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Abstract
Colloidal particles with a dielectric constant (magnetic susceptibility) mismatch with the
surrounding solvent acquire a dipole moment in a homogeneous external electric (magnetic)
field. The resulting dipolar interactions can lead to aggregation of the particles into string-like
clusters. Recently, several methods have been developed to make these structures permanent.
However, especially when multiple particle sizes and/or more complex shapes than single
spheres are used, the parameter space for these experiments is enormous. We therefore use
Monte Carlo simulations to investigate the structure of the self-assembled string-like
aggregates in binary mixtures of dipolar hard and charged spheres, as well as dipolar hard
asymmetric dumbbells. Binary mixtures of spheres aggregate in different types of clusters
depending on the size ratio of the spheres. For highly asymmetric systems, the small spheres
form ring-like and flame-like clusters around strings of large spheres, while for size ratios
closer to 1, alternating strings of both large and small spheres are observed. For asymmetric
dumbbells, we investigate both the effect of size ratio and dipole moment ratio, leading to a
large variety of cluster shapes, including chiral clusters.

(Some figures may appear in colour only in the online journal)

1. Introduction

External electric or magnetic fields provide a powerful tool
to control the self-assembly of colloidal particles. When
an external field is applied to a colloidal suspension, the
particles obtain a dipole moment as a result of the contrast
of the dielectric constant or magnetic susceptibility of the
particles with that of the fluid. At low field strengths, the
resulting dipolar interactions between the colloids cause the
particles to self-assemble into string-like structures along the
field direction. These suspensions are called electro- (ER)
or magneto- (MR) rheological fluids, as their rheological
properties can be tuned dramatically by external fields on
millisecond timescales [1, 2]. These fluids can be used
in a wide range of applications, e.g. hydraulic valves,
brakes, clutches [1] and displays [3]. For systems of
monodisperse hard spheres with induced dipolar interactions,

the phase diagram is well known from both experiments and
simulations [4–8]. A stable string fluid exists at low field
strengths and at low packing fractions, while at higher field
strengths, a body-centered-tetragonal (bct) crystal structure is
formed.

Independently from each other, several groups have
recently devised (physical) chemical methodologies to make
strings of particles [9–16]. Our group recently developed
a methodology to produce permanent strings of various
colloidal particles by using external electric fields and
a double layer repulsion comparable to the particle size
followed by a thermal heating step or seeded growth to make
the strings permanent [17]. This method allows control of
both the length and even the flexibility of the chains of
beads, making these systems interesting not only for making
new materials but also as colloidal analogues of charged and
uncharged polymer chains.
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These electric string fluids can be compared to the
formation of chain-like aggregates in ferromagnetic fluids,
where the direction of the dipole moment of the particles is
not fixed by an external field. The structure of these chains
has been studied extensively, both for monodisperse and
polydisperse systems [18–22]. In bidisperse or polydisperse
systems, where the dipole moment scales with the particle
volume, the larger particles dominate the formation of
chains. Subsequently, the smaller particles can aggregate
around these large-sphere structures, thereby hindering the
formation of longer chains [23]. Previous studies showed that
size polydispersity greatly influences the electrorheological
response, which can even be enhanced in equimolar mixtures
of large and small spheres [24]. Additionally, mixtures of
particles with different magnetic susceptibilities have been
shown to form a large variety of complex structures in external
magnetic fields [25].

In highly asymmetric bidisperse systems of spheres with
induced dipolar interactions, clustering leads to ring-like
and flame-like clusters of small spheres around strings of
large spheres. Mixtures of more similarly sized particles can
form strings containing both types of spheres, sometimes
regularly ordered. As the interactions causing these structures
are induced by an external field, this provides a way of
obtaining a variety of structures from spherical colloidal
particles. A wider range of cluster shapes opens up if dipolar
hard dumbbells are considered, with two spheres fused at
a fixed distance. By tuning the size ratio and the ratio of
dipole moments between the two parts of the dumbbell, a
wide variety of structures can be formed. In earlier studies,
in which magnetic particles and fields were used, various
chiral structures were observed in similar systems, both
experimentally [26] and in simulations [27].

In preliminary experiments using our methodology based
on electric fields presented in [17], but with mixtures of
beads of different size and dumbbell shaped particles, we
observed that the range of possible structures and parameters
is enormous. We decided therefore, based on the preliminary
experiments (some of which are shown in this paper), to
further investigate the dipolar mixtures and dumbbells with
computer simulations.

