit vector pointing from the center
of i to its neighbor j, and the sum runs over all neighbors {j}
of particle i. From this we can construct a measure for the
neighborhood similarity of two particles,

dl(i, j ) = �ql(i) · �q∗
l (j )

|�ql(i)| |�ql(j )| , (7)

where the superscript star denotes the complex conjugate. We
call the dl(i, j) the local bond-order correlator, which is one
when both particles are in an identically ordered environment.
To distinguish reliably between solid-like and liquid-like par-
ticles, particularly in an under-cooled liquid, additional steps
are required to increase the contrast. However, since a change
in the neighborhood algorithm already affects this stage of the
analysis, we will not follow the procedure to the end, but in-
stead compare the local bond-order correlators.

IV. RESULTS

In what follows we apply the proposed algorithm
(SANN) to several simulation samples and compare the re-
sulting set of nearest neighbors to the sets obtained from both
the fixed-distance cutoff criterion and the Voronoi construc-
tion. Moreover, on some systems we perform a structural
analysis using bond-order parameters and discuss the impact
different nearest-neighbor sets have on the bond-order corre-
lator distributions. We finish by presenting run-times of each
algorithm for several simulation samples.

A. Bulk phases

To start, we compute the nearest-neighbor distribution
P(Nn) for the bulk phases described in Sec. III A using three
neighborhood algorithms. For the fixed-distance cutoff, we set
the cutoff to the minimum of the pair correlation function,
which yields rc = 1.5 and rc = 1.35 for the Lennard-Jones
liquid and fcc crystal phases, respectively, rc = 2.0 for all
carbon phases, and rc = 1.35 and rc = 1.3 for the low- and
high-density hard-sphere suspensions.

Figures 3(a) and 3(b) depict for the liquid and fcc
Lennard-Jones system the nearest-neighbor distribution P(Nn)
computed using fixed-distance cutoff distance (C), Voronoi
construction (V ) and our SANN algorithm for nearest neigh-
bors (S) and for next-nearest neighbors (S2). In both systems,
the Voronoi construction identifies more nearest neighbors on
average than the fixed-distance cutoff and SANN methods. Its
peak in the nearest-neighbor distribution is around 14 neigh-
bors for both the metastable-liquid and the fcc phases. The
fixed-distance cutoff (C) exhibits a nearest-neighbor distribu-
tion which peaks around 13 neighbors in the liquid and at 12
in the fcc crystal, whereas the distribution obtained using the
SANN algorithm peaks around 11 − 12 neighbors for the liq-
uid and sharply at 12 neighbors in the fcc crystal. Note that 12
is also the number that one would expect from a close-packed
arrangement of spheres.

In order to get a better understanding regarding the parti-
cles which are identified as nearest neighbors in the SANN
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FIG. 3. Nearest neighbors distribution P(Nn) for a Lennard-Jones liquid (panel a) and fcc crystal (panel b) obtained by fixed-distance cutoff (C), Voronoi
construction (V ) and SANN considering neighbors belonging to the first coordination shell (S). Panels (c) and (d) plot the pair correlation functions g(r),
considering all particles, as a reference (thin grey dotted line), and gnn(r), considering only nearest neighbors (Voronoi (V ) and SANN (S)) and next-nearest
neighbors (SANN (S2)), for both the liquid (c) and the fcc crystal (d). In addition, their fraction gnn(r)/g(r) is shown.

and Voronoi algorithms, we also compute the pair correla-
tion function using only the nearest neighbors obtained with
each method (gnn(r)) and compare them to the g(r) of all parti-
cles. In the following discussions, we picture the environment
around each particle to consist of several shells, each shell
associated with a peak in the g(r). Hence, everything up to
the first minimum of the g(r) corresponds to the first shell,
everything between the first and the second minimum to the
second shell and so forth. The fixed-distance cutoff method
is not applied here as, by definition, its gnn(r) yields g(r) ex-
actly up to the cutoff radius, after which it is zero. The upper
graphs show the pair correlation functions gnn(r) and g(r) for
reference, and the lower graphs show the ratio gnn(r)/g(r). At
a given distance r, the latter ratio gives 1 if all particles at
this distance are identified as nearest neighbors, and reduces
to zero if none of these particles are considered neighbors.
Hence, a steep decrease in the ratio gnn(r)/g(r) indicates few
fluctuations in the selection of the neighbors. In addition to the
nearest neighbors, the graphs also show results for the next-
nearest neighbors obtained from the SANN method (S2).

