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Cluster criterion

The cluster criterion consists of the following steps: First, we define the neighbors of particle i as those
particles j for which the surface-to-surface distance ρij is smaller than 0.2D and ui · uj > 0.9 with ui the
orientation of particle i. We also define the set of particles Ei which contains i and its neighbors and we
define the plane Pi perpendicular to the nematic director ni of the particles in Ei. Then, we examine the
trigonal, square and hexagonal order around particle i in the plane Pi,

ψn(i) =

∣∣∣∣∣∣ 1

Nb(i)

Nb(i)∑
j=1

exp( inφij)

∣∣∣∣∣∣ , (1)

where n = 3, 4, 6, and φij is the angle between rproj

ij and a reference axis, which lies in Pi. Also, rproj

ij is the

projection on Pi of the bond between particle i and j. The sum over j runs over the Nb(i) neighbors of
particle i which are not in the same stack as i (the values for φij for j in the same stack as i are random
for both isotropic and columnar phases). Furthermore, particles i and j are defined to be in the same
stack if they are neighbors and their center-to-center distance rij is smaller than L + 0.2D. We then make
a distinction between particles with a columnar-like and an isotropic-like environment. Particle i has a
columnar-like environment if ψ6(i) > 0.6 and ψn(i) < 0.7 for n = 3, 4. We define ncol(i) to be the number
of particles in Ei that have a columnar-like environment. Those particles i that have ncol(i) ≥ 4 are called
columnar particles. Finally, two columnar particles are part of the same cluster, if they are neighbors.

Stack rotation moves

To speed up the equilibration of Monte Carlo simulations, especially the ones with hard cut spheres and
double hard cut spheres, we implemented Monte Carlo moves that are designed specifically to rotate short
stacks. We select a particle randomly and define a stack by the particles with a center-to-center distance
smaller than the 0.5D. The nematic axis of this stack is determined in the usual way [1] and a random
vector in the plane perpendicular to this axis is generated. The stack is rotated around this axis by ninety
degrees. Finally, the move is accepted if no overlaps are generated and rejected otherwise. This move can
easily be seen to obey detailed balance. Furthermore, the simulation is ergodic because regular rotation and
translation moves are also performed. Although the acceptance ratio of these moves is tiny 10−6, the small
number of moves that are accepted during the simulation do significantly speed up the simulation.

Coexistence

We simulate two coexisting phases, a columnar phase and an isotropic or cubatic phase, in a single,
rectangular simulation box. The initial configurations of these NPT MC simulations consist of two phases
of interest in contact. The simulation box has to be sufficiently long in the direction perpendicular to the
interface, such that the effect of the interface on either of the coexisting phases is small. While this dimension
fluctuates in the simulation, the other dimensions are kept fixed at the values obtained in a prior NPT MC
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FIG. S1. (a) The initial configuration of each of the simulations in which we determine the pressure at coexistence
between the isotropic phase and the columnar phase consists of a fluid phase and a columnar phase joined together
in a single simulation box for cut spheres after equilibration at P ∗ = 6.8. (b) Nematic order parameter S2 versus
the number of MC cycles in NPT simulations of cut spheres at pressures P ∗ ≡ βPvCS as labeled. The straight lines
are linear fits to the straigth sections of the curves. (c) The fits from (b) as a function of the pressure P ∗ and the
corresponding plot for double hard cut spheres. The straight lines are linear fits. The outlier for DHCS is too far
from coexistence to fall on a straight line (see text) and is therefore not included in the fit.

simulation of only the bulk positionally ordered phase (the columnar phase). In the latter simulation, all
three dimensions were allowed to adapt to a change in pressure. A typical snapshot of a simulation after
initial equilibration, during which the cubatic phase transforms into an isotropic fluid, is shown in Fig. S1(a).
In Fig. S1(b), the nematic order parameters as obtained from such simulations for cut spheres and a range of
pressures are shown. Clearly the cubatic phase transforms into the columnar phase for the pressures where
the fluid showed system-spanning cubatic order i.e. for P ∗ ≡ βPvHCS ≥ 7.75. This shows unambiguously
that the cubatic phase is not stable for any of the investigated densities.

Fits to the nematic order parameter [straight lines in Fig. S1(b)] near the coexistence can be used to
determine the coexistence pressure [3]. This process is shown in Fig. S1(c). The slope of the linear fits
to S2(t) is denoted dS2(t) / d t. The coexistence pressure is the pressure for which dS2(t) / d t = 0. The
growth speed can be shown to be proportional to D[exp(β∆µ) − 1] [4], where ∆µ is the supersaturation
(the chemical-potential difference between the two phases in contact) and D is the self-diffusion constant.
Near coexistence we use this to approximate dS2(t) / d t ' a∆µ = a

∫
(1/ρI − 1/ρC)dP ' b∆P , where ρI

and ρC are the densities of the isotropic and columnar phases, respectively. Furthermore, we assume that

Shape S d(S,Cyl) P ∗ ηI ηC ηcub
DHCS 0.00165836 6.304(7) 0.4639(4) 0.5336(3) 0.495(5)
HCS 0.00653491 6.710(8) 0.4788(4) 0.5502(3) 0.505(5)

