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Using simulations and theory, we show that the cubatic phase is metastable for three model hard

platelets. The locally favored structures of perpendicular particle stacks in the fluid prevent the formation

of the columnar phase through geometric frustration resulting in vitrification. Also, we find a direct link

between structure and dynamic heterogeneities in the cooperative rotation of particle stacks, which is

crucial for the devitrification process. Finally, we show that the lifetime of the glassy cubatic phase can be

tuned by surprisingly small differences in particle shape.
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Nucleation is the process whereby a metastable phase
transforms into a stable one via the spontaneous formation
of a cluster of the stable phase. According to classical
nucleation theory, the free-energy barrier that separates
the metastable phase from the stable state decreases with
increasing supersaturation, and for quenches in the spino-
dal regime, the phase transformation proceeds via spinodal
decomposition and coarsening. However, at sufficiently
high supersaturations the motion of the particles can slow
down so dramatically that the metastable state enters a
glass regime.

Vitrification hampers the phase transformation as the
particles cannot rearrange diffusively to form the stable
phase. However, some glasses can evolve into the stable
phase despite the arrested motion. The mechanism behind
this so-called ‘‘devitrification’’ process is not well under-
stood, and neither is the origin of the glass transition and its
interplay with nucleation. An intriguing scenario based on
geometrical frustration has been proposed, where the local
order in the liquid phase is incompatible with the long-
range order of the crystal phase [1]. Hence, the formation
of locally favored structures in the liquid, a concept pro-
posed by Frank to explain dynamic arrest in glassy systems
[2], prevents the crystallization. This scenario has been
investigated using a two-dimensional lattice-free spin glass
model, where the degree of frustration against crystalliza-
tion can be tuned by an additional anisotropic potential that
locally favors fivefold symmetry which is incompatible
with the crystalline ground state of this model [1].

In this Letter, we investigate the interplay between
nucleation, geometrical frustration, and devitrification in
a simple (more realistic) three-dimensional model system
of colloidal hard platelets using computer simulations. The
most common model systems for colloidal platelets are
hard cut spheres (HCS), which consist of the middle sec-
tion of thickness L of a sphere of diameter D, and oblate
hard spherocylinders (OHSC), composed of a flat cylindri-
cal core with diameter D and height L, and a toroidal rim

with tube diameter L. OHSC are more rounded than HCS
[see Fig. 1(a)], and are therefore expected to better model
the shape of colloidal disks, such as polymer-coated clay
platelets [3] or charge-stabilized gibbsite platelets [4].
Interestingly, for L=D ¼ 0:2, the phase diagram of
OHSC displays an isotropic-columnar (IC) phase transition
[5], whereas a very peculiar cubatic phase was reported in
between the isotropic and the columnar phase for HCS [6].
In this phase, the particles form small stacks of almost
cubelike dimensions, which tend to align perpendicular to
each other. Recently, it was shown that larger system sizes
tend to destabilize the cubatic phase [7,8]. However, it
remains an open question whether or not the cubatic phase
is thermodynamically stable for colloidal hard platelets.
Here, we show that the cubatic phase of different model

hard platelets is not stable, but should be considered as a
transient phase in the IC phase transformation. In addition,
we show that the degree of geometric frustration can be
altered via subtle changes in the particle shape: the lifetime
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FIG. 1 (color online). (a) Three model platelets: oblate hard
spherocylinders (OHSC), hard cut spheres (HCS), and double
hard cut spheres (DHCS). The volumes of the particles are given
by vOHSC ¼ �L3=6þ �2�L2=8þ ��2L=4 with � ¼ D� L,
vHCS ¼ �Lð3D2 � L2Þ=12, and vDHCS¼�L½3D2�ðL=2Þ2�=12
with L and D the (total) thickness and diameter of the particles,
respectively. (b) A typical configuration of a cubatic phase of
OHSC with L=D ¼ 0:2 and P� ¼ 11:25 (� ’ 0:57). Different
colors denote different orientations.
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of the cubatic phase increases considerably for particles
with sharper edges.