Figure 3(c) and 3(d) plots these functions for the
Lennard-Jones phases. They show that gnn(r) for the Voronoi
construction (V ) is identical to the reference g(r) up to the
first minimum, and in the fcc crystal even slightly beyond
that. From the position of the decrease in the gnn(r)/g(r), i.e.,
slightly to the right of the first minimum in the g(r), we see
that the Voronoi algorithm also includes some particles from
the second neighbor shell (see upper panels of Figs. 3(c) and
3(d)). This behavior originates from fluctuations which cause
the Voronoi cell of next-nearest neighbors to occasionally
share a small face.6 There exist extensions to the Voronoi con-

struction which attempt to increase the robustness of the al-
gorithm to fluctuations.8–10 However, many of them introduce
non-inherent parameters and, as such, are not parameter-free.
Therefore, we will not consider them here. In contrast to the
Voronoi algorithm, the gnn(r)/g(r) associated with the SANN
algorithm (S) drops to zero at the first minimum for both the
liquid and crystal phases and therefore hardly includes any
next-nearest neighbors. The SANN algorithm to determine
next-nearest neighbors, denoted S2, does not yield very pre-
cise results. In particular, in the liquid S2 finds a few spurious
particles from the first neighbor shell and only a fraction of
next-nearest neighbors, and in the solid, where it does iden-
tify all next-nearest neighbors, it also includes a considerable
amount from the third neighbor shell. In both cases this can
be attributed to the form of the g(r), i.e., the broadness of the
second peak in the liquid, and the closeness of the second
and third peaks in the solid. Unfortunately, this is a recurrent
problem with trying to use SANN to determine next nearest
neighbors, and for this reason S2 will not be discussed further
in this paper.

For both hard-sphere systems studied, i.e. φ = 0.54
(fluid) and φ = 0.61 (glass), the nearest-neighbor distribu-
tions of Figures 4(a) and 4(b) computed using the Voronoi
construction (V ) present a peak around 14 neighbors, given
that some of the neighbors from the second shell are included
(as shown in Figs. 4(c) and 4(d)). In contrast, the distribu-
tion obtained using the fixed-distance cutoff (C) algorithm
and the one obtained with SANN (S) are fairly similar
(Figs. 4(a) and 4(b)) and both peaked around 12 neighbors for
both packing fractions. Again, this is the number one would
expect in a close-packed arrangement of spherical particles.
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FIG. 4. Nearest-neighbor distribution and g(r) as in Figure 3, but for a monodisperse hard spheres system at φ = 0.54 (panels a and c) and φ = 0.61 (panels b
and d).

From Figures 4(c) and 4(d) we see that the pair correlation
function for the Voronoi construction is identical to the
reference g(r) up to the first minimum. But, as in the Lennard
Jones system, it also seems to partially include particles from
the second neighbor shell (see upper panels of Figs. 4(c) and
4(d)). In contrast, the gnn(r) computed using SANN drops to
zero at the first minimum at both φ’s and does not include
next-nearest neighbors.

Figures 5 and 6 depict results for systems consisting of
3-fold coordinated liquid carbon and graphite and 4-fold co-
ordinated liquid carbon and diamond, respectively. In contrast
to the Lennard-Jones and hard-sphere systems, carbon is a
highly structured network-forming system, even in the liquid
phase. It features open structures with few (3 or 4) close-by
ordered neighbors: the 3-fold coordinated liquid carbon has a
graphite-like structure in the first coordination shell, whereas
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FIG. 5. Nearest-neighbor distribution and g(r) as in Figure 3, but for both a 3-fold coordinated carbon liquid (panels a and c) and graphite crystal (panels b
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FIG. 6. Nearest-neighbor distribution and g(r) as in Figure 3, but for both a 4-fold coordinated carbon liquid (panels a and c) and diamond crystal (panels b
and d).

the 4-fold coordinated liquid carbon has a rather pronounced
diamond-like structure in the first coordination shell, shown in
the strongly anisotropic angular distribution of the first neigh-
bors. This is reflected in the pair correlation functions g(r) of
Figures 5(c) and 6(c), that show a sharp first peak followed by
a broad deep minimum: a sign that up to the second neighbor
shell the liquid has a structure almost as pronounced as the
one of the corresponding solid.

