
Vacancy-stabilized crystalline order in hard cubes
Frank Smallenburga, Laura Filiona,b,1, Matthieu Marechalc, and Marjolein Dijkstraa

aSoft Condensed Matter, Debye Institute for NanoMaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands; bUniversity Chemical
Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom; and cHeinrich-Heine Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf,
Germany

Edited by Athanassios Z. Panagiotopoulos, Princeton University, Princeton, NJ, and accepted by the Editorial Board August 22, 2012 (received for review
July 23, 2012)

We examine the effect of vacancies on the phase behavior and
structure of systems consisting of hard cubes using event-driven
molecular dynamics and Monte Carlo simulations. We find a first-
order phase transition between a fluid and a simple cubic crystal
phase that is stabilized by a surprisingly large number of vacancies,
reaching a net vacancy concentration of approximately 6.4% near
bulk coexistence. Remarkably, we find that vacancies increase the
positional order in the system. Finally, we show that the vacancies
are delocalized and therefore hard to detect.

hard polyhedra ∣ colloids ∣ free energy

The free energy of crystal phases is generally minimized by a
finite fraction of point defects like vacancies and interstitials.

However, the equilibrium number of such defects in most colloi-
dal and atomic/molecular crystals with a single constituent is
extremely low. Exemplarily, for the face-centered cubic crystal of
hard spheres, one of the few colloidal systems where the vacancy
and interstitial fractions have been calculated, the fraction of
vacancies and interstitials is on the order of 10−4 and 10−8, re-
spectively, near coexistence (1). As such, neither the vacancies
nor the interstitials strongly affect the phase behavior, and so
most studies of crystals ignore the effect of these defects. Never-
theless, vacancies and interstitials have a significant effect on the
dynamics in an otherwise perfect crystal, as the main mechanism
for particle diffusion is hopping of particles from filled to empty
sites or between interstitial sites.

In this paper, we examine a system of hard cubes where, as we
will demonstrate, one cannot ignore the presence of vacancies.
Arguably, a cube is one of the simplest nonspherical shapes and
the archetype of a space-filling polyhedron. Surprisingly, despite
the simplicity of this system, we find that the stable ordered phase
is strongly affected by the presence of vacancies, so much that
vacancies actually increase the positional order and change the
melting point. Remarkably, the fraction of vacancies in this sys-
tem is more than two orders of magnitude higher than that of
hard spheres or any other known typical, experimentally realiz-
able, single-component atomic or colloidal system, reaching 6.4%
near coexistence. Additionally, while purely hard (not rounded)
colloidal cubes are yet to be realized, colloidal cubes with various
interactions are now a reality (2–7), and it is likely that hard cubes
will be realized in the future.

Here, we use Monte Carlo (MC) and event-driven molecular
dynamics (EDMD) (8) simulations to examine in detail the effect
of vacancies on the equilibrium phase behavior of hard cubes.
The model we study consists ofN perfectly sharp hard cubes with
edge length σ in a volume V . Aside from hard-core interactions
that prevent configurations of overlapping cubes, the particles
do not interact. In both types of simulation (MC and EDMD),
overlaps are detected using an algorithm based on the separating
axis theorem (e.g., ref. 9). More information on the EDMD im-
plementation for cubes is given in SI Text.

Results
Spontaneous Vacancy Formation. The equation of state for a va-
cancy-free system of hard cubes has been the subject of a number
of studies (10–12) and was most recently examined by Agarwal

and Escobedo (10). It clearly shows a single, first-order phase
transition between a fluid and an ordered phase. The authors of
ref. 10 identified the ordered phase at coexistence to be a liquid
crystal mesophase (i.e., a cubatic phase), which is characterized
by the presence of long-range orientational order along three
perpendicular axes, but a lack of long-range positional order.
However, the authors noted that finite-size effects made it diffi-
cult to determine the extent of the positional order in their sys-
tem, and based this identification on their observation of finite
diffusion in the ordered phase. At high densities, both refs. 10 and
12 agree that the ordered phase is a simple cubic crystal.