In particular, we study the formation of ringed and
alternating strings in binary mixtures of spheres, and
the structure of strings formed in systems consisting of
asymmetric dumbbells. In the case of binary systems, the
field strengths needed to form binary strings are often so
high that the string fluid phase is metastable with respect
to a broad phase coexistence between a dilute gas phase
and a crystalline phase. However, due to the lower mobility
of the larger strings compared to the single particles, the
system can get kinetically trapped into a metastable fluid
for long times at low packing fractions. As a result, one
can study the resulting strings out of equilibrium in both
experiments and simulations. As mentioned, we compare
our results with preliminary experimental observations; the
experimental procedure is outlined in the appendix.

The remainder of this paper is structured as follows. In
section 2, we describe the models and simulation methods

used in this work. Section 3 describes the self-assembled
structures observed in binary mixtures of spheres with
induced dipolar interactions, including ringed and alternating
strings. In section 4 we investigate the structures formed by
asymmetric dipoles in external fields. Finally, we outline in
section 5 how the string length distribution in monodisperse
systems can be predicted theoretically, a result which can be
useful to experimentally determine the particle polarizability.

2. Model and simulation methods

We examine both hard and charged colloids in an electric field.
For homogeneous particles of the same material, the dipole
moment in an external field is proportional to its volume,
leading to stronger dipole moments for larger particles.
We model the dipolar interactions as those between point
dipoles in the center of the spheres. This approximation
results in slightly weaker attractions at short interparticle
separations compared to more detailed calculations of the
polarization of spherical particles [33, 28]. However, apart
from a shift in effective field strength, we expect the effects
of the point-dipole approximation on the phase behavior to be
minimal. The dipole–dipole interaction for two particles with
diameters σi and σj is given by

βudip(rij, θij) =
γij

2

(
σ

rij

)3

(1− 3 cos2θij) (1)

where rij = |ri − rj| is the center-of-mass distance vector
between particles i and j, θij the angle of rij with the dipole
moment (oriented along the direction of the external electric
field), β = 1/kBT with kB is Boltzmann’s constant and T the
temperature. We use the particle diameter σ as unit of length,
which is chosen to be the diameter of the largest particle in the
case of a binary mixture.

The factor γij is determined by the strength of the electric
field, which is chosen to be uniform along the z-axis:

γij =
πσ 3

i σ
3
j α

2εs|Eloc|
2

8kBTσ 3 . (2)

Here, α = (εp − εs)/(εp + 2εs) is the polarizability of the
particles, εs is the dielectric constant of the solvent, εp is the
dielectric constant of the particle, and Eloc is the local electric
field. We define γ as the value of γij for two particles of the
largest size present in the system. We are aware of the fact
that in general the polarizability should be described with a
frequency dependent complex number, but we limit ourselves
here to the case where only the particle dielectric contrast
plays a role. In the experiments we have chosen a frequency
so high (1 MHz) that the ions cannot follow the field.

The hard-sphere interaction is given by

βuhs(rij) =

{
0, rij ≥ σij

∞, rij < σij,
(3)

with σij = (σi + σj)/2. In the case of charged spheres, a
Yukawa potential is used to model the charge repulsions. For
the interaction between particles of different sizes, we assume
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Figure 1. Left: part of a snapshot of a typical configuration of a string of 15 large particles with rings of small particles, at the size ratio
q = σS/σL = 0.25 and γ = 300. The field is along the vertical axis, and surrounding small particles have been removed. Middle: a confocal
image and a scanning electron microscopy picture of an experimental system of strings with ring-like and flame-like clusters. The particles
in the experiments are poly-(methylmethacrylate) (PMMA) spheres with diameters σL = 2.4 µm and σS = 0.6 µm. The scale bar is 2 µm.
Right: typical snapshot of a bidisperse system of dipolar hard spheres at size ratio σS/σL = 0.8, with NS/NL = 10. Here, γ = 102,
κσS = 1.0, and Z2

SλB/σS = 100. Most of the gaps between two large spheres contain exactly one small sphere. The field is along the vertical
axis. The picture at the bottom left is a confocal image of a binary system of PMMA spheres with diameters σL = 1.5 µm and
σS = 1.05 µm.

that the pair potential is given by the linear superposition
approximation of the DLVO theory [29, 30]:

βuY(rij) =

εij
exp(−κ(rij − σij))

rij/σ
, rij ≥ σij

∞, rij < σij

(4)

εij =
ZiZj

(1+ κσi/2)(1+ κσj/2)
λB

σ
(5)

where Zi is the charge of particle i, κ−1 is the Debye screening
length, and λB = e2/4πε0εskBT is the Bjerrum length with e
the elementary charge and ε0 the vacuum permittivity.

We performed Monte Carlo (MC) simulations in the
NVT ensemble, i.e. we fixed the number of particles N, the
volume V and the temperature T of the system. To handle
the long-range dipolar interactions, we use Ewald summations
with conducting boundary conditions [31, 32]. To improve
equilibration and sampling speed in systems with strings,
cluster moves were introduced to move particles residing in a
cylindrical volume collectively. To maintain detailed balance,
cluster moves that would change the number of particles
present in this cylindrical volume were rejected.

