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Supporting Experimental Methods. Particle synthesis. Linear polystyr-
ene spheres. Monodisperse linear (not cross-linked) polystyrene
spheres of 1.42 μm in diameter were synthesized by dispersion
polymerization. For this 126 mL ethanol (200 Proof), 14 mL deio-
nized water, 10 mL styrene (Reagant Plus, Sigma Aldrich),
0.136 g asobisisobutyronitrile (AIBN) and 5.0 g polyvinylpyrroli-
done (PVP, K30,Mw ¼ 40 kg∕mol) were measured into a 200 mL
round bottom flask, closed with a rubber septa and sealed with
Teflon tape. To commence polymerization, the flask was im-
mersed in a 75 °C oil bath with its axis of rotation at roughly a
60° angle. Polymerization was carried out for 20 h while rotating
the flask at 60 rpm.

Cross-linking of the polystyrene spheres. Typically, an aliquot of a
10% w∕w linear polystyrene dispersion was washed with metha-
nol and redispersed in 10% w∕w aqueous polyvinyl alcohol (PVA,
Mw ¼ 89–98 kg∕mol, 87–89% hydrolized) twice. After a third
centrifugation step the pellet was redispersed with 1% w∕w aqu-
eous PVA such that the obtained colloidal dispersion had a
weight fraction of approximately 20% w∕w. For cross-linking
the polystyrene particles, a procedure by Kim et al. was followed
(1). A swelling emulsion consisting of 1% w∕w aqueous PVA so-
lution (Mw ¼ 89–98 kg∕mol) and 20% v∕v styrene containing
1.5% v∕v divinylbenzene, 10% v∕v TMSPA (3-(trimethoxysilyl)
propyl acrylate , Sigma Aldrich) and 2% w∕w V65B (2,2′-azodi
(2,4′-dimethylvaleronitrile), initiator)) was prepared either by tip
sonication (Branson Sonifier 150, speed 8 for 2 min), or by homo-
genization (UltraTurrax 20, 8000 rpm for 4 min). The volume of
the swelling emulsion was chosen such that a swelling ratio of 4
was achieved, where we define the swelling ratio as S ¼
mmonomer∕mpolymer (2). Polymerization was carried out for 24 h
while rotating in a 70 °C oil bath.

The final cross-linked particles were 2.41� 0.04 μm in dia-
meter. During this step, the surface of the particles became cor-
rugated by adsorption of polystyrene particles nucleated during
polymerization, as depicted in Fig. S1B. The diameter of these
secondary particles was roughly 0.18 μm. The dispersions of
cross-linked polystyrene spheres were washed by centrifugation
and redispersion in 1% w∕w aqueous PVA solutions (Mw ¼
89–98 kg∕mol) three times.

Protrusion formation.To obtain smooth protrusions on the cross-
linked polystyrene seed particles, the previous step was repeated.
A 20% w∕w colloidal dispersion of cross-linked polystyrene seed
particles (CPS) was swollen with an emulsion consisting of 1%
w∕w aqueous polyvinyl alcohol solution (Mw ¼ 89–98 kg∕mol)
and styrene containing 1.5% v∕v divinylbenzene and 2% w∕w
V65B. The protrusions formed by phase separation induced by
an overswelling of the particles (3) have a smooth surface. They
were polymerized by tumbling in an oil bath at 70 °C for 10 h. The
volume of the protrusions relative to the seed particles is deter-
mined by the swelling ratio S and is continuously tunable. We
note here that some batches of cross-linked seed particles pro-
duce more than one protrusion, possibly due to an inhomoge-
neous cross-link network. To obtain monodisperse, uniform
particles we proceeded with a batch of seed particles that only
yielded one protrusion per particle during this step.

For colloids with protrusions smaller than the seed particles,
the seed dispersion was swollen with a 10% w∕w emulsion (swel-
ling ratio S ¼ 2). The final particles have a protrusion radius of
1.11� 0.06 μm (smooth side, polydispersity (pd) 2.9%) and a

seed radius of 1.46� 0.06 μm (rough side, pd 2.2%). The total
length is 4.9� 0.12 μm (pd 2.9%). The roughness inducing sec-
ondary particles have a diameter of 185� 30 nm (pd 16%). A
SEM image of the obtained particles is shown in Fig. S1C.
Furthermore, large rough spheres of radius 1.6� 0.1 μm are em-
ployed in the experiments.