There is no fundamental reason why diffusion cannot occur in
a crystal, hence this is an insufficient criterion for distinguishing
between a cubatic phase and a crystal. To study more closely the
range of the positional order along the ordered branch, we reex-
amined the intermediate density region (near coexistence) using
highly efficient EDMD (8) simulations allowing us to access sys-
tem sizes more than an order of magnitude larger than the ones
considered in ref. 10. We simulated systems ofN ¼ 403 ¼ 64;000
particles starting from a simple cubic crystal lattice. Coexistence
between the fluid and ordered phase is observed directly for over-
all packing fractions 0.455 ≤ η ¼ Nσ3∕V ≤ 0.480. Snapshots of
typical configurations are shown in SI Text.

Looking in detail at the EDMD simulations for η between
0.52 and 0.56 (i.e., in the region where ref. 10 reported the cubatic
phase), we noticed that in many simulations the crystal lattice
spontaneously transformed in one of two distinct ways (see SI
Text). In most cases, the simple cubic crystal did not maintain its
original orientation in the box; instead, it rotated, introducing de-
fects and frustrations to the crystal lattice. In others, the system
spontaneously added extra layers (i.e., extra lattice sites). As long
as the crystal lattice remains aligned with the simulation box, the
number of lattice sites can easily be measured from the number of
peaks in the three-dimensional density profile of the cubes. Fig. 1
shows a two-dimensional projection of such a density profile from
simulations with N ¼ 403 particles. From this plot, we can deter-
mine that the system has NL ¼ 413 lattice sites. Thus, the system
spontaneously incorporated a large number of excess lattice sites
into the crystal. The resulting crystal has a net vacancy concen-
tration, of approximately α ¼ ðNL −NÞ∕NL ¼ 8%. It should be
noted that because the volume and the number of particles in the
system are fixed, it is generally not possible to reach an equili-
brium concentration of defects in the system. However, the for-
mation of extra layers and lattice distortions both significantly
increase the number of lattice sites in the crystal, and suggest that
the thermodynamically stable phase in this regime might be a
vacancy-rich crystal structure. We note here that the systems sizes
examined by ref. 10 would not have allowed for extra layers to
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form. Hence, we believe that the rotated, defective crystals we see
are what the authors of ref. 10 identified as cubatic.

To examine the effect of vacancies on the crystal structure, we
performed additional EDMD simulations on systems with various
net vacancy concentrations α ¼ ðNL −NÞ∕NL for a number of
packing fractions η ¼ Nσ3∕V . The average global positional or-
der in the system was measured using the positional order para-
meter averaged over all particles:

hGglobali ¼
����ð1∕NÞ∑

j

expðiK · rjÞ
����; [1]

where K is a reciprocal lattice vector of the crystal under consid-
eration and rj is the position of particle j. In all our plots we have
chosen K to correspond to a single lattice vector (i.e., Ke ¼ 2π

a ê
with ê ¼ x̂; ŷ; ẑ and a the lattice spacing). To set the net vacancy
concentration, we placedN ¼ ð1 − αÞNL particles randomly on a
simple cubic lattice with NL ¼ 403 ¼ 64;000 lattice sites, and
then rescaled the volume (and thus the lattice spacing) of the
box to the desired packing fraction η. Hence, the resulting system
has a lattice spacing that depends on the chosen packing fraction
η and net vacancy concentration α. These simulations show that
there is a maximum in the global positional order as a function
of net vacancy concentration α for varying packing fractions η
(Fig. 2). An increase in order due to an increase in number of
vacancies is unexpected because typically the presence of defects
(such as vacancies) decreases the order. This observation suggests
that adding defects reduces frustration in the crystal, potentially
stabilizing a defect-rich crystal.