The upper panels of Figures 5 and 6 represent the P(Nn)
computed for the 3-fold coordinated and 4-fold coordinated
carbon phases, respectively. The nearest-neighbor distribu-
tions from the three methods differ significantly: with the cut-
off distance set to the first minimum of the g(r), the fixed-
distance cutoff yields a distribution peaked sharply around 3
(Fig. 5, 3-fold coordinated system) and 4 (Fig. 6, 4-fold co-
ordinated system) particles both for the liquid and the crystal
phases. Counting particles that form chemical bonds, the 3-
fold coordinated carbon should have nine neighbors within
the first two shells (3 in the first shell, separated by a dis-
tance of about 1.4 Å, and 6 in the second shell belonging to
the same graphite layer), whereas the 4-fold coordinated car-
bon should have 16 neighbors within the first two shells (4 in
the first shell, separated by a distance of about 1.54 Å, and
12 in the second shell). The SANN algorithm peaks around
10 (3-fold coordinated systems, Fig. 5) and 12 (4-fold coor-
dinated systems, Fig. 6) particles for both liquid and crystal
phases. Those numbers indicate that SANN includes in each
particle’s neighbor list most of the particles belonging to the
second coordination shell, as confirmed by the g(r) plots in
the lower panels of Figures 5 and 6. The Voronoi construction
peaks around 17 (3-fold coordinated systems, Fig. 5) and 20
(4-fold coordinated systems, Fig. 6) since it includes particles

from the second and third shells. This happens in the liquids,
graphite and diamond, as shown by the non-monotonic de-
cay of the Voronoi’s gnn(r)/g(r) that extends well beyond the
second minimum in these cases.

To explain the behavior for both the Voronoi construction
and the SANN method, we recall that both 3-fold and the
4-fold coordinated carbon phases are network-forming open
structures. Moreover, graphite forms layers that are several
particle diameters apart (with 3.4 Å the distance between two
layers). This structure affects both algorithms differently; by
definition the Voronoi construction searches for neighbors
that surround the center particle in all space dimensions,
attempting to construct a complete (3D) Wigner-Setz cell.
For the 4-fold coordinated carbon phases the Wigner-Seitz
cell of the neighbors from the first coordination shell is a
fragile tetrahedron, meaning that it is very likely that much
further apart particles share a small face. Hence it contains
particles from the second and even higher coordination
shells. The planar arrangement of neighbors in the 3-fold
coordinated carbon phases forces the Voronoi construction to
consider particles from neighboring layers to complete a 3d
Wigner-Seitz cell; particles that, as one might argue, belong
to an entirely different neighborhood. In contrast, SANN
does not attempt to complete a 3d environment. However, in
order to complete its neighborhood with only neighbors from
the first coordination shell they must have almost identical
distances. This is rarely the case in physical systems and
therefore it includes more distant particles as well. Then,
however, its neighborhood is dominated by the particles from
the first coordination shell, since they are much closer and
consequently contribute much larger solid angles in com-
parison to more distant particles from the second shell.
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FIG. 7. Simulation snapshot of 3-fold coordinated carbon graphite showing the first neighbors (yellow) of a center particle (gray). Surrounding particles that
are not part of the neighborhood are shown in blue. (a) Voronoi construction; (b) SANN algorithm; and (c) Top-view on the center layer of panel b.

This effect seems to be more pronounced in the diamond
crystal phase than in the other carbon phases, and it is the rea-
son why not all particles from the second shell are included.

As an example for this behavior, we depict a few graphite
layers in Figure 7, where we color particles identified as
neighbors with the Voronoi (panel a) and SANN (panel b)
algorithms. Although geometrically correct, the additional
neighbors from arguably different neighborhoods identified
by the Voronoi construction may distort results for local quan-
tities. Figure 7(c) presents a top-view of the center layer
of panel (b) and shows that the neighborhood identified by
SANN includes the complete first and almost complete sec-
ond neighbor shell.