We first consider a suspension of N OHSC with aspect
ratio L=D ¼ 0:2 in a volume V or at a pressure P. This
system displays a bulk transition from an isotropic phase
with packing fraction �I � vOHSCN=V ¼ 0:5050 to a co-
lumnar phase with �C ¼ 0:5691 at pressure P� ¼
�PvOHSC ¼ 8:27, where � ¼ 1=kBT and vOHSC is the
volume of the OHSC particle [5].

In order to study the spontaneous formation of the
columnar phase from the isotropic fluid phase, we require
a cluster criterion that enables us to identify the columnar
clusters. Unfortunately, the cluster criterion that was intro-
duced to study nucleation of the nematic, smectic, and
crystal phase in systems of colloidal hard rods [10–12],
is not strict enough to identify columnar clusters. We
therefore developed a new cluster criterion that enables
us to detect hexagonal columnar clusters, which goes
beyond the identification of single columns [13].
Particles are considered eligible for inclusion into a co-
lumnar cluster if they have sufficient neighbors with co-
lumnar order. Neighbors are considered to have columnar
order when they have sufficient hexagonal order, as mea-
sured by a standard order parameter, but do not show high
ordering with another symmetry. See Supplemental
Material [14] for technical details on the cluster criterion.

We use event driven molecular dynamics (MD) simula-
tions of relatively large system sizes (N ¼ 1500, 3000, and
10 000) to study the kinetics of the IC phase transforma-

tion. Time is measured in units of �MD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�mD2
p

, where
m is the mass of an OHSC. For � � 0:56, we observe the
immediate formation of short stacks of OHSC in the super-
saturated isotropic fluid phase, which subsequently tend to
orient perpendicular to each other to optimize the packing.
The symmetry of these locally favored structures in the
resulting cubatic phase is incompatible with that of the
columnar phase, and hence the cubatic orientational order
can be seen as geometric frustration against the formation
of the columnar phase. The cubatic order is more pro-
nounced for higher � and smaller system sizes (N ¼
1500 and 3000). A typical configuration of such a cubatic
phase is shown in Fig. 1(b) for � ¼ 0:57. However, in very
long simulations the cubatic phase always transforms into
a columnar phase. In order to analyze the phase trans-
formation, we show the time evolution of the largest
columnar cluster identified by our cluster criterion in
Fig. 2(a) for � ¼ 0:56 and 0.57. We clearly observe that
the cluster grows much slower for lower � due to the
lower supersaturation. In addition, we present typical con-
figurations of postcritical columnar clusters in Figs. 2(b)
and 2(d). At a packing fraction of � ¼ 0:56, we observe
one columnar cluster that grows further to form the stable
columnar phase, while for � ¼ 0:57, three postcritical
clusters are observed as the nucleation barrier is much
lower. Interestingly, the nematic directors of the columnar

clusters are aligned along the three preferred axes of the
cubatic phase, where it originated from, see Fig. 2(d). We
conclude that the IC phase transformation proceeds via a
transient cubatic phase and corresponds to a nucleation and
growth scenario in which a spontaneously formed colum-
nar cluster grows out to form the stable columnar phase.
During MD simulations with N ¼ 10 000, we observe the
appearance of columnar clusters before long-range cubatic
order appeared after quick compression. In fact, this was to
be expected, as the time it takes for the cubatic order to
spread throughout the system increases with system size,
while the time for a nucleus to form in a fixed volume is
system size independent. Therefore, the behavior observed
in experiments, such as the Cryo-TEM experiments in
which the cubatic phase was observed [3], is largely de-
pendent on the sample volume, which for Cryo-TEM is
rather small to allow sufficiently fast shock-freezing of the
sample. This suggests that the cubatic phase may be sta-
bilized by confinement.
Additionally, we investigated the translational and ori-

entational dynamics of the particles in the supersaturated
fluid of OHSC. To this end, we calculate the mean square
translational displacement hjriðtÞ � rið0Þj2i and the mean
square rotational displacement hj�’iðtÞj2i (not shown),
where the angular brackets indicate an ensemble average,
riðtÞ and �’iðtÞ ¼