Additionally, we perform simulations of hard dumbbells,
which we model as two fused hard spheres interacting with
the pair potential (1). Rotation moves were implemented to
change the orientation of the dumbbells.

3. Bidisperse systems

3.1. Flame-like and ring-like clusters of small spheres

We consider binary systems of large and small colloidal
spheres with diameters σL and σS, respectively, with a large

size asymmetry. The dipolar interactions as given by (1)
and (2) are much stronger between the large particles than
between the small particles. As a result, the formation of
strings will be dominated by the clustering of the large
particles. Additionally, the small particles may aggregate
with the chains formed by the large particles. Due to the
interactions between small and large particles, a circular
attractive potential well arises for the small particles around
the contact point of two large particles in the chain, and
consequently the small particles can get trapped into this
well [19]. Figure 1 shows a typical snapshot of the strings
formed in a Monte Carlo simulation, as well as a confocal
snapshot and a scanning electron microscopy picture of
similar clusters in an experimental setup, all at size ratio
q = σS/σL = 0.25. For details on the experimental setup, see
the appendix.

At a size ratio q = 0.25, a maximum of 14 small particles
can fit geometrically in this circular well in such a way that
each small particle is in contact with both large spheres. At
q = 0.33, only up to 10 particles fit in this well. However,
the repulsive interactions between the small particles reduce
the number of small particles per ring in the lowest-energy
state. We calculate the potential energy due to the dipolar
interactions as a function of the number of small particles
in the circular well around the contact point between two
large spheres in a string of 2 and 15 large spheres. We
plot the results for q = 0.25 (top panel) and 0.33 (bottom
panel) in figure 2. We clearly observe that for both size
ratios the number of small particles in the lowest potential
energy configuration increases for longer string lengths due
to a stronger attractive potential around the contact points in
a string. We would like to mention here that entropic effects
favor a lower number of particles per ring, as this allows
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Figure 2. Potential energy of ring-like clusters of small dipolar hard spheres adsorbed near the contact point of two large dipolar hard
spheres, in a string consisting of two large spheres (�) and 15 large spheres (•), as a function of the number of small spheres in the ring,
i.e. nring. The size ratio between small and large spheres is q = σS/σL = 0.25 (left) and q = 0.33 (right). Interactions between the large
particles are not included in the potential energy.

Figure 3. Probability distribution function P(n) for a ring-like cluster of n small dipolar particles as a function of the field strength γ for a
string of 15 large dipolar spheres, at small particle density ηS = 1.9× 10−3. The size ratios are q = 0.25 (left) and q = 0.33 (right). The
labels denote the number of small spheres n in the ring.

for more free volume or entropy both inside and outside
the cluster. In addition, we find from figure 2 that for a
size ratio q = 0.25 the small particles get trapped in this
well for γ ' 50 as the potential energy is ∼0.02 kBT per
particle for string length 15. For such high fields, the string
fluid of large particles is thermodynamically metastable with
respect to a broad gas–solid transition [6]. In experiments, the
large strings are partially stabilized by inhomogeneities in the
external field, causing the strings to stay in local areas of high
field strength and preventing them from clustering together.
In standard MC simulations (without any (unphysical) cluster
moves), the clustering of strings is inhibited as the mobility
of the self-assembled strings is extremely low. Since the
interactions with the small particles are much weaker, the
small spheres can still sample phase space, and can reach
equilibrium within the constraints given by the configuration
of the larger particles.

Due to the dipolar interactions between the small and
large spheres, the small spheres can also aggregate in a large
potential well at the end of the chains (see the left side of
figure 1). The resulting aggregate of small particles is wider
near the string of large particles. In addition, the fluctuations
of the cluster are more pronounced far from the strings, giving
a flame-like shape to the cluster. Due to the larger and deeper
potential well, a flame-like cluster will generally contain more
small spheres than a ring-like cluster, in good correspondence
with what was observed in the experiments.

In order to study the structure of the binary strings, we
performed MC simulations to study binary strings of dipolar

hard spheres with a size ratio q = 0.25 and 0.33, both starting
from a homogeneous random initial configuration, and from
a configuration containing a single string of large spheres in
a sea of small spheres. For the simulations starting from a
random configuration, we used 100 large particles, and varied
the number of small particles from 100 to 600. The overall
packing fraction was well below 1% (ηL = 0.002), to keep the
strings of large spheres from clustering. We indeed observe
that the large particles self-assemble in linear strings parallel
to the field direction and that small particles form ring-like
and flame-like clusters around the strings of larger spheres.
To determine the probability distribution of the number of
small spheres in the ring-like clusters, we perform Monte
Carlo simulations of a string of 15 large spheres at varying
densities of small spheres. While the large spheres were
allowed to move in the simulation, field strengths were always
sufficiently high to prevent the string from breaking.