To fabricate colloids with protrusions larger than the seed
particles a 20% w∕w swelling emulsion with swelling ratio S ¼ 4
was employed. The final anisotropic particles have a protrusion
radius of 1.66� 0.06 μm (smooth side) and a seed radius of
1.19� 0.05 μm (rough side). The total particle length is 4.70�
0.15 μm (pd 3.2%). The roughness inducing spheres have a dia-
meter of 182� 40 nm (pd 22%). A scanning electron micrograph
(SEM) is shown in Fig. S1E.

The colloidal dispersion was washed by centrifugation until all
secondary nucleated particles were removed. They were redis-
persed in 0.3% w∕w aqueous polyvinyl alcohol solution (Mw ¼
30–50 kg∕mol) to decrease the layer thickness of the steric sta-
bilization. A schematic of the synthesis of polystyrene dimers with
a rough and a smooth side is depicted in Fig. S1.

Characterization. Microscopy. Polymerized samples were imaged
using a scanning electron microscope (SEMXL FEG 30, Philips).
The dried samples of particles were sputter coated with 4 nm pla-
tinum/palladium prior to imaging. Light microscopy was per-
formed with a Zeiss Axioplan microscope using an oil
immersion lens (NA ¼ 1.4, 100× magnification). Pictures were
captured with a Basler scout camera and saved to disk using
Streampix.

Dynamic light scattering (DLS). To measure the polymer sizes,
DLS was performed with a Malvern Zetasizer ZS at a scattering
angle of 173°.

Zetapotential. The surface-, or zetapotential, of the dimers was
measured to be Ψ ¼ 0.6 kBT by laser Doppler electrophoresis
with a Malvern Zetasizer ZS.

Coating of the glass capillaries. To prevent the particles from ad-
sorbing at the glass slide in the presence of depletant, a coating
was applied to the glass capillaries (4). For this, a pipette tip was
connected to 50 mm borosilicate glass capillaries via elastic tub-
ing and PTFE tape. Successively, 0.5 mL 1 M aqueous KOH
(Merck), 0.5 mL millipore water, 0.5 mL 1% w∕w aqueous poly-
ethyleneimine (Fluka,Mw ¼ 60 kg∕mol, 50% aqueous solution),
0.5 mL millipore water, 0.5 mL 1% w∕w aqueous dextran sulfate
sodium salt (Acros Organics) and 0.5 mL millipore water were
run through the capillaries. To remove excess polymer and salt,
the capillaries were then placed in Millipore water for 10 mins
and dried with nitrogen gas.

Microscope sample preparation. The samples were prepared by
mixing of aqueous solution of polymer, colloidal dispersion,
20 mM NaCl (unless stated otherwise), and millipore water.
All components contained 7.7 mM sodium azide (extra pure, Ac-
ros Organics) to prevent bacterial growth. The colloidal volume
fraction was chosen to be 0.3% w∕w. For depletion interaction,
dextran polymers of Mw ¼ 110 kg∕mol (Fluka) and Mw ¼
500 kg∕mol (Sigma Aldrich) were dissolved in 7.7 mM aqueous
sodium azide (NaN3). After preparation, the samples were filled
in the capillaries and sealed with UV sensitive glue onto micro-
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scope slides. To prevent sedimentation the microscope samples
were rotated at 10 rpm (VWR stage).

Supplementary Computational Methods. Effective pair potentials be-
tween colloidal spheres with rough or smooth surfaces.The colloidal
particles with a rough surface are modeled as hard spheres with
diameter σr at positions Ri coated with small hard spheres on the
colloidal surface. We consider Nc coated particles with orienta-
tions ω̂i and Np polymers with diameter σp at positions rj in a
macroscopic volume V at temperature T. The polymer diameter
σp ¼ 2rp is taken to be twice the radius of gyration rp. The col-
loidal particles are described by a pairwise colloid-colloid inter-
action HamiltonianHcc ¼ ΣNc

i<jϕccðRij; ω̂i; ω̂jÞ, a pairwise colloid-
polymer HamiltonianHcp ¼ ΣNc

i¼1Σ
Np

j¼1ϕcpðRi − rj; ω̂iÞ, and a poly-
mer-polymer Hamiltonian Hpp ≡ 0 as the polymers are assumed
to be ideal. Here we introduced the colloid-colloid pair potential
ϕcc and the colloid-polymer pair potential ϕcp given by