R

t
0 !iðtÞdt are the position and the
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FIG. 2 (color online). (a) The size of the largest columnar
cluster n in an MD simulation of an isotropic fluid of
N ¼ 10 000 OHSC with L=D ¼ 0:2 at packing fraction
� ¼ 0:56 and � ¼ 0:57. (b), (d) Typical configurations of the
largest columnar clusters, when the size of the largest cluster is
around 300 particles (postcritical) for � ¼ 0:56 (b) and
� ¼ 0:57 (d). Different colors of the particles denote different
orientations. Swiftly rotating fluid particles are denoted by
arrows pointing into the direction of the rotation; the other fluid
particles are not shown at all. (c) The rotational non-Gaussian
parameter [9] as a function of the time t in units of �MD (see text)
for � ¼ 0:5 and � ¼ 0:56.
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angular displacement [9], respectively, of particle i at time
t with ! the angular velocity. The corresponding transla-
tional and rotational diffusion constants measured in event-
driven MD simulations [14] show a clear slowing down of
the translational and rotational dynamics by about a factor
of ’ 5when the packing fraction is increased from� ¼ 0:5
to 0.56. The simultaneous slowing down of the transla-
tional and rotational dynamics should be contrasted with
the decoupling of the freezing of the translational and
rotational degrees of freedom that is found for hard ellip-
soids [15,16], as well for the attractive-repulsive Gay-
Berne ellipsoids [17,18]. We expect that the translational
and rotational dynamics are strongly coupled in all systems
that form stacks or columns in the isotropic fluid. This very
likely includes those experimental discotic systems that
display direct IC phase transition. The rotational dynamics
of such a system is investigated in Ref. [19].

Heterogeneous dynamics in the form of collective par-
ticle reorientations is found in the locally cubatic fluid, as
can be appreciated from Figs. 2(b) and 2(d), where we
represent all fluid particles that rotate swiftly by arrows
denoting the direction of the rotation. Quantitative evi-
dence for heterogeneous dynamics is given in Fig. 2(c),
where the rotational non-Gaussian parameter [9] defined as
�2;rotðtÞ � 3hj�’iðtÞ4i=5hj�’iðtÞj2i2 � 1 is shown. The

pronounced increase in the peak height of �2;rotðtÞ when
the density is increased from � ¼ 0:5 to � ¼ 0:56 is a
clear sign of the emergence of heterogeneous dynamics
[9]. We wish to remark here that the simultaneously rotat-
ing clusters can be easily identified here as small stacks of
up to four particles, which is impossible for glassy states of
spherical particles where heterogeneous dynamics cannot
be easily related to the local structure [21]. Similarly, the
growth of a columnar phase often proceeds by collective
attachment of small stacks rather than single particles [14].
Interestingly, the rotation of stacks also plays a crucial role
in the late-stage development of the columnar cluster.
Figure 3 shows a form of defect healing in which a stack
of misaligned particles in the columnar cluster first breaks
up into smaller stacks and, subsequently, these smaller
stacks reorient to conform with the director of the cluster.

As nucleation of a columnar phase from a glassy state
with cubatic order is hardly studied, it is interesting to
determine the nucleation barrier associated for this devit-
rification process. Since the equilibration can only proceed
via collective rearrangement of small clusters, the forma-
tion of the columnar phase is severely hampered by slow
dynamics. We determine the nucleation barrier by employ-
ing the umbrella sampling technique in Monte Carlo (MC)
simulations [10]. The resulting Gibbs free energy barrier
�GðnÞ as a function of columnar cluster size n for OHSC
with L=D ¼ 0:2 and � ¼ 0:550 and 0.569 is shown in
Fig. 4. As equilibration is rather slow due to glassy dynam-
ics, the noise on�GðnÞ is significant. However, we are able
to determine for the first time a nucleation barrier for a

devitrification process in which a glassy state transforms
into a stable phase via collective particle reorientations. We
also present typical configurations of the critical nucleus
that corresponds with the top of the barrier in Fig. 4 along
with the critical nucleus obtained from MD simulations at
� ¼ 0:56. We find that the results for the structure and
shape of the critical nucleus as obtained from MC or MD
simulations are very similar; i.e., the cluster consists of an
hexagonal array of particle stacks and the overall shape of
the cluster is roughly spherical. The barrier height is
��G�ðnÞ ’ 15 and 12 for � ¼ 0:550 and 0.569, respec-
tively. We mention here that the corresponding values for