At the field strengths where the ring-like clusters are
regularly seen, the flame-like clusters always appear as well.
The presence of small particles near the ends of the strings
of large spheres hinders the formation of long strings in the
simulation, as it can take a long time (&105 MC cycles) for the
small particles to be pushed away from two merging strings.
The ring-like clusters can be seen in a wide range of field
strengths, and the occupancy of the ring rises as γ increases.
Figure 3 shows the probability distribution functions P(n) of
observing n small spheres in a ring as a function of field
strength γ as determined from simulations, for size ratios of
0.25 and 0.33. The plots show a continuous increase in the
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Figure 4. Probability distribution function P(nIS) of the number nIS of interstitial small dipolar particles between a pair of large dipolar
spheres in a string, for κσS = 1.00, ηL = 6.3× 10−4, and ηS = 2.9× 10−3, as a function of the field strength γ . The size ratio is
σS/σL = 0.8. The particle charges for the left and right plot are given by Z2

SλB/σS = 50 and 100, respectively.

number of small spheres per ring as a function of γ , as well
as a preference over a large range of field strengths for eight
particles per ring at a size ratio of 0.25 and six at a size ratio of
0.33. It should be noted that the total number of small particles
in the system is constant, and trapping many small particles in
the ring-like and flame-like clusters decreases the density of
free small particles. However, changing the density of small
spheres did not change the probability distribution functions
significantly.

For very high field strengths, we observe the formation of
thicker ring-like clusters of small spheres around the contact
point between two large spheres. Due to the weaker potential
wells further away from the string, these thicker rings tend
to be more disordered, and exchange small particles with the
surrounding fluid at a faster rate.

3.2. Alternating strings

For less asymmetric systems, we observe the formation of
binary strings that consist of alternating large and small
particles. We are specifically interested in finding out if it is
possible to find a region in parameter space where almost
all (metastable) strings formed consist of regular large–small
sequences. To investigate this, we studied the self-assembly
of these strings for both hard and charged dipolar particles,
using MC simulations of systems with several size ratios and
a range of stoichiometries. The electrostatic repulsions are
described by screened-Coulomb interactions (see (4)), where
the charge Z is chosen to be proportional to the surface area
of the spheres. In all cases, the total packing fraction was
below 1%. The simulations were performed in a rectangular
box, elongated along the z-axis to allow for longer strings. All
simulations are started from a random initial configuration.
On the right in figure 1 we show a typical snapshot of the
strings formed in a system of charged particles, together with
a confocal image of a short alternating string taken from
experiments.

The formation of alternating strings can be understood
by the bond between a large and a small particle being
significantly stronger than the bond between two small
particles. In systems with many more small dipolar particles
than large particles, the large particles will first bond with
a small number of small ones on each side shortly after the

field is turned on. These clusters will then join to form longer
strings, with several interstitial small particles between the
large ones. While in equilibrium the large particles are bonded
in a string, the removal of the small particles is a slow process.
The free energy barrier that these small particles have to
overcome to escape the string is dependent on the number of
small particles between two large spheres, and is highest for
one small particle with two large neighbors.

For uncharged dipolar spheres, alternating strings were
not observed with any regularity, as the potential energy
differences are too small between configurations with one,
two, or three small spheres in between two large ones. As
a result, in sufficiently long simulations all interstitial small
particles are removed from the strings, resulting in strings
of large particles only with small particles exclusively at the
ends.

Interestingly, simulations of charged particles show the
self-assembly of alternating strings that remain stable on
much longer timescales. Since the charge on each particle
scales with the surface area, the bonds between the large
spheres are relatively weaker, and hence configurations with
more than one small particle between two large spheres in a
string become less stable. While defects always appear, for
inverse screening lengths of the order of σS and a size ratio of
σS/σL = 0.8, the average number of small particles between
two large spheres in a string can be tuned by the field strength.
In order to study the field-strength dependence of the number
of interstitial small spheres nIS in between a pair of large
spheres in a string, we determine the probability distribution
function P(nIS) for varying γ .