Defect Realization. The “net vacancy concentration” α, defined
above, is simply the excess of lattice sites NL compared to the
number of particles N, divided by NL (i.e., the fraction of lattice
sites that does not have a particle associated with it). In a typical
system (for instance, hard spheres), a vacancy is localized to a
single lattice site and one can determine the number of vacancies
by counting the number of empty lattice sites. In a hard-sphere
crystal, a particle next to an empty lattice site is kept in place by its
other neighbors. This is not the case for hard cubes, and, as a
result, the way vacancies manifest in this system is very atypical.
In hard cubes, entirely empty lattice sites are rarely seen even in
the vacancy-rich crystals near coexistence. Instead, a defect man-

ifests itself as a finite-length chain of particles along one of the
three principal axes in the crystal, in which the particles have a
slightly larger interparticle spacing than the average, as shown in
Fig. 3. Hence, if a vacancy extends over four lattice sites, as is
the case for one of the vacancies highlighted in Fig. 3, then the
vacancy is realized by three particles sharing four lattice sites in
a one-dimensional chain. Additionally, while a two-dimensional
layer in a typical snapshot, such as in Fig. 3, shows regions of
disorder, it should be noted that even at high vacancy concentra-
tions, the crystal still shows a well-defined lattice spacing on aver-
age, which can be easily determined from the position of the
peaks in the scattering function SðkÞ or the three-dimensional
pair correlation function gðrÞ (Fig. 4).

It should be noted that the net vacancy concentration includes
both vacancies as well as interstitials in the sense that each inter-
stitial cancels a vacancy. However, the number of vacancies is
higher than the number of interstitials resulting in the large
positive net vacancy concentrations we find in this system. Similar
to a vacancy, interstitials are also not localized in this system and
occur by n particles sharing n − 1 lattice sites.

Phase Diagram of Hard Cubes. So far, we have established a rela-
tionship between the order in the system and the net vacancy con-
centration. However, there is no way to determine the equilib-

Fig. 1. Peaks in the density profile associated with a two-dimensional pro-
jection of the centers of mass of the cubes at packing fraction η ¼ 0.52, as
measured in an EDMD simulation initialized with N ¼ 403 particles on a NL ¼
403 simple cubic lattice (i.e., no vacancies). The number of lattice sites in the
system spontaneously increased to NL ¼ 413 lattice sites, corresponding to a
net vacancy concentration of approximately 8%. The lines were added to
highlight the 41 evenly spaced layers in both (x and y) directions.
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Fig. 2. Global positional order hGglobali as a function of the net vacancy
concentration α for packing fractions η ¼ 0.51, 0.52, 0.53, 0.54, and 0.56
in a system with NL ¼ 64;000 lattice sites. The points indicate measurements
of hGglobali along the x, y, and z axes separately, while the lines are averaged
over all three directions.

Fig. 3. A typical configuration where three delocalized defects, and the par-
ticles directly surrounding the defects, have been highlighted in a system
with NL ¼ 8;000 lattice sites at packing fraction η ¼ 0.56 and defect concen-
tration α ¼ 0.016 from an EDMD simulation. In the defect furthest to the
right, the highlighted area shows three cubes sharing four lattice sites. The
uppermost defect has six cubes sharing seven lattice sites, and the bottom
most defect has seven cubes sharing eight lattice sites.
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rium net vacancy concentration and the phase boundaries from
the EDMD simulations. A proper determination of the equili-
brium concentration of vacancies as well as the phase diagram
requires free-energy calculations. The free energy per particle
(f ¼ βF∕N) of the solid with vacancies is given by:

f vacein ðλÞ ¼ f einðλÞ þ f rotðλÞ þ f comb; [2]

where the first term is the translational free energy of a normal
Einstein crystal (13), the second term is the rotational free energy
of the crystal (14), and the third term is the combinatorial entropy
associated with placing N particles on NL lattice sites:

f comb ¼ −ð1∕NÞ log½NL!∕ðN!ðNL −NÞ!Þ�: [3]

Detailed descriptions on how these terms were calculated using
MC simulations are given in Materials and Methods.

We determined the free energy as a function of net vacancy
concentration α, at a fixed packing fraction η ¼ 0.52. As shown
in the inset in Fig. 5B, the minimum in the free energy occurs for a
high concentration of vacancies. Specifically, we find that at this
density the number of particles is 4% lower than the number of
lattice sites. While calculating the free energy as a function of α,
we also observed that the free energy, excluding the combinator-
ial contribution, was almost linear. This is shown in the inset of
Fig. 5B. Although we are uncertain to the origin of this linearity, it
seems to suggest that the vacancies are only weakly interacting.