βϕccðRij; ω̂i; ω̂jÞ ¼
�
∞ for ξðRij; ω̂i; ω̂jÞ < 0

0 otherwise

βϕcpðRi − rj; ω̂iÞ ¼
�
∞ for ξðRi − rj; ω̂iÞ < 0

0 otherwise
;

where β ¼ ðkBTÞ−1 with kB the Boltzmann constant, and where
Rij ¼ Ri − Rj, ξðRij; ω̂i; ω̂jÞ denotes the surface-to-surface dis-
tance between two coated particles, and ξðRi − rj; ω̂iÞ is the sur-
face-to-surface distance between a coated particle and a polymer
coil. The total interaction Hamiltonian of the system of interest
reads H ¼ Hcc þHcp. The kinetic energy of the polymers and
the colloids is not considered here explicitly, as it is trivially ac-
counted for in the classical partition sums to be evaluated below.

We map the binary mixture of coated particles and ideal poly-
mers with interaction Hamiltonian H onto an effective one-com-
ponent system with Hamiltonian H eff by integrating out the
degrees of freedom of the polymer coils. Our derivation follows
closely that of ref. (5).

We consider the system in the ðNc; V ; zp; TÞ ensemble, in
which the fugacity zp ¼ Λ−3

p expðβμpÞ of the polymer coils is fixed,
with Λν the thermal wavelength of species ν ¼ c; p, and with μp
the chemical potential of the polymers. The thermodynamic po-
tential FðNc; V ; zp; TÞ of this ensemble can be written as

exp½−βF� ¼ ∑
∞

Np¼0

z
Np
p

Nc!Λ
3Nc
c Np!

Trc Trp exp½−βH�

¼ 1

Nc!Λ
3Nc
c

Trc exp½−βH eff �; [S1]

where the trace Trc is short for the volume integral ∫ VdR
Nc

∫ Ωdω̂
Nc over the coordinates and orientations of the coated par-

ticles, and similarly Trp ¼ ∫ Vdr
Np . The effective Hamiltonian of

the coated particles can be written as

H eff ¼ Hcc − zpV f ; [S2]

where zpV f ¼ zpV f ðfRg; fω̂gÞ is the negative of the grand poten-
tial of the fluid of ideal polymer coils in the static configuration of
Nc coated colloids with coordinates fRg and orientations fω̂g.
Here Vf ðfRg; fω̂gÞ is the free volume of the polymers in the con-
figuration of the colloids. Because of the ideal character of the
polymer-polymer interactions it can be written explicitly as

Vf ¼
Z
V
dr exp

�
−∑

Nc

i¼1

βϕcpðRi − r; ω̂iÞ
�
: [S3]

Non-vanishing contributions to Vf stem from those positions r
that are outside any of the Nc depletion shells. The shape of
the free volume is highly irregular and non-connected. We de-
compose Vf , formally, into zero-colloid, one-colloid, two-colloid
contributions, etc., by expanding it in terms of the colloid-poly-
mer Mayer-function f ðRi − r; ω̂Þ, which for the present model
equals −1 for ξðRi − r; ω̂Þ < 0, and 0 otherwise. One finds

Vf ¼
Z
V
dr

YNc

i¼1

ð1þ f ðRi − r; ω̂ÞÞ

¼ V þ∑
Nc

i¼1

V ð1Þ
f ðRi; ω̂iÞ þ∑

Nc

i<j

V ð2Þ
f ðRi; Rj; ω̂i; ω̂jÞ þ⋯ [S4]

For k ≥ 1, the k-colloid contribution reads

V ðkÞ
f ¼

Z
V
dr

Yk
m¼1

f ðRim − r; ω̂im Þ; [S5]

where only those positions r give non-vanishing contributions
where the depletion layers of (at least) k colloids overlap simul-
taneously.

We give explicit expressions for V ðkÞ
f for k ¼ 1 and 2 for equal-

sized colloidal hard spheres with a smooth surface. It follows di-
rectly from Eq. S4 that the one-body contribution V ð1Þ

f ¼ −v1
with v1 ¼ πσ3

cp∕6 and σcp ¼ ðσr þ σpÞ∕2, which can be inter-
preted as the volume that is excluded for a polymer coil by a sin-
gle colloid. V ð2Þ

f ðRi; RjÞ is the lens-shaped overlap volume as
depicted in Fig. 1B of two spheres of radius σcp at separation