Figure 4 shows the distribution of a number of small
colloids between two large ones in the strings, for two
different numbers of charges per colloid. The simulations
consisted of NL = 50 large and NS = 500 small particles,
at an overall packing fraction of 3.5 × 10−3. Increasing the
field strength increases the number of small particles per
gap, as the stronger attractions hinder the escape of small
particles from the strings. Interestingly, a large fraction of
trimers, with one large particle sandwiched by two small
particles, is also often seen in addition to the longer strings.
While forming alternating strings is much easier with an
added Yukawa repulsion, the formed configurations are still
metastable states: if swap moves are introduced into the
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Figure 5. Time dependence of the probability distributions P(nIS)
shown in figure 4, showing how nIS changes as a function of the
number of MC cycles, where one MC cycle consists of NS + NL
trial moves of the particles. The same parameters were used as in
figure 4, with Z2

SλB/σS = 50 and γ = 58.6.

simulations, allowing a large and small particle to switch
positions, the alternating strings rapidly change into strings
consisting mainly of large spheres. However, without swap
moves, these structures are stable even in long simulations,
and the distribution of the number of small particles between
two larger ones is approximately constant after equilibration,
as shown in figure 5 and as seen in preliminary experiments.

4. Asymmetric dumbbells

Finally, we investigate strings in a system of asymmetric
hard dumbbells in an external electric field. Each dumbbell
particle consists of a large and a small sphere, with diameters
σL and σS, respectively, and a fixed separation distance d ≤
σLS, where σLS = (σL + σS)/2. In general, determining the
interactions of polarized anisotropic particles is a complex
task [33]. Here, we approximate the interaction between the
spheres by the interaction between point dipoles at the sphere
centers, which interacts with all others via the potential

βudip(rij, θij) =
γ pipj

2p2
L

(
σ

rij

)3

(1− 3cos2θij). (6)

Here, the dipole strength pi for sphere i is determined by the
size of the sphere, and is equal to either pL or pS for large and
small spheres, respectively. The relative interaction strengths
for the two types of spheres is therefore controlled by the ratio
pS/pL, while the absolute interaction strength is determined
by γ = γLL, as defined in (2).

Due to the interaction between the two spheres in a
single dumbbell, a single particle favors an orientation aligned
along the direction of the field. Magnetic colloidal particles
of this type have been seen to form chiral structures in
experimental systems where the smaller part of the dumbbell
acquires a much stronger dipole moment in the external
magnetic field [26]. Recently, a variety of helical structures
has been characterized as global potential minima for clusters
of asymmetric dumbbells consisting of two Lennard-Jones
particles and a point dipole directed across the axis between
the spheres [27]. Chiral structures have also been predicted to

occur in systems of dipolar hard spheres in the presence of
depletion interactions [34]. Finally, confinement of (hard or
charged) spherical particles in cylindrical geometries has been
shown to lead to chirality, depending on the ratio between the
sphere and cylinder diameters [35–37, 34].

Similar to systems of dipolar spheres, asymmetric dipolar
dumbbells form strings at low field strengths and packing
fractions, which grow in length and thickness as γ increases.
We investigate the zero-temperature structure of these strings,
and perform Monte Carlo simulations to study the behavior at
finite temperatures.

We first consider hard dumbbells consisting of two
adjacent hard spheres at separation distance d = σLS. The
structure of a single string in the limit of strong fields (or
zero temperature) mainly depends on the size ratio of the
dumbbell σS/σL and the ratio between the dipole moments
of the two spheres pS/pL. By comparing the potential energy
for a number of possible configurations, we can draw a phase
diagram of the predicted structures as shown in figure 6.
The candidate structures considered were head-to-toe and
head-to-head strings, buckled strings, columnar structures,
and helical structures. In the head-to-toe or head-to-head
configuration, all spheres are centered on a straight line, with
all the dumbbells oriented in the same direction or alternating
between ’up’ and ’down’, respectively. The buckled strings
consist of a central string of large spheres, with the smaller
spheres pushed to either the side or the end of the string.
When the dipole moment of the smaller spheres is sufficiently
large, the central string consists of smaller spheres instead.
For the size ratio σS/σL > 0.5, the larger spheres arrange into
two adjacent columns. For σS/σL < 0.5, the structure formed
can either consist of two sets of these columns, or helical
structures, strongly depending on the size ratio.

If the dipole moment of the spheres scales with the
volume of the spheres, as would be the case if both parts
are made out of the same material, the large particles will
have the stronger dipole moment. The dashed line in figure 6
shows the structures formed in this case. Depending on the
size ratio, the string only takes two shapes: aligned dumbbells
in head-to-head orientations, or a string of large particles with
the small particles all on the same side (except at the ends).

We wish to remark here that it is possible that we
missed some structures, which can change the phase diagram.
In particular, for highly asymmetric dumbbells where the
dipole moment of the small sphere is large, the potential
energies of helical and columnar structures are close together.
Since we only calculated the potential energies of a limited
set of candidate cluster configurations, with highly regular
orientations of the particles within the string, the possibility of
more irregular structures being favored cannot be discounted.
Therefore, the phase diagram shown in figure 6 is mainly a
qualitative indication of the expected cluster shapes. However,
the structures in the ground-state phase diagram agree
qualitatively with structures seen in simulations using high
field strengths.