FIG. 3 (color online). (a) A long stack of (green) particles,
which is oriented perpendicular to the nematic director of the
columnar phase, is divided in smaller packages of two to four
particles as shown in (b). Subsequently, these smaller packages
of particles can rotate by 90 deg as shown in (c) and (d) in such a
way that the orientation matches the columnar phase.

MD:

FIG. 4 (color online). Gibbs free energy ��GðnÞ as a function
of the number of particles n in the largest columnar cluster for a
system of OHSC with L=D ¼ 0:2 and packing fraction
� ¼ 0:550 and 0.569 (squares). The dashed line is a fit [22] to
classical nucleation theory. Configurations of the critical nucleus
are shown obtained from MC simulations for � ¼ 0:550 and
0.569 in the main panel and from MD simulations at � ¼ 0:56 in
the inset.
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the supersaturation ��� ¼ 0:414 and 0.553, which is the
driving force for nucleation, is extremely small; for com-
parison we note that, for hard spheres at � ¼ 0:5478,
��� ’ 0:74, which leads to fast nucleation [22].

Our results show clearly that the cubatic phase of OHSC
is metastable with respect to an IC phase transition. In this
light, it is interesting to study the effect of particle shape
on the stability of the cubatic phase. To this end, we
measure the cubatic order parameter [7] as a function of
pressure for the three particle shapes depicted in Fig. 1
using NPT MC simulations with N ¼ 3000 particles. The
shapes (ordered from more curved to more cylinderlike)
are OHSC, HCS, which resemble recently synthesized
particles of Ref. [24], and double hard cut spheres
(DHCS). The latter model consists of two superimposed
HCS and is essentially a cylinder. All three models have
the same height-to-diameter ratio of L=D ¼ 0:2. The onset
of cubatic order, as defined by the packing fraction �cub at
which the cubatic order parameter suddenly increases, is
shown as the dashed, blue line in Fig. 5. We observe clearly
that �cub decreases upon decreasing the particle curvature.
Furthermore, �cub for N ¼ 3000 HCS is essentially equal
to that of the largest system size, N ¼ 1728, of Ref. [7],
indicating that finite size effects beyond N ¼ 3000 are
small.

In addition, we study the stability of the cubatic phase
using a high-order virial theory. In Ref. [7], it was shown
that an eighth order expansion is required to predict a
stable isotropic-cubatic phase transition for HCS with
L=D ¼ 0:2. Here, we apply this theory to predict the

isotropic-cubatic phase transition for OHSC, HCS (with
higher precision than in Ref. [7]), and DHCS. The results
for the bulk density of the cubatic phase in coexistence
with the isotropic phase are denoted by the dashed, red
lines in Fig. 5(c) at the eighth virial level. Although, the
agreement with the simulations results is not satisfactory,
surprisingly, the trend of the bulk density of the cubatic
phase with particle curvature is very similar to that of the
NPT MC simulations.
Finally, we determine the stability of the cubatic phase