OHSC [2] 0.02527792 8.276 0.5052 0.5705 0.57(1)

TABLE I. The pressures and packing fractions at coexistence between the isotropic (I) and columnar (C) phases for
HCS and DHCS from this work and for OHSC from Ref. [2]. Also shown is the Haussdorf distance d(S,Cyl) between
a cylinder (Cyl) and each of the three shapes S. Furthermore, the packing fraction ηcub at which the cubatic order
increases suddenly on increase of the density is listed in the last column.
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the pressure difference ∆P is small enough that all properties of the two phases in the simulation box are
approximately equal to those of the system at coexistence, such that a and b are approximately constant. In
practice, we fit a linear function to dS2(t) / d t as a function of P ∗ and calculate the pressure for which this
straight line intersects with the line dS2(t) / d t = 0 (the thick black line in Fig. S1). In Fig. S1(c), a point
far from the coexistence is plotted to show that deviations from linearity are indeed a real possibility. This
outlier is not included in the fit. The resulting coexistence data are listed in Tbl. I together with the data
for the OHSC for reference.

Difference between shapes

The difference between shapes as plotted in the phase diagram, Fig. 5 of the main text, is defined using the
Hausdorff distance [5]. In order to define this distance on shape space, which is commonly used in (convex)
geometry, we first define

d′(A,B) = max
x∈A

min
y∈B
|x− y| (2)

where A and B are solid (compact) bodies. The Hausdorff distance is then defined by

d(A,B) = max{d′(A,B), d′(B,A)}. (3)

For solid (compact) bodies, it can easily be seen that, for the two points x and y at a local minimum–
maximum in Eqn. (2), (i) x lies on the surface ∂A of body A, while (ii) y lies on ∂B, (iii) x−y is an outward
normal to the surface of A in x and (iv) x−y is also an outward normal to the surface of B in y (in the case
of a cusp at one of the two points, x−y has only to be normal to the path of the cusp at the point in question
and point away from the body in question). Maximizing over all such pairs (of which there are only a few,
if one takes into account the rotational symmetry) we can easily calculate the Hausdorff distance between
a cylinder and an oblate hard spherocylinder, a hard cut sphere or a hard double cut sphere where all the
shapes have the same aspect-ratio, volume and center-of-mass position and are co-aligned. The resulting
values for the Hausdorff norm are listed in Tbl. I.

Slow and collective dynamics

In Fig. S2(a), the translational and rotational diffusion constants divided by to the respective values at
η = 0.5 (near coexistence). The translational diffusion constant is defined as limt→∞〈|ri(t)− ri(0)|2〉/6t and
the rotational diffusion constant by limt→∞〈|∆ϕi(t)|2〉/6t, where ri(t) is the position of particle i at time t
and ∆ϕi(t) its angular displacement since time t = 0.
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FIG. S2. (a) The rotational and translational long time diffusion constants as a function of η relative to the value at
η = 0.5. For most of the density range the plots are nearl superimposed. (b) The chance Prot(r) = grot,rot(r)/grot,all(r),
where gs,s′(r) is the radial distribution function that measures the distribution of particles of type s′ around particles
of type s, and “all” denotes all particles, while “rot” denotes those particles that rotated more than 45 degrees
between two snapshots that were taken at time intervals of 5τMD.
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FIG. S3. (a) A particle (yellow) is misaligned with the columnar cluster (indicated by the red particles). (b) It slips
in between the particles of a stack (dark blue). (c) Together with one of the particles of the stack, it rotates and
becomes part of the columnar cluster.

The main mode of re-orientation is the collective rotation of the particle in a stack as can be seen in
Fig. S2(c), which shows that, when a particle rotates more than 45 degrees, more than 60% of its neighbors
with a center-of-mass distance smaller than 2L rotate along. This has consequences for the attachment to
the columnar cluster, as shown in Fig. S3.

Life time of the cubatic phase

According to classical nucleation theory, the supersaturation ∆µ ≡ µfluid−µcol drives the nucleation of the
columnar phase, where µfluid is the chemical potential of the isotropic/cubatic branch and µcol the chemical
potential of the columnar phase. As cubatic order is found at a much higher packing fraction for OHSC than
for HSC and DHCS and the packing fraction at the IC transition only increases weakly, the supersaturation
at this packing fraction ηcub where the cubatic order is first found is much higher for OHSC than for HCS.
However, the dynamics is also much slower. Nevertheless, the cubatic phase of OHSC transforms much faster
into the columnar phase for a packing fraction just above ηcub for OHSC, than the cubatic phase for HCS
at a packing fraction even a bit higher above ηcub than the OHCS system, as shown in Fig. S4. For lower
densities, the system of HCS never spontaneously transformed to the columnar phase in the time window
accessible in our simulations.
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FIG. S4. The nematic order parameter S2 for two systems as a function of the number of Monte Carlo cycles. The
first system contains OHSC at η = 0.58, 2% above the isotropic–cubatic transition ηcub, and the second HCS at
η = 0.58, 4% above ηcub.
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