The boundaries between the different structures shift
slightly based on the length of the string, but the observed
structures remain the same for longer strings. While changing
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Figure 6. Left: ground-state phase diagram for strings of 15 asymmetric dumbbells, as a function of size ratio q and dipole moment ratio
pS/pL. The head-to-head configurations consist of alternating pairs of large and small spheres, while the buckled strings are strings of large
particles with the small ones positioned at the contact points of two large particles. The columnar or helical structures consist of strings of
small spheres with the large spheres arranged in multiple columns or in a helical structure. The dashed line illustrates dumbbells made out
of one material. Right: cartoon of three dumbbell particles arranged in a string, with d chosen such that the large part of the middle
dumbbell touches the two small parts of its neighbors, i.e. d = dt.

the center-of-mass distance d has some influence on the
boundaries of these regimes, it does not seem to qualitatively
change most of the self-assembled structures. However,
changing d can strongly influence the columns and helices
found at low size ratios with pL < pS.

To further investigate the possibility of helical strings,
we performed simulations of highly asymmetric dumbbells,
where the dipole moment of the small spheres was much
larger than that of the large spheres. For sufficiently high
field strengths, the small spheres will form a string, with
the large spheres sticking out to the sides. Depending on
the size ratio, these large spheres can form either columns
around the central string, or helical structures. These chiral
structures appear due to the frustrations caused by hard-core
interactions between the large spheres, which prevent them
from lining up along the field direction. By constraining
the large spheres to a narrow ring-like volume around their
smaller partners, these frustrations cannot be compensated by
small deviations parallel to the string. This restriction can be
obtained by choosing the distance d between the two spheres
of a dumbbell close to the minimum value dt where the large
particles touch the small spheres of nearby dumbbells in the
string, as shown on the right in figure 6. For this case, the
ground-state structures we obtained are shown on the left side
of figure 7 for six different size ratios.

From the potential energy minimization, we find that at
size ratios just above σL/σs = 0.5 the large spheres form two
columns close together and aligned parallel to the string. At
slightly larger size ratios, this configuration would lead to
overlaps, and each column becomes buckled. In this case,
the two buckled columns tend to be on opposite sides of the
string. For the size ratio q < 0.47, the structure changes from
columns to a double helix, decreasing in pitch length as q
decreases. Close to a size ratio of q = 0.33, the structure

crosses over to three vertical columns, turning into a triple
helix once q < 1/3. For size ratios q < 0.28, the large spheres
will overlap in any configuration. At this point, the string of
small particles will always be deformed.

We now perform MC simulations to investigate the
formation of these structures. To this end, we first carried
out a normal simulation at low field strength (γSS ' 20),
to allow the dumbbell particles to form strings of sufficient
length. Subsequently, we quenched these strings to high field
strengths, which should then mostly affect the positions of
the large spheres along these strings. These simulations were
performed at low packing fractions η ' 0.01, with N = 200
dumbbell particles in the simulation box. For each size ratio,
the distance d between spheres was chosen just above dt
to minimize fluctuations of the large spheres parallel to the
string. Due to the high field strengths, the formation of the
strings is a process far out of equilibrium. The resulting string
length distribution is therefore not an equilibrium quantity
that can be reliably measured from these simulations. Since
we are mostly interested in the configurations of individual
strings after quenching, these simulations can also be started
from an initial configuration containing one long string. When
quenching the system, the field strength is increased in small
steps (1γ ' 1) during the simulation, eventually freezing
the system into a local energy minimum. At this point, we
observe the resulting structures. Long strings form readily
in systems with q > 0.4. For q < 0.4, the hard cores of
the large spheres hamper the formation of strings of more
than four or five dumbbells. More asymmetric size ratios
will also hinder reconfigurations within the string, as the
hard-core interactions severely limit the rotational freedom
of the dumbbells. While chiral structures can be found in
these simulations, defects and changes in the handedness are
regularly seen, since both directions of chirality have equal
probability.

7
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Figure 7. Left: structures resulting from the minimum energy calculations, at various size ratios. Here, d = dt + 0.01σL, the same values as
used in the simulations. The numbers indicate the size ratio q. Both a side view and a top view are shown for each size ratio. Right: strings
of dipolar asymmetric dumbbells resulting from simulations starting with a string consisting of 50 particles, quenched to high field
strengths, at various size ratios q as labeled and center-of-mass distance d = dt + 0.01σL.