B. Interfaces

We now apply the three algorithms to two-phase systems
with planar interfaces, namely a liquid-crystal and a liquid-
vapor Lennard-Jones system as described in Sec. III A. The
two phases are arranged in a slab-geometry such that the in-
terfaces are normal to the x-direction. For the fixed-distance
cutoff we use rc = 1.5, which corresponds to the minimum of
the g(r) for the liquid in the liquid-crystal system; note that
the density of this liquid is not the same as the density of the
liquid in the liquid-gas system. This choice of rc is arbitrary
since there is no way to choose a cutoff which satisfies all four
phases simultaneously.

In Figure 8 we plot the average number of near-
est neighbors 〈NNb(x)〉 and the corresponding variance
V ar(x) = 〈N2

Nb(x)〉 − 〈NNb(x)〉2 as a function of x for both
systems. As expected, the liquid-crystal interface (Fig. 8
panel a) is barely visible from all three methods and the
results are quite similar. However, while the fixed-distance
cutoff and SANN methods seem to show a slight increase in
〈NNb(x)〉 in the crystal phase, this does not appear evident
in the Voronoi algorithm. In all cases, the crystal seems to
have a slightly lower variance than the fluid. In contrast, the
liquid-vapor interface (Fig. 8 panel b) is very well captured
by the average number of nearest neighbors (upper panels)
computed by the fixed-distance cutoff, whereas the SANN
algorithm shows only a slight decrease of the number of
nearest neighbors in the vapor phase. The Voronoi algorithm
finds even more neighbors in the low-density vapor phase
and its standard deviation (lower panel) increases strongly in
the vapor phase. This behavior reflects the strong sensitivity
of the Voronoi construction to thermal fluctuations. Although
V ar(x) also fluctuates in the other two methods, the changes
are much less pronounced than in the Voronoi case.

To get a better understanding for the nearest neighbors
found at the interface and in the vapor phase, in Figure 9
we show a snapshot from the two-phase liquid-vapor system
where the vapor phase has been shifted to lie in the center
of the box. We have selected three particles (two at the
liquid-vapor interface and one in the vapor phase) and have
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FIG. 8. Results for two-phase samples in a slab-geometry, with the two interfaces oriented normal to the x-direction. The two phases are (a) liquid-crystal and
(b) liquid-vapor. Note that the densities of the liquid in both the cases are not same. For both samples the upper panel shows, as function of x-position, the
average number of nearest neighbors, 〈NNb(x)〉, and the lower panel the corresponding variance, V ar(x) = 〈N2

Nb(x)〉 − 〈NNb(x)〉2, for each of the algorithms:
fixed-distance cutoff (C) with rc = 1.5, Voronoi construction (V ) and SANN considering neighbors belonging to the first coordination shell (S). Note the
different scales on the y axis.
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FIG. 9. Visual representation of the three algorithms in a two-phase liquid-
vapor Lennard-Jones system: fixed-distance cutoff (top), Voronoi construc-
tion (center) and SANN (bottom). In each case, we select the same particles
and check which neighbors are detected using each algorithm.

calculated their nearest neighbors using all three algorithms.
As expected, in or at the vapor phase the fixed-distance cutoff
(upper panel) finds few neighbors when the cutoff is not
tuned to the vapor phase. Note that tuning the fixed-distance
cutoff for the liquid and vapor phases simultaneously is not
possible. The Voronoi algorithm (center panel) detects many
neighbors, both for particles at the interface and particularly
for particles in the vapor phase. At the interface the SANN
algorithm (lower panel) finds neighbors mostly from the
interface and liquid and, unlike the Voronoi construction, not
far-off in the vapor.

C. Application to bond-order parameters

Finally, we apply the neighborhood algorithms to investi-
gate their effect on the local bond-order parameters used when
studying crystal nucleation. To choose the order of the spheri-
cal harmonics in Eq. (6), we match the symmetry of the spher-
ical harmonics, i.e., l, to the symmetry of the crystal under
study. For the Lennard-Jones system we use l = 6 due to the
close-packed crystalline structure of the fcc (this is also what
is typically used to study hard-sphere systems). In the original
article on diamond nucleation,17 l = 3 was applied to grow