For each value of α, the free energy as a function of density was
obtained by combining the reference free energies shown in
Fig. 5B with a separate equation of state measured for that value
of α. By minimizing the resulting free energy with respect to α, we
find that the number of excess lattice sites decreases as a function
of the density, as expected (Fig. 5C).

Using a common tangent construction (see SI Text) in combi-
nation with the determined free energies, we mapped out the
phase diagram that is shown in Fig. 5A. We find coexistence be-
tween a fluid phase with coexisting density ηf ¼ Nσ3∕V ¼ 0.45
and a vacancy-rich simple cubic crystal structure with coexisting
density ηm ¼ 0.50 and net vacancy concentration α ¼ ðNL −NÞ∕
NL ≃ 0.064. The pressure and chemical potential at coexistence
are βpσ3 ¼ 6.16 and βμ ¼ 18.4, respectively. The inset of Fig. 5C

shows the equations of state and phase transitions both including
and excluding the effects of vacancies in the crystal phase. The
presence of vacancies in the crystal significantly lowers the melt-
ing density compared to the one reported by ref. 10, where they
found that a defect-free crystal melted at ηm ¼ 0.52, while the
freezing packing fraction is approximately the same. We note
here that we also find a melting number density of ηm ¼ 0.52 if
we exclude vacancies. Hence, we find that vacancies increase the
range of stability of the simple cubic crystal.

Diffusion. As was already shown in ref. 10, the ordered phase has
appreciable diffusion in the intermediate density regime. This can
be understood in terms of the delocalized defects, which diffuse
through the crystal and allow particles to diffuse in the opposite
direction. To investigate the effect of vacancies on the diffusion
coefficient in the solid, we measured the long-time self-diffusion
constant of cubes in the crystal phase using EDMD simulations.
Fig. 6 shows the diffusion constant as a function of density, where
the net vacancy concentration at each density was chosen to
correspond to the equilibrium net vacancy concentration shown
in Fig. 5C. Near coexistence, the diffusion coefficient increases
significantly, up to a maximum of Dτ∕σ2 ¼ 0.05, where τ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
βmσ2

p
is the unit of time in the EDMD simulations and m is

the mass of a single cube. For comparison, the diffusion constant
in the fluid at coexistence is Dτ∕σ2 ¼ 0.15, three times higher
than in the coexisting solid.

At fixed density, the diffusion constant increases approxi-
mately linearly with the number of vacancies, with very little dif-
fusion remaining at α ¼ 0. An example of this is shown in the
inset of Fig. 6, for packing fraction η ¼ 0.56. Note that even for
vanishing net vacancy concentration, diffusion is still possible via
the spontaneous formation of delocalized interstitial-vacancy

Fig. 4. Three-dimensional pair correlation function gðx; y; zÞ with z ¼ 0,
measured in an EDMD simulation of a system of N ¼ 64;000 particles with
packing fraction η ¼ 0.51 and vacancy concentration α ¼ 0.055. The x, y,
and z directions are taken along the three axes of the simulation box. The
data is averaged over 50 snapshots, and over the four quadrants of the xy
plane.
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Fig. 5. (A) The equilibrium phase diagram of hard cubes as a function of
packing fraction η. For η < 0.45, we predict a stable fluid phase; for η > 0.50,
we find a stable crystal phase with vacancies (see, e.g., Fig. 2), and in between
these two packing fractions we find coexistence between the crystal and
fluid. (B) Free energy per particle as a function of net vacancy concentration
α at packing fraction η ¼ 0.52. The points correspond to measurements, and
the solid line is a guide to the eye. The estimated error in the free energies,
based on independent runs, is ≃ 0.004 kBT . (Inset) Free energy per particle
without taking into account the combinatorial free energy: fdef ¼ f − f comb.
The solid line is a linear fit. (C) The net vacancy concentration α as a function
of packing fraction η in the crystal phase. The error bars are based on the
width of the free energy minimum. (Inset) Equations of state for the fluid
phase (black), the stable vacancy-rich crystal (light gray), and the crystal with-
out vacancies (i.e., α ¼ 0) (darker gray, dashed). Note that the phase transi-
tion (dotted lines) shifts to lower densities when vacancies are taken into
account. The phase transition for the vacancy-free system essentially coin-
cides with the one in ref. 10.
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pairs. However, at the equilibrium net vacancy concentration
(α ¼ 0.013), the diffusion coefficient is eight times as high as in
the vacancy-free crystal, indicating that vacancies play a major
role in the dynamics of the particles in the solid.

