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Simulation Techniques. We study perfectly sharp hard cubes with
edge length σ, using both Monte Carlo (MC) and event-driven
molecular dynamics (EDMD) simulations. In both types of simu-
lation, overlaps are detected using an algorithm based on the
separating axis theorem (1). According to this theorem, for any
two nonoverlapping convex bodies there exists an axis onto which
both shapes can be projected without overlapping. In other
words, if both shapes are projected onto this separating axis, the
resulting two intervals on the axis are disjoint. No such axis exists
if the particles overlap. For two convex polyhedral particles, only
a finite number of possible separating axes need to be checked:
The potential separating axes are either parallel to a normal of
one of the faces of either of the two particles, or perpendicular to
the plane spanned by one of the edges of the first particle and one
of the edges of the second particle. If none of these directions
correspond to a separating axis, the particles overlap.

For a cube-shaped particle a, all face normals and edges are
parallel to one of the three perpendicular axes ua;i of unit length,
with i ∈ f1; 2; 3g. Thus, the fifteen potential separating axes for
two cubes are given by ua;i, ub;i, and ua;i × ub;j. To calculate the
projection of both particles onto a potential separating axis L, it is
convenient to take the center ra of particle a as the origin, and
placing particle b at position d ¼ rb − ra. Because the particles
are convex, it is sufficient to project the vertices of each particle
onto L. For particle a, the positions of the vertices are given by
ð�ua;1 � ua;2 � ua;3Þσ∕2. The projections onto L are thus con-
tained in the interval ½−RaðLÞ; RaðLÞ�, with

RaðLÞ ¼
σ
2∑

3

i¼1

jua;i · Lj: [S1]

Here, we have taken the separating axis L to be of unit length.
Similarly, the projections of the vertices of particle b are in an
interval centered around d · L with radius

RbðLÞ ¼
σ
2∑

3

i¼1

jub;i · Lj: [S2]

If L is a separating axis, these intervals are non-overlapping. In
that case,

d · L > RaðLÞ þ RbðLÞ: [S3]

If this inequality holds for any one of the potential separating
axes, the two particles do not overlap. We can use Eq. S3 to de-
sign a distance function f for two particles:

f ða; bÞ ¼ max
L

fd · L − ðRaðLÞ þ RbðLÞÞg; [S4]

where the maximum is taken over all potential choices for L. The
function f ða; bÞ is negative whenever the particles a and b over-
lap, and positive when they do not. Additionally, f is continuous
as a function of translations and rotations of either particle. To
predict collisions in the EDMD simulations, we use numerical
root-finding algorithms to find the roots of f as a function of time,

following the methods used in ref. 2. An Andersen thermostat
was used to keep the temperature in the EDMD simulation fixed:
At fixed time intervals, a random selection of particles are given a
new velocity and angular velocity drawn from a Maxwell–Boltz-
mann distribution (3). The standard unit of time in EDMD simu-
lations is given by τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
βmσ2

p
, where m is the mass of a cube,

and β ¼ 1∕kBT with kB Boltzmann’s constant andT the tempera-
ture. The simulations of crystals with NL ¼ 64;000 lattice sites
were run for at least 500τ, after which no further changes to the
lattice structure were observed. To determine the density profiles
(Fig. 1) and the global positional order (Fig. 2) in these simula-
tions, snapshots were taken every 8τ, and the Gglobal was calcu-
lated and averaged over the last 20 snapshots. To determine
equations of state, simulations with NL ¼ 8;000 or 9,000 lattice
sites were allowed to run for at least 2;500τ, with simulations near
the coexistence region being up to four times longer to compen-
sate for longer correlation times in the system.

Direct Observation of Fluid-Solid Coexistence. We observed coexis-
tence between the fluid and solid phase for packing fractions
0.455 ≤ η ≤ 0.485 in EDMD simulations of N ¼ 64;000 parti-
cles starting from a defect-free simple cubic crystal state. Typical
snapshots of resulting configurations are shown in Fig. S1. The
largest crystalline cluster in the system was found based on the
local bond order parameter q4 (4). As the density increases, the
shape of the interface goes through a series of stages (5): a
roughly spherical crystalline cluster in a majority disordered fluid
phase (η ¼ 0.45), a cylindrical crystalline cluster spanning the si-
mulation box in one direction in a fluid phase (η ¼ 0.455), two
slab-like regions of fluid and solid separated by planar interfaces
(0.46 ≤ η ≤ 0.47), and a majority crystal phase containing either
a cylindrical fluid cluster (0.475 ≤ η ≤ 0.48) or small pockets of
fluid in a crystal phase (0.485 ≤ η ≤ 0.49). This sequence of
phase coexistence is typical of a first-order phase transition (5).

Spontaneous Vacancy Formation. As discussed in the main text,
simulations of N ¼ 64;000 particles performed at packing frac-
tions η ¼ 0.52–0.54 and initialized with no vacancies displayed
unusual behavior. In particular, in many cases, the underlying
cubic lattice that started out commensurate with the simulation
box rotated during the simulation. In the remaining cases, the
system spontaneously increased the number of lattice sites. These
two cases are shown in Fig. S2.

Common Tangent Construction. The plot in Fig. S3 shows the com-
mon tangent construction discussed in the main text. The solid
line was obtained by minimizing the free energy with respect to
the net vacancy concentration for a range of packing fractions,
and by fitting the resulting data with a high-order polynomial.
The fluid line is the result of a thermodynamic integration of the
fluid equation of state.

Mean Squared Displacement. Fig. S4 shows the mean squared dis-
placement as a function of time in the vacancy-rich crystal phase
for packing fractions η ¼ 0.52 and 0.56. The points are measured
in EDMD simulations with NL ¼ 8;000 particles, with the num-
ber of vacancies corresponding to the equilibrium concentration
as determined from the free energy calculations.
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Fig. S1. Snapshots of EDMD simulations with N ¼ 64;000 hard cubes, at a range of packing fractions in the coexistence region. For each snapshot, clusters
were determined based on q4. Particles in the largest solid cluster are shown at actual size, while the other particles are displayed much smaller. Although the
phase that coexists with the fluid for η ≤ 0.485 looks disordered, it has at least local simple-cubic-like positional order, as indicated by the q4 criterion. However,
we cannot exclude the possibility that the positional order is only finite ranged, which would be indicative of a cubatic phase.

Fig. S2. Peaks in the 2D projection of the density profile in two simulations of hard cubes at packing fractions η ¼ 0.52 (Left) and η ¼ 0.525 (Right). For both
simulations, the initial configuration was a simple cubic crystal ofN ¼ 403 particles and NL ¼ 403 lattice sites (i.e., no vacancies). However, the number of lattice
sites was found to change spontaneously by either the addition of extra layers (Left) or rotation of the crystal structure (Right). The red lines in the picture on
the left indicate the 41 evenly spaced layers in both directions.
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Fig. S3. The common tangent construction used to determine the bulk coexistence between the fluid and the solid phase in hard cubes. The plot shows the
fluid free energy (left), solid free energy (right), and the common tangent (dashed line). Note that a linear function with a constant slope c ¼ 18.42 has been
subtracted for clarity. This does not influence the resulting coexistence.
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Fig. S4. Mean squared displacement as a function of time for two systems of cubes with NL ¼ 8;000 lattice sites. The vacancy concentrations used for packing
fraction η ¼ 0.52 and 0.60 were α ¼ 0.029 and 0.0027, respectively. The lines are fits through the linear part of the data, with the slope proportional to the long-
time self-diffusion constant.
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