On the right side of figure 7, we show snapshots from
simulations starting from an initial configuration consisting
of a straight string of 50 randomly oriented dumbbells. After
quenching, we observe that structures are formed similar to
the predicted ground-state structures, although defects in the
structures exist in the structures resulting from simulations, as
the system can get trapped in local energy minima during the
quench. In these simulations, the dipole moment of the small
spheres is five times that of the large spheres, which is large
enough to prevent breaking or bending of the string. While the
simulated strings show good agreement with the ground-state
structures shown in figure 7, the spontaneous formation of
regular chiral structures appears to be difficult. This may be
a severe problem for experimentalists attempting to fabricate
helical strings of asymmetric dumbbells by applying an
external electric field. The difficulty can be explained by
the fact that the energy costs involved in defects (which
depend largely on next-nearest neighbor interactions) are
small compared to the gain in entropy for additional disorder
in the string. Additionally, the free energy barrier that has to
be overcome to change the local direction of the chirality in a
string is large, due to both hard-core interactions and attractive
forces.

5. Equilibrium string length distribution in
monodisperse systems

In addition to the more complex systems discussed
in this paper, we investigated the string fluid regime
for monodisperse dipolar hard spheres using NVT MC
simulations of N = 1200 particles with diameter σ in a
simulation box elongated along the field direction in order
to accommodate long strings. We measured the probability
distribution function P(n) of string length n in the system for

Figure 8. String length distribution P(n) with n the number of
spheres in a string for a fluid of dipolar hard spheres at packing
fraction η = 7.1× 10−4 and for various field strength γ as labeled.
The symbols are obtained from simulations and the lines show the
predictions from Wertheim theory.

varying field strength γ . In figure 8 we plot P(n) as a function
of the number of particles n in a string for γ = 5, 8, 9, 10,
and 11, at a constant packing fraction η = πσ 3N/6V = 7.1×
10−4. The simulation results are denoted by the symbols.
As expected, the average length of the strings increase with
both dipole strength γ and packing fraction η. When the
field strength is larger than γ ' 10, strings start spanning
the simulation box, and simulation results become unreliable.
Additionally, sufficiently long strings attract each other and
can cluster into thicker strings at high field strengths [40].
Here, we will investigate the string length distribution in the
regime where the strings are clearly separated, ensuring a
well-defined string length.

We compare our results with the first-order thermody-
namic perturbation theory of Wertheim, which yields free
energy predictions for associating fluids [41–43]. These free
energy expressions can be used to predict the distribution of
cluster sizes in equilibrium systems [44]. While the theory
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is more suitable for particles with short-ranged interactions,
it can be adapted to quantitatively describe the formation of
strings in a dipolar system.

To this end, we consider colloidal spheres with two
binding sites in diametrically opposite positions. The first-
order thermodynamic perturbation theory of Wertheim is
based on the assumption that each binding site can only form
one bond with another particle and that pairs of particles
can only be single bonded. These assumptions are satisfied
in the string fluid regime for monodisperse dipolar spheres,
assuming the packing fraction and field strength are low
enough to ensure that all strings are well separated. In this
case, each particle can form a bond with at most two other
particles. According to Wertheim theory the probability pb
that an arbitrary binding site is bonded can be determined
from the chemical equilibrium between two non-bonded
particles and a dimer cluster:

pb

(1− pb)2
= ρ1, (7)

where 1 is calculated by integrating the Mayer function
f (r) = exp(−βudip(r)) − 1 over the volume of a binding
site [41–43]:

1 =

∫
site

dr g(r)f (r) (8)

' 2π
∫ θmax

θ=0
dθ
∫ rmax

r=σ
dr f (r, θ)r2 sin θ, (9)

with g(r) the pair correlation function of a reference system
at the same packing fraction. As the packing fractions for
the studied string fluid systems are low, we use the ideal gas
approximation g(r) ' 1.

As the integral in (9) is over the volume of a single
bonding site, θmax is chosen to be the edge of this bonding site,
where udip(r, θ) = 0. The integral diverges logarithmically for
r →∞, and therefore we have to choose a reasonable limit
rmax for the distance at which particles can still be considered
bonded. We have set rmax = 2σ .

In addition, the number density of monomers is ρ1 =

ρ(1 − pb)
2, since for a monomer both sides are unbonded.

Here we define ρ = N/V as the particle number density.
Similarly, the number density ρn of strings of length n is

ρn = ρ(1− pb)
2pn−1

b , (10)

as the first and last particle in the chain have one unbonded site
each. From (7), we can easily determine pb once 1 is known.
Using the bond probability pb, we can determine the cluster
size distribution P(n):

P(n) =
ρn∑
∞

i=1 ρi
= (1− pb)p

n−1
b , (11)

where P(n) is the probability that a randomly selected string
has a length of n, and

∑
∞

i=1ρi = ρ(1 − pb), obtained by
summing the geometric series over all chain lengths.