Conclusions
In this paper, we have examined the effects of vacancies on the
phase diagram of hard cubes using both EDMD simulations as
well as MC simulations. From the molecular dynamics simula-
tions it is clear that vacancies play an important role in the equi-
librium phase behavior of hard cubes. Free-energy calculations
show conclusively a first-order phase transition between a fluid
phase and a vacancy-rich simple cubic crystal phase with up to
6% vacancies. Up to the system sizes we have studied (403 par-
ticles), we find long-range positional order for systems with an
equilibrium concentration of vacancies (see Fig. 4). Thus, we find
that the stable phase is a simple cubic crystal for all densities,
albeit one with significant diffusion due to the high defect con-
centration.

The number of vacancies in this system is orders of magnitude
larger than typically seen in colloidal systems. The stability of
this vacancy-rich phase can most likely be attributed to the delo-
calization of defects in the crystal (Fig. 3): Clearly, one vacancy
provides additional free volume for multiple nearby particles,
decreasing the entropic cost of creating a defect. In most other
colloidal crystals, such as hard-sphere face-centered cubic crys-
tals, particles near a vacancy are still confined to their lattice site
by their remaining neighbors. As a result, the local entropy gain
from a defect is much lower. The only other similar result we are
aware of is for parallel hard cubes; a somewhat artificial system
that shows a very peculiar second-order freezing transition from a
fluid to a simple cubic crystal (15–17).

The existence of a vacancy-stabilized simple cubic phase in
hard cubes leads to the question of whether vacancy-stabilized
crystal structures are present in other anisotropic, entropy-driven
systems. We would expect vacancies to be relevant for other
(likely hard) systems with crystal structures where vacancies can
delocalize. Note that delocalization also requires the absence of
strong interactions that constrain particles to their lattice sites.
For example, we would not expect high vacancy concentrations to
occur in the simple cubic structure studied by Rechtsman et al.
(18), which resulted from isotropic interactions. Recently, the
phase behavior of a large number of polyhedral shapes has been
studied using MC simulations. (10, 19, 20) Because vacancies are
easily overlooked in the case of spontaneously formed crystals,
and unlikely to form in simulations starting from a fully filled lat-
tice, it is possible that high equilibrium vacancy concentrations

occur in many of these systems. Specifically, for crystal structures
where some or all of the neighboring particles can freely move
into an empty lattice site, the possibility of crystal vacancies
should likely be taken into account. Examples include the crystal
structures predicted for hexagonal and triangular prisms in ref. 10,
or the 2D (rounded) hard squares studied in refs. 21 and 22.

Materials and Methods
EDMD Simulations. Please refer to SI Text for a full description.

Free Energy of the Liquid. Thermodynamic integration allows one to calculate
the free energy for all densities assuming that both the equation of state and
the free energy at a reference density are known. When the free energy of a
reference density Fðρ0Þ is known, the free energy as a function of number
density FðρÞ can be determined using the equation of state. In particular,
the free energy is given by

βFðρÞ
N

¼ βFðρ0Þ
N

þ β
Z

ρ

ρ0

Pðρ 0Þ
ðρ 0Þ2 dρ

0; [4]

where ρ is the density and β ¼ 1∕kBT with kB Boltzmann’s constant and T the
temperature. To measure the free energy of the fluid at a reference density,
we used Widom insertion test particle method (13). The free energy of the
fluid at density ρ0 is then given by