Rij ¼ jRi − Rjj. We note that −zpV
ð2Þ
f ðRijÞ ≡ βϕAOðRijÞ is the

well-known depletion potential of the AO model (6, 7), which
was derived by Asakura and Oosawa as well as Vrij (8, 9).
The effective pair potential ϕeffðRijÞ ¼ ϕccðRijÞ þ ϕAOðRijÞ
reads

βϕðRijÞ

¼

8>>><
>>>:

∞ for Rij < σr

− πσ 3
p zp
6

ð1þqÞ 3
q3

�
1− 3Rij

2ð1þqÞσr þ
R3

ij

2ð1þqÞ3σ 3
r

�
for σr <Rij < σr þ σp

0 for Rij > σr þ σp

:

This Asakura-Oosawa pair potential describes an attractive well
close to the surface of the colloid, whose depth increases linearly
with increasing zp. The range of the potential is given by σp.

Similarly, we define an effective depletion potential for our
coated spheres, which depends explicitly on the orientation of
the coated spheres.

βϕeffðRij; ω̂i; ω̂jÞ ¼ βϕccðRij; ω̂i; ω̂jÞ

− zp

Z
V
drf ðRi − r; ω̂iÞf ðRj − r; ω̂jÞ: [S6]

The three- and more-body contributions V ðkÞ
f with k ≤ 3 will be

zero when the radius of gyration of the polymer coils is suffi-
ciently small compared to the size of the colloids. The mapping
of the full Hamiltonian of the colloid-polymer mixture can
then be mapped exactly onto an effective Hamiltonian with only
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effective pairwise additive interactions, since three colloidal
spheres cannot simultaneously overlap with a polymer coil. If
the relaxation of the orientation degrees of freedom is much fas-
ter than that of the translational degrees of freedom, and the
coated particles are sufficiently isotropic, we can perform a
further coarse-graining by integrating out the orientational de-
grees of freedom of the effective interactions. The orientation-
averaged effective pair potential reads

βϕeffðRijÞ ¼ − log
�

1

16π2

Z
Ω
dω̂i

Z
Ω
dω̂j exp

�
−βϕccðRij; ω̂i; ω̂jÞ

− zp

Z
V
drf ðRi − r; ω̂iÞf ðRj − r; ω̂jÞ

��
: [S7]

Since the integrals over the orientations of the particles cannot be
solved directly, we perform the orientation average by evaluating
the integrand for many different random orientations. We have
checked the convergence of our integrations.

In order to generate colloidal particles coated with small par-
ticles onto the surface, we perform Monte Carlo simulations of a
binary mixture of oppositely charged particles in the NVTensem-
ble. The particles are assumed to interact with Yukawa interac-
tions and we choose a negative charge on the small particles and a
positive charge on the large particles. The charge magnitude was
increased until all the small particles were attached onto the sur-
face of the large particles. The structure of the small particles on
the surface of the large particles can be tuned by the inverse
screening length κσr in the Yukawa interaction of the particles.
For low κσr the small particles are evenly distributed and very
structured while for high κσr there is much more disorder in the
coating of the small spheres. Using κσr ¼ 10, the resulting con-
figurations gave the best match with the coated particles as em-
ployed in the experiments and as shown in Fig. 1A.

Once the two particles have been created they are placed next
to each other in a cubic simulation box and 1 × 105 random
orientations of the two particles are sampled. For the first 1000
non-overlapping configurations, we determine the effective pair
potential. If non-overlapping configurations were found the par-
ticles are moved closer together and again orientations are gen-
erated and the potential calculated. To calculate the free volume
we divide the space into cells. To calculate the overlap volume in
each cell we first check whether the cell is completely embedded
in the overlap volume or falls completely outside the overlap vo-
lume. If neither is the case the cell is divided into eight subcells
for which we perform the same procedure. This is repeated until
the volume of the cell is smaller than 1 × 10−5σ3

r , the algorithm
then randomly generates ten points to estimate the overlap vo-
lume in this cell. The final overlap volume is than the sum of
the overlap volumes of all cells. We tested the accuracy of this
method for two spheres and the difference between the analytic
expression and the calculation is less than 1 × 10−5σ3

r .
We calculated the effective pair potential for two rough

spheres including the rough surface layer and the effective pair
potential for a rough and a smooth sphere. The smooth spheres in
this system have a diameter of σs ¼ 2.22 μm, the rough spheres
have a diameter of σr ¼ 2.92 μm including the rough surface
layer, the small spheres that form the roughness have a diameter
of 185 nm and the polymers have diameters of 38 nm. In Fig. 1C
we plot the effective pair potential between two smooth spheres,
two rough spheres and one rough and one smooth sphere for a
polymer reservoir density ρr

p ¼ 0.038 ρoverlap. We find significant
attraction between the smooth spheres, while the attraction be-
tween a rough and a smooth sphere and between two rough
spheres is negligible.