with respect to the columnar phase for HCS and DHCS.
The apparent stability of the cubatic phase for HCS could
be due to dynamic arrest. Inspired by the particle stack
rotations as observed in our MD simulations, we introduce
a new cluster move in the MC simulations to speed up
equilibration [14]. In order to investigate more precisely
the location of the phase coexistence between the isotropic
or cubatic fluid phase with the columnar phase, we perform
NPT MC simulations of the two coexisting phases in a
simulation box that is large enough that the interfacial free
energy is sufficiently small [25,26]. The coexistence pres-
sure can be determined as the pressure at which neither of
the phases grows at the expense of the other phase [14,26].
The corresponding coexistence densities for HCS and
DHCS are shown in Fig. 5. Clearly, the pressure at which
the columnar phase becomes more stable than the isotropic
phase is lower than the pressure at which long-range
cubatic order was found, which unambiguously shows
that the cubatic phase is unstable for all three shapes
considered. The strong decrease of �cub as the particle
shape changes from OHSC to HCS causes a strong de-
crease in �� and, therefore, a strong increase in the life-
time of the cubatic phase, see also Fig. S4 [14].
In conclusion, we find that the cubatic phase is meta-

stable with respect to an IC phase coexistence for all three
model platelets, and can be regarded as a transient phase in
the IC phase transformation. The locally favored structures
of perpendicularly oriented particle stacks in the cubatic
phase leads to geometric frustration that prevents the for-
mation of the columnar phase thereby yielding vitrifica-
tion. Additionally, we find a direct link between structural
order and dynamic heterogeneities provided by the coop-
erative rotation of particle stacks in the cubatic phase. Such
a link is often assumed to be characteristic for glassy
behavior, but is not easy to demonstrate in e.g., colloidal
hard sphere glasses. We also show that the cooperative
stack rotations play an important role in the devitrification
process and that the lifetime of the cubatic phase can be
tuned by confinement and by surprisingly small differences
in the particle shape. Interestingly, our results explain
recent experimental observations on suspensions of gibbs-
ite platelets which enter a kinetically arrested glass regime
upon increasing the particle concentration and in which
small iridescent grains of the columnar phase were formed
after periods of months to years [4].

DHCS HCS OHSC
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FIG. 5 (color online). The phase diagram for double hard cut
spheres (DHCS), hard cut spheres (HCS) and OHSC with
L=D ¼ 0:2: packing fraction � versus dðS;CylÞ, the difference
[14,23] between the shape S in question and a cylinder (Cyl)
with the same volume and aspect ratio. The gray area and the
black lines denote coexistence between the isotropic and the
columnar phase from simulations [14]. The metastable transition
from the isotropic to the cubatic phase is denoted by the dashed
lines, where the solid squares denote simulation results for
N ¼ 3000 particles, and the triangles denote the results from
an eighth order virial theory.
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(Birkhäuser, Boston, 2006).
[24] T. Fujibayashi and M. Okubo, Langmuir 23, 7958

(2007).
[25] C. Vega, E. P. A. Paras, and P. A. Monson, J. Chem. Phys.

96, 9060 (1992).
[26] T. Zykova-Timan, J. Horbach, and K. Binder, J. Chem.

Phys. 133, 014705 (2010).