βFfðρ0Þ
N

¼ βμðρ0Þ −
βPðρ0Þ
ρ0

: [5]

Solid Free Energies With and Without Vacancies. To calculate the Helmholtz
free energy as a function of the density for the solid phase, we use thermo-
dynamic integration (13) in MC simulations of systems with NL ¼ 203 ¼ 8;000
or NL ¼ 25 × 20 × 18 ¼ 9;000 lattice sites. We checked during our simulations
that the number of lattice sites did not change spontaneously. For systems
with the same density and net vacancy concentration, the differences in free
energy between these two lattice sizes were within the error of our measure-
ments. However, while equivalent free-energy calculations for a smaller sys-
tem (NL ¼ 1;000 lattice sites) yielded qualitatively similar results, finite-size
effects were noticeable when compared to the larger systems.

For the reference free energy of a crystal without vacancies, we use a var-
iation on the method introduced by Frenkel and Ladd (23), where particles
are tied to their respective lattice sites with springs, transforming the crystal
into a noninteracting Einstein crystal for a sufficiently high spring constant λ.
In this case, we also add an aligning potential to handle the orientational
degrees of freedom of the particles (14). Using the same coupling constant
λ that attaches the particles to their lattice sites, the aligning potential is
given by

βUrotðλÞ ¼ λ∑
N

i¼1

min
j≠k

f2 − ðui;j · x̂Þ2 − ðui;k · ŷÞ2g; [6]

where x̂ðŷÞ is a unit vector along the xðyÞ axis, and ui;j , with j ¼ 1; 2; 3 are
three mutually perpendicular face normals associated with particle i. Also,
β ¼ 1∕kBT is the inverse thermal energy, where kB is Boltzmann’s constant
and T the temperature. The parameter λ controls the strength of the external
potentials; hence, for λ ¼ 0 the system reduces to pure hard cubes, and for
λ ¼ λm with λm sufficiently large, the particles in the crystal are noninter-
acting.

To calculate the free energy of a system with vacancies, instead of fixing
the particles to a specific lattice site, we attach the particles to their nearest
lattice site (24) using

UextðλÞ ¼ λ∑
N

i¼1

�
1

σ2
jri − r0ðriÞj2

�
þUrotðλÞ; [7]

where r0ðriÞ is the position of the lattice site nearest to ri . In this case, the
dimensionless free energy per particle (f ¼ βF∕N) of the noninteracting
system is f vacein ðλÞ ¼ feinðλÞ þ f rotðλÞ þ f comb, where the first term is the transla-
tional free energy of a normal Einstein crystal (13), the second term is the
rotational free energy of the crystal (14), and the third term is the combina-
torial entropy associated with placing N particles on NL lattice sites:
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Fig. 6. Dimensionless diffusion coefficient Dτ∕σ2 in the solid phase as a
function of the packing fraction η. Here, τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
βmσ2

p
is the unit of time in

the EDMD simulations and m is the mass of a single cube. For each density,
the crystal has the equilibrium net vacancy concentration as determined from
the free energy calculations. The inset shows the diffusion coefficient at a
fixed packing fraction η ¼ 0.56 and varying net vacancy concentration.

4 of 5 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1211784109 Smallenburg et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211784109/-/DCSupplemental/pnas.1211784109_SI.pdf?targetid=STXT


f comb ¼ −ð1∕NÞ log½NL!∕ðN!ðNL − NÞ!Þ�. The full free energy of the crystal of
hard cubes with vacancies is then given by

f ¼ f vacein ðλmÞ −
β
N

Z
λm

0

�
∂Uextðλ 0Þ

∂λ 0

�
λ 0
dλ 0: [8]

In contrast to the free energy calculations for systems without vacancies (13),
the center of mass of the system is not fixed in these simulations. To equili-
brate the position of the center of mass, we introduce MC moves that col-
lectively translate every particle in the system (24). Additionally, moves
that translate a single particle by exactly one lattice vector are introduced
in order to improve sampling of different distributions of vacancies over
the crystal. For a system with full lattice site occupancy (N ¼ NL) and thus
no vacancies, we obtain good agreement between the two methods.