Direct simulations. We model the system as N asymmetric dumb-
bells consisting of a rough sphere and a smooth sphere in volume

V with ideal polymer of density ρp and diameter σp. The dia-
meters of the rough and smooth spheres are σr ¼ 2.92 μm and
σs ¼ 2.22 μm, respectively. The effective pair potential for two
smooth spheres is given by the Asakura-Oosawa depletion poten-
tial (6), where σr is replaced by σs and q ¼ σp∕σs is the size ratio
between the polymer and smooth spheres. The rough spheres are
treated as hard spheres and the effective pair potential between
rough and smooth spheres are assumed to be hard-sphere-like.
We use Monte Carlo simulations in the canonical ensemble
(NVT) to calculate the probability distribution of the cluster size
PðnÞ ¼ NðnÞ∕Σnmax

n¼1NðnÞ, whereNðnÞ is the number of clusters of
size n in a system containing N ¼ 1000 dumbbells at a packing
fraction of 0.003. To improve mobility of clusters containing more
than one particle, cluster moves are introduced which collectively
move all particles that are part of the same cluster. Particles are
considered to be part of the same cluster if the distance between
their smooth spheres is less than the attraction range σs þ σp.
Fig. S2 shows typical configurations of the MC simulations for
two polymer sizes, σp ¼ 38 and 16 nm. We clearly observe the
formation of micelle-like clusters in addition to single dumbbell
particles. The cluster size distributions are shown along with the
experimental one in Fig. 3C for σp ¼ 38 nm and in Fig. S6 for
σp ¼ 16 nm. Finally, we present typical configurations of the clus-
ters containing n ¼ 1 to n ¼ 15 particles in Fig. 2 together with
the experimental images.

Free energy calculations. The free energy of clusters of different
sizes can be calculated using grand-canonical Monte Carlo
(GCMC) simulations on single clusters. A similar method has
previously been used to study the formation of micelles from sur-
factants (10). We model the particles in the same way as in the
direct Monte Carlo simulations, and assume that the gas of clus-
ters is sufficiently dilute to behave as an ideal gas. The partition
function for the total system of clusters is then given by:

Q ¼
Y∞
n¼1

QNn
n

Nn!
; [S8]

Qn ¼ 1

ð4πÞnΛ3nn!

Z
V
drn

Z
dnn expð−βUðrn; nnÞÞhðrn; nnÞ;

[S9]

where Nn is the number of clusters of size n, Λ is the coarse-
grained length scale (e.g. in atomic systems the De Broglie wa-
velength), β ¼ 1∕kBT, and rn and nn denote the positions and
orientations of the dumbbell particles, respectively. The function
hðrn; nnÞ equals 1 if the particles with centers rn and orientations
nn form a single cluster, and 0 otherwise. For an ideal gas of these
particles, with only clusters of size 1, this yields the ideal gas free
energy βF∕N ¼ log ρΛ3 − 1. The partition function can also be
written as:

Q ¼
Y∞
n¼1

ðV∕Λ3ÞNn

Nn!

�
Qn

Q1

�
Nn

: [S10]

Here,Qn∕Q1 is the ratio of the partition function of a cluster of n
particles to that of a cluster of one particle. This ratio can be mea-
sured from a grand-canonical Monte Carlo simulation, at fixed
chemical potential μ. In a GCMC with the additional constraint
that all particles should form a single cluster, the probability PðnÞ
of observing a cluster of size n obeys:

PðnÞ
Pð1Þ ¼ exp½βμðn − 1Þ�Qn

Q1

: [S11]
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Hence, the ratios Qn∕Q1 can be directly obtained from the
GCMC simulations. These ratios are independent of μ, although
simulations at different values of μ can be employed to sample all
cluster sizes.

To find the cluster distribution of a system with an overall
particle density ρ, we simply minimize the free energy F ¼
−kBT logQ with respect to the number of clusters of each size.
This yields:

ρnΛ3 ¼ ðρ1Λ3Þn expð−βðf n − f 1ÞÞ; [S12]

with f n ¼ −kBT logðQnÞ the free energy of a cluster of size n.
From this, it is straightforward to calculate the cluster size distri-
bution for any overall system density. Note that the choice of Λ
does not influence the results.