both carbon crystal phases since this order parameter is not
able to distinguish between graphite and diamond structures.
The symmetry l = 3 was required since only the first neighbor
shell was taken into account. However, in the present analy-
sis, both Voronoi and SANN algorithms resulted in neighbor
lists which included more than the first neighbor shell. Con-
sequently, the symmetry of the neighborhood changes, and l
= 6 becomes perfectly commensurate with the symmetry of
this extended environment. Therefore, we settled for l = 6
for all systems and set the fixed-distance cutoff in the carbon
case to 2.7 (the minimum after the second peak of the g(r)) to
include next-nearest neighbors. Also, because bond-order cor-
relators are very sensitive to asymmetries in the nearest neigh-
bor sets and both the fixed-cutoff and the Voronoi construc-
tion feature pair-wise symmetry, we decided to enforce this
symmetry for SANN, too, by removing asymmetric neighbor
pairs. Note that the choice to remove neighbors rather than
to add them is arbitrary. The results for the local bond-order
correlators distribution P[d6(i, j)] are presented in Figure 10.
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ent neighbor criteria. Panel (a) shows results for Lennard-Jones fcc crystal
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dinated carbon graphite (upper panel) and liquid (lower panel) phases, and
panel (c) for the 4-fold coordinated carbon diamond (upper panel) and liquid
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was set to 2.7 to include the next-nearest neighbors, as do inherently both the
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The main criterion for a good order parameter is to have
as little overlap as possible between the crystal phase (up-
per panels) and the (metastable) liquid phase (lower panels).
As shown in Figure 10(a) all neighborhood algorithms per-
form reasonably well for the Lennard-Jones system. However,
for the graphite crystal (Fig. 10(b) upper panel) both SANN
and the fixed-cutoff algorithms allow one to distinguish be-
tween a liquid and a solid environment, whereas the Voronoi
construction shows a severe broadening of the distribution of
the graphite, causing a substantial overlap with the liquid’s
distribution (lower panel). With such an overlap the bond-
order parameters would fail to distinguish between liquid-like
and solid-like particles. In the diamond case (Fig. 10(c)) the
SANN algorithm performs worse than the others and again
the fixed-distance cutoff works best. In the graphite case the
failure of the Voronoi construction can be attributed to the
(arguably) spurious neighboring particles located in different
graphite layers, as previously discussed (Fig. 7). The behav-
ior of the SANN algorithm in the diamond case finds its ori-
gin in that not enough neighbors from the second neighbor
shell are included (on average a total of 12 instead of 16), and
bond-order parameters are particularly sensitive to missing or
additional neighboring particles.

D. Benchmarking

Finally, we measure the run-time of each algorithm for
all bulk phases discussed previously. The benchmark was per-
formed on a computer equipped with an Intel Core2 Quad
Q9550 processor running at 2.83 GHz and 4 GB of DDR2
RAM running at 1066 MHz. All source code was compiled
using the GNU gcc compiler version 4.5.1. The operating
system was a 64-bit OpenSuSE Linux with Kernel 2.6.37.
Each algorithm was running single-threaded and computed
the neighbor sets for all particles in the system. To improve
accuracy whenever the run-time was near our time resolution
we measured the total time of 10 sequential repetitions. All
data presented are averages over at least three separate pro-
gram runs.

The timings are presented in Table I. Compared to the
fixed-distance cutoff the Voronoi construction takes 24.4 to
38.0 times longer to compute. In contrast, the computational

TABLE I. Run-times in milliseconds of the fixed-distance cutoff (C), the
Voronoi construction (V) and the SANN algorithm (S), and their ratios V/C
and S/C. For details on the system samples we refer to Sec. III A, for imple-
mentation details to Sec. III B, and for the benchmarking procedure to the
main text.

System C V S V/C S/C

Lennard-Jones liquid 25 610 45 24.4 1.8
Lennard-Jones fcc 20 753 48 37.7 2.4
Hard-Spheres φ = 0.54 507 14390 1022 28.4 2.0
Hard-Spheres φ = 0.61 528 15050 1091 28.5 2.1
Carbon 3-fold liquid 5 160 8 32.0 1.6
Carbon 3-fold graphite 5 190 7 38.0 1.4
Carbon 4-fold liquid 6 153 10 25.5 1.7
Carbon 4-fold diamond 6 180 9 30.0 1.5

cost of SANN is only 1.4 to 2.4 times that of the fixed-distance
cutoff and thereby outperforms the Voronoi construction by
an order of magnitude. Therefore, we consider SANN well-
suited for application on-the-fly in simulations.