Diffusion Constants. To measure the long-time self-diffusion constant in the
crystalline phase shown in Fig. 6, we performed EDMD simulations in systems
ofNL ¼ 8;000 lattice sites, for a range of densities. The vacancy concentration
was chosen to correspond to the equilibrium vacancy concentration shown in
Fig. 5C. The diffusion constant was calculated from the slope of the mean
squared displacement as a function of time. An example of a plot showing
the mean squared displacement is shown in SI Text.
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Simulation Techniques. We study perfectly sharp hard cubes with
edge length σ, using both Monte Carlo (MC) and event-driven
molecular dynamics (EDMD) simulations. In both types of simu-
lation, overlaps are detected using an algorithm based on the
separating axis theorem (1). According to this theorem, for any
two nonoverlapping convex bodies there exists an axis onto which
both shapes can be projected without overlapping. In other
words, if both shapes are projected onto this separating axis, the
resulting two intervals on the axis are disjoint. No such axis exists
if the particles overlap. For two convex polyhedral particles, only
a finite number of possible separating axes need to be checked:
The potential separating axes are either parallel to a normal of
one of the faces of either of the two particles, or perpendicular to
the plane spanned by one of the edges of the first particle and one
of the edges of the second particle. If none of these directions
correspond to a separating axis, the particles overlap.

For a cube-shaped particle a, all face normals and edges are
parallel to one of the three perpendicular axes ua;i of unit length,
with i ∈ f1; 2; 3g. Thus, the fifteen potential separating axes for
two cubes are given by ua;i, ub;i, and ua;i × ub;j. To calculate the
projection of both particles onto a potential separating axis L, it is
convenient to take the center ra of particle a as the origin, and
placing particle b at position d ¼ rb − ra. Because the particles
are convex, it is sufficient to project the vertices of each particle
onto L. For particle a, the positions of the vertices are given by
ð�ua;1 � ua;2 � ua;3Þσ∕2. The projections onto L are thus con-
tained in the interval ½−RaðLÞ; RaðLÞ�, with

RaðLÞ ¼
σ
2∑

3

i¼1

jua;i · Lj: [S1]

Here, we have taken the separating axis L to be of unit length.
Similarly, the projections of the vertices of particle b are in an
interval centered around d · L with radius

RbðLÞ ¼
σ
2∑

3

i¼1

jub;i · Lj: [S2]

If L is a separating axis, these intervals are non-overlapping. In
that case,

d · L > RaðLÞ þ RbðLÞ: [S3]

If this inequality holds for any one of the potential separating
axes, the two particles do not overlap. We can use Eq. S3 to de-
sign a distance function f for two particles:

f ða; bÞ ¼ max
L

fd · L − ðRaðLÞ þ RbðLÞÞg; [S4]

where the maximum is taken over all potential choices for L. The
function f ða; bÞ is negative whenever the particles a and b over-
lap, and positive when they do not. Additionally, f is continuous
as a function of translations and rotations of either particle. To
predict collisions in the EDMD simulations, we use numerical
root-finding algorithms to find the roots of f as a function of time,

following the methods used in ref. 2. An Andersen thermostat
was used to keep the temperature in the EDMD simulation fixed:
At fixed time intervals, a random selection of particles are given a
new velocity and angular velocity drawn from a Maxwell–Boltz-
mann distribution (3). The standard unit of time in EDMD simu-
lations is given by τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
βmσ2

p
, where m is the mass of a cube,

and β ¼ 1∕kBT with kB Boltzmann’s constant andT the tempera-
ture. The simulations of crystals with NL ¼ 64;000 lattice sites
were run for at least 500τ, after which no further changes to the
lattice structure were observed. To determine the density profiles
(Fig. 1) and the global positional order (Fig. 2) in these simula-
tions, snapshots were taken every 8τ, and the Gglobal was calcu-
lated and averaged over the last 20 snapshots. To determine
equations of state, simulations with NL ¼ 8;000 or 9,000 lattice
sites were allowed to run for at least 2;500τ, with simulations near
the coexistence region being up to four times longer to compen-
sate for longer correlation times in the system.