To measure the cluster free energies f n, we simulate single clus-
ters, and reject all moves that would break up this cluster. Apart
from translation and rotation moves, we insert and remove par-
ticles according to a standard GCMC scheme, again restricting
the system to single clusters. The box volume has no influence
on the outcome of the simulation, as insertions will only be ac-
cepted near the cluster. In fact, only insertions inside the attrac-
tive wells of existing particles can be accepted without resulting in
two separate clusters, so only insertion moves inside those wells
are attempted. The volume in the normal acceptance rule for a
GCMC insertion move is then replaced by the volume of n sphe-
rical shells with the size of the attractive well, where n is the num-
ber of particles in the system. As the potential wells of multiple
particles can overlap, a correction is required to satisfy detailed
balance when a particle is inserted into the attractive well of more
than one neighboring particles. After normal acceptance, the
move is only accepted with a probability of 1∕k, where k is the
number of overlapping wells at the point of insertion.

To calculate the cluster size distributions, the free energy of a
range of cluster sizes is needed. As the resulting cluster size can
be very sensitive to the chemical potential, it is more convenient
to set μ ¼ 0, and to implement a standard Umbrella Sampling
scheme to sample the required cluster sizes instead. To improve
sampling speed at high interaction strengths, we use parallel tem-
pering. Each simulation contains a number of separate clusters,
each at a different interaction strength, but biased towards the
same cluster size. While the different clusters do not interact,
a new Monte Carlo move is introduced that swaps configurations
of two different interaction strengths.

If the interactions are weak, the distributions obtained from
free energy calculations closely match those from the direct simu-
lations. However, when the interactions are strong enough that
larger clusters are formed, the equilibrium distributions show a
strong preference for specific cluster sizes much larger than those
seen in the direct simulations (see Fig. S3). Clusters around size
10 are not found in significant quantities for any interaction
strength. In particular, at the packing fraction and interaction
range used in the experiments and the direct simulations, cluster
sizes 19, 20, 22, and 23 all appear as common cluster sizes, de-
pending on the polymer concentration. Figures of typical clusters
of these sizes are shown in Fig. S4. These clusters all display a
large number of bonds per particle, and the smooth spheres in
the micelles show crystalline order, with a tetrahedral structure
(marked in pink) at the center. Forming these clusters sponta-
neously would require a large number of reorganizations includ-
ing breaking several bonds. As explained earlier, this will not
happen within a reasonable time scale.

It is interesting to note that the cluster sizes preferred in these
distributions do not always maximize the number of bonds per
particle, which would minimize the potential energy of the clus-
ter. For example, from the clusters of sizes 19, 20, 22, and 23
shown in Fig. S4, the lowest-energy cluster is size 22, with 6.545
bonds per particle, but this size is not particularly common in

the distributions in Fig. S3. Clearly, entropic effects still need
to be taken into account to predict what clusters will appear more
often.

Supplementary Derivations. Interaction potential. The short ranged
depletion attraction between the colloids is significantly lowered
by the screened Coulomb repulsions. We take the attractive de-
pletion potential to be Eq. S6 and the screened Coulomb poten-
tial to be:(11)

uelðxÞ ¼
Ψ2ðσs∕2Þ2

λBx
exp½−κðx − σsÞ�; [S13]

where σs is the diameter of the smooth side of the colloids, Ψ ¼
0.6 kBT is the zetapotential of the particles measured by laser
doppler electrophoresis, λB ¼ 0.71 nm is the Bjerrum length in
water, and κ is the inverse of the Debye screening length, and
x is the distance between the centers of the two particles. At
20 mM NaCl, κ ≈ 0.5 nm−1. The Asakura-Oosawa potential
(AO) is plotted together with the screened Coulomb repulsion
(C) in Fig. S5. For polymer concentrations at which clustering
was observed, the minimum of the total potential (tot) is roughly
−5 kBT for the polymer with 8 nm radius (Fig. S5A), and −17
kBT for polymer with 19 nm radius (Fig. S5B). Clearly, screened
Coulomb repulsion significantly reduces the short-ranged deple-
tion potential. However, the actual value for the interaction
strength may be different as the minimum of the potential energy
strongly depends on value of the zetapotential, namely as
uel ∝ Ψ2. The error associated with measuring the zetapotential
on anisotropic particles thus makes the values obtained from
screened Coulomb potentials approximative.