PRL 108, 206101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
18 MAY 2012

206101-5

http://dx.doi.org/10.1038/nphys235
http://dx.doi.org/10.1098/rspa.1952.0194
http://dx.doi.org/10.1016/j.jcis.2010.04.033
http://dx.doi.org/10.1016/j.jcis.2010.04.033
http://dx.doi.org/10.1088/0953-8984/21/47/474218
http://dx.doi.org/10.1088/0953-8984/21/47/474218
http://dx.doi.org/10.1063/1.3552951
http://dx.doi.org/10.1103/PhysRevA.45.5632
http://dx.doi.org/10.1103/PhysRevA.45.5632
http://dx.doi.org/10.1103/PhysRevE.79.031702
http://dx.doi.org/10.1103/PhysRevE.84.011702
http://dx.doi.org/10.1103/PhysRevE.84.011702
http://dx.doi.org/10.1103/PhysRevLett.96.057803
http://dx.doi.org/10.1103/PhysRevLett.98.095701
http://dx.doi.org/10.1103/PhysRevLett.98.095701
http://dx.doi.org/10.1103/PhysRevLett.102.128301
http://dx.doi.org/10.1103/PhysRevLett.102.128301
http://dx.doi.org/10.1103/PhysRevLett.105.088302
http://dx.doi.org/10.1103/PhysRevLett.105.088302
http://dx.doi.org/10.1063/1.1616913
http://dx.doi.org/10.1063/1.1616913
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.206101
http://link.aps.org/supplemental/10.1103/PhysRevLett.108.206101
http://dx.doi.org/10.1103/PhysRevLett.98.265702
http://dx.doi.org/10.1103/PhysRevLett.98.265702
http://dx.doi.org/10.1103/PhysRevE.62.5173
http://dx.doi.org/10.1103/PhysRevE.62.5173
http://dx.doi.org/10.1103/PhysRevLett.95.197801
http://dx.doi.org/10.1103/PhysRevLett.96.187801
http://dx.doi.org/10.1103/PhysRevLett.96.187801
http://dx.doi.org/10.1063/1.2378623
http://dx.doi.org/10.1063/1.2378623
http://dx.doi.org/10.1103/PhysRevLett.106.215701
http://dx.doi.org/10.1103/PhysRevLett.106.215701
http://dx.doi.org/10.1063/1.3506838
http://dx.doi.org/10.1063/1.3506838
http://dx.doi.org/10.1021/la7007842
http://dx.doi.org/10.1021/la7007842
http://dx.doi.org/10.1063/1.462214
http://dx.doi.org/10.1063/1.462214
http://dx.doi.org/10.1063/1.3455504
http://dx.doi.org/10.1063/1.3455504


Frustration of the isotropic-columnar phase transition of colloidal
hard platelets by a transient cubatic phase:

Supplementary Material

Matthieu Marechal,∗ Alessandro Patti,† Matthew Dennison, and Marjolein Dijkstra

Soft Condensed Matter, Debye Institute for NanoMaterials Science,
Utrecht University, Princetonplein 5, 3561 RT Utrecht, The Netherlands

(Dated: February 20, 2012)

Cluster criterion

The cluster criterion consists of the following steps: First, we define the neighbors of particle i as those
particles j for which the surface-to-surface distance ρij is smaller than 0.2D and ui · uj > 0.9 with ui the
orientation of particle i. We also define the set of particles Ei which contains i and its neighbors and we
define the plane Pi perpendicular to the nematic director ni of the particles in Ei. Then, we examine the
trigonal, square and hexagonal order around particle i in the plane Pi,

ψn(i) =

∣∣∣∣∣∣ 1

Nb(i)

Nb(i)∑
j=1

exp( inφij)

∣∣∣∣∣∣ , (1)

where n = 3, 4, 6, and φij is the angle between rproj

ij and a reference axis, which lies in Pi. Also, rproj

ij is the

projection on Pi of the bond between particle i and j. The sum over j runs over the Nb(i) neighbors of
particle i which are not in the same stack as i (the values for φij for j in the same stack as i are random
for both isotropic and columnar phases). Furthermore, particles i and j are defined to be in the same
stack if they are neighbors and their center-to-center distance rij is smaller than L + 0.2D. We then make
a distinction between particles with a columnar-like and an isotropic-like environment. Particle i has a
columnar-like environment if ψ6(i) > 0.6 and ψn(i) < 0.7 for n = 3, 4. We define ncol(i) to be the number
of particles in Ei that have a columnar-like environment. Those particles i that have ncol(i) ≥ 4 are called
columnar particles. Finally, two columnar particles are part of the same cluster, if they are neighbors.

Stack rotation moves

To speed up the equilibration of Monte Carlo simulations, especially the ones with hard cut spheres and
double hard cut spheres, we implemented Monte Carlo moves that are designed specifically to rotate short
stacks. We select a particle randomly and define a stack by the particles with a center-to-center distance
smaller than the 0.5D. The nematic axis of this stack is determined in the usual way [1] and a random
vector in the plane perpendicular to this axis is generated. The stack is rotated around this axis by ninety
degrees. Finally, the move is accepted if no overlaps are generated and rejected otherwise. This move can
easily be seen to obey detailed balance. Furthermore, the simulation is ergodic because regular rotation and
translation moves are also performed. Although the acceptance ratio of these moves is tiny 10−6, the small
number of moves that are accepted during the simulation do significantly speed up the simulation.