Direct Observation of Fluid-Solid Coexistence. We observed coexis-
tence between the fluid and solid phase for packing fractions
0.455 ≤ η ≤ 0.485 in EDMD simulations of N ¼ 64;000 parti-
cles starting from a defect-free simple cubic crystal state. Typical
snapshots of resulting configurations are shown in Fig. S1. The
largest crystalline cluster in the system was found based on the
local bond order parameter q4 (4). As the density increases, the
shape of the interface goes through a series of stages (5): a
roughly spherical crystalline cluster in a majority disordered fluid
phase (η ¼ 0.45), a cylindrical crystalline cluster spanning the si-
mulation box in one direction in a fluid phase (η ¼ 0.455), two
slab-like regions of fluid and solid separated by planar interfaces
(0.46 ≤ η ≤ 0.47), and a majority crystal phase containing either
a cylindrical fluid cluster (0.475 ≤ η ≤ 0.48) or small pockets of
fluid in a crystal phase (0.485 ≤ η ≤ 0.49). This sequence of
phase coexistence is typical of a first-order phase transition (5).

Spontaneous Vacancy Formation. As discussed in the main text,
simulations of N ¼ 64;000 particles performed at packing frac-
tions η ¼ 0.52–0.54 and initialized with no vacancies displayed
unusual behavior. In particular, in many cases, the underlying
cubic lattice that started out commensurate with the simulation
box rotated during the simulation. In the remaining cases, the
system spontaneously increased the number of lattice sites. These
two cases are shown in Fig. S2.

Common Tangent Construction. The plot in Fig. S3 shows the com-
mon tangent construction discussed in the main text. The solid
line was obtained by minimizing the free energy with respect to
the net vacancy concentration for a range of packing fractions,
and by fitting the resulting data with a high-order polynomial.
The fluid line is the result of a thermodynamic integration of the
fluid equation of state.

Mean Squared Displacement. Fig. S4 shows the mean squared dis-
placement as a function of time in the vacancy-rich crystal phase
for packing fractions η ¼ 0.52 and 0.56. The points are measured
in EDMD simulations with NL ¼ 8;000 particles, with the num-
ber of vacancies corresponding to the equilibrium concentration
as determined from the free energy calculations.
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Fig. S1. Snapshots of EDMD simulations with N ¼ 64;000 hard cubes, at a range of packing fractions in the coexistence region. For each snapshot, clusters
were determined based on q4. Particles in the largest solid cluster are shown at actual size, while the other particles are displayed much smaller. Although the
phase that coexists with the fluid for η ≤ 0.485 looks disordered, it has at least local simple-cubic-like positional order, as indicated by the q4 criterion. However,
we cannot exclude the possibility that the positional order is only finite ranged, which would be indicative of a cubatic phase.

Fig. S2. Peaks in the 2D projection of the density profile in two simulations of hard cubes at packing fractions η ¼ 0.52 (Left) and η ¼ 0.525 (Right). For both
simulations, the initial configuration was a simple cubic crystal ofN ¼ 403 particles and NL ¼ 403 lattice sites (i.e., no vacancies). However, the number of lattice
sites was found to change spontaneously by either the addition of extra layers (Left) or rotation of the crystal structure (Right). The red lines in the picture on
the left indicate the 41 evenly spaced layers in both directions.
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Fig. S3. The common tangent construction used to determine the bulk coexistence between the fluid and the solid phase in hard cubes. The plot shows the
fluid free energy (left), solid free energy (right), and the common tangent (dashed line). Note that a linear function with a constant slope c ¼ 18.42 has been
subtracted for clarity. This does not influence the resulting coexistence.
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Fig. S4. Mean squared displacement as a function of time for two systems of cubes with NL ¼ 8;000 lattice sites. The vacancy concentrations used for packing
fraction η ¼ 0.52 and 0.60 were α ¼ 0.029 and 0.0027, respectively. The lines are fits through the linear part of the data, with the slope proportional to the long-
time self-diffusion constant.
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