Escape rate for a single particle from a cluster. A particle diffusing
in an energy potential well uðxÞ with x the distance to closest
approach and minimum at position b can escape that well with
rate r ¼ τ−1. We numerically calculate the escape time τ using
Kramer’s approach (12):

τ ¼
Z

c

a
e−uðxÞ∕kBTdx

Z
e

b

1

DðyÞ e
uðyÞ∕kBTdy: [S14]

Because the interaction range and thus the separation between
interacting particles is short compared to the particle diameter,
the problem is essentially one-dimensional. Here, DðyÞ is the ef-
fective colloid diffusion constant in the well, which depends on
the separation y between the colloids due to lubrication effects
as: (13)

DðyÞ ¼ 8y
σs

D0; [S15]

D0 is the diffusion constant for an unperturbed particle and can
be calculated from the Einstein relation. Given the parameters in
our system, where we estimated the viscosity to be η ¼ 2 mPa·s
(14), the diffusion constant D0 is roughly 1 · 10−13 m2∕s.

We integrated the total potential as shown in Fig. S5 numeri-
cally for different numbers of bonds. To compare the results with
the experimental values for the escape times, we scale the energy
axis such that the minimum for one bond corresponds to −10 kBT
as was deduced from the simulations. We chose the values for the
integration boundaries as follows: a ¼ 5 nm and c ¼ 20 nm. The
precise values of a and c are arbitrary but irrelevant. The mini-
mum b is located at 10 nm, where again the precise value is not
critical. However, the result depends fairly strongly on the choice
of the upper integration limit e, see Eq. S14, which is the point
were we consider the particle to have escaped from the dimer.
Experimentally the particle must have traveled a few hundred
nanometers before the observer decides whether the particle
has escaped. Therefore, a natural choice for this boundary is a
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few hundred nanometers. Here we took e ¼ 400 nm. With this
input the escape time from a dimer is found to be 630 s. This
result seems consistent with direct observations from light micro-
scopy, where typically 10 min is observed for a particle to escape
from a dimer. For comparison, the theoretical time to reach a
hypothetical escape at d ¼ 38 nm, which is the range of the po-
tential, is 54 s. For the observer, the particle has not escaped yet,
even if it is outside the influence of the potential, because it still
has a large chance to diffuse back into the trap without the ob-
server noticing it had ‘escaped’.

If we calculate the escape time to break two bonds with the
escape distance being located at 400 nm we find 95 days. To break
three bonds it takes 4000 years according to these calculations
and to break five bonds about 1 · 1012 years. These long lifetimes
for more than one bond are consistent with the fact that we have
not observed such events in our experiments.

Supplementary experiments. Besides the experiments with dextran
polymer of rp ¼ 19 nm as depletant, we also employed a smaller
sized dextran polymer rp ¼ 8.9 nm in size. Fig. S6 shows trans-
mission light micrographs of samples at increasing polymer con-
centration. At a polymer concentration of ρp ¼ 0.16ρoverlap, the
depletion potential is insufficient to cause aggregation between
the colloidal particles. A slightly higher polymer concentration
of ρp ¼ 0.19ρoverlap induces attractions between the smooth,