However, in our system there are correlations between
nearby bonds, since the attractive potential of the dipoles
extends beyond the distance of a single particle. As a result, a

particle is more likely to be attached to longer strings. If we
assume that neighboring particles in the string are at contact
along the z-axis then the potential near the top of a string of
length n is given by:

u(r, n) =
n−1∑
i=0

udip(r− iẑ). (12)

This potential can then be used to calculate 1(n)
using (9) with the Mayer function corresponding to un(r, n).
Subsequently, we can write a recursive relation for ρn:

ρn

ρn−1ρ1
= 1(n). (13)

To calculate ρ1, we normalize this distribution using

∞∑
n=1

nρn = ρ. (14)

We plot the theoretical results (solid lines) along with the
simulation results in figure 8. The theoretical predictions
fit the simulation data for low packing fractions and field
strengths very well, as shown in figure 8. We obtain agreement
between theory and simulations as long as the simulated
strings do not cluster together or span the simulation box.
As no fit parameters are required in the theory to match the
simulation data, Wertheim theory allows a direct quantitative
prediction of the distribution of string lengths in the dilute
string fluid regime of hard dipolar spheres. In principle, it
should also be straightforward to extend this theory to charged
dipolar spheres, by adding a Yukawa repulsion in (9). Using
these theoretical predictions for the cluster size distribution,
an estimate for the effective field strength γ could be obtained
from experimentally measured string length distributions.

6. Conclusions

We investigated the self-assembly and structure of strings in
systems of colloidal particles with dipole moments induced by
an external field. In binary systems, strings of large particles
with both ring-like and flame-like clusters of small particles
can be formed in highly asymmetric systems, where q =
σS/σL � 1. In systems with a size ratio of q = 0.8 alternating
strings can be formed instead. While these structures are not
thermodynamically stable, they persist in simulations on very
long timescales, and have been observed in experiments as
well.

Additionally, we studied the strings formed by asym-
metric hard dumbbells in the presence of a strong electric
field. When the particles are made out of a single material,
the lowest-energy structures are head-to-head strings for
nearly symmetric dumbbells, and buckled strings for more
asymmetric particles. However, in the case where the dipole
moment of the small spheres is sufficiently high, the
lowest-energy structure consists of a string of small spheres,
with the large spheres either positioned in multiple columns or
in a helical structure around the string. It should be noted that
defects are expected to be common in spontaneously formed
clusters of dumbbells, due to the large free energy barriers
involved in changing the chirality of the helical structure.

9
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Finally, we used thermodynamic perturbation theory to
show how the field strength can be related to the string
length distribution in monodisperse systems. Comparisons of
these calculated cluster size distributions to experimentally
measured ones would provide a direct way to experimentally
determine the polarizability of the particles used at the applied
frequency.
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Appendix. Experimental setup

In the experiments shown in figure 1, the colloidal dispersion
consisted of equal amounts (1.8 wt%) of small and large
PMMA spheres in cyclohexyl bromide. The PMMA particles
were synthesized by dispersion polymerization, covalently
labeled with the fluorescent dye 7-nitrobenzo-2-oxa-1,3-
diazole (NBD) or rhodamine isothiocyanate (RITC) and
sterically stabilized with poly(12-hydroxystearicacid) [38].
We used both suspensions with a size ratio of 0.25
(σL = 2.40 µm and σS = 0.60 µm) and those with
a size ratio 0.7 (σL = 1.50 µm and σS = 1.05 µm).
The particles were dispersed in a 3:1 wt/wt mixture
of cyclohexyl bromide (Fluka) and cis-decalin (Sigma),
saturated with tetrabutylammonium bromide (TBAB; Sigma).
In this mixture, the particles were nearly density and
refractive-index-matched, and the double layer was not larger
than the particle size [4]. All solvents were used as-received
without any further purification. The solutions were placed
in sample cells with attached electrodes. After filling the
cell with the colloidal suspension, we sealed it at both ends
with UV-curing optical adhesive (Norland no. 68), and we
studied particle dynamics by means of confocal laser scanning
microscopy (Leica TCS SP2). An oscillating electric field
was applied using a function generator (Agilent, model 3312
OA) and a wide band voltage amplifier (Krohn-Hite, model
7602M). The root-mean-square of the electric field strength
used was Erms = 0.45 V µm−1, with a frequency f = 1 MHz,
which we assume to be fast enough to ensure that the ions in
the double layer will not be able to follow the electric field.

After 5–6 min, all the particles were assembled into
complex structures in the applied field direction. The
dispersion was subsequently heated to 70–75 ◦C, still well
below the glass transition temperature (Tg ' 140 ◦C [39]) of
PMMA, for 2–3 min using a stream of hot air that was much
wider than the sample cell. The sample cooled down to room
temperature in 5 min, still in the presence of the electric field.
The field was then turned off and confocal laser scanning
microscopy revealed that the particles that were in contact had
bonded permanently.
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