Coexistence

We simulate two coexisting phases, a columnar phase and an isotropic or cubatic phase, in a single,
rectangular simulation box. The initial configurations of these NPT MC simulations consist of two phases
of interest in contact. The simulation box has to be sufficiently long in the direction perpendicular to the
interface, such that the effect of the interface on either of the coexisting phases is small. While this dimension
fluctuates in the simulation, the other dimensions are kept fixed at the values obtained in a prior NPT MC

∗ Currently at HHU, Düsseldorf, Germany
† Currently at IQAC-CSIC, Barcelona, Spain
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FIG. S1. (a) The initial configuration of each of the simulations in which we determine the pressure at coexistence
between the isotropic phase and the columnar phase consists of a fluid phase and a columnar phase joined together
in a single simulation box for cut spheres after equilibration at P ∗ = 6.8. (b) Nematic order parameter S2 versus
the number of MC cycles in NPT simulations of cut spheres at pressures P ∗ ≡ βPvCS as labeled. The straight lines
are linear fits to the straigth sections of the curves. (c) The fits from (b) as a function of the pressure P ∗ and the
corresponding plot for double hard cut spheres. The straight lines are linear fits. The outlier for DHCS is too far
from coexistence to fall on a straight line (see text) and is therefore not included in the fit.

simulation of only the bulk positionally ordered phase (the columnar phase). In the latter simulation, all
three dimensions were allowed to adapt to a change in pressure. A typical snapshot of a simulation after
initial equilibration, during which the cubatic phase transforms into an isotropic fluid, is shown in Fig. S1(a).
In Fig. S1(b), the nematic order parameters as obtained from such simulations for cut spheres and a range of
pressures are shown. Clearly the cubatic phase transforms into the columnar phase for the pressures where
the fluid showed system-spanning cubatic order i.e. for P ∗ ≡ βPvHCS ≥ 7.75. This shows unambiguously
that the cubatic phase is not stable for any of the investigated densities.

Fits to the nematic order parameter [straight lines in Fig. S1(b)] near the coexistence can be used to
determine the coexistence pressure [3]. This process is shown in Fig. S1(c). The slope of the linear fits
to S2(t) is denoted dS2(t) / d t. The coexistence pressure is the pressure for which dS2(t) / d t = 0. The
growth speed can be shown to be proportional to D[exp(β∆µ) − 1] [4], where ∆µ is the supersaturation
(the chemical-potential difference between the two phases in contact) and D is the self-diffusion constant.
Near coexistence we use this to approximate dS2(t) / d t ' a∆µ = a

∫
(1/ρI − 1/ρC)dP ' b∆P , where ρI

and ρC are the densities of the isotropic and columnar phases, respectively. Furthermore, we assume that

Shape S d(S,Cyl) P ∗ ηI ηC ηcub
DHCS 0.00165836 6.304(7) 0.4639(4) 0.5336(3) 0.495(5)
HCS 0.00653491 6.710(8) 0.4788(4) 0.5502(3) 0.505(5)

OHSC [2] 0.02527792 8.276 0.5052 0.5705 0.57(1)

TABLE I. The pressures and packing fractions at coexistence between the isotropic (I) and columnar (C) phases for
HCS and DHCS from this work and for OHSC from Ref. [2]. Also shown is the Haussdorf distance d(S,Cyl) between
a cylinder (Cyl) and each of the three shapes S. Furthermore, the packing fraction ηcub at which the cubatic order
increases suddenly on increase of the density is listed in the last column.
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the pressure difference ∆P is small enough that all properties of the two phases in the simulation box are
approximately equal to those of the system at coexistence, such that a and b are approximately constant. In
practice, we fit a linear function to dS2(t) / d t as a function of P ∗ and calculate the pressure for which this
straight line intersects with the line dS2(t) / d t = 0 (the thick black line in Fig. S1). In Fig. S1(c), a point
far from the coexistence is plotted to show that deviations from linearity are indeed a real possibility. This
outlier is not included in the fit. The resulting coexistence data are listed in Tbl. I together with the data
for the OHSC for reference.