small sides of the colloidal particles, leading to small clusters
of n ¼ 1 to n ¼ 4 colloids in size. Above polymer concentrations
of ρp ¼ 0.22ρoverlap formation of colloidal clusters with the attrac-
tive and smooth sides of the dumbbells at the inside occurs. All
data shown was taken after 9 days. The distributions for
ρp ¼ 0.16ρoverlap and ρp ¼ 0.19ρoverlap did not evolve anymore
after 1 day, the distribution for ρp ¼ 0.22ρoverlap did not evolve
significantly anymore after a few days. Qualitatively this aggrega-
tion behavior is comparable to the observations on the larger de-
pletant as shown in Fig. 3 of the manuscript. Quantitatively, there
are differences in the agreement of the cluster size distributions
of the experiments and simulations as shown in Fig. S6. Clearly,
only a weak agreement is obtained, with experiments showing a
wide range of clusters sizes in contrast to the peak found in si-
mulations. The range of the depletion potential is roughly the
diameter of the depletant, and thus, for the smaller polymer
shorter by more than a factor 2 compared to the larger polymer.
Within these short-ranged attractive potentials rearrangement of
the clusters is difficult and equilibration experimentally not
achievable within a reasonable time-scale. Estimates of the added
screened Coulomb-interaction and depletion interactions also in-
dicate a deeper minimum compared to the larger polymer. The
shorter interaction range and the stronger maximum attraction
are likely the cause for the increased equilibration times.
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Fig. S1. Schematic synthesis of patchy particles. (A) Linear polystyrene (LPS) spheres are crosslinked by swelling with an emulsion consisting of styrene,
divinylbenzene (DVB), and 3-(trimethoxysilyl)propyl acrylate (TMSPA). During polymerization, secondary nucleated particles render the particle surface rough
by adsorption. SEM image of the rough spheres is shown in B. A second swelling step with an emulsion consisting of styrene and DVB yields rough particles with
a smooth protrusion, as shown in C. (D) Transmission light micrograph of the particles in C. (E) SEM image of particles with smooth protrusions larger than the
rough seed particles.
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Fig. S2. Snapshots ofMonte Carlo simulations after 108 MC cycles performed on dimers with one attractive sphere (green) and one hard sphere (red) modeled
after the experimentally employed colloids. An attractive Asakura-Oosawa-Vrij potential between the green spheres of the dimers is induced by the addition of
polymers with a diameter (A) σp ¼ 16 nm, and (B) σp ¼ 38 nm. Micelle-like clusters are visible next to single colloids.
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Fig. S3. Equilibrium cluster size distributions of dumbbells consisting of a rough and a smooth sphere with size ratio σs∕σr ¼ 0.76 at various interaction
strengths (contact value ranging from 8 to 11 kBT ), using the experimental packing fraction η ¼ 0.003 and polymer size σp∕σs ¼ 0.02.
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Fig. S4. Typical clusters of common sizes in the equilibrium distributions. For each size, two snapshots are shown where the rough spheres are removed, and
one with the rough spheres included.

c

e

Fig. S5. A short-ranged screened Coulomb repulsion (C) reduces the Asakura-Oosawa (AO) depletion potential considerably, yielding an overall potential (tot)
with a much smaller absolute minimum energy. Potential energies are plotted as a function of the distance x between surfaces of the two spheres. (A) Shows
the potentials for rp ¼ 8.9 nm and ρp ¼ 0.2ρoverlap, and (B) for rp ¼ 19 nm and ρp ¼ 0.4ρoverlap. (C) Schematic interaction potential to illustrate the integration
boundaries used to calculate the Kramer’s escape time.
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Fig. S6. Cluster size distributions for experiments (bars) and simulations (symbol and line) for dextran polymer with radius rp ¼ 8 nm at concentrations
(A) ρp ¼ 0.16ρoverlap, (B) ρp ¼ 0.19ρoverlap and (C) ρp ¼ 0.22ρoverlap. The experimental cluster size distribution in C ranges from n ¼ 5 to n ¼ 15, whereas simula-
tions show a peak at n ¼ 10, probably induced by the long experimental equilibration time due to the short-ranged interactions. (D) Transmission light micro-
graph of sample C with ρp ¼ 0.22ρoverlap. Data taken 9 d after sample preparation.

Movie S1. This movie file shows the spontaneous unbinding and binding between two colloids consisting each of one larger rough and one smaller smooth
sphere in the presence of polymer (ρpðr ¼ 19 nmÞ ¼ 0.38ρoverlap). Note that after several binding attempts a bond between the colloids is only established at
the end of the movie. The movie was acquired at 30 fr∕s and it is displayed at 60 fr∕s. (Quicktime, 5 MB)

Movie S1 (MOV)
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Movie S2. This movie file shows a self-assembled colloidal micelle-like cluster. The colloidal particles assemble in the presence of depletion attraction with
their smooth and attractive sides at the interior of the clusters, whereas the rough, non-attractive sides are located at the outside. Despite its larger size, a
rough sphere does not take part in the cluster as it does not have a smooth surface. Polymer concentration is ρpðr ¼ 19 nmÞ ¼ 0.38ρoverlap. The movie was
acquired at 30 fr∕s and it is displayed at 30 fr∕s (Quicktime, 5 MB)

Movie S2 (MOV)

Movie S3. This movie file shows a typical, randomly selected full field of view of our sample containing free colloids as well as colloidal micelles. Polymer
concentration is ρpðr ¼ 19 nmÞ ¼ 0.38ρoverlap. The movie was acquired at 30 fr∕s and it is displayed at 60 fr∕s (Quicktime, 2.1 MB)

Movie S3 (MOV)
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