As a final remark we like to point out that timing results
are highly implementation dependent and as such should be
considered as indications only. On the one hand, the CGAL
library used for the Voronoi construction is reasonably fast,
but faster implementations may be available. On the other
hand, our implementations of the fixed-distance cutoff and the
SANN algorithm may have room for optimization, too.

V. CONCLUSION

In this paper we have described an algorithm to compute
a particle’s nearest neighbors in an arbitrary many-particle
system. The algorithm is similar to a fixed-distance cutoff in
that all particles within a cutoff distance are considered near-
est neighbors. But rather than using one cutoff for all par-
ticles, this algorithm assigns to each particle an individual
cutoff distance, thereby making it suitable for systems with
inhomogeneous densities, such as gravitational or multi-phase
systems. The cutoff distance follows from a geometric re-
quirement, namely that the sum of all solid angles associated
with neighboring particles adds up to 4π . Thus, the algorithm
becomes parameter-free and scale-free. Though the approach
was inspired by the Voronoi construction, it has several advan-
tages over it: the presented algorithm is significantly easier to
implement, computationally less expensive and more robust
against thermal fluctuations.

We tested the algorithm on a number of bulk phases in-
cluding supercooled liquid and crystal phases of Lennard-
Jones particles, hard spheres and 3-fold and 4-fold coordi-
nated carbon. We compared the nearest-neighbor distributions
obtained from SANN to both the fixed-distance cutoff crite-
rion and the Voronoi construction. In the case of the Lennard-
Jones and hard-sphere phases, our algorithm reproduces very
well the nearest-neighbor distribution of a well-tuned fixed-
distance cutoff. This is in contrast to a Voronoi construction,
which has large fluctuations and as such does not perform as
well. For the carbon phases, our algorithm includes the second
neighbor shell, such as the Voronoi construction, but avoids
neighbors in the neighboring graphite layers.

We also examined particles at the interface of two-phase
systems, such as Lennard-Jones liquid-vapor and liquid-
crystal systems. We find that when two high-density phases
coexist, all algorithms give reliable results. However, at the
interface between a fluid and a low-density vapor, our algo-
rithm is more robust to thermal fluctuations than the Voronoi
construction.

We then employed the neighbor information of all
algorithms as input for a bond-order analysis, which is typi-
cally used in crystal nucleation studies for the identification
of solid-like particles in a supercooled metastable liquid.
Comparing the bond-order correlator distributions, we found
little difference between the algorithms for the Lennard-Jones
system, indicating that all algorithms are suitable for structure
analysis of close-packed systems. However, the Voronoi con-
struction failed for the graphite phase due to the identification
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of spurious neighbors located in different graphite layers,
and SANN performed poorly in the diamond phase, due to
the fact that not enough neighbors from the second neighbor
shell were included. Hence, care has to be taken when
applying either one SANN or the Voronoi construction to
open structures and network formers. But where the Voronoi
construction fails SANN might succeed, and vice-versa.

Finally, we performed benchmarks on the run-time for all
algorithms. On all systems tested we found the computational
cost of SANN to be at most 2.4 times that of the fixed-distance
cutoff and in all cases it outperformed the Voronoi construc-
tion by at least an order of magnitude.

To conclude, when studying a system at several concen-
trations or a heterogeneous system, the proposed algorithm
has the advantage that it does not require tuning a parame-
ter for every concentration/environment. Given the robustness
and low computational cost of our algorithm, we argue that
SANN is well suited not only for post-analysis, but also on-
the-fly in simulations. It reliably identifies the nearest neigh-
bors, and its behavior for graphite and at a two-phase interface
suggests its application to situations where the Voronoi con-
struction suffers from distorted polyhedra, like in structural
analysis of protein folding trajectories,26, 27 in DNA-mediated
colloidal crystallization,28, 29 in suspensions of patchy colloids
with tetrahedral or octahedral symmetry30–33 and in water.34

Finally, the SANN algorithm is not only useful for simulation
data, but should also be useful in analyzing experimental 3D
images, as obtained, for instance, by confocal microscopy or
by tomography.
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