Difference between shapes

The difference between shapes as plotted in the phase diagram, Fig. 5 of the main text, is defined using the
Hausdorff distance [5]. In order to define this distance on shape space, which is commonly used in (convex)
geometry, we first define

d′(A,B) = max
x∈A

min
y∈B
|x− y| (2)

where A and B are solid (compact) bodies. The Hausdorff distance is then defined by

d(A,B) = max{d′(A,B), d′(B,A)}. (3)

For solid (compact) bodies, it can easily be seen that, for the two points x and y at a local minimum–
maximum in Eqn. (2), (i) x lies on the surface ∂A of body A, while (ii) y lies on ∂B, (iii) x−y is an outward
normal to the surface of A in x and (iv) x−y is also an outward normal to the surface of B in y (in the case
of a cusp at one of the two points, x−y has only to be normal to the path of the cusp at the point in question
and point away from the body in question). Maximizing over all such pairs (of which there are only a few,
if one takes into account the rotational symmetry) we can easily calculate the Hausdorff distance between
a cylinder and an oblate hard spherocylinder, a hard cut sphere or a hard double cut sphere where all the
shapes have the same aspect-ratio, volume and center-of-mass position and are co-aligned. The resulting
values for the Hausdorff norm are listed in Tbl. I.

Slow and collective dynamics

In Fig. S2(a), the translational and rotational diffusion constants divided by to the respective values at
η = 0.5 (near coexistence). The translational diffusion constant is defined as limt→∞〈|ri(t)− ri(0)|2〉/6t and
the rotational diffusion constant by limt→∞〈|∆ϕi(t)|2〉/6t, where ri(t) is the position of particle i at time t
and ∆ϕi(t) its angular displacement since time t = 0.
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FIG. S2. (a) The rotational and translational long time diffusion constants as a function of η relative to the value at
η = 0.5. For most of the density range the plots are nearl superimposed. (b) The chance Prot(r) = grot,rot(r)/grot,all(r),
where gs,s′(r) is the radial distribution function that measures the distribution of particles of type s′ around particles
of type s, and “all” denotes all particles, while “rot” denotes those particles that rotated more than 45 degrees
between two snapshots that were taken at time intervals of 5τMD.
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a) b) c)

FIG. S3. (a) A particle (yellow) is misaligned with the columnar cluster (indicated by the red particles). (b) It slips
in between the particles of a stack (dark blue). (c) Together with one of the particles of the stack, it rotates and
becomes part of the columnar cluster.

The main mode of re-orientation is the collective rotation of the particle in a stack as can be seen in
Fig. S2(c), which shows that, when a particle rotates more than 45 degrees, more than 60% of its neighbors
with a center-of-mass distance smaller than 2L rotate along. This has consequences for the attachment to
the columnar cluster, as shown in Fig. S3.

Life time of the cubatic phase

According to classical nucleation theory, the supersaturation ∆µ ≡ µfluid−µcol drives the nucleation of the
columnar phase, where µfluid is the chemical potential of the isotropic/cubatic branch and µcol the chemical
potential of the columnar phase. As cubatic order is found at a much higher packing fraction for OHSC than
for HSC and DHCS and the packing fraction at the IC transition only increases weakly, the supersaturation
at this packing fraction ηcub where the cubatic order is first found is much higher for OHSC than for HCS.
However, the dynamics is also much slower. Nevertheless, the cubatic phase of OHSC transforms much faster
into the columnar phase for a packing fraction just above ηcub for OHSC, than the cubatic phase for HCS
at a packing fraction even a bit higher above ηcub than the OHCS system, as shown in Fig. S4. For lower
densities, the system of HCS never spontaneously transformed to the columnar phase in the time window
accessible in our